| | | | | | | | | F | REVISI | UNS | | | | | | | | | | | |---|--|--|----------------|---|--|------------------------------------|---------------------|---------|----------|--------------------|-------------------|-------------|-------------------|-----------------------|------------------|------------------------|---------------------------------|------------------|----------|--| | LTR | DESCRIPTION | | | | | | | | | | DA | TE (YF | R-MO-I | DA) | | APPR | OVED | | | | | А | In ac | cordan | ce with | N.O.R | . 5962 | R259- | 92. | | | d 0793 | | | | 92-0 | 9-24 | | | M. A. | FRYE | | | В | | 5 with 2 | | | | | • | | | AGE nu
anges th | | out. | 97-06-09 | | | | R. MONNIN | | | | | С | | | e to di | mensio | ns L, F | t, and F | R1 as s | pecifie | d in cas | se X ı | О | | | 97-1 | 2-17 | | | R. MO | NINIC | | | D | Add r | adiatio | n hardı | ness as | ssuranc | ce requ | iremen | ts ro | | | | | | 98-0 | 6-17 | | | R. MONNIN | | | | E | Add | device | ype 02 | 2 with ra | adiation | n hardn | ess re | quireme | ents | ro | | | | 98-1 | 0-29 | | | R. MONNIN | | | | F | Make | chang | e to tal | ble IIB. | - ro | | | | | | | | | 99-0 | 2-10 | | | R. MO | NINIC | | | G | | ing upo | | | t curre | nt requ | iremen | ts. Del | ete figu | ure 1 ar | d mak | е | | 02-0 | 8-08 | | | R. MO | NINIC | | | Н | Delet | e Acce | lerated | aging | | | | | | | | | | 07-0 | 7-06 | | | R. H | EBER | | | J | Add o | device t
ghout. | ype 03
- it | 3 with ra | adiation | n hardn | ess re | quireme | ents. E | ditorial | chang | es | | 11-0 | 5-25 | | | C. SA | AFFLE | | | REV
SHEET
REV
SHEET | | | | | | | | | | | | | | | | ı | T | | | | | |
} | OF SHEETS | | REV STATUS REV J J J | | | | | J | J | J | J | J | J | J | J | J | J | J | J | J | | | PMIC N/A PREPARED BY JOSEPH A. KERBY STANDARD MICROCIRCUIT CHECKED BY DAVID H. JOHNSON | | | | | | | J
1 | J
2 | J
3 | J
4 | J
5 | J
6 | J 7 | J
8 | J
9 | J
10 | J 11 | J
12 | J
13 | | | STA
MICRO | OCIRC | CUIT | | SHE
PREI
JO | ET PARED DSEPH | I A. KE
BY | 1
RBY | _ | | | | 6 | 7
DLA I | 8
-AND
BUS, | 9
AND
OHIO | 10
MAF | 11
RITIMI
218-39 | 12
E | _ | | | STA
MICRO
DR
THIS DRAWI
FOR U | OCIRO
AWINO
ING IS A
JSE BY A
RTMEN
NCIES O | CUIT G VAILAE ALL TS OF THE | | SHE
PREI
JO
CHEI
D.
