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Abstract 

In a distributed environment, where a large number of computers are connected together to enable the large-

scale sharing of data and computing resources, agents, especially mobile agents, are the tools for autonomously 

completing tasks on behalf of their owners. For applications of large-scale mobile agents, security and 

efficiency are of great concern. In this paper, we present a fast binary dispatch model and corresponding secure 

route structures for mobile agents dispatched in parallel to protect the dispatch routes of agents while ensuring 

the dispatch efficiency. The fast binary dispatch model is simple but efficient with a dispatch complexity of 

O(log2n). The secure route structures adopt the combination of public-key encryption and digital signature 

schemes and expose minimal route information to hosts. The nested structure can help detect attacks as early as 

possible. We evaluated the various models both analytically and empirically. 

Keywords: mobile agent, secure route structure, robust route structure 

1. Introduction 

The use of mobile agents for distributed applications in a distributed environment is gaining increasing 

attention. Mobile agents are computational entities that are autonomous, mobile and flexible and can facilitate 
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parallel processing. Very often, a mobile agent acts on behalf of its owner to migrate through the distributed 

network completing the specified tasks and returning results back to the owner [11, 12, 16]. 

For example, in a national scale Grid environment [2, 4-7], a large number of computers are loosely coupled 

together to enable the large-scale sharing of data and computing resources, where agents, especially mobile 

agents, are naturally the tools for monitoring, managing hosts and deploying jobs. Typically, a mobile agent 

can carry a computational job and execute at a host after being dispatched to that host. Particularly, in a mobile 

agent based e-commerce environment [27], a pool of mobile agents can be dispatched at the request of a 

consumer (end-user) to visit remote e-shops asking offers for a specified product, evaluating these offers and 

negotiating with the shops. In such environments, the efficiency of dispatching a large number of mobile 

agents is particularly important in terms of performance. Moreover, the initial route information should be 

protected against potential malicious hosts. Otherwise, some attacks can be easily mounted breaking the 

deployment of agents. So, for the application of large-scale mobile agents, security and efficiency are of 

primary concern [8, 20]. 

Tamper-poof devices [23] and secure coprocessors [15] are hardware-based mechanisms that can be used for 

protecting mobile agents and hosts. Software-based approaches involve more work, such as the encrypted 

functions [19, 10] and digital signatures with proxy certificates [18]. Security enhanced mobile agents 

providing a range of security services as discussed in [20]. Several secure route structures are presented in [22] 

for protecting a sequentially migrating agent. But a sequential migrating agent can only satisfy small-scale 

applications and it may not be adequate for applications of grid computing or e-commerce where parallelism is 

exploited to achieve high performance and fast response [27]. In particular, agent based collaborative Internet 

applications requiring computations distributed over multiple resources will involve dispatching multiple 

agents in parallel and consolidating the results. Such applications are likely to become increasingly significant 

in the future. Hence there is a clear need to develop suitable models for the operation of parallel mobile agents 

and to analyze their security and performance characteristics.  This is the main focus of this paper, which 
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addresses dispatching mobile agents in parallel in an efficient manner, while protecting their routing 

information.   

In this paper, we first present a fast binary dispatch model (FBD), which is able to efficiently dispatch a 

large number of mobile agents in parallel. Based on this model, we present several secure route structures and 

security enhanced parallel dispatch protocols, which will expose minimal route information to current hosts. 

The nested structure of secure route can also help to detect attacks as early as possible. In terms of security and 

robustness, these models are improved one by one targeted at preserving the efficiency of the hierarchical 

dispatch model while ensuring route security. In this paper, we employ well-known public-key encryption 

algorithm, digital signature generating algorithm and X.509 authentication framework [3, 14, 21]. In the 

following, we assume that there exists a secure environment including the generation, certification and 

distribution of public keys. Based on such an infrastructure, each host enables an execution environment for 

mobile agents and can know the authentic public key of other hosts. 

2. Background and Previous Work 

2.1 Public-key Cryptography, Hash Function and Signature 

Public-key cryptography uses two different keys [14, 21]. One is the public key and the other is the secret 

key. The public key can be distributed publicly to other parties via digital certificates while the secret key is 

kept by the owner. Suppose Alice wants to send a message m to Bob in a secure manner. Alice can use the 

public key of Bob, PB, to encrypt m as PB[m] and send it to Bob. Upon receiving the ciphertext, Bob can use 

his secret key SB to decrypt the message as m=SB[PB[m]]. RSA is probably the most well known public-key 

system [17] at present. 

Secret key can also be used to generate a digital signature [14, 21]. If Bob wants to send Alice a document 

D, he can generate the signature as SB(D) and send it to Alice with the document, denoted as {D,SB(D)} or 

D||SB(D). Here ‘,’ or ‘||’ means the concatenation of two pieces of messages. With the signature, Alice 

can use Bob’s public key PB to check the data integrity of the document. Generally, when generating a 
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signature on a long document, a one-way hash function, denoted as H(x), can be used to generate digital 

digest, which operates on an arbitrary-length message m and returns a fixed-length hash value h, where 

h=H(m). In this way, the signature, denoted as sig=SB(H(D)), will be shorter. 

2.2 Basic Binary Dispatch Model (BBD)-A Previous Work 

When there are n mobile agents, in a sequential dispatch model, the agents are dispatched one by one. But it 

is not efficient since the dispatch complexity is O(n). In this section, we briefly preview the basic binary 

dispatch (BBD) model that is the basis of our previous work in [24, 25, 26]. It is a typical parallel dispatch 

model where each parent agent can dispatch two child agents resulting in a binary tree structure as shown in 

Fig. 1.  

