

MxFE Quad, 16-Bit, 12 GSPS RF DAC and Dual, 12-Bit, 6 GSPS RF ADC

Data Sheet

AD9082

FEATURES

Flexible reconfigurable common platform design 4 DACs and 2 ADCs (4D2A) Supports single, dual, and quad band Maximum DAC/ADC sample rate up to 12 GSPS/6 GSPS DAC to ADC sample rate ratios of 1, 2, 3, and 4 ADC and DAC datapath bypass option Analog bandwidth to 8 GHz Full-scale output current range, ac coupling: 7 mA to 40 mA **On-chip PLL with multichip synchronization External RFCLK input option** ADC ac performance at 6 GSPS Full-scale input voltage: 1.475 V p-p Full-scale sine wave input power: 4.4 dBm Noise density: -153 dBFS/Hz Noise figure: 25.3 dB HD2: -65.2 dBFS at 2.7 GHz HD3: -70.8 dBFS at 2.7 GHz Worst other (excluding HD2 and HD3): -68.5 dBFS at 2.7 GHz DAC ac performance at 3.7 GHz output 2-tone IMD3 (-7 dBFS per tone): -78.9 dBc NSD, single-tone, f_{DAC} = 12 GSPS: -155.1 dBc/Hz SFDR, single-tone, f_{DAC} = 12 GSPS: -70 dBc Versatile digital features Supports real or complex digital data (8-, 12-, 16-, or 24-bit) Selectable interpolation and decimation filters **Configurable DDC and DUC** 8 fine complex DUCs and 4 coarse complex DUCs 8 fine complex DDCs and 4 coarse complex DDCs 48-bit NCO per DUC/DDC Option to bypass fine and coarse DUC/DDC Programmable 192-tap PFIR filter for receive equalization Supports 4 different profile settings loaded via GPIO Programable delay per data path **Receive AGC support** Fast detect with low latency for fast AGC control Signal monitor for slow AGC control **Dedicated AGC support pins Transmit DPD support** Fine DUC channel gain control and delay adjust Coarse DDC delay adjust for DPD observation path

Auxiliary features Fast frequency hopping Direct digital synthesis (DDS) Low latency digital loopback mode (ADC to DAC) ADC clock driver with selectable divide ratios Power amplifier downstream protection circuitry **On-chip temperature monitoring unit Flexible GPIOx pins TDD** power savings option SERDES JESD204B/JESD204C interface, 16 lanes up to 16.22 Gbps 8 lanes per DACs and ADCs JESD204B compatible with the maximum 15.5 Gbps lane rate JESD204C compatible with the maximum 16.22 Gbps lane rate Sample and bit repeat mode for lane rate matching Total power consumption: 11.45 W typical 15 mm × 15 mm, 324-ball BGA with 0.8 mm pitch APPLICATIONS

Wireless communications infrastructure Microwave point-to-point, E-band and 5G mmWave Broadband communications systems DOCSIS 3.1 and 4.0 CMTS Phased array radar and electronic warfare Electronic test and measurement systems

GENERAL DESCRIPTION

The mixed signal front-end (MxFE*) is a highly integrated device with a 16-bit, 12 GSPS maximum sample rate, RF digital-to-analog converter (DAC) core, and 12-bit, 6 GSPS rate, RF analog-todigital converter (ADC) core. The AD9082 supports four transmitter channels and two receiver channels. The AD9082 is well suited for applications requiring both wideband ADCs and DACs to process signal(s) having wide instantaneous bandwidth. The device features a 16 lane, 16.22 Gbps JESD204C or 15.5 Gbps JESD204B data transceiver port, an on-chip clock multiplier, and a digital signal processing (DSP) capability targeted at either wideband or multiband, direct to RF applications. The AD9082 also features a bypass mode that allows the full bandwidth capability of the ADC and/or DAC cores to bypass the DSP datapaths. The device also features low latency loopback and frequency hopping modes targeted at phase array radar system and electronic warfare applications.

Rev. A

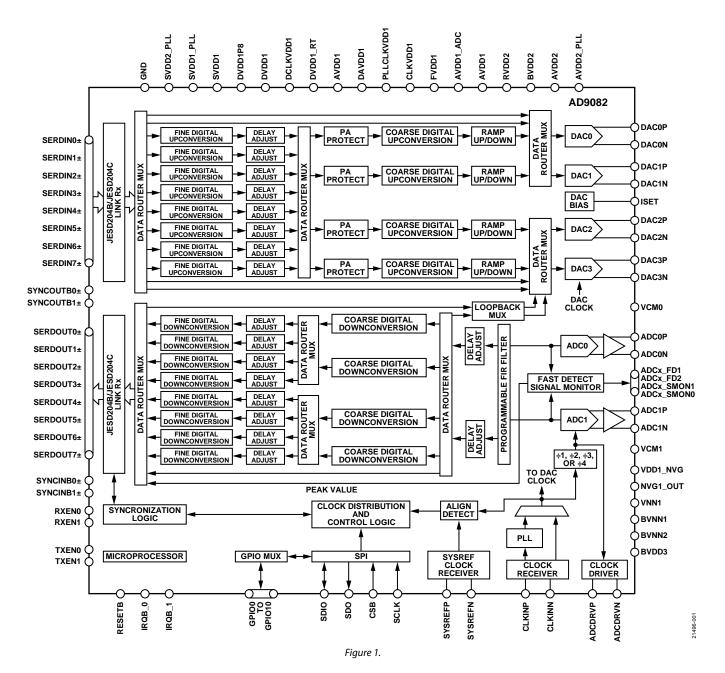
Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2020 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features1
Applications 1
General Description1
Revision History
Functional Block Diagram 3
Specifications
Recommended Operating Conditions 4
DC Specifications 4
DAC and ADC Sampling Specifications5
Power Consumption
Clock Input and Phase-Locked Loop (PLL) Frequency Specifications
Input and Output Data Rates and Signal Bandwidth Specifications7
JESD204B and JESD204C Interface Electrical and Speed Specifications
CMOS Pin Specifications9


REVISION HISTORY

9/2020—Rev. 0 to Rev. A	
Changes to Figure 1	
Changes to Figure 5	
Changes to Table 14	
Changes to Table 14	

6/2020—Revision 0: Initial Version

DAC AC Specifications	9
ADC AC Specifications	
Timing Specifications	13
Absolute Maximum Ratings	15
Reflow Profile	15
Thermal Resistance	15
ESD Caution	15
Pin Configuration and Function Descriptions	16
Typical Performance Characteristics	
DAC	
ADC	
Theory of Operation	
Outline Dimensions	33
Ordering Guide	

FUNCTIONAL BLOCK DIAGRAM

SPECIFICATIONS RECOMMENDED OPERATING CONDITIONS

Successful DAC calibration is required during the device initialization phase that occurs shortly after power-up to ensure long-term reliability of the DAC core circuitry. Refer to UG-1578, the device user guide, for more information on device initialization.

Table 1.				
Parameter	Min	Тур	Мах	Unit
OPERATING JUNCTION TEMPERATURE (TJ)			120	°C
ANALOG SUPPLY VOLTAGE RANGE				
AVDD2, BVDD2, RVDD2	1.9	2.0	2.1	V
AVDD1, AVDD1_ADC, CLKVDD1, FVDD1, VDD1_NVG1	0.95	1.0	1.05	V
DIGITAL SUPPLY VOLTAGE RANGE				
DVDD1, DVDD1_RT, DCLKVDD1, DAVDD1	0.95	1.0	1.05	V
DVDD1P8	1.7	1.8	2.1	V
SERIALIZER/DESERIALIZER (SERDES) SUPPLY VOLTAGE RANGE				
SVDD2_PLL	1.9	2.0	2.1	V
SVDD1, SVDD1_PLL	0.95	1.0	1.05	V

DC SPECIFICATIONS

Nominal supplies with DAC output full-scale current (I_{OUTFS}) = 26 mA, unless otherwise noted. For the minimum and maximum values, $T_{I} = -40^{\circ}$ C to +120°C, and for the typical values, $T_{A} = 25^{\circ}$ C, unless otherwise noted.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
DAC RESOLUTION		16			Bit
ADC RESOLUTION		12			Bit
DAC ACCURACY					
Gain Error			1.5		%FSR
Gain Matching			0.1		%FSR
Integral Nonlinearity (INL)	Shuffling disabled		8.0		LSB
Differential Nonlinearity (DNL)	Shuffling disabled		3.5		LSB
ADC ACCURACY					
No Missing Codes			Guaranteed		
Offset Error			0.57		%FSR
Offset Matching			0.26		%FSR
Gain Error			5.34		%FSR
Gain Matching			1.06		%FSR
DNL	Dithering enabled		0.32		LSB
INL	Dithering enabled		1.38		LSB
DAC ANALOG OUTPUTS	DACxP and DACxN				
Full-Scale Output Current Range	AC coupling, setting resistance (R_{SET}) = 5 k Ω				
AC Coupling	Output common-mode voltage (V_{CM}) = 0 V	7	26	40	mA
DC Coupling	$V_{CM} = 0.3 V$		20		mA
Full-Scale Sinewave Output Power with AC Coupling ¹	ldeal 2:1 balun interface to 50 Ω				
$I_{OUTFS} = 26 \text{ mA}$			3.3		dBm
$I_{OUTFS} = 40 \text{ mA}$			7		dBm
Common-Mode Output Voltage (VCM _{OUT})			0		v
Differential Impedance			100		Ω

Parameter	Test Conditions/Comments	Min	Тур Мах	Unit
ADC ANALOG INPUTS	ADCxP and ADCxN			
Differential Input Voltage			1.475	V р-р
Full-Scale Sine Wave Input Power	Input power level resulting 0 dBFS tone level on fast Fourier transform (FFT)		4.4	dBm
Common-Mode Input Voltage (VCM _{IN})	AC-coupled, equal to voltage at VCMx for ADCx input		1	V
Differential Input				
Resistance			100	Ω
Capacitance			0.4	pF
Return Loss	<2.7 GHz		-4.3	dB
	2.7 GHz to 3.8 GHz		-3.6	dB
	3.8 GHz to 5.4 GHz		-2.9	dB
CLOCK INPUTS	CLKINP and CLKINN			
Differential Input Power				
Direct RF Clock			0	dBm
CLK Synchronization Enabled			0	dBm
Differential Input Impedance ¹			100//0.3	Ω//pF
Common-Mode Voltage	AC coupled		0.5	V
ADC CLOCK OUTPUTS	ADCDRVP and ADCDRVN			
Differential Output Voltage Magnitude ²	1.5 GHz		740	mV p-p
	2.0 GHz		690	mV p-p
	3 GHz		640	mV p-p
	6 GHz		490	mV p-p
Differential Output Resistance			100	Ω
Common-Mode Voltage	AC coupled		0.5	V

¹ The actual measured full-scale power is frequency dependent due to DAC sinc response, impedance mismatch loss, and balun insertion loss. ² Measured with differential 100 Ω load and less than 2 mm of printed circuit board (PCB) trace from package ball.