APPI | PAREIDSEPHONE CKED AVID H | BY I. JOHI D BY L A. FI | 1
RBY | 2 | | MIC CO | 5
SROC
MPAI | co
CIRCI | 7 DLA I DLUM http | AND
BUS,
:://ww | 9 AND OHICOW.ds | 10 MAR O 432 cc.dla | 11
RITIMI
218-39 | 12
E
990 | 13
BE | | | STA
MICRO
DR
THIS DRAWI
FOR L
DEPA
AND AGE
DEPARTME | OCIRO
AWINO
ING IS A
JSE BY A
RTMEN
NCIES O | CUIT G VAILABALL TS DF THE DEFENS | | SHE PREI JO CHE D. APPI M | PAREIDSEPH
CKED
AVID H
ROVEI
ICHAE | BY I. JOHI D BY L A. FI APPRO 88-0 | RBY NSON RYE DVAL [| 2 | | MIC
CO
MO | 5
SROC
MPAI | CCCCIRCI | 7 DLA I DLUM http | AND BUS, o://www | 9 AND OHICOW.ds | MAFO 432
CC.dla | 11
RITIMI
218-39
a.mil | E
990
LTAG | 13
BE | | # 1. SCOPE - 1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels is reflected in the PIN. - 1.2 PIN. The PIN is as shown in the following examples. For device classes M and Q: For device class V: - 1.2.1 RHA designator. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device. - 1.2.2 <u>Device types</u>. The device types identify the circuit function as follows: | Device type | Generic number | <u>Circuit function</u> | |-------------|----------------|-------------------------| | 01 | LM139A | Quad voltage comparator | | 02 | LM139 | Quad voltage comparator | | 03 | PM139A | Quad voltage comparator | 1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as listed below. Since the device class designator has been added after the original issuance of this drawing, device classes M and Q designators will not be included in the PIN and will not be marked on the device. | Device class | Device requirements documentation | | | | | | |--------------|---|--|--|--|--|--| | М | Vendor self-certification to the requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A | | | | | | | Q or V | Certification and qualification to MIL-PRF-38535 | | | | | | | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87739 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
J | SHEET 2 | # 1.2.4 <u>Case outlines</u>. The case outlines are as designated in MIL-STD-1835 and as follows: | Outline letter | Descriptive designator | <u>Terminals</u> | Package style | |----------------|------------------------|------------------|--------------------------------| | | | | | | | | | | | С | GDIP1-T14 or CDIP2-T14 | 14 | Dual-in-line | | D | GDFP1-F14 or CDFP2-F14 | 4 14 | Flat pack | | Χ | GDFP1-G14 | 14 | Flat pack with gull wing leads | | 2 | CQCC1-N20 | 20 | Square leadless chip carrier | 1.2.5 <u>Lead finish</u>. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M. ## 1.3 Absolute maximum ratings. 1/ | Supply voltage range (V _S) | | |---|---------------------| | Input current (V _{IN} < -0.3 V) | 50 mA | | Maximum power dissipation (PD) | 900 mW <u>2</u> / | | Sink current | 20 mA approximately | | Lead temperature (soldering 10 seconds) | +300°C | | Storage temperature range | -65°C to +150°C | | Junction temperature (T _J) | +150°C | | Thermal resistance, junction-to- case (θ _{JC}): | | | Cases C, D, and 2 | See MIL-STD-1835 | | Case X | 23°C/W | # 1.4 Recommended operating conditions. | Supply voltage (V _S) | 5 V dc to 30 V dc | |---|-------------------| | Ambient operating temperature range (T _A) | -55°C to +125°C | ## 1.5 Radiation features. Device types 01, 02: Maximum total dose available (dose rate </= 10 mrad (Si)/s...... 50 Krads(Si) 4/ ^{4/} For device type 03, radiation endpoint limits for the noted parameters are guaranteed for the condition specified in MIL-STD-883, Test Method 1019, Condition D. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87739 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