We term an agent as a Master Agent if it is created at the home host and is responsible for dispatching a pool 

of mobile agents to remote hosts. We call an agent a Worker Agent (WA) if its sole responsibility is to perform 

simple tasks assigned to it such as accessing local data. If a WA also dispatches other worker agents besides 

performing the task of local data accessing, it is called a Primary Worker Agent (PWA).  

As shown in Fig. 1, suppose master agent A0 has to dispatch 16 agents to 16 hosts (i.e. agent Ai is 

dispatched to host Hi and H0 is the home host where A0 resides). Now, 16 mobile agents is divided into 2 

groups led by two PWAs, say A1 and A9 respectively. When agents A1 and A9 are dispatched to H1 and H9 

respectively, each of them has 8 members including itself. For A1 at layer L1, it will dispatch its right child 

agent A5 and distribute 4 members to it. A5 is a PWA responsible for activating its 4 members in binary. After 

having dispatched A5, A1 will transfer to layer L2, which is called a virtual dispatch costing no time. Now A1 

has 4 members only. Following the same process, A1 dispatches A3 and A2 successively. During all these 

processes, A1 always resides at H1 without any migration. At the same time when A1 dispatches A5, A0 

dispatches A9 to H9 to activate all agents in parallel in another branch. At last, after all dispatch tasks have been 

completed, A1 becomes a WA and starts its local data-accessing task at H1. The whole dispatch process can be 
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illustrated by a dispatch tree, as shown in Fig. 1. In fact, to summarize, the tasks of A1 in Fig. 1 is to act as a 

PWA and dispatch A5, A3 and A2 in sequence. Then, it becomes a WA.  

As a whole, the model benefits from the parallel dispatches by different PWAs at different hosts. When 

there are n=2h mobile agents and T is the average time for dispatching a mobile agent, (h+1)T will be the time 

for dispatching n mobile agents. The dispatch complexity will be O(log2n) [27]. This is definitely better than 

the sequential dispatch model especially when there are large-scale mobile agents. In our previous work [27], 

we have measured that the BBD model can obtain up to 83%-86% savings, when there are 64 mobile agents 

and the size of each agent varies from 5Kbytes to 1Mbytes, 10Mbytes and even 100Mbytes. 

3. A New Parallel Dispatch Model and Secure Route Structures 

While the BBD model is efficient, it has a drawback. For example, if there are 16 mobile agents, 8 mobile 

agents arrive at their destinations and start their local tasks at 4T and other 8 mobile agents do at 5T (see Fig. 

1). Here we distinguish the tasks of a PWA by dispatch tasks and local tasks. Agent A1 arrives at its destination 

at 1T but it can only start its task at 4T since it has to dispatch other agents. The start time of local task is the 

same with agents A2 to A8. So do other PWAs. In other words, half of the n agents can start their tasks at time 

(log2n)T and the other half at time (log2n+1)T. 

In this section, we propose FBD - a new fast binary dispatch model, and corresponding secure route 

structures. 

3.1 A Fast Binary Dispatch Model (FBD) 

As shown in Fig. 2, in the FBD model, a PWA is only responsible for dispatching 1 or 2 child agents before 

starting its local task. No virtual dispatch is necessary. That means A0 dispatches A1 and A2. Once arriving the 

destination host, A1 dispatches A3 and A4 only. After the dispatch, A1 starts its local accessing task. So does 

other PWAs. Thus, a PWA can start its local task earlier than BBD. But to obtain the fast dispatch 

performance, partial adjustment for balance is necessary. As shown in Fig. 2(b), 1 node should be moved to the 
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left branch so that the overall dispatch time is within (log2n+1)T. It is the same with 32 or n (when n=2h, h is 

an integer) agents. 

We can observe that in Fig. 2(b), A1 starts its local task at 3T no matter how many descendent agents it has. 

It is 4T for A2 and A3, and 5T for A4 and A5 etc. The last one is (log2n+1)T when having n agents altogether. 

This is same as the BBD model. It means that the starting times of all agents disperse from 3T to (log2n+1)T  

but the complexity remains O(log2n). As a result, FBD significantly improves the performance when the 

number of mobile agents is large. In contrast, in BBD, (log2n)T is the starting time of n/2 agents for local tasks.  

(log2n+1)T is the starting time for the rest n/2 agents. 

As far as the implementation of both BBD and FBD models is concerned, in Java based agents system (such 

as the IBM Aglets Platform [12]), if all agents have the same type of tasks with different arguments, a clone-

based strategy can be adopted. This can reduce the network bandwidth. Otherwise, all agent classes can be 

packaged in a jar file attached with an agent. A new agent instance can be created from this file. In both cases, 

the common feature is that when a new agent is created, arguments can be encapsulated before it is dispatched.  

In this paper, we will be focusing on the generic route structure models and will not be discussing our 

implementation mechanisms. 

3.2 Secure Route Structures 

Basically the structure of an agent can be described as follows: 

{Cer0/id0, S, C, D} 

Cer0 is the certificate of its sender, which should be a registered host in public key based infrastructure (e.g. 

PKI) environment. With this, a receiver could verify the ownership of a coming agent. Without the loss of 

generality, for simplicity, Cer0 can be replaced by the unique identity of the sender. S is the state of an agent 

represented by a set of arguments. A route is part of this state. C is the code of the agent and D is the results 

obtained after executions. It can be sent back through messages. 
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 In the FBD model, if no secure route structure is provided, a host where a PWA resides can know all 

addresses of the hosts where the PWA’s descendant agents should go. This will make it vulnerable to several 

security attacks.  