DAC AND ADC SAMPLING SPECIFICATIONS

Nominal supplies. For the minimum and maximum values, $T_J = -40^{\circ}$ C to $+120^{\circ}$ C and $\pm 5\%$ of nominal supply. For the typical values, T_A = 25°C, unless otherwise noted.

Table 3.				
Parameter	Min	Тур	Max	Unit
DAC UPDATE RATE ¹				
Minimum			2.9	GSPS
Maximum	12			GSPS
ADC SAMPLE RATE ¹				
Minimum			1.45	GSPS
Maximum	6			GSPS
Aperture Jitter ²		65		fs rms

¹ Pertains to the update rate of the DAC and ADC cores independent of datapath and JESD mode configuration.

² Measured using a signal-to-noise ratio (SNR) degradation method with the DAC disabled, clock divider = 1, ADC frequency (f_{ADC}) = 6 GSPS, and input frequency (f_{IN}) = 5.55 GHz.

POWER CONSUMPTION

Typical at nominal supplies and maximum at 5% supplies. DAC datapath with a complex I/Q data rate frequency ($f_{IQ,DATA}$) = 375 MSPS and DAC frequency (f_{DAC}) of 12 GSPS with interpolate by 32× with JRx mode of 16B (L = 8, M = 16). ADC datapath with $f_{IQ,DATA}$ = 375 MSPS and f_{ADC} of 6 GSPS with decimate by 16× with JTx mode of 17B (L = 8, M = 16). For the minimum and maximum values, T_J = -40°C to +120°C. For the typical values, T_A = 25°C, unless otherwise noted.

See the UG-1578 user guide for further information on the JESDB or JESDC mode configurations and detailed settings referred to throughout this data sheet.

Table 4.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
CURRENTS					
AVDD2 (I _{AVDD2})	2.0 V supply		190		
BVDD2 (I _{BVDD2}) + RVDD2 (I _{RVDD2})	2.0 V supply		292		mA
AVDD2_PLL (I _{AVDD2_PLL}) + SVDD2_PLL (I _{SVDD2_PLL})	2.0 V supply		44		mA
Power Dissipation for 2 V Supplies	2.0 V supply total power dissipation		1.05		W
PLLCLKVDD1 (I _{PLLCLKVDD1})	1.0 V supply		43		mA
AVDD1 (I _{AVDD1}) + DCLKVDD1(I _{DCLKVDD1})	1.0 V supply		1541		mA
AVDD1_ADC (I _{AVDD1_ADC})	1.0 V supply		1700		mA
CLKVDD1 (I _{CLKVDD1})	1.0 V supply		96		mA
FVDD1 (I _{FVDD1})	1.0 V supply		72.5		mA
VDD1_NVG (Ivdd1_NVG)	1.0 V supply		290		mA
DAVDD1 (I _{DAVDD1})	1.0 V supply		985		mA
DVDD1 (I _{DVDD1})	1.0 V supply		3555		mA
DVDD1_RT (I _{DVDD1_RT})	1.0 V supply		461		mA
SVDD1 (I _{SVDD1}) + SVDD1_PLL (I _{SVDD1_PLL})	1.0 V supply		1626		mA
Power Dissipation for 1 V Supplies	1.0 V supply total power dissipation		10.4		W
DVDD1P8 (I _{DVDD1P8})	1.8 V supply		6.8		mA
Total Power Dissipation	Total power dissipation of 2 and 1 V supplies		11.45		W

CLOCK INPUT AND PHASE-LOCKED LOOP (PLL) FREQUENCY SPECIFICATIONS

For the minimum and maximum values, $T_J = -40^{\circ}$ C to $+120^{\circ}$ C and $\pm 5\%$ of nominal supply, unless otherwise noted.

Table 5.					
Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
PLL VOLTAGE CONTROLLED OSCILLATOR (VCO) FREQUENCY RANGES					
VCO Output					
Divide by 1		6		12	GSPS
Divide by 2		3		6	GSPS
Divide by 4		1.5		3	GSPS
PHASE FREQUENCY DETECT INPUT FREQUENCY RANGES		25		750	MHz
CLOCK INPUTS (CLKINP, CLKINN) FREQUENCY RANGES					
PLL Off		1.45		12	GHz
PLL On	M divider set to divide by 1	25		750	MHz
	M divider set to divide by 2	50		1500	MHz
	M divider set to divide by 3	75		2250	MHz
	M divider set to divide by 4	100		3000	MHz

INPUT AND OUTPUT DATA RATES AND SIGNAL BANDWIDTH SPECIFICATIONS

For the minimum and maximum values, $T_J = -40^{\circ}$ C to $+120^{\circ}$ C and $\pm 5\%$ of nominal supply, unless otherwise noted.

Parameter ¹	Test Conditions/Comments	Min	Тур	Max	Unit
DATA RATE PER INPUT CHANNEL					
	Channel datapaths bypassed (1× interpolation), single DAC mode only, 16-bit resolution (JR mode = 19C)			12,000	MSPS
	Channel datapaths bypassed (1× interpolation), dual DAC or dual ADC, 16-bit resolution (JRxmode = 18C and JTx mode = 28C)			6000	MSPS
	Channel datapaths bypassed (1× interpolation), quad DAC mode , 12-bit resolution (JRx mode = 35C)			4000	MSPS
	1 complex channel enabled, 16-bit resolution (JRx mode = 18C and JTx mode = 19C)			6000	MSPS
	2 complex channels enabled, 12-bit resolution (JRx mode = 23C and JTx mode = 27C)			4000	MSPS
	4 complex channels enabled, 12-bit resolution (JRx mode = 24C and JTx mode = 26C)			2000	MSPS
	8 complex channels enabled, 16-bit resolution (JRx mode = 16C and JTx mode = 16C)			750	MSPS
COMPLEX SIGNAL BANDWIDTH PER CHANNEL					
	1 complex channel enabled (0.8 \times data frequency (f _{DATA}))			4800	MHz
	2 complex channels enabled ($0.8 \times f_{DATA}$)			3200	MHz
	4 complex channels enabled ($0.8 \times f_{DATA}$)			1600	MHz
	8 complex channels enabled ($0.8 \times f_{DATA}$)			600	MHz
MAXIMUM NUMERICALLY CONTROLLED OSCILLATOR (NCO) CLOCK RATE					
Channel NCO				1500	MHz
Main DAC NCO				12	GHz
Main ADC NCO				6	GHz
MAXIMUM NCO SHIFT FREQUENCY RANGE					
Channel NCO	Channel summing node = 1.5 GHz , channel interpolation rate > $1 \times$	-750		+750	MHz
Main DAC NCO	$f_{DAC} = 12 \text{ GHz}$, main interpolation rate > 1×	-6		+6	GHz
Main ADC NCO	$f_{ADC} = 6 \text{ GHz}$, main decimation rate > 1×	-3		+3	GHz
MAXIMUM FREQUENCY SPACING ACROSS INPUT CHANNELS	Maximum NCO output frequency $ imes$ 0.8			1200	MHz

¹ The values listed for these parameters are the maximum possible when considering all JESD204B modes of operation. Some modes are more limiting, based on other parameters.

JESD204B AND JESD204C INTERFACE ELECTRICAL AND SPEED SPECIFICATIONS

Nominal supplies. For the minimum and maximum values, $T_J = -40^{\circ}$ C to $+120^{\circ}$ C and $\pm 5\%$ of nominal supply, and for the typical values, $T_A = 25^{\circ}C$, unless otherwise noted.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
JESD204B SERIAL INTERFACE RATE	Serial lane rate (bit repeat option disabled)	8.11		15.5	Gbps
Unit Interval		168.35		64.5	ps
JESD204C SERIAL INTERFACE RATE	Serial lane rate (bit repeat option disabled)	8.11		16.22	Gbps
Unit Interval		123.3		61.65	ps
JESD204x DATA INPUTS	SERDINx \pm , where x = 0 to 7				
Differential Voltage, RVDIFF			800		mV p-p
Differential Impedance, ZRDIFF	At dc		98		Ω
Termination Voltage, V $_{\mathrm{TT}}$	AC-coupled		0.97		V
JESD204x DATA OUTPUTS	SERDOUTx±, where x = 0 to 7				
Logic Compliance			JESD204B/JESD20	4C complia	nt
Differential Output Voltage	Maximum strength		675		mV p-p
Differential Termination Impedance		80	108	120	Ω
Rise Time, t _R	20% to 80% into 100 Ω load		18		ps
Fall Time, t⊧	20% to 80% into 100 Ω load	18			ps
SYSREFP AND SYSREFN INPUTS					
Logic Compliance			LVDS/LVF	PECL1	•
Differential Input Voltage			0.7	1.9	V р-р
Input Common-Mode Voltage Range	DC-coupled		0.675	2	V
Input Reference, R _{IN} (Differential)			100		Ω
Input Capacitance (Differential)			1		pF
SYNCxOUTB± OUTPUTS ²	Where $x = 0$ or 1				
Output Differential Voltage, V _{OD}	Driving 100 Ω differential load		400		mV
Output Offset Voltage, Vos			DVDD1P8/2		V
SYNCxOUTB+	CMOS output option		Refer to CMOS pir	n specificatio	on
SYNCxINB± INPUT ²	Where $x = 0$ or 1				
Logic Compliance			LVDS	5	•
Differential Input Voltage			0.7	1.9	mV p-p
Input Common-Mode Voltage	DC-coupled		0.675	2	V
R _{IN} (Differential)	18		18		kΩ
Input Capacitance (Differential)	1		1		pF
SYNCxINB+ INPUT	CMOS input option		Refer to CMOS pir	n specificatio	on

¹ LVDS means low voltage differential signaling and LVPECL means low voltage positive/pseudo emitter-coupled logic. ² IEEE 1596.3 Standard LVDS compatible.