J | SHEET 3 | Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability. ^{2/} Derate above 100°C ambient, 10 mW/°C. These parts may be dose rate sensitive in a space environment and may demonstrate enhanced low dose rate effects. Radiation end point limits for the noted parameters are guaranteed only for the conditions specified in MIL-STD-883, method 1019, condition A. #### 2. APPLICABLE DOCUMENTS 2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract. #### DEPARTMENT OF DEFENSE SPECIFICATION MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for. #### DEPARTMENT OF DEFENSE STANDARDS MIL-STD-883 - Test Method Standard Microcircuits. MIL-STD-1835 - Interface Standard Electronic Component Case Outlines. #### DEPARTMENT OF DEFENSE HANDBOOKS MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings. (Copies of these documents are available online at https://assist.daps.dla.mil/quicksearch/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.) 2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. #### 3. REQUIREMENTS - 3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. - 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M. - 3.2.1 Case outlines. The case outlines shall be in accordance with 1.2.4 herein. - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1. - 3.2.3 Logic diagram. The logic diagram shall be as specified on figure 2. - 3.2.4 Radiation exposure circuit. The radiation exposure circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing and acquiring activity upon request. - 3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full ambient operating temperature range. - 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87739 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
J | SHEET 4 | | | Т | ABLE I. <u>El</u> | ectrical performance | characteristic | <u>s</u> . | | | | |------------------------------------|-----------------|--|---|-------------------|----------------|--------|--------------------------|------| | Test | Symbol | Conditions $ -55^{\circ}C \leq T_{A} \leq +125^{\circ}C $ unless otherwise specified | | Group A subgroups | Device
type | Limits | | Unit | | | | | | | | Min | Max | | | Input offset voltage | V _{IO} | $R_S = 0 \Omega, V_O = 1.4 V,$ | | 1 | 01, 03 | | ±2.0 | mV | | | | +Vs = 5 \ | dc to 30 V dc | 2,3 | | | ±4.0 | 1 | | | | | M,D,P,L,R <u>1</u> / <u>2</u> / | 1 | 01 | | ±3.0 | | | | | | M, D, P, L <u>1</u> / <u>2/</u> | 1 | 03 | | | | | | | $R_S = 0 \Omega$ | $V_{O} = 1.4 V$ | 1 | 02 | | ±5.0 | | | | | +V _S = 5 \ | / dc to 30 V dc | 2,3 | | | ±9.0 | | | | | | M,D,P,L,R <u>1</u> / <u>2</u> / | 1 | | | ±6.0 | | | Input offset current | I _{IO} | +l _{IN} l _{IN} | with output in | 1 | All | | ±25 | nA | | | | the linea | ar range | 2,3 | | | ±100 | | | | | | M,D,P,L,R <u>1</u> / <u>2</u> / | 1 | | | | = | | | | | | | 01,02 | | ±25 | | | | 1. | l | M, D, P, L <u>1</u> / <u>2</u> / | 1 | 03 | | 1400 | 0 | | Input bias current | I _{IB} | | +I _{IN} or -I _{IN} with output | | All | | ±100 | nA | | | | in the lin | lear range | 2,3 | 04.00 | | ±300 | | | | | | M,D,P,L,R <u>1</u> / <u>2</u> /
M, D, P, L <u>1</u> / <u>2</u> / | 1
1 | 01,02
03 | | ±100 | | | Input common-mode 3/ voltage range | VICR | +V _S = 5 \ | l | 1,2,3 | All | 0 | +V _S
- 2.0 | V | | Voltage gain 3/ | A _V | R _L ≥ 15 k | $R_L \ge 15 \text{ k}\Omega, +V_S = 15 \text{ V}$ | | All | 50 | | V/mV | | _ | | - , , | | 2,3 | | 25 | | 1 | | Output sink current 3/ | ISINK | | V, +V _{IN} = 0 V,
V, T _A = +25°C | 1 | All | 6 | | mA | | Saturation voltage | VSAT | -V _{IN} = 1 \ | V, +V _{IN} = 0 V, <u>3</u> / | 1 | All | | 400 | mV | | | | I _{SINK} ≤ 4 | mA | 1,2,3 | | | 700 | 1 | | | | -V _{IN} = 1 \ | V, +V _{IN} = 0 V, | 1 | | | 400 | 1 | | | | I _O = 4 mA | I _O = 4 mA | | | | 400 | | | | | | M,D,P,L,R <u>1</u> / <u>2</u> /
M, D, P, L <u>1</u> / <u>2</u> / | 1 | 01,02
03 | | 400 | | | Output leakage current | l _{OL} | +V _{IN} ≥ 1 | V dc, V _O = 30 V, | 1 | All | | 0.5 | μА | | , | | -V _{IN} = 0 \ | _ | 1,2,3 | | | 1 | 1 | | | | - 114 | M,D,P,L,R <u>1</u> / <u>2</u> / | 1 | 01,02 | | 2.5 | - | | | | | M, D, P, L <u>1/ 2/</u> | | 03 | | 0.5 | | See footnotes at end of table. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87739 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