In this section, we propose several secure route structures using the combination of public-key based 

encryption and signature schemes. In our protocol, all routes are generated by A0 at H0 before any dispatch is 

performed. Routes are encrypted using public keys of the corresponding hosts that will be visited. An 

encrypted route can be decrypted with the assistance of the destination host. The host also helps dispatch child 

agents when a PWA arrives there. The agent can verify the validity of plaintext using the included signature. 

The host can delete a used route after the corresponding dispatch is successful. 

In the following context, we assume the following scenario. A host (say, home host H0) needs to dispatch a 

pool of mobile agents to other hosts for execution. After generating corresponding secure routes, the master 

agent A0 dispatches 2 PWAs in FBD, encapsulating secure routes to them and then waits for the returned 

results. To simplify, we also suppose that agent Ai should be dispatched to host Hi; upon arrival, Ai should 

deploy its subsequent child agents if it is a PWA or complete its local task if it is a WA. 

After introducing each structure, we will examine whether these secure route structures can be used to detect 

the following attacks: 

ATK1: route forging attack (forge a route) 

ATK2: route delete attack (delete a unused route) 

ATK3: dispatch skip attack (skip a predefined dispatch) 

ATK4: replay attack (dispatch a forged agent to a visited host) 

ATK5: wrong dispatch attack (dispatch an agent to a wrong host) 

ATK6: dispatch disorder attack (break the predefined dispatch order) 

All terms and symbols used in this paper are listed in Table 1. 
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3.2.1 Secure Route Structure (I) 

During the process of dispatch, a PWA resides at the same host without any migration. Its task is to dispatch 

one or two child agents and then complete its local task. 

The secure route structure (I) is as follows: 

(i) For a PWA A at current host CH, 

r(A)=PCH[isPWA, ip(LH), r(LA), ip(RH), r(RA), ip(H0), t, SH0(H(isPWA, 

ip(PH), ip(CH), ip(LH), r(LA), ip(RH), r(RA), ip(H0), id(H0), t))] 

(ii) For a WA A at current host CH,  

r(A)=PCH[isWA, ip(H0), SH0(H(isWA, ip(PH), ip(CH), ip(H0), id(H0), t))] 

where 

- r(A) denotes the route obtained at host H that is encrypted by the public key of H, PH; 

- isPWA or isWA is the token showing the current agent is a PWA or a WA; 

- ip(H) denotes the address of host H; 

- CH is the current host; LH and RH are the left child host and right child host and PH is the parent host 

of CH; H0 is the home host; 

- LA is the left child agent of A and RA is the right one; 

- if current agent has only one child agent, ip(RH) and r(RH) are NULL; 

- id(H0) denotes the unique identification of H0; here for simplification, we use the id to represent the 

ownership; 

- t is the timestamp when the route is generated at H0 and it is unique in all routes; 

In route structure (I), the route of an agent is encrypted by the public key of its destination host. The route is 

encapsulated when it is dispatched by its parent agent. Starting the binary dispatch process with secure routes, 
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the master agent A0 dispatches two PWAs to different hosts, each being encapsulated with an encrypted route 

for future dispatch task. When an agent Ai has successfully arrived at the current host CH, it should send back a 

feedback message to confirm the successful dispatch as follows 

msg=PPH[ip(CH), tiR, SH0(H(…)), SCH(ip(CH), tiR, SH0(H(…)))]     (msg1) 

This message is encrypted with the public key of home host including the signature by H0 included in the 

dispatched agent’s route. tiR is the time when the agent Ai is received. 

The carried route r(A) can be decrypted with the secret key of CH so that the agent can know: 

- whether it is a PWA or a WA. This is used to determine if it needs to dispatch child agents; 

- the signature signed at host H0, i.e., SH0(H(isPWA, ip(PH), ip(CH), ip(LH), r(LA), 

ip(RH), r(RA), ip(H0), t)) for a PWA, or  SH0(H(isWA, ip(PH), ip(CH), ip(H0), 

t)) for a WA. 

If it is a PWA, it will also know 

- the address ip(LH) of the left child host LH and its route r(LA); 

- the address ip(RH) of the left child host RH and its route r(RA); 

For any PWA or WA, the route includes the address of H0, ip(H0), the home host where A0 is residing. 

With this address, the agent can send its result back to A0. 

We illustrate the dispatch process using the following example. 

1 When A0 is dispatched to H1, it carries its route r(A1). 

2 After the route is decrypted,  

r={isPWA, ip(H3), r(A3), ip(H4), r(A4), ip(H0), t, SH0(H(…))} 

A1 obtained addresses ip(H3) ip(H4) and ip(H0), routes r(A3) and r(A4).  

3 Then A1 dispatches agent A3 to host H3, encapsulating route r(A3) to it.  
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4 Once arriving at H3, A3 sends back a confirmation message as follows: 

msg=PH1[ip(H3), tR3, SH0(H(…), SH3(id(H3), ip(H3), tR3, SH0(H(…)))]  (msg2) 

where tR3 is the time when H3 received A3 

5 After that A1 dispatches agent A4 to H4 and receives a message from A4. 

6 Hereafter A1 will start to complete its local task and return the result to A0 at H0. 

Hence, under this model, at any layer, only the addresses of the 2 child hosts are exposed to the current host.  

3.2.2 Analysis of Secure Route Structure (I) 

Now we examine if route structure (I) and its dispatch protocol can detect the above-mentioned attacks. 

3.2.2.1 Tampering with the Route (ATK1 and ATK2) 

Since each encrypted route carried by an agent should be decrypted by the current host where the agent 

resides, the current host may tamper with the route to impact the actions of the agent. But the tamper attack 

cannot succeed since the signature by H0 included in the route cannot be changed or forged. Any changes with 

the route information can be found after verification (ATK1).  