CMOS PIN SPECIFICATIONS

Nominal supplies. For the minimum and maximum values, $T_J = -40^{\circ}$ C to $+120^{\circ}$ C and DVDD1P8 = 2.0 V ± 5%, and for the typical values, $T_A = 25^{\circ}$ C, unless otherwise noted.

Table 8.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUTS		SDIO, SCLK, CSB, RESETB, RXEN0, RXEN1,				
		TXEN0, TXEN1, SYNC0INB±, SYNC1INB±,				
		and GPIOx				
Logic 1 Voltage	VIH		0.70 × DVDD1P8			V
Logic 0 Voltage	VIL				$0.3 \times \text{DVDD1P8}$	V
Input Resistance				30		kΩ
OUTPUTS		SDIO, SDO, GPIOx, ADCx_FDx, SYNC0INB±, and SYNC1INB±, 4 mA load				
Logic 1 Voltage	V _{OH}		DVDD1P8 - 0.45			V
Logic 0 Voltage	V _{OL}				0.45	V
INTERRUPT OUTPUTS		IRQB_0 and IRQB_1, pull-up resistor of 5 k Ω				
Logic 1 Voltage	V _{OH}		1.45			V
Logic 0 Voltage	Vol				0.35	V

DAC AC SPECIFICATIONS

Nominal supplies with $T_A = 25^{\circ}$ C. $f_{IQ_DATA} = 1500$ MSPS. Specifications represent the average of all four DAC channels with the DAC $I_{OUTFS} = 26$ mA and ADC powered down, unless otherwise noted.

Table 9. Parameter	Test Conditions/Comments	Min	Тур	Мах	Unit
SPURIOUS-FREE DYNAMIC RANGE (SFDR)				mux	Unit
Single-Tone, $f_{DAC} = 12$ GSPS	-7 dBFS, shuffle enabled				
Output Frequency (f_{OUT}) = 100 MHz			-70.7		dBc
$f_{OUT} = 500 \text{ MHz}$			-69.2		dBc
fout = 900 MHz			-69.7		dBc
f _{out} = 1900 MHz			-68.5		dBc
fout = 2600 MHz			-73.1		dBc
f _{OUT} = 3700 MHz			-70		dBc
fout = 4500 MHz			-66.5		dBc
Single-Tone, f _{DAC} = 9 GSPS	-7 dBFS, shuffle enabled				
f _{OUT} = 100 MHz			-74.4		dBc
f _{OUT} = 500 MHz			-72.5		dBc
f _{OUT} = 900 MHz			-72.50		dBc
f _{out} = 1900 MHz			-71.0		dBc
fout = 2600 MHz			-71.5		dBc
fout = 3700 MHz			-69.1		dBc
Single-Tone, f _{DAC} = 6 GSPS	-7 dBFS, shuffle enabled				
$f_{OUT} = 100 \text{ MHz}$			-77		dBc
fout = 500 MHz			-75.8		dBc
fout = 900 MHz			-75.3		dBc
f _{OUT} = 1900 MHz			-75.3		dBc
SINGLE-BAND APPLICATION, BAND 3	f _{DAC} =9 GSPS, 500 MHz reference clock				
Windowed SFDR Nonharmonics	-7 dBFS, shuffle enabled				
In Band	1842.5 MHz ± 37.5 MHz pass-band region		-95.5		dBc
DPD Band	1842.5 MHz, ± 200 MHz pass-band region		-80.3		dBc

Parameter	Test Conditions/Comments	Min Typ	Мах	Unit
ADJACENT CHANNEL LEAKAGE RATIO				
Single Carrier 20 MHz LTE Downlink Test Vector	–1 dBFS digital back off, 256QAM			
$f_{DAC} = 12 \text{ GSPS}$	f _{OUT} = 1840 MHz	77.3		dBc
	f _{оυт} = 2650 MHz	76.3		dBc
	fouт = 3500 MHz	73.3		dBc
$f_{DAC} = 9 \text{ GSPS}$	f _{OUT} = 1900 MHz	77.0		dBc
	f _{out} = 2650 MHz	77.1		dBc
$f_{DAC} = 6 \text{ GSPS}$	$f_{OUT} = 750 \text{ MHz}$	78.8		dBc
	four = 1840 MHz	77.3		dBc
THIRD-ORDER INTERMODULATION DISTORTION (IMD3)	Two tone test, –6 dBFS per tone, 1 MHz spacing			
$f_{DAC} = 12 \text{ GSPS}$	$f_{OUT} = 1900 \text{ MHz}$	-74.5		dBc
	$f_{OUT} = 2600 \text{ MHz}$	-75.5		dBc
	$f_{OUT} = 3700 \text{ MHz}$	-77		dBc
$f_{DAC} = 9 \text{ GSPS}$	$f_{OUT} = 1900 \text{ MHz}$	-83		dBc
	$f_{OUT} = 2600 \text{ MHz}$	-86		dBc
$f_{DAC} = 6 \text{ GSPS}$	$f_{0,T} = 900 \text{ MHz}$	-88.4		dBc
IDAC - 0 CDI 5	$f_{OUT} = 1900 \text{ MHz}$	-86.3		dBc
NOISE SPECTRAL DENSITY (NSD)	0 dBFS, NSD measurement taken at	-00.5		ubc
NOISE SPECTRAL DENSITY (NSD)	10% away from f_{OUT} , shuffle off			
Single-Tone, f _{DAC} = 12 GSPS				
$f_{OUT} = 150 \text{ MHz}$		-168		dBc/Hz
$f_{OUT} = 500 \text{ MHz}$		-166	7	dBc/Hz
$f_{OUT} = 950 \text{ MHz}$		-164		dBc/Hz
$f_{OUT} = 1840 \text{ MHz}$		-161		dBc/Hz
$f_{OUT} = 2650 \text{ MHz}$		-160		dBc/Hz
$f_{OUT} = 3700 \text{ MHz}$		-155		dBc/Hz
$f_{OUT} = 4500 \text{ MHz}$		-154		dBc/Hz
		-154	2	UDC/ HZ
Single-Tone, $f_{DAC} = 9$ GSPS		160		dD a / U
$f_{OUT} = 150 \text{ MHz}$		-168		dBc/Hz
$f_{OUT} = 500 \text{ MHz}$		-166		dBc/Hz
$f_{OUT} = 950 \text{ MHz}$		-164	2	dBc/Hz
$f_{OUT} = 1840 \text{ MHz}$		-160		dBc/Hz
$f_{OUT} = 2650 \text{ MHz}$		-158		dBc/Hz
$f_{OUT} = 3700 \text{ MHz}$		-153	5	dBc/Hz
Single-Tone, $f_{DAC} = 6$ GSPS		1.60		10 (11
$f_{OUT} = 150 \text{ MHz}$		-168		dBc/Hz
$f_{OUT} = 500 \text{ MHz}$		-165		dBc/Hz
$f_{OUT} = 950 \text{ MHz}$		-163		dBc/Hz
f _{OUT} = 1840 MHz		-159		dBc/Hz
f _{out} = 2650 MHz		-156	.8	dBc/Hz
SINGLE SIDEBAND PHASE NOISE OFFSET (PLL DISABLED)	Direct RF clock input at 7 dBm			
$f_{OUT} = 3 \text{ GHz}, f_{DAC} = 12 \text{ GSPS}, \text{CLKINx Frequency} (f_{CLKIN}) =$	R&S SMA100B B711 option			
12 GHz				10 // .
1 kHz		-119		dBc/Hz
10 kHz		-129		dBc/Hz
100 kHz		-136		dBc/Hz
600 kHz		-146		dBc/Hz
1.2 MHz		-148		dBc/Hz
1.8 MHz		-150		dBc/Hz
6 MHz		-154		dBc/Hz

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
SINGLE SIDEBAND PHASE NOISE OFFSET (PLL ENABLED)	Loop filter component values include $C1 = 22 \text{ nF}, R1 = 226 \Omega, C2 = 2.2 \text{ nF},$ C3 = 33 nF, and phase detector frequency (PFD) = 500 MHz				
$f_{OUT} = 1.8 \text{ GHz}, f_{DAC} = 12 \text{ GSPS}, f_{CLKIN} = 0.5 \text{ GHz}$					
1 kHz			-103		dBc/Hz
10 kHz			-111		dBc/Hz
100 kHz			-119		dBc/Hz
600 kHz			-127		dBc/Hz
1.2 MHz			-132		dBc/Hz
1.8 MHz			-137		dBc/Hz
6 MHz			-148		dBc/Hz

ADC AC SPECIFICATIONS

Nominal supplies with $T_A = 25^{\circ}$ C. Input amplitude $(A_{IN}) = -1$ dBFS, full bandwidth (no decimation) with dual link JTx mode of 13C. Specifications represent worst measured of any ADC channel with DACs powered down. See the AN-835 Application Note, *Understanding High Speed ADC Testing and Evaluation*, for definitions and for details on how these tests were completed.