J | SHEET 5 | ## TABLE I. Electrical performance characteristics. | Test | Symbol | $ \begin{array}{c} Conditions \\ -55^{\circ}C \leq T_{A} \leq +125^{\circ}C \\ unless \ otherwise \ specified \end{array} $ | | Group A subgroups | Device
type | Limits | | Unit | |---|------------------|---|---|-------------------|----------------|--------|-----|------| | | | | | | | Min | Max | | | Supply current | Icc | $+V_S = 5 \text{ V to } 30 \text{ V},$ $R_L = \infty$ | | 1,2,3 | All | | 3 | mA | | | | | M,D,P,L,R <u>1</u> / <u>2</u> / | 1 | 01, 02 | | 2 | | | | | | M, D, P, L <u>1</u> / <u>2</u> / | | 03 | | 2 | | | Input voltage common 3/
mode rejection ratio | CMRR | $V_{CM} = 0 V$ $R_L \ge 15 k$ | V to 28 V,
Ω, +V _S = 30 V | 1,2,3 | All | 70 | | dB | | Power supply rejection ratio | PSRR | +V _S = 5 V | / to 30 V <u>3</u> / <u>4</u> / | 1,2,3 | All | 70 | | dB | | Response time 3/ | ^t RLH | V_{RL} = 5 V, R_L = 5.1 kΩ,
100 mV input step,
T_A = +25°C | | 9 | All | | 5 | μs | | | ^t RHL | 5 mV ove $T_A = +25^\circ$ | • | | | | 2.5 | | - Device 01 & 02 supplied to this drawing have been characterized through all levels M, D, P, L, and R of irradiation. Device 01 & 02 is only tested at the "R" level and device type 03 is only tested at "L" Level. Device 03 supplied to this drawing has been characterized through all levels P and L of irradiation. Pre and Post irradiation values are identical unless otherwise specified in table I. When performing post irradiation electrical measurements for any RHA level, TA = +25°C. - 2/ Device types 01 and 02 may be dose rate sensitive in a space environment and may demonstrate enhanced low dose rate effects. Radiation end point limits for the noted parameters are guaranteed only for the conditions specified in MIL-STD-883,method 1019, condition A for device types 01 and 02. Device type 03 has been tested at a low dose rate. - 3/ This parameter is not tested to post irradiation. - 4/ Guaranteed, if not tested, to the limits specified in table I herein. - 3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A. - 3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A. - 3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87739 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
J | SHEET 6 | | Device types | Al | LL | |-----------------|-------------|----------| | Case outlines | C, D, and X | 2 | | Terminal number | Termina | l symbol | | 1 | OUTPUT 2 | NC | | 2 | OUTPUT 1 | OUTPUT 2 | | 3 | +Vs | OUTPUT 1 | | 4 | -INPUT 1 | +Vs | | 5 | +INPUT 1 | NC | | 6 | -INPUT 2 | -INPUT 1 | | 7 | +INPUT 2 | NC | | 8 | -INPUT 3 | +INPUT 1 | | 9 | +INPUT 3 | -INPUT 2 | | 10 | -INPUT 4 | +INPUT 2 | | 11 | +INPUT 4 | NC | | 12 | GND | -INPUT 3 | | 13 | OUTPUT 4 | +INPUT 3 | | 14 | OUTPUT 3 | -INPUT 4 | | 15 | | NC | | 16 | | +INPUT 4 | | 17 | | NC | | 18 | | GND | | 19 | | OUTPUT 4 | | 20 | | OUTPUT 3 | NC = No connection FIGURE 1. <u>Terminal connections</u>. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87739 | |--|------------------|---------------------|----------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
J | SHEET 7 | FIGURE 2. Logic diagram. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87739 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
J | SHEET 8 | FIGURE 3. Radiation exposure circuit. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87739 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