Meanwhile, if a sub-route (say, r(LA) or r(RA)) is deleted by the current host, the agent can also check 

the integrity. Deletion of a route will cause no results returned to the master agent A0. So a route deletion attack 

(ATK2) will be found. 

3.2.2.2 Dispatch Skip Attack (ATK3) 

Consider a partial dispatch route: PWA Ai at host Hi dispatches Aj to Hj and Aj dispatches Ak to Hk (see Fig. 

3). It is the same if there are more hosts between Hj and Hk. In our model, the encrypted route encapsulated to a 

PWA includes the encrypted route for its right child agent, which can only be decrypted at the right child host 

in the dispatch route. This means that when a PWA is dispatching an agent, normally it does not know what the 

agent is (a PWA or a WA) and how many members the agent has. So the case that Ai directly dispatches Ak is 

not likely to take place without the involvement of Aj. This is why the encrypted route uses the nested 
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structure. In the worst case, even if Hi can successfully predict that Hk is its descendent in the dispatch route 

and makes Ai dispatch a forged agent to Hk, the attack will not be successful, since forging the signature is not 

possible. 

The skip attack can be successful only when Hi, Hj and Hk are accomplices. In this case, no honest host is 

affected. 

There is yet another case. Taking the case shown in Fig. 2 as an example, assuming host H1 is the malicious 

one, if A3 is not dispatched, those agents in the group including A7, A8, A14, A15 and A16 will not be 

activated. However this attack can be detected because in such a case agent A0 cannot receive any messages 

from each agent of A7, A8, A14, A15 and A16. If this happens, since the five agents belong to the same 

group led by agent A3, A0 will suspect first that A3 may have not been dispatched. A0 will ask corresponding 

hosts to show whether the predefined dispatch has been performed. Apparently, if the dispatch has been carried 

out, a parent host will receive the confirmation message msg1 with a signature from the current host. No party 

can forge this signature without the current host’s secret key. So, no matter what H1 claims, the attack can be 

detected. 

Even if H1 and H3 make collusion attack so that A3 is dispatched but it is made dead at H3, the attack can be 

detected since A0 cannot get any message from A3, A7, A8, A14, A15 and A16, and no confirmation 

information for a successful dispatch can be shown by H3. Even if H3, H7 and H8 are also accomplices, the 

attack may be successful but no honest host is affected. 

3.2.2.3 Replay Attack (ATK4) 

At a malicious host, replay attack may occur. Consider the following scenario: a malicious Hi who has a 

PWA residing at its place, dispatches an agent Aj to host Hj. After the normal process has been completed, Hi 

may replay the dispatch with a forged agent. But the unique timestamp included in the signature by H0 makes 

the signature different from others. Therefore, when an agent is dispatched from Hi to Hj as a replay attack, by 

checking the signature, Hj can easily detect the attack and Hi will face the risk to be reported. 



 

 

 

12 
 

Similarly, another type of replay attack by a host, where a WA has earlier resided, is to repeatedly 

counterfeit the WA and send messages to agent A0. But it can be easily detected by A0 by checking the 

signatures included in messages, which are generated by H0 with unique timestamps and are taken as the 

identification of the agents. 

3.2.2.4 Wrong Dispatch (ATK5) 

Since the hosts may be in a competitive situation (such as in e-commerce environments), if a malicious host 

knows that a child agent will be dispatched to a remote host from its server, and that the remote host may 

probably give a better offer, it may tamper the address so that the agent can be dispatched to another host 

without any competitive offer. The tamper process can be done just after the encrypted route is decrypted. 

Normally, when a host receives an agent, since its address appears in the signature in the agent’s route 

generated by H0 that cannot be tampered with, it can verify if it is the correct destination. However, when an 

agent, say Aj, is dispatched to a wrong host, say Hw, its encrypted route r(Aj) will not be correctly decrypted 

there (see Fig. 4). Without the correct route, the verification process cannot be undertaken. Even if the 

destination host can get the correctly decrypted route, the route will show that it is a wrong destination. Thus, 

in both situations, the attack can be detected by the destination host and the agent will be returned to the 

sender. Meanwhile, this error will be recorded by the destination host for future investigation. 

3.2.2.5 Breaking the Dispatch Sequence (ATK6) 

However with route structure (I), a PWA could dispatch its right child agent first or dispatch agents after the 

local task is completed. This means that the dispatch order will not be strictly followed (ATK6). Thus the 

overall dispatch performance will be worsened. If all agent/hosts break the dispatch sequence, the whole 

dispatch performance will be as worse as a sequential migration model. The reason of this weakness is that two 

sub-routes for child agents are obtained simultaneously when a route is decrypted. And there is no sequence 

dependency between these two dispatches. 

3.3 Secure Route Structure (II) 
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In the following, an alternative route structure is presented where the route of the right child agent is 

included in the route of left child agent. When the left child agent is dispatched to the left child host, a 

feedback is returned to the current (parent) agent including the route for the right dispatch. Then the current 

agent can dispatch the right child agent to right child host. The dispatch order could not be broken (ATK6) 

while the properties against other attacks remain the same. 

Obviously in this route, the structures for left dispatch and right dispatch are different since a left dispatch 

should return a predefined route that is included ahead. For the right dispatch, there is no such a sub-route. 