Table 10.		
Parameter	Min Typ Max	Unit
NOISE DENSITY ¹	-153	dBFS/Hz
NOISE FIGURE ²	25.3	dB
SIGNAL-TO-NOISE RATIO (SNR)		
f _{IN} = 253 MHz	56.7	dBFS
$f_{IN} = 450 \text{ MHz}$	56.9	dBFS
f _{IN} = 900 MHz	56.2	dBFS
f _{IN} = 1800 MHz	54.7	dBFS
f _{IN} = 2700 MHz	52.4	dBFS
f _{IN} = 3600 MHz	51.8	dBFS
f _{IN} = 4500 MHz	50.4	dBFS
f _{IN} = 5400 MHz	51.0	dBFS
SIGNAL-TO-NOISE-AND-DISTORTION (SINAD) RATIO		
f _{IN} = 253 MHz	56.6	dBFS
$f_{IN} = 450 \text{ MHz}$	56.6	dBFS
$f_{IN} = 900 \text{ MHz}$	55.7	dBFS
f _{IN} = 1800 MHz	53.9	dBFS
f _{IN} = 2700 MHz	52.0	dBFS
f _{IN} = 3600 MHz	51.3	dBFS
f _{IN} = 4500 MHz	49.6	dBFS
f _{IN} = 5400 MHz	48.9	dBFS
EFFECTIVE NUMBER OF BITS (ENOB)		
f _{IN} = 253 MHz	9.1	Bits
$f_{IN} = 450 \text{ MHz}$	9.1	Bits
f _{IN} = 900 MHz	9	Bits
f _{IN} = 1800 MHz	8.7	Bits
f _{IN} = 2700 MHz	8.3	Bits
f _{IN} = 3600 MHz	8.2	Bits
f _{IN} = 4500 MHz	7.9	Bits
f _{IN} = 5400 MHz	7.8	Bits
WORST HD2		
f _{IN} = 253 MHz	-72.1	dBFS
$f_{IN} = 450 \text{ MHz}$	-68.9	dBFS
$f_{IN} = 900 \text{ MHz}$	-67.1	dBFS
f _{IN} = 1800 MHz	-64.6	dBFS
$f_{IN} = 2700 \text{ MHz}$	-65.2	dBFS
f _{IN} = 3600 MHz	-58.1	dBFS
$f_{IN} = 4500 \text{ MHz}$	-65	dBFS
$f_{\rm IN} = 5400 \rm MHz$	-54.1	dBFS

AD9082

Parameter	Min	Тур	Max	Unit
WORST HD3				
f _{IN} = 253 MHz		-80.0		dBFS
$f_{IN} = 450 \text{ MHz}$		-78.3		dBFS
f _{IN} = 900 MHz		-70.8		dBFS
f _{IN} = 1800 MHz		-66		dBFS
f _{IN} = 2700 MHz		-70.8		dBFS
f _{IN} = 3600 MHz		-69.2		dBFS
$f_{IN} = 4500 \text{ MHz}$		-64.3		dBFS
f _{IN} = 5400 MHz		-62		dBFS
WORST OTHER, EXCLUDING HD2 OR HD3 HARMONIC				
f _{IN} = 253 MHz		-85.3		dBFS
f _{IN} = 450 MHz		-81.4		dBFS
f _{IN} = 900 MHz		-76.5		dBFS
f _{IN} = 1800 MHz		-72.1		dBFS
f _{IN} = 2700 MHz		-68.5		dBFS
f _{IN} = 3600 MHz		-65.9		dBFS
f _{IN} = 4500 MHz		-64.2		dBFS
f _{IN} = 5400 MHz		-62.7		dBFS
TWO-TONE IMD3, Input Amplitude 1 (A_{IN1}) = Input Amplitude 2 (A_{IN2}) = -7 dBFS				
Input Frequency 1 (f_{IN1}) = 890 MHz, Input Frequency 2 (f_{IN2}) = 910 MHz				
$f_{IN1} = 1780 \text{ MHz}, f_{IN2} = 1820 \text{ MHz}$		-78.9		dBFS
$f_{IN1} = 2680 \text{ MHz}, f_{IN2} = 2720 \text{ MHz}$		-75		dBFS
$f_{IN1} = 3560 \text{ MHz}, f_{IN2} = 3640 \text{ MHz}$		-73.2		dBFS
$f_{IN1} = 5360 \text{ MHz}, f_{IN2} = 5440 \text{ MHz}$		-64.2		dBFS
ANALOG BANDWIDTH ³		8		GHz

¹ Noise density is measured at a low analog amplitude and/or frequency where timing jitter does not degrade noise floor.

² Noise figure is based on a nominal full-scale input power of 4.5 dBm with an input span of 1.5 V p-p and $R_{IN} = 100 \Omega$.

³ Analog input bandwidth is the bandwidth of operation in which the full-scale input frequency response rolls off by –3 dB based on a de-embedded model of the ADC extracted from the measured frequency response on evaluation board. This bandwidth requires optimized matching network to achieve this upper bandwidth.

TIMING SPECIFICATIONS

For the minimum and maximum values, $T_J = -40^{\circ}$ C to $+120^{\circ}$ C and $\pm 5\%$ of nominal supply, unless otherwise noted.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
SERIAL PORT INTERFACE (SPI) WRITE OPERATION						
Maximum SCLK Clock Rate	f _{SCLK} , 1/t _{SCLK}		33			MHz
SCLK Clock High	t _{PWH}	SCLK = 33 MHz	5			ns
SCLK Clock Low	t _{PWL}	SCLK = 33 MHz	5			ns
SDIO to SCLK Setup Time	t _{DS}		4			ns
SCLK to SDIO Hold Time	t _{DH}		4			ns
CSB to SCLK Setup Time	ts		4			ns
SCLK to CSB Hold Time	tн		4			ps

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
SPI READ OPERATION						
Maximum SCLK Clock Rate	f _{SCLK} , 1/t _{SCLK}		8			MHz
SCLK Clock High	tpwh		50			ns
SCLK Clock Low	t _{PWL}		50			ns
SDIO to SCLK Setup Time	t _{DS}		4			ns
SCLK to SDIO Hold Time	t _{DH}		4			ns
CSB to SCLK Setup Time	ts		4			ns
SCLK to SDIO Data Valid Time	t _{DV}		20			ns
SCLK to SDO Data Valid Time	t _{DV_SDO}		20			ns
CSB to SDIO Output Valid to High-Z	tz		20			ns
CSB to SDO Output Valid to High-Z	t _{z_sdo}		20			ns

Timing Diagrams

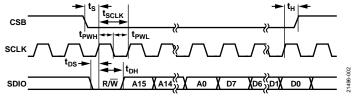


Figure 2. Timing Diagram for 3-Wire Write Operation

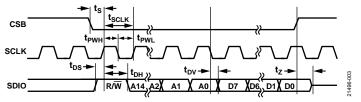


Figure 3. Timing Diagram for 3-Wire Read Operation

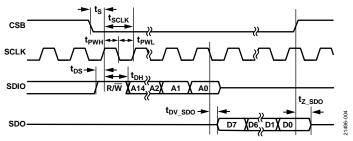


Figure 4. Timing Diagram for 4-Wire Read Operation

ABSOLUTE MAXIMUM RATINGS

Table 12.

.3 V
).2 V
V
V
V

¹ Do not exceed this temperature for any duration of time when the device is powered.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

REFLOW PROFILE

The AD9082 reflow profile is in accordance with the JEDEC JESD 20 criteria for Pb-free devices. The maximum reflow temperature is 260°C.

THERMAL RESISTANCE

Thermal performance is directly linked to PCB design and operating environment. The use of appropriate thermal management techniques is recommended to ensure that the maximum T_J does not exceed the limits shown in Table 12.

 θ_{JA} is the natural convection, junction to ambient thermal resistance measured in a one cubic foot sealed enclosure.

 $\theta_{\text{JC}_{\text{TOP}}}$ is the junction to case, thermal resistance.

 θ_{JB} is the junction to board, thermal resistance.

Table 13. Simulated Thermal Resistance¹

РСВ Туре	Airflow Velocity (m/sec)	Αιθ	θ jc_top	Өјв	Unit
JEDEC 2s2p Board	0.0	14.9	0.70	1.8	°C/W

¹ Thermal resistance values specified are simulated based on JEDEC specifications in compliance with JESD51-12 with the device power equal to 9 W.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

									AD9 TOP (Not to	VIEW								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
A	GND	AVDD2	GND	GND	NC	NC	GND	GND	ADCON	ADC0P	GND	SYNC1INB-	SYNCOINB-	SERDOUT0-	SERDOUT0+	SVDD1	GND	GND
в	DACOP	GND	GND	GND	GND	GND	DNC	VCM0	GND	GND	RVDD2	SYNC1INB+	SYNCOINB+	GND	GND	SVDD1	SERDOUT7-	SERDOUT7+
с	DACON	GND	ADCDRVN	ADCDRVP	GND	GND	GND	GND	BVNN2	BVDD3	GND	RESETB	DVDD1P8	SERDOUT1-	SERDOUT1+	SVDD1	GND	GND
D	GND	AVDD1	AVDD1	AVDD1	GND	FVDD1	BVDD2	VNN1	GND	VDD1_ NVG	ADC0_ SMON1	ADC0_ SMON0	RXEN1	GND	GND	SVDD1	SERDOUT6-	SERDOUT6+
E	GND	AVDD2	AVDD1	GND	DAVDD1	GND	BVDD2	VNN1	NVG1_ OUT	VNN1	ADC1_ SMON1	ADC1_ SMON0	RXEN0	SERDOUT2-	SERDOUT2+	SVDD1	GND	GND
F	DAC1N	GND	AVDD1	GND	DAVDD1	GND	GND	GND	DVDD1P8	DVDD1	ADC0_FD1	ADC0_FD0	SDIO	GND	GND	SVDD1	SERDOUT5-	SERDOUT5+
G	DAC1P	GND	GND	GND	GND	CLKVDD1	AVDD1_ ADC	AVDD1_ ADC	TMU_ REFN	TMU_ REFP	ADC1_FD1	ADC1_FD0	CSB	SERDOUT3-	SERDOUT3+	SVDD1	GND	GND
н	GND	AVDD2	ISET	DNC	GND	GND	GND	GND	DVDD1	GND	DVDD1	GND	SCLK	GND	GND	SVDD1	SERDOUT4-	SERDOUT4+
J	CLKINP	GND	VCO_ FINE	VCO_ COARSE	PLLCLKVDD1	DVDD1_ RT	DVDD1_ RT	GND	DVDD1	GND	DVDD1	GND	SDO	GND	GND	SVDD1_ PLL	GND	GND
к	CLKINN	GND	VCO_ VREG	VCO_ VCM	DCLKVDD1	DVDD1_ RT	DVDD1_ RT	GND	DVDD1	GND	DVDD1	GND	GPIO9	GND	SVDD2_ PLL	SVDD1_ PLL	GND	GND
L	GND	AVDD2	AVDD2_ PLL	DNC	GND	GND	GND	GND	DVDD1	GND	DVDD1	GND	GPIO8	GND	DNC	DNC	SERDIN0-	SERDIN0+
м	DAC2P	GND	GND	GND	GND	CLKVDD1	AVDD1_ ADC	AVDD1_ ADC	DVDD1	GND	GPIO3	GPIO1	GPIO7	SERDIN4-	SERDIN4+	SVDD1	GND	GND
N	DAC2N	GND	AVDD1	GND	DAVDD1	GND	GND	GND	TDP	TDN	GPIO2	GPI00	GPIO6	GND	GND	SVDD1	SERDIN1-	SERDIN1+
Ρ	GND	AVDD2	AVDD1	GND	DAVDD1	GND	BVDD2	VNN1	NVG1_ OUT	VNN1	GPIO4	IRQB_0	TXEN0	SERDIN7-	SERDIN7+	SVDD1	GND	GND
R	GND	AVDD1	AVDD1	AVDD1	GND	FVDD1	BVDD2	VNN1	GND	VDD1_ NVG	GPIO5	IRQB_1	TXEN1	GND	GND	SVDD1	SERDIN2-	SERDIN2+
т	DAC3N	GND	SYSREFN	SYSREFP	GND	GND	GND	GND	BVNN2	BVDD3	GND	GPIO10	DVDD1P8	SERDIN6-	SERDIN6+	SVDD1	GND	GND
U	DAC3P	GND	GND	GND	GND	GND	DNC	VCM1	GND	GND	RVDD2	SYNC1OUTB+	SYNC0OUTB+	. GND	GND	SVDD1	SERDIN3-	SERDIN3+
v	GND	AVDD2	GND	GND	NC	NC	GND	GND	ADC1N	ADC1P	GND	SYNC1OUTB-	SYNC0OUTB-	SERDIN5-	SERDIN5+	SVDD1	GND	GND
I							GND	ANALOG GROUND	GND	DIGITAL GROUND	GI	ND SERDE	S ND					