J | SHEET 9 | - 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing. - 3.8 <u>Notification of change for device class M.</u> For device class M, notification to DLA Land and Maritime-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change that affects this drawing. - 3.9 <u>Verification and review for device class M.</u> For device class M, DLA Land and Maritime, DLA Land and Maritime's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer. - 3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 050 (see MIL-PRF-38535, appendix A). #### 4. VERIFICATION - 4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A. - 4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. - 4.2.1 Additional criteria for device class M. - a. Burn-in test, method 1015 of MIL-STD-883. - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015. - (2) $T_A = +125^{\circ}C$, minimum. - b. Interim and final electrical test parameters shall be as specified in table IIA herein. - 4.2.2 Additional criteria for device classes Q and V. - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883. - b. Interim and final electrical test parameters shall be as specified in table IIA herein. - Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B. - 4.3 <u>Qualification inspection for device classes Q and V.</u> Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). | STANDARD MICROCIRCUIT DRAWING | SIZE
A | | 5962-87739 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
J | SHEET 10 | TABLE IIA. Electrical test requirements. | Test requirements | Subgroups (in accordance with MIL-STD-883, method 5005, table I) | Subgroups
(in accordance with
MIL-PRF-38535, table III) | | |---|--|---|-----------------------| | | Device
class M | Device
class Q | Device
class V | | Interim electrical parameters (see 4.2) | 1 | 1 | 1 | | Final electrical parameters (see 4.2) | 1, 2, 3, 9 <u>1</u> / | 1, 2, 3, 9 <u>1</u> / | 1, 2, 3, 9 <u>2</u> / | | Group A test requirements (see 4.4) | 1, 2, 3, 9 | 1, 2, 3, 9 | 1, 2, 3, 9 | | Group C end-point electrical parameters (see 4.4) | 1, 2, 3 | 1, 2, 3 | 1, 2, 3, <u>2</u> / | | Group D end-point electrical parameters (see 4.4) | 1, 2, 3 | 1, 2, 3 | 1, 2, 3 | | Group E end-point electrical parameters (see 4.4) | | | 1 | ^{1/} PDA applies to subgroup 1. TABLE IIB. 240 hours and group C operating life deltas. | Test | Symbol | Device | | Limits | | Units | |----------------------|-----------------|--------|------|--------|-------|-------| | | | types | Min | Max | Delta | | | Input offset voltage | V _{IO} | 01, 03 | -2 | 2 | ±1.5 | mV | | | | 02 | -5 | 5 | ±2.0 | | | Input bias current | I _{IB} | All | -100 | 100 | ±15 | nA | ^{4.4 &}lt;u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). # 4.4.1 Group A inspection. - a. Tests shall be as specified in table IIA herein. - b. Subgroups 4, 5, 6, 7, 8, 10, 11 shall be omitted. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87739 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
J | SHEET 11 | ^{2/} Delta limits as specified in table IIB shall be required where specified, and the delta limits shall be computed with reference to the previous interim electrical parameters. - 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table IIA herein. - 4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883: - a. Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883. - b. $T_A = +125$ °C, minimum. - c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883. - 4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883. - 4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table IIA herein. - 4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). - a. End-point electrical parameters shall be as specified in table IIA herein. - b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at T_A = +25°C, after exposure, to the subgroups specified in table IIA herein. - 4.4.4.1 <u>Total dose irradiation testing</u>. Total dose irradiation testing shall be performed in accordance with MIL-STD-883 method 1019, condition A for device types 01 and 02, condition D for device type 03 and as specified herein. - 4.4.4.2 <u>Dose rate burnout</u>. When required by the customer test shall be performed on