Secure Route Structure (II) 

(i) For a PWA A at current host CH, if A is a left child agent of its parent agent at host PH, the route for A 

is: 

r(A)=PCH[isPWA, ip(LH), r(LA), ip(RH), ip(H0), r(ARS), t, SH0(H(isPWA, 

ip(PH), ip(CH), ip(LH), r(LA), ip(RH), ip(H0), r(ARS), id(H0), t))] 

where  

- ARS is the right-sibling agent of A, namely, the right child agent of A’s parent agent; 

- r(RA) is not included in r(A). 

(ii) For a PWA A at current host CH, if A is a right child agent of its parent agent at host PH, the route for A 

is: 

r(A)=PCH[isPWA, KPA, ip(LH), r(LA), ip(RH), ip(H0), t, SH0(H(isPWA, KPA, 

ip(PH), ip(CH), ip(LH), r(LA), ip(RH), ip(H0), id(H0), t))] 

where 

- KPA is a switch variable for parent agent PA that is encrypted by the public key of parent host PH, say 

PPH; 

(iii) For a WA A at current host CH, if A is a left child agent of its parent agent at host PH, the route for A is  
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r(A)=PCH[isWA, r(ARS), ip(H0), t, SH0(H(isWA, ip(PH), ip(CH), r(ARS), 

ip(H0), id(H0), t))] 

where ARS is the right-sibling agent of A, namely, the right child agent of A’s parent agent;  

(iv) For a WA A at current host CH, if A is a right child agent of its parent agent at host PH, the route for A is  

r(A)=PCH[isWA, KPA, ip(H0), t, SH0(H(isWA, KPA, ip(PH), ip(CH), ip(H0), 

id(H0), t))] 

In protocol (II), if a PWA has only one child agent, the structure of the child agent is the same as (iv).  

In route structure (II), a PWA arriving at the destination knows that it has to dispatch two child agents and 

where they should go. But it does not have the route for the right child agent. Only after its left child agent is 

dispatched, can the route for the right child agent be returned and the right dispatch can be performed. Similar 

to structure (I), the route for the right agent is encrypted with the public key of the right child host. So the left 

child host cannot decrypt it and don’t know the address where the corresponding agent should go. This could 

prevent a forged agent to be dispatched to the right child host by the left child agent. In terms of the route 

structure, the route for the right child agent, say r(RA), is moved from r(A) to the route of left child agent 

r(LA) (hereby r(RA) is denoted as r(ARS)). Likewise, in structure (II), a switch variable for current host 

CH is included in the route of its right child agent. Here we assume that each agent has its unique switch 

variable encrypted with the public key of its destination host. Only after the right agent is dispatched can 

current agent obtain it to start its local task. 

Now we illustrate the dispatch process of agent A1 (see Fig. 5). 

1. When A1 arrives H1, its decrypted route is 

    r={isPWA, ip(H3), r(A3), ip(H4), ip(H0), t, SH0(H(…))} 

2. A1 will know it is a PWA and its left child agent is going to H3 with r(A3) and its right child agent is going 

to H4 but there is no route for it now.  

3.  After A3 is dispatched to H3, A1 obtains r(A4) from a message  as follows: 
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msg=PH1[ip(H3),r(A4),t3R,SH0(H(…)),SH3(ip(H3),ip(H3),r(A4),t3R,SH0(H(…)))] 

where t3R is the time when H3 received A3. 

4. Now A4 could be dispatched.  

5. From the successful dispatch of A4, A1 gets the switch variable TA1 to start its task and return the result to A0 

at H0. 

In fact structure (I) has the same dispatch process as shown in Fig. 5. But the returned message is simpler. 

As structure (II) adopts the same nested structure and signatures from H0 are included in all routes, it is easy to 

see structure (II) has similar properties to structure (I) against attacks ATK1 to ATK5.  From the above 

example, we can observe that agent A1 must dispatch A3 and A4 in the predefined order before executing its 

local task. Therefore, due to the special arrangement of the route r(RA), the sequences of a PWA’s actions are 

dependant on each other. The dispatch order has to be strictly followed. So this dispatch protocol can prevent 

the dispatch disorder attack (ATK6). 

3.4 Robustness Extension - Secure Route Structure (III) 

Dispatch protocol (II) could ensure the dispatch order to be strictly followed. But, when a predefined 

destination host is not reachable, the predefined dispatch cannot be performed any more. To address this issue, 

the failure can be reported to A0 so that a new package is generated excluding the unreachable host. But it is 

costly. An available solution is to prepare substitute routes for substitute hosts. Once a predefined host is not 

reachable, the agent is dispatched to the substitute host with the substitute route to deploy the rest agents. 

Hence the robust route structure extension is as follows: 

Robust Route Structure (III) 

(i) For a PWA A at current host CH, if A is a left child agent of its parent agent at host PH, the route for A 

is: 
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r(A)=PCH[isPWA, ip(LH), r(LA), r’(LA’), ip(RH), ip(H0), r(ARS), t, 

SH0(H(isPWA, ip(PH), ip(CH), ip(LH), r(LA), r’(LA’), ip(RH), ip(H0), 

r(ARS), id(H0), t))] 

where r’(LA’)=PAH[ip(LA’), r(LA’) , t, SH0(ip(LA’), r(LA’) , t)] 

(ii) For a PWA A at current host CH, if A is a right child agent of its parent agent at host PH, the route for A 

is: 

r(A)=PCH[isPWA, KPA, ip(LH), r(LA), r(LA’), ip(RH), ip(H0), t, 

SH0(H(isPWA, KPA, ip(PH), ip(CH), ip(LH), r(LA), r’(LA’), ip(RH), 

ip(H0), id(H0), t))] 

where LH’  is the substitute host and r’(LA’) is the substitute route; 

(iii)  The route for a WA is the same as structure (II). 

Note that r’(LA’) here has a different structure from r(LA). r(LA’) is the same as presented in 

structure (II-i) for a left child agent. But it is included in r’(LA’), which is encrypted with the public key of 

a Assistant Host (AH). 

In Fig. 1, H1 is the left AH for all agents rooted by A9 and H9 is the AH for all agents rooted by A1. Here we 

simply assume that the address of the AH is public. When a predefined host is not reachable, the current host 

will report it to its AH attaching the route r’(LA’). After confirming the fault, AH will decrypt r’(LA’) and 

send r(LA’) back, with which the dispatch could continue. 

If a substitute host is chosen to be one of the original n hosts, a strategy (strategy (1)) illustrated in Fig. 6 

can be adopted. A leaf node, which is originally a right child host, is chosen to replace the unreachable host 

(see Fig. 6(b)). The benefit is that the height of the branch rooted by the unreachable host is h; only h-1 nodes 

are needed to re-generate the routes. This is important to reduce the complexity of route generation. But if the 

substitute host can be chosen out of original n hosts, an extra host can be specified in advance when generating 

the routes (strategy (2)). This will make the route generation simpler.  
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4.  Complexity Analysis 

A comparison of the security properties of three models is listed in Table 2. 

In this section, we analyze the complexity of route generation of three models and compare them with 

existing models. To simplify, we assume that the time to encrypt a message of arbitrary given length is a 

constant, say C. 

The model presented in [22] adopted a fully sequential migration providing secure route structure without 

any robustness mechanism. Let us suppose that the visited hosts are H1, H2, …, Hn. Then the route is:  

r(Hi)=PHi[ip(Hi+1), r(Hi+1), SH0(ip(Hi), ip(Hi+1), r(Hi+1), t)]   (1≤i<n) 

r(Hn)=PHn[EoR, SH0(ip(Hn-1), ip(Hn), t]  

where SH0 is the secret key of home host H0 and EoR is the token meaning the end of the route.  The 

migration complexity is O(n) if there are n hosts to be visited.  

A robust sequential model proposed in [13] ensures both security and robustness. In the robust sequential 

model, as the addresses of n hosts are distributed to two agents, say {ip(H1), …, ip(Hm)} and 

{ip(Hm+1), …, ip(Hn)}, the nested route structure is:  

r(Hi)=PHi[ip(Hi+1), r(Hi+1), r(Hi)’, SH0(ip(Hi+1), r(Hi+1), r(Hi)’, t)]  

where r(Hi)’=PAA[ip(Hi+2), r(Hi+2), r(Hi+2)’, SH0(ip(Hi+1), r(Hi+2), r(Hi+2)’, t)] 

is the substitute route where Hi+2 is the new destination if Hi+1 is not reachable. PAA is the public key of the 

assistant agent.  

The whole migration time can be theoretically half of the first model. However the time complexity is O(n). 

For both sequential models the complexity for route generation is O(n) [24]. For BBD model, as we analyzed 

in [24], the complexity for route generation is O(n). 

In the following context, we analyze the complexity of the proposed secure route structures. 
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Theorem 1: Assuming that the time to encrypt a message of arbitrary given length is a constant, the time 

complexity for route generation in structure (I) is O(n). 

Proof: 

With structure (I), when a branch has m nodes, the route of the root is generated after two sub-routes are 

ready, which have m/2-1 and m/2 nodes respectively. 

Thus, we have 

 T(n)=2T(n/2) 

 T(m)=T(m/2)+T(m/2-1)+C     (2≤m≤n/2)                                                                                                      (1) 

 T(1)=C 

T(m)=T(m/2)+T(m/2-1)+C< T(m)=2T(m/2)+C 

       < T(m)=2(2T(m/4)+C)+C=4 T(m/4)+(1+2)C 

       <4 (2T(m/8)+c)+(1+2)C=8 T(m/8)+(1+2+4)C 

      =2k T(m/2k)+(20+21+…+2k-1)C 

      =2k T(m/2k)+(2k-1)C       (2≤m≤n/2) 

If there are n agents and each branch has m agents, namely, when n=2m=2h, T(n)<2hT(1)+(n-1)C<(2n-1)C. 

Therefore T(n) is O(n).                                                                                                                                                   � 

In route structure (II), the route of the right child agent is generated first (step 1 in Fig. 7). Then it is 

included in the route of the left child agent (step 2 in Fig. 7), which is included in the route of the parent agent 

(step 3 in Fig. 7). 

If each sub-branch has m/2 nodes, the complexity is 

T(n)=2T(n/2) 

T(m)=2T(m/2)+C       (2≤m≤n/2)                                                                                                                    (2) 

T(1)=C 
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Similar to equation (1), T(m)=2T(m/2)+C yields T(m)=2kT(m/2k)+(2k-1)C  (2≤m≤n/2). When n=2m=2h, 

T(n)=2(n-1)C. So T(n) is O(n). Therefore, we have the following theorem. 

Theorem 2: Assuming that the time to encrypt a message of arbitrary given length is a constant, the time 

complexity for route generation in structure (II) is O(n). 

For structure (III), we have the following theorem. 

Theorem 3: Assuming that the time to encrypt a message of arbitrary given length is a constant, the time 

complexity for route generation in structure (III) is O(n) or O(nlog2n). 

Proof: 

In structure (III), a substitute route is added. To generate the substitute route in strategy (1), as most sub-

branches remain unchanged, only h nodes are needed to re-generate their routes, where k is the height of the 

branch rooted by the substitute host (see Fig. 6(b)). So if the branch has m (m=2k) nodes, the complexity is 

T(n)=2T(n/2) 

T(m)= 2T(m/2)+kC  (m=2k)        (2≤m≤n/2)                                                                                                   (3) 

T(1)=C 

Otherwise, if strategy (2) is adopted, then 

 

 T(n)=2T(n/2) 

 T(m)=2T(m/2)+2C (2≤m≤n/2)                                                                                                                       (4) 

 T(1)=C 

From equation (3), we have  

T(m)=2T(m/2)+kC=2(2T(m/4)+kC)+kC=4T(m/4)+(1+2)kC 

            =4(2T(m/8)+kC)+(1+2)kC=8T(m/8)+(1+2+4)kC 

            =2kT(m/2k)+(2k-1)kC 
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When m=2k, T(m)=mC+(m-1)(log2m)C   (2≤m≤n/2). 

As T(n)=2T(n/2), so T(n)=2(n/2⋅C+(n/2-1)(log2n/2)C)=nC+(2n-1)(log2n-1)C 

Therefore T(n)=O(nlog2n). 

From equation (4), we have 

T(m)=2T(m/2)+2C=2(2(m/4)+2C)+2C 

           =4T(m/4)+(2+4)C=4(2T(m/8)+2C)+(2+4)C 

           =8T(m/8)+(2+4+8)C 

           =2k T(m/2k)+2(1+2+…+2k-1)C 

           =2k T(m/2k)+2(2k-1)C 

When m=2k, T(m)=mC+2(m-1)C=(3m-2)C  (2≤m≤n/2). 

As T(n)=2T(n/2), so T(n)=2(3n/2-2)C=(3n-4)C. 

Therefore T(n) is O(n).                                                                                                                                      � 

The complexities of three models are illustrated in Table 3. 

5. Experimental Results 

To further study the performance of the different models proposed above, we conducted experiments on a 

cluster of PCs. These PCs are connected to a LAN with 100Mbytes/s network cards running Window NT, 

JDK, IBM Aglets 1.0.3 [1, 9]. For route generations, the experiments are based on a PC of Pentium IV 1.8GHz 

CPU and 512 Mbytes RAM. For sequential migration and binary dispatch, the experiments are put on a cluster 

of PCs of Pentium 200MMX CPU and 64 Mbytes RAM. All programs run on the top of the Tahiti servers 

from the ASDK [12, 1] and JDK from Sun Microsystems [9]. 

To encrypt a route, we used the RSA algorithm [17] and the length of each key used was 1024 bits. Before 

generating a signature, hash function MD5 [14] is used to generate a hash value with a fixed-length of 128 bits. 
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For the third experiment, since all PCs have the same configuration, the performance differences arise totally 

due to the differences in the sequential versus parallel dispatch models.  In our experiments, we also compare 

our models with the secure route structures of sequential migration [22, 13] in which the complexities for route 

generation are all O(n). The results are illustrated in Figures 8 to 14. Each result is the average of four 

independent executions 

5.1 Experiment 1: Route Generation-Sequential Model vs. Binary Models 

In this experiment, we first compare the route generation time of different models. Here four secure 

structures are compared. Results are shown in Fig. 8. When the number of addresses is fewer than 128, all 

models deliver similar performances. When the number becomes 128 or more, the binary dispatch model 

begins to outperform the sequential model. 

The route generation performances of the four secure structures are pretty close to each other. The time for 

FBD (II) is longer than for BBD and FBD (I). For BBD and FBD (I), the performances are very close to each 

other. With the increase of the number of addresses, the time for sequential model increases very fast. When 

generating the route with 1024 addresses, the program of the sequential model ran out of memory after the 

771st address is added, where the heap size was set to 1200 Mbytes and the maximum had been reached. But 

for FBD (II), it takes 243 seconds for 1024 addresses. It can even generate routes with up to 2048 addresses for 

483 seconds. Generally, the time for structures (I) to (V) increases fairly slowly. 

Theoretically, when there are n addresses, the binary dispatch model should do the encryption for 2n-2 

times. For the sequential model, it is n times only. The time complexities are both O(n).  If the encryption time 

for a message is a constant, the route generation time for the binary dispatch model is obviously longer. 

Nevertheless, the encryption time varies with the length of the encrypted message. For the binary dispatch 

model, n times’ encryptions are spent on all leaf nodes in the dispatch tree where the length of each route is 

only about 200 bytes. Unfortunately, for sequential model, each time after encryption, the route’s length 

increased with a length of a network address and a signature. So the encryption time gradually increases with 
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the increasing route length. When the number of addresses is large, the total encryption time will become very 

long. 

For example, when there are 512 addresses, the sequential model performs 512 encryptions. It took some 

190 seconds (about 9.6% of overall time) to complete the first 256 encryptions and some 1793 seconds (about 

90.4% of overall time) for the last 256 encryptions. The total time is 1983 seconds. For the binary dispatch 

model (structure FBD (II)), it completed all encryptions in 118 seconds for 512 nodes with 57.6 seconds (about 

48.7% of overall time) for first 256 leaf nodes. 

5.2 Experiment 2: Route Generation: Sequential Robust Model vs. FBD (II)  

In this experiment, we compare the route generation time for models with one substitute route. 

The complexity of sequential robust model is O(n). The results shown in Fig. 9 illustrates that the difference 

in performance is not very significant. The robust sequential model can outperform this a bit in most cases. But 

when the there are 1024 addresses, the robust sequential model becomes inferior. With 2048 addresses, the 

program of robust sequential model runs out of memory after running several hours. The reason is the same as 

mentioned in experiment 1. For FBD (III), we tested it with up to 2048 addresses. The time was 4277 seconds. 

5.3 Experiment 3: Sequential Migration vs. Binary Dispatch 

In this experiment, we tested up to 32 hosts to compare the migration and dispatch time of different models 

neglecting any robustness mechanism. In Fig. 10, in the implementation, a mobile agent will not access any 

local data so that the measured time is used for migration or dispatch only. In order to obtain independent 

result each time, we rebooted the Tahiti server to prevent the affect from the cache. 

When the number of visited hosts is no more than 8, the differences in performance were not significant. 

With the increase in the number of hosts, the migration time of any sequential migration model increases very 

fast. In comparison, the dispatch time for binary dispatch model increases fairly slowly. 

Meanwhile, the migration time for sequential robust model is always shorter than the sequential model since 

in the sequential robust model, two mobile agents are dispatched and each one only visits n/2 hosts. 
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Nevertheless, its performance is not comparable to the binary dispatch model. For the two binary dispatch 

models, since no time for local data access is measured, their performances are almost the same. 

The performances of two binary dispatch models are also compared when the time for local data access is 

measured. The size of read local XML documents is set to 1Mbytes and 100Mbytes. The returned data set size 

is set to 1Kbytes and 100Kbytes. 

From the data illustrated in Figures 11-14, we could observe that when the data set size of the XML 

document and the result size are small (e.g., 1Mbytes and 1Kbytes respectively in Fig. 11), the performance 

difference is not significant. 

But when the XML document size is large (e.g., 1Mbytes) but the result size is small (e.g., 100Kbytes), the 

performance difference is the most significant. In this case, the overall time is relatively short. FBD model can 

avoid the congestion at the side of the master agent. When there are 32 hosts (see Fig. 11), FBD model can 

obtain 20.3% saving percentage. The performance difference becomes more and more significant with the 

increase of the number of hosts. 

6. Conclusions 

This paper presents several secure route structures and corresponding dispatch protocols based on a fast 

binary dispatch model ensuring both security and efficiency. They expose only minimal addresses to a host to 

perform dispatches. With the improvement of security performances, the computational overhead for route 

generation may also increase. However, with respect to security, which is the most important issue for mobile 

agents, the sacrifice on performance is worthy, while the dispatch complexity remains O(log2n). 

For practical applications, mobile agents having the same type tasks and having physically close 

destinations can be put in the same group encapsulated with pre-encrypted routes. For verifying the integrity of 

an incoming agent, the pure code can be included in the signature of a route after being hashed to a fixed 

length (e.g. 128 bits by MD5 algorithm) when it is generated at the home host. And the length of the signature 

remains unchanged. 
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Tables 
 
 
 

Table 1 Terms and Symbols Used in Our Models 

A0 The master agent at home host H0. 
Ai A mobile agent residing at host Hi. 
ARS ARS is the right-sibling agent of A, namely, the right child agent of A’s parent agent 
CH The current host 
H One-way hash function 
H0 Home host where master agent A0 resides. 
Hi A host where agent Ai resides. 

ip(Hi) The IP address of host Hi. 
isPWA A token denoting the current agent is a PWA. 
isWA A token denoting the current agent is a WA. 
KPA KPA is a switch variable for parent agent PA that is encrypted by the public key of parent host 

PH, say PPH; 
LA The left child agent 
LA’ The substitute agent of left child agent 
LH The left child host of current host CH 
LH’ The substitute host of left child host 
PA The parent agent 
PH The parent host of current host CH 
PHi The public key of host Hi. 
r(A) The encrypted route for agent A. 
r’(A) The substitute route for agent A. 
RA The right child agent 
RH The right child host of current host CH 
SHi The secret (private) key of host Hi 

SHi(H(…)) The signature of a hash value generated by host Hi 
t The time when a route is generated at H0. 
tiR The time when agent Ai is received by host Hi. 
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Table 2 Security Properties of Three Models 

 Route Forge 
Attack 

Route Delete 
Attack 

Dispatch Skip 
Attack 

Replay 
Attack 

Wrong 
Dispatch 
Attack 

Dispatch Disorder 
Attack 

Robust Route 
Structure 

Route (I) √ √ √ √ √ X No 

Route (II) √ √ √ √ √ √ No 

Route (III) √ √ √ √ √ √ Yes 

√: the attack can be prevented or detected;  
X: the attack cannot be prevented or detected. 
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Table 3 Complexity Comparison of Three Models 

 Complexity of Route Generation Complexity of  Dispatch 

Route (I) O(n) O(log2
n) 

Route (II) O(n) O(log2
n) 

Route (III) O(nlog2
n) or O(n) O(log2

n) 
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Fig. 1 BBD model with 16 mobile agents 
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Fig. 2 FBD Dispatch Tree with 16 Mobile Agents 
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Fig. 3 Dispatch Skip Attack 
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Fig. 4 Wrong Dispatch Attack
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Fig. 5 Dispatch Process of Structure (II)
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Fig. 6 The Selection of a Substitute Host 
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Fig. 7 Steps in the Route Generation of Structure (II) 
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Fig. 8 Route Generation Time for Sequential Model and Binary Dispatch Model 
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Fig. 9 Comparison of the Time for Generating a Route with One Substitute Route 
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Fig. 10 Comparison of The Migration/Dispatch Time 
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Fig. 11 Results of Reading 1Kbytes Data from the 1Mbytes XML File of Every Host 
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Fig. 12 Results of Reading 1Kbytes Data from the 100Mbytes XML File of Every Host 
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Fig. 13 Results of Reading 100 Kbytes Data from the 1Mbytes XML File of Every Host 
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Fig. 14 Results of Reading 100 Kbytes Data from the 100Mbytes XML File of Every Host 
 
 

 
 