Rev. A | Page 16 of 33

Figure 5. 324-Ball Pin Configuration

Table 14. Pin Function Descriptions

Mnemonic	Туре	Description
AVDD2	Input	Analog 2.0 V Supply Inputs for DAC.
AVDD2_PLL	Input	Analog 2.0 V Supply Input for Clock PLL Linear Dropout Regulator (LDO).
BVDD2	Input	Analog 2.0 V Supply Inputs for ADC Buffer.
RVDD2	Input	Analog 2.0 V Supply Inputs for ADC Reference.
PLLCLKVDD1	Input	Analog 1.0 V Supply Input for Clock PLL.
AVDD1	Input	Analog 1.0 V Supply Inputs for DAC Clock.
AVDD1_ADC	Input	Analog 1.0 V Supply Inputs for ADC.
CLKVDD1	Input	Analog 1.0 V Supply Inputs for ADC Clock.
FVDD1	Input	Analog 1.0 V Supply Inputs for ADC Reference.
VDD1_NVG	Input	Analog 1.0 V Supply Inputs for Negative Voltag Generator (NVG) Used to Generate –1 V Outpu
NVG1_OUT	Output	Analog –1 V Supply Outputs from NVG. Decouple NVG1_OUT to GND with a 0.1 μ F capacitor.
VNN1	Input	Analog –1 V Supply Inputs for ADC Buffer and Reference. Connect these pins to the adjacent, NVG1_OUT pins.
BVNN2	Output	Analog –2 V Supply Outputs for ADC Buffer. Decouple each BVNN2 pin to GND with a 0.1 μ capacitor.
BVDD3	Output	Analog 3 V Supply Output for ADC Buffer. Decouple BVDD3 to GND with 0.1 μF capacitor
DAVDD1	Input	Digital Analog 1.0 V Supply Inputs.
DVDD1	-	Digital 1.0 V Supply Inputs.
DVDD1_RT	-	Digital 1.0 Supply Inputs for Retimer Block.
DCLKVDD1	-	Digital 1.0 V Clock Generation Supply.
SVDD1	Input	Digital 1.0 V Supply Inputs for SERDES Deserializer and Serializer.
SVDD2 PLL	Input	Digital 2.0 V Supply Input for SERDES LDO.
SVDD1_PLL	Input	Digital 1.0 V Supply Inputs for SERDES Clock Generation and PLL.
DVDD1P8	Input	Digital Interface and Temperature Monitoring Unit (TMU) Supply Inputs (Nominal 1.8 V).
GND	Input/output	Ground References.
	AVDD2 AVDD2_PLL BVDD2 RVDD2 PLLCLKVDD1 AVDD1_ADC CLKVDD1 FVDD1_VD01_NVG NVG1_OUT VNN1 BVNN2 BVDD3 DAVDD1 DVDD1_RT DCLKVDD1 SVDD2_PLL SVDD2_PLL SVDD1_PLL DVDD1P8	AVDD2_PLLInputBVDD2InputRVDD2InputPLLCLKVDD1InputAVDD1_ADCInputCLKVDD1InputFVDD1_NVGOutputNVG1_OUTOutputBVDN2OutputBVDD3OutputDAVDD1_RTInputDVDD1_RTInputSVDD2_PLLInputSVDD1_PLLInputDVDD1P8Input

Pin No.	Mnemonic	Туре	Description
ANALOG OUTPUTS			
B1, C1	DAC0P, DAC0N	Output	DAC0 Output Currents, Ground Referenced.
G1, F1	DAC1P, DAC1N	Output	DAC1 Output Currents, Ground Referenced.
M1, N1	DAC2P, DAC2N	Output	DAC2 Output Currents, Ground Referenced.
U1, T1	DAC3P, DAC3N	Output	DAC3 Output Currents, Ground Referenced.
H3	ISET	Output	DAC Bias Current Setting Pin. Connect this pin with a 5 k Ω resistor to GND.
C4, C3	ADCDRVP, ADCDRVN	Output	ADC Clock Output Options. These pins are disabled by default.
B8, U8	VCM0, VCM1	Output	ADC Buffer Common-Mode Output Voltage. Decouple this pin to GND with a 0.1 μ F capacitor.
К3	VCO_VREG	Output	PLL LDO Regulator Output. Decouple this pin to GND with a 2.2 μF capacitor.
G9	TMU_REFN	Output	TMU ADC Negative Reference. Connect this pin to GND.
G10	TMU_REFP	Output	TMU ADC Positive Reference. Connect this pin to DVDD1P8.
ANALOG INPUTS			
A10, A9	ADCOP, ADCON	Input	ADC0 Differential Inputs with Internal 100 Ω Differential Resistor.
V10, V9	ADC1P, ADC1N	Input	ADC1 Differential Inputs with Internal 100 Ω Differential Resistor.
J3	VCO_FINE	Input	On-Chip Clock Multiplier and PLL Fine Loop Filter Input.
J4	VCO_COARSE	Input	On-Chip DAC Clock Multiplier and PLL Coarse Loop Filter Input.
K4	VCO_VCM	Input	On-Chip Clock Multiplier and VCO Common- Mode Input.
N9, N10	TDP, TDN	Input	Anode and Cathode of Temperature Diodes. This feature is not supported. Tie TDP and TDN to GND.
J1, K1	CLKINP, CLKINN	Input	Differential Clock Inputs with Nominal 100 Ω Termination. Self bias input requiring ac coupling. When the on-chip clock multiplier PLL is enabled, this input is the reference clock input. If the PLL is disabled, an RF clock equal to the DAC output sample rate is required.
CMOS INPUTS AND OUTPUTS ¹			
G13	CSB	Input	Serial Port Enable Input. Active low.
H13	SCLK	Input	Serial Plot Clock Input.
F13	SDIO	Input/output	Serial Port Bidirectional Data Input/Output.
J13	SDO	Output	Serial Port Data Output.
C12	RESETB	Input	Active Low Reset Input. RESETB places digital logic and SPI registers in a known default state. RESETB must be connected to a digital IC that is capable of issuing a reset signal for the first step in the device initialization process.
E13, D13	RXEN0, RXEN1	Input	Active High ADC and Receive Datapath Enable Inputs. RXENx is also SPI configurable.
P13, R13	TXEN0, TXEN1	Input	Active High DAC and Transmit Datapath Enable Inputs. TXENx is also SPI configurable.

Pin No.	Mnemonic	Туре	Description	
D12, D11	ADC0_SMON0, ADC0_SMON1	Output	ADC0 Signal Monitoring Outputs by Default. Do not connect if unused.	
E12, E11	ADC1_SMON0, ADC1_SMON1	Output	ADC1 Signal Monitoring Outputs by Default. Do not connect if unused.	
F12, F11	ADC0_FD0, ADC0_FD1	Output	ADC0 Fast Detect Outputs by Default. Do not connect if unused.	
G12, G11	ADC1_FD0, ADC1_FD1	Output	ADC1 Fast Detect Outputs by Default. Do not connect if unused.	
P12, R12	IRQB_0, IRQB_1	Outputs	Interrupt Request 0 and 1 Outputs. These pins are an open-drain, active low output (CMOS levels with respect to DVDD1P8). Connect a 10 k Ω pull-up resistor to DVDD1P8 to prevent these pins from floating when unused.	
K13, L13, M11 to M13, N11 to N13, P11, R11, T12	GPIO0 to GPIO10	Input/output	General-Purpose Input or Output Pins.	
JESD204B or JESD204C COMPATIBLE SERDES DATA LANES AND CONTROL SIGNALS ²				
L18, L17	SERDIN0+, SERDIN0–	Input	JRx Lane 0 Inputs, Data True/Complement.	
N18, N17	SERDIN1+, SERDIN1–	Input	JRx Lane 1 Inputs, Data True/Complement.	
R18, R17	SERDIN2+, SERDIN2–	Input	JRx Lane 2 Inputs, Data True/Complement.	
U18, U17	SERDIN3+, SERDIN3–	Input	JRx Lane 3 Inputs, Data True/Complement.	
M15, M14	SERDIN4+, SERDIN4–	Input	JRx Lane 4 Inputs, Data True/Complement.	
V15, V14	SERDIN5+, SERDIN5–	Input	JRx Lane 5 Inputs, Data True/Complement.	
T15, T14	SERDIN6+, SERDIN6–	Input	JRx Lane 6 Inputs, Data True/Complement.	
P15, P14	SERDIN7+, SERDIN7–	Input	JRx Lane 7 Inputs, Data True/Complement.	
U13, V13	SYNCOOUTB+, SYNCOOUTB–	Output	JRx Link 0 Synchronization Outputs for JESD204B interface. These pins are LVDS or CMOS configurable. These pins can also provide differential 100 Ω output impedance in LVDS mode.	
U12, V12	SYNC1OUTB+, SYNC1OUTB–	Output	JRx Link 1 Synchronization Outputs for JESD204B interface or CMOS Input for Transmit Fast Frequency Hopping (FFH) via GPIOx pins. For sync output function, these pins are LVDS or CMOS output configurable and can provide differential 100 Ω output impedance in LVDS mode.	
A15, A14	SERDOUT0+, SERDOUT0–	Output	JTx Lane 0 Outputs, Data True/Complement.	
C15, C14	SERDOUT1+, SERDOUT1-	Output	JTx Lane 1 Outputs, Data True/Complement.	
E15, E14	SERDOUT2+, SERDOUT2–	Output	JTx Lane 2 Outputs, Data True/Complement.	
G15, G14	SERDOUT3+, SERDOUT3–	Output	JTx Lane 3 Outputs, Data True/Complement.	
H18, H17	SERDOUT4+, SERDOUT4–	Output	JTx Lane 4 Outputs, Data True/Complement.	

Pin No.	Mnemonic	Туре	Description
F18, F17	SERDOUT5+, SERDOUT5–	Output	JTx Lane 5 Outputs, Data True/Complement.
D18, D17	SERDOUT6+, SERDOUT6–	Output	JTx Lane 6 Outputs, Data True/Complement.
B18, B17	SERDOUT7+, SERDOUT7–	Output	JTx Lane 7 Outputs, Data True/Complement.
B13, A13	SYNCOINB+, SYNCOINB-	Input	JTx Link 0 Synchronization Inputs for JESD204E interface. These pins are LVDS or CMOS configurable. These pins are LVDS or CMOS configurable and have selectable internal 100 G input impedance for LVDS operation
B12, A12	SYNC1INB+, SYNC1INB-	Input	JTx Link 1 Synchronization Inputs for JESD204E interface or CMOS Inputs for Receive FFH via GPIOx pins. These pins are LVDS or CMOS configurable and have selectable internal 100 G input impedance for LVDS operation.
Τ4, Τ3	SYSREFP, SYSREFN	Input	Active High JESD204 System Reference Inputs. These pins are configurable for differential current mode logic (CML), PECL, and LVDS with internal 100 Ω termination or single-ended CMOS.
NO CONNECTS AND DO NOT CONNECTS			
A5, A6, V5, V6	NC		No Connect. These pins can be left open or connected.
B7, H4, L4, L15, L16, U7	DNC	DNC	Do Not Connect. The pins must be kept open.

 1 CMOS inputs do not have pull-up or pull-down resistors. 2 SERDINx± and SERDOUTx± include 100 Ω internal termination resistors.

TYPICAL PERFORMANCE CHARACTERISTICS

DAC

 $T_A = 25^{\circ}$ C using the AD9082-FMCA-EBZ, data curves represent average performance of all DAC outputs with harmonics (or alias harmonics) and spurs falling in the first DAC Nyquist zone ($<f_{DAC}/2$), $I_{OUTFS} = 26$ mA, PLL clock multiplier enabled, and ADC powered down, unless otherwise noted. See the UG-1578 user guide for additional information on the JESDB or JESDC mode configurations.

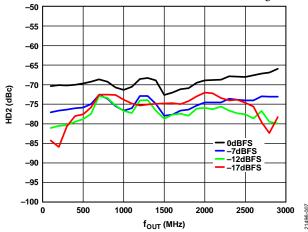


Figure 6. HD2 vs. f_{OUT} over Digital Scale (Mode 17B), 6 GSPS DAC Sample Rate, Channel Interpolation 1×, Main Interpolation 4×

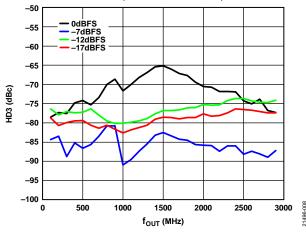


Figure 7. HD3 vs. f_{OUT} over Digital Scale (Mode 17B), 6 GSPS DAC Sample Rate, Channel Interpolation 1×, Main Interpolation 4×

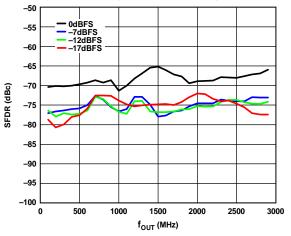


Figure 8. SFDR, Worst Spurious vs. four over Digital Scale (Mode 17B), 6 GSPS DAC Sample Rate, Channel Interpolation 1×, Main Interpolation 4×

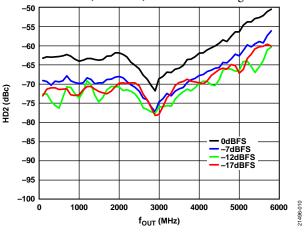


Figure 9. HD2 vs. f_{OUT} over Digital Scale (Mode 16B), 12 GSPS DAC Sample Rate, Channel Interpolation 4×, Main Interpolation 8×

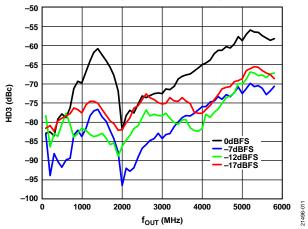


Figure 10. HD3 vs. fou⊤ over Digital Scale (Mode 16B), 12 GSPS DAC Sample Rate, Channel Interpolation 4×, Main Interpolation 8×

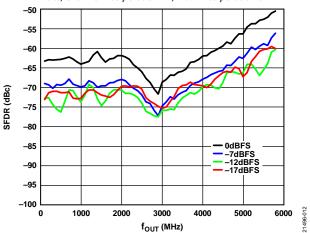


Figure 11. SFDR, Worst Spurious vs. four over Digital Scale (Mode 16B), 12 GSPS DAC Sample Rate, Channel Interpolation $4\times$, Main Interpolation $8\times$

800

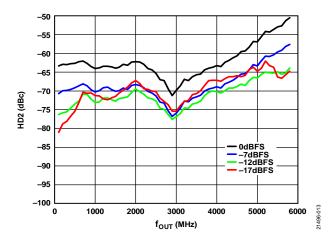


Figure 12. HD2 vs. four over Digital Scale (Mode 17B), 12 GHz GSPS Sample Rate, Channel Interpolation $1\times$, Main Interpolation $8\times$

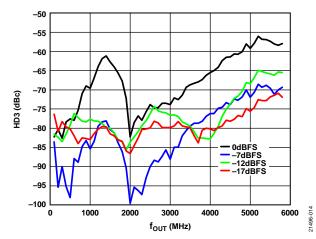


Figure 13. HD3 vs. four over Digital Scale (Mode 17B), 12 GSPS DAC Sample Rate, Channel Interpolation $1\times$, Main Interpolation $8\times$

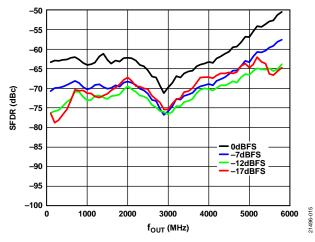


Figure 14. SFDR vs. f_{out} over Digital Scale (Mode 17B), 12 GSPS DAC Sample Rate, Channel Interpolation 1×, Main Interpolation 8×

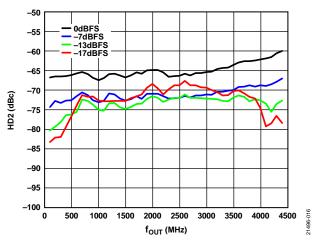


Figure 15. HD2 vs. f_{OUT} over Digital Scale (Mode 17B), 9 GHz GSPS Sample Rate, Channel Interpolation 1×, Main Interpolation 6×

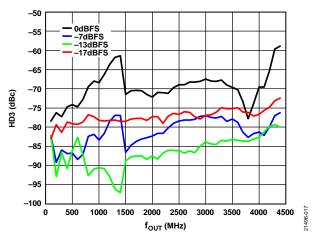


Figure 16. HD3 vs. f_{OUT} over Digital Scale (Mode 17B), 9 GSPS DAC Sample Rate, Channel Interpolation 1×, Main Interpolation 6×

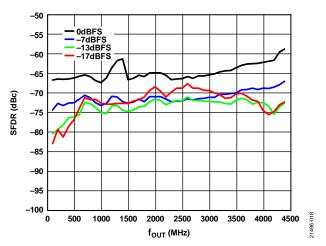


Figure 17. SFDR vs. f_{OUT} over Digital Scale (Mode 17B), 9 GSPS DAC Sample Rate, Channel Interpolation 1×, Main Interpolation 6×

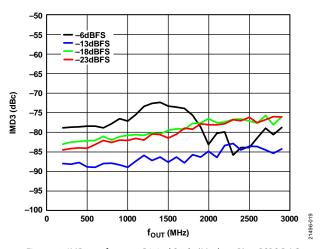


Figure 18. IMD3 vs. f_{OUT} over Digital Scale (Mode 17B), 6 GSPS DAC Sample Rate, Channel Interpolation 1×, Main Interpolation 4×

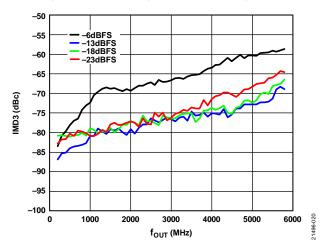


Figure 19. IMD3 vs. $f_{\rm OUT}$ over Digital Scale (Mode 16B), 12 GHz DAC Sample Rate, Channel Interpolation 4×, Main Interpolation 8×

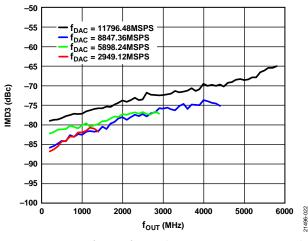


Figure 20. IMD3 vs. f_{OUT} over f_{DAC} (Mode 17B), 1 MHz Tone Spacing with -12 dBFS/Tone Level

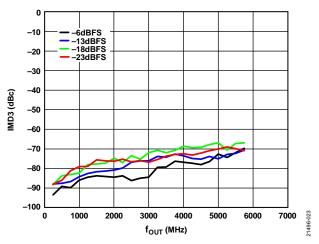


Figure 21. IMD3 vs. f_{OUT} over Digital Scale (Mode 17B), 9 GSPS DAC Sample Rate, Channel Interpolation 1×, Main Interpolation 6×, 1 MHz Tone Spacing

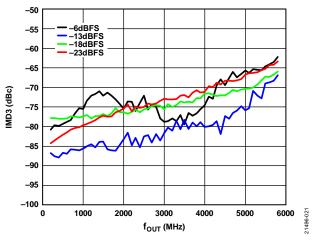


Figure 22. IMD3 vs. fou⊤ over Digital Scale (Mode 17B), 12 GSPS DAC Sample Rate, Channel Interpolation 1×, Main Interpolation 8×

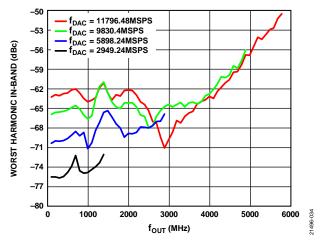


Figure 23. Worst Harmonic In-Band vs. f_{OUT} Across f_{DAC} with 0 dBFS Tone Level (Mode 17B)

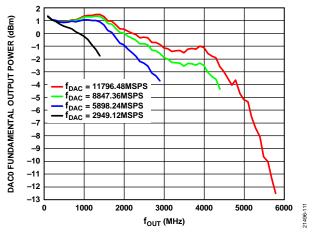


Figure 24. DAC0 Fundamental Output Power vs. f_{OUT} for Different f_{DAC} Sample Rates (Mode 17B), Channel Interpolation 1×, Main Interpolation 8×, 0 dBFS Digital Back Off)

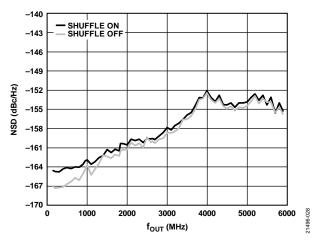


Figure 25. Single-Tone NSD Measured at 10% Offset from f_{OUT} vs. f_{OUT} , 11796.48 MSPS f_{DAG} 16-Bit Resolution, Shuffle Off vs. Shuffle On (Mode 17B)

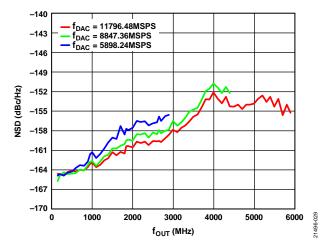


Figure 26. Single-Tone NSD Measured at 10% Offset from four vs. four over fDAG 16-Bit Resolution, Shuffle On (Mode 17B)

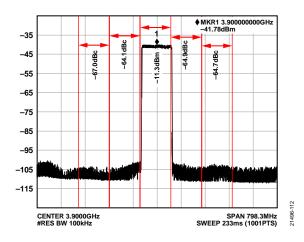


Figure 27. Adjacent Channel Leakage Ratio (ACLR) Performance for 100 MHz 5G Test Vector at f_{OUT} = 3.9 GHz and f_{DAC} = 11.898 GSPS, Test Vector Peak to RMS = 11.7 dB with -1 dBFS Back Off (Mode 9C), Channel Interpolation 3×, Main Interpolation 8×

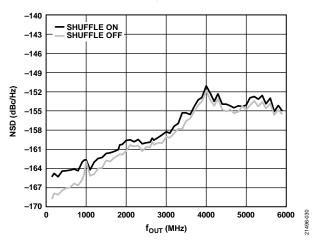


Figure 28. Single-Tone NSD Measured at 10% Offset from f_{OUT} vs. f_{OUT} , 11796.48 MSPSz f_{DAG} , 12-Bit Resolution, Shuffle Off vs. Shuffle On (Mode 24C)

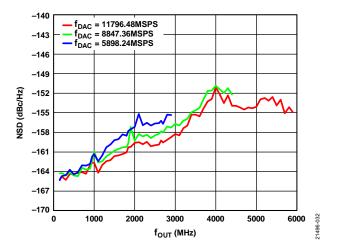
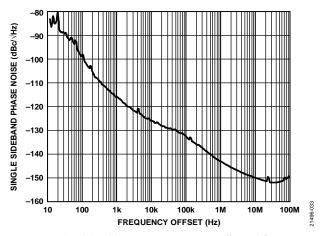
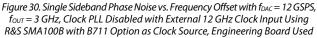




Figure 29. Single-Tone NSD Measured at 10% Offset from f_{OUT} vs. f_{OUT} over f_{DAG} 12-Bit Resolution, Shuffle On (Mode 24C)

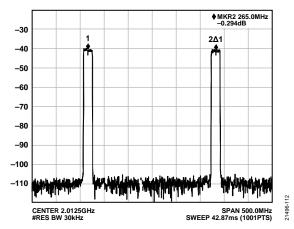


Figure 31. Dual Band 3GPP B1 and B3 Wideband Plot for 20 MHz LTE at $f_{OUT} = 1.88$ GHz and $f_{OUT} = 2.145$ GHz with $f_{DAC} = 11.796$ GSPS, Test Vector PAR = 7.7 dB with -1 dBFS Back Off (Mode 9C), Channel Interpolation 3×, Main Interpolation 8×

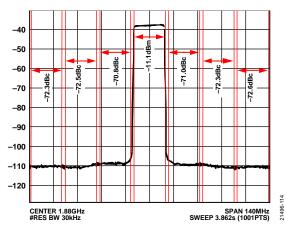
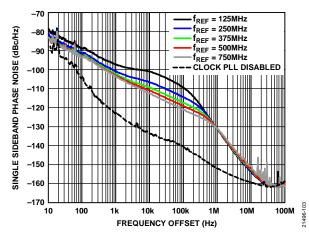



Figure 32. Dual Band ACLR Performance for 20 MHz LTE at $f_{OUT} = 1.88$ GHz and $f_{DAC} = 11.796$ GSPS, Test Vector PAR = 7.7 dB with -1 dBFS Back Off (Mode 9C), Channel Interpolation 3×, Main Interpolation 8×

AD9082

Figure 33. Single Sideband Phase Noise vs. Frequency Offset for Different PLL Reference Clock ($f_{\rm HEF}$), $f_{OUT} = 1.8$ GHz, $f_{DAC} = 12$ GSPS, PLL Enabled with Exception of External 12 GHz Clock Input with Clock PLL Disabled, Engineering Board Used

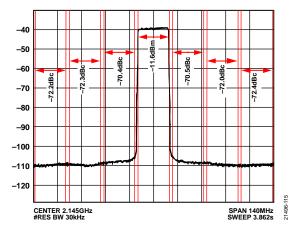
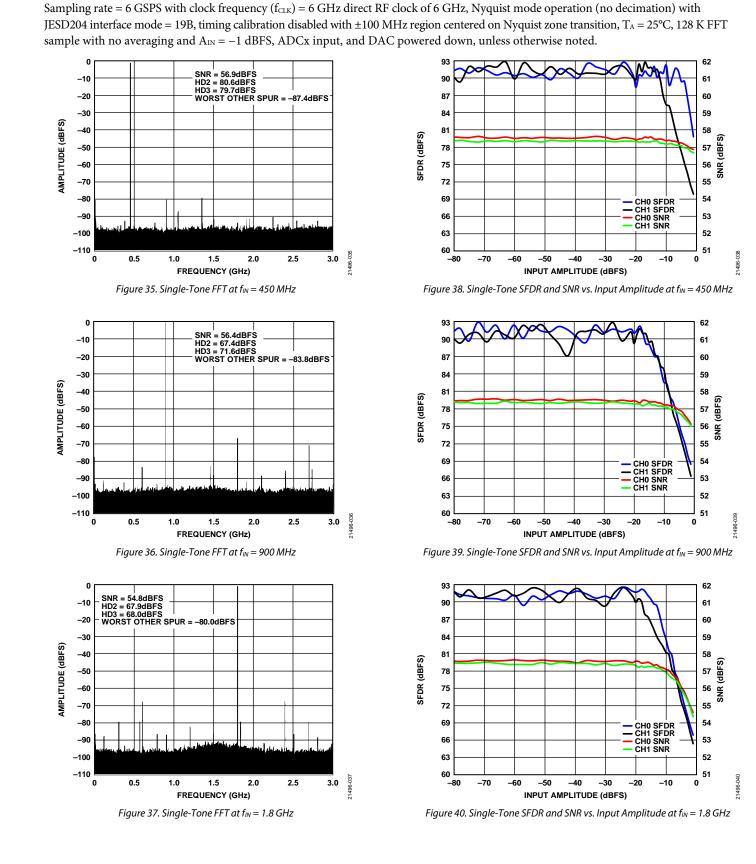



Figure 34. Dual Band ACLR Performance for 20 MHz LTE at $f_{OUT} = 2.145$ GHz and $f_{DAC} = 11.796$ GSPS, Test Vector PAR = 7.7 dB with -1 dBFS Back Off (Mode 9C), Channel Interpolation 3×, Main Interpolation 8×

ADC

Rev. A | Page 26 of 33

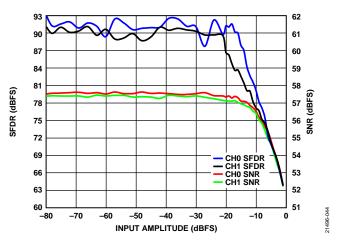
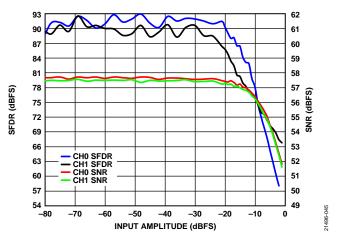
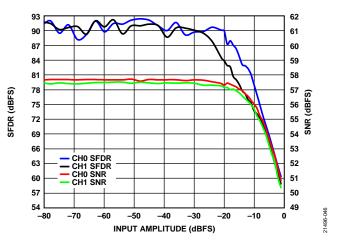
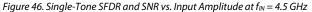
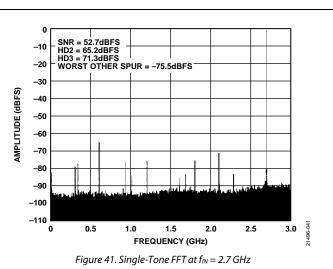
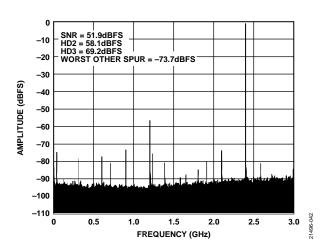
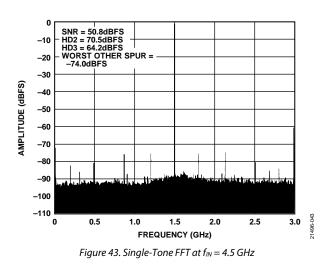
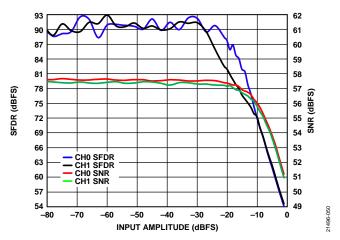
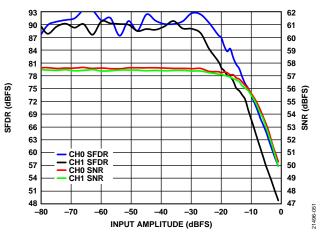
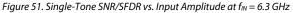





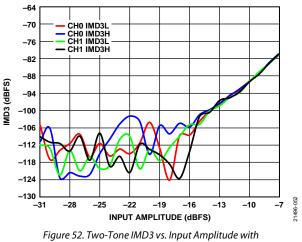
Figure 44. Single-Tone SFDR and SNR vs. Input Amplitude at $f_{IN} = 2.7 \text{ GHz}$

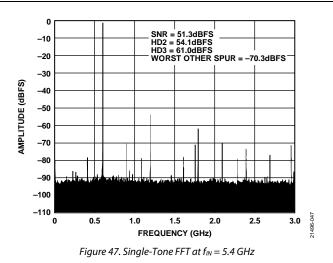


Data Sheet


Figure 42. Single-Tone FFT at $f_{IN} = 3.6 \text{ GHz}$





 $f_{IN1} = 1.775 \text{ GHz}, f_{IN2} = 1.825 \text{ GHz}$

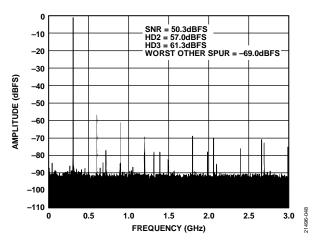


Figure 48. Single-Tone FFT at $f_{IN} = 6.3 \text{ GHz}$

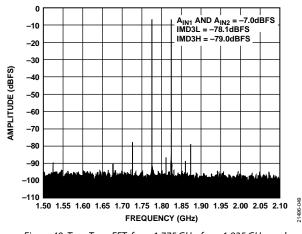


Figure 49. Two-Tone FFT, $f_{IN1} = 1.775$ GHz, $f_{IN2} = 1.825$ GHz, and A_{IN1} and $A_{IN2} = -7$ dBFS (Note That IMD3L and IMD3H Are the Lower and Higher IMD3 Product Components in dBFS.)

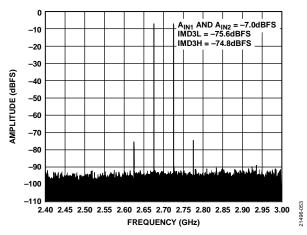
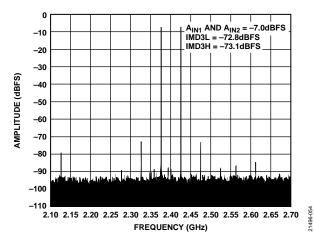
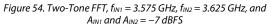
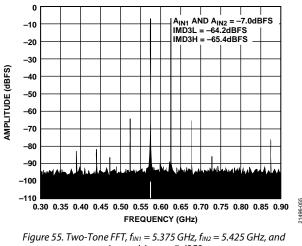
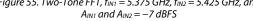






Figure 53. Two-Tone FFT, $f_{IN1} = 2.675 \text{ GHz}$, $f_{IN2} = 2.725 \text{ GHz}$, and A_{IN1} and $A_{IN2} = -7 \, dBFS$

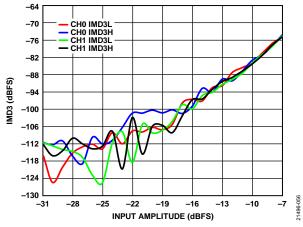


Figure 56. Two-Tone IMD3 vs. Input Amplitude with $f_{IN1} = 2.675$ GHz and $f_{IN2} = 2.725 \text{ GHz}$

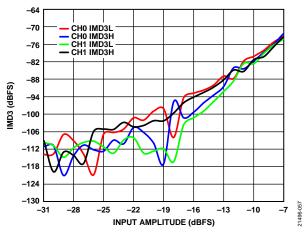


Figure 57. Two-Tone IMD3 vs. Input Amplitude with $f_{IN1} = 3.575$ GHz and $f_{IN2} = 3.625 \text{ GHz}$

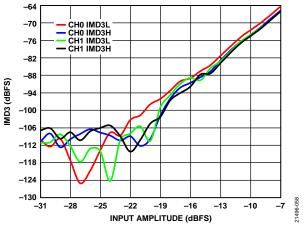
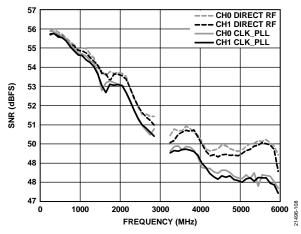
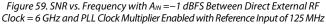




Figure 58. Two-Tone IMD3 vs. Input Amplitude with $f_{IN1} = 5.375$ GHz and $f_{IN2} = 5.425 \text{ GHz}$

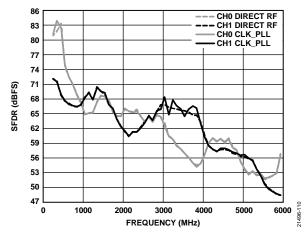


Figure 60. SFDR vs. Frequency with $A_{\rm IN} = -1$ dBFS Between Direct External RF Clock = 6 GHz and PLL Clock Multiplier Enabled with Reference Input of 125 MHz

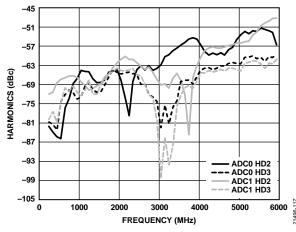


Figure 61. Harmonics (HD2 and HD3) vs. Frequency with $A_{IN} = -1 dBFS$

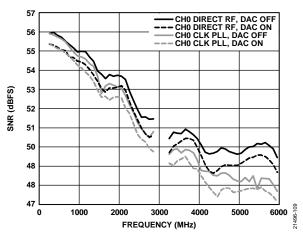


Figure 62. SNR vs. Frequency with $A_{IN} = -1$ dBFS with DAC On/Off and PLL On/Off Between Direct External RF Clock = 6 GHz and PLL Clock Multiplier Enabled with Reference Input of 125 MHz

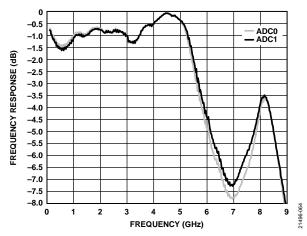


Figure 63. Measured Input Bandwidth of ADC0 and ADC1 Input Using Marki Microwave BALH-0009 on AD9082-FMCA-EBZ (No Matching Network), De-Embedded – 3 dB ADC Bandwidth Is Equal to 8 GHz

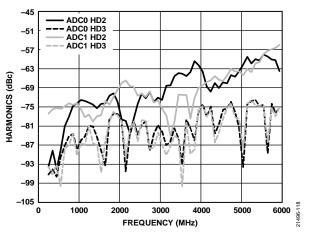


Figure 64. Harmonics (HD2 and HD3) vs. Frequency with $A_{IN} = -9 \, dBFS$

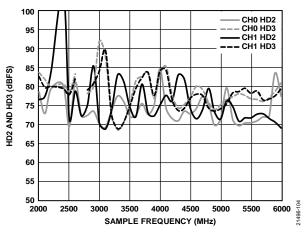


Figure 65. HD2 and HD3 vs. Sample Frequency (f_s), $f_{IN} = 450$ MHz, $A_{IN} = -1$ dBFS, $f_s = 2$ GSPS to 6 GSPS

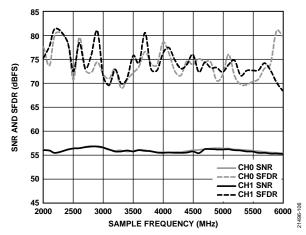


Figure 66. SNR and SFDR vs. Sample Frequency, $f_{IN} = 450 \text{ MHz}$, $A_{IN} = -1 \text{ dBFS}$, $f_S = 2 \text{ GSPS}$ to 6 GSPS

Figure 67. SFDR and SNR vs. Die Temperature, f_{IN} = 1.85 GHz, A_{IN} = -1 dBFS

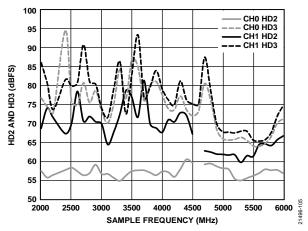


Figure 68. HD2 and HD3 vs. Sample Frequency, $f_{IN} = 3450$ MHz, $A_{IN} = -1$ dBFS, $f_S = 2$ GSPS to 6 GSPS

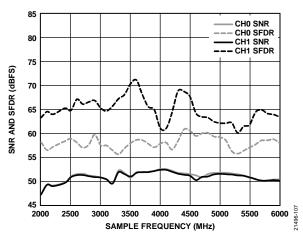


Figure 69. SNR and SFDR vs. Sample Frequency, $f_{IN} = 3450$ MHz, $A_{IN} = -1$ dBFS, $f_S = 2$ GSPS to 6 GSPS

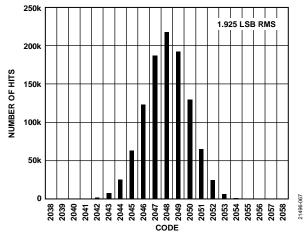
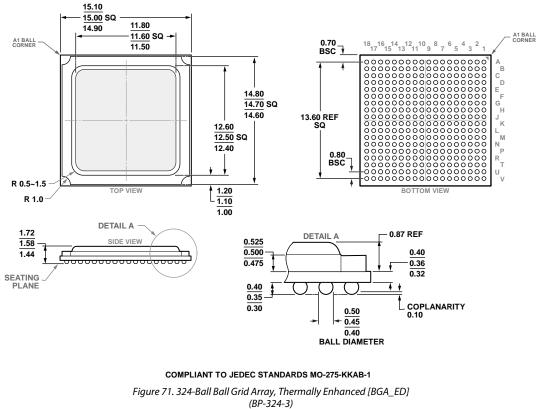


Figure 70. Input Referred Noise Histogram

THEORY OF OPERATION

The AD9082 is a highly integrated, 28 nm, RF, MxFE featuring four 16-bit, 12 GSPS DAC cores and two 12-bit, 6 GSPS ADC cores (see Figure 1). The DAC core is based on a current segmentation architecture providing a differential complementary current output with an adjustable full-scale output (I_{OUTFS}) range of 7 mA to 40 mA. The ADC core is based on a proprietary interleaved architecture that suppresses residual interleaving spurious products into the noise floor. To enable wide bandwidth operation, a high linearity 100 Ω differential buffer with overload protection is used to isolate the ADC core from the RF ADC driver source. An on-chip clock multiplier can be used to synthesize the RF DAC and ADC clocks or