devices, SEC, or approved test structures at technology qualifications and after any design or process changes which may effect the RHA capability of the process. Dose rate burnout shall be performed in accordance with test method 1023 of MIL-STD-883 and as specified herein. ## 5. PACKAGING 5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M. #### 6. NOTES - 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes. - 6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing. - 6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal. - 6.3 <u>Record of users</u>. Military and industrial users should inform DLA Land and Maritime when a system application requires configuration control and which SMD's are applicable to that system. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-0547. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87739 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
J | SHEET 12 | 6.4 Comments. Comments on this drawing should be directed to DLA Land and Maritime-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0540. 6.5 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331. 6.6 Sources of supply. 6.6.1 Sources of supply for device classes Q and V. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DLA Land and Maritime-VA and have agreed to this drawing. 6.6.2 <u>Approved sources of supply for device class M</u>. Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DLA Land and Maritime-VA. SIZE **STANDARD** 5962-87739 Α MICROCIRCUIT DRAWING DLA LAND AND MARITIME **REVISION LEVEL** SHEET COLUMBUS, OHIO 43218-3990 J 13 # STANDARD MICROCIRCUIT DRAWING BULLETIN DATE: 11-05-25 Approved sources of supply for SMD 5962-87739 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime -VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.dscc.dla.mil/Programs/Smcr/. | Standard
microcircuit drawing
PIN <u>1</u> / | Vendor
CAGE
number | Vendor
similar
PIN <u>2</u> / | |--|--------------------------|-------------------------------------| | 5962-8773901CA | 01295 | LM139AJB | | | 27014 | LM139AJ-SMD | | | <u>3</u> / | LM139AD/883 | | | <u>3</u> / | PM-139AY/883 | | 5962-8773901DA | 01295 | LM139AWB | | | 27014 | LM139AW-SMD | | 5962-8773901XA | 27014 | LM139AWG-SMD | | 5962-87739012A | 01295 | LM139AFKB | | | 27014 | LM139AE-SMD | | | <u>3</u> / | PM-139ARC/883 | | 5962-87739012A | 0C7V7 | LM139LMB | | 5962-8773901VCA | 24355 | PM139AY/QMLV | | 5962-8773901VDA | 24355 | PM139AM/QMLV | | 5962-8773901V2A | 24355 | PM139ARC/QMLV | | 5962R8773901VCA | 24355 | PM139AY/QMLR | | 5962R8773901VDA | 24355 | PM139AM/QMLR | | 5962R8773901V2A | 24355 | PM139ARC/QMLR | | Standard
microcircuit drawing
PIN <u>1</u> / | Vendor
CAGE
number | Vendor
similar
PIN <u>2</u> / | |--|--------------------------|-------------------------------------| | 5962R8773902VCA | 24355 | PM139Y/QMLR | | 5962R8773902VDA | 24355 | PM139M/QMLR | | 5962R8773902V2A | 24355 | PM139RC/QMLR | | 5962L8773903VDA | 24355 | PM139AM/QMLL | - 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability. - 2/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing. - 3/ Not available from an approved source of supply. | Vendor CAGEnumber_ | Vendor name and address | |--------------------|---| | 01295 | Texas Instruments, Incorporated Semiconductor Group 8505 Forest Lane P.O. Box 660199 Dallas, TX 75243 Point of contact: U.S. Highway 75 South P.O. Box 84, M/S 853 Sherman, TX 75090-9493 | | 24355 | Analog Devices, Incorporated Route 1 Industrial Park PO Box 9106 Norwood, MA 02062 Point of contact: 7910 Triad Center Drive Greensboro, NC 27409-9605 | | 27014 | National Semiconductor Corporation
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, CA 95052-8090 | | 0C7V7 | E2V Aerospace and Defense, Inc.
dba QP Semiconductor, Inc.
2945 Oakmead Village Court
Santa Clara, CA 95051 | The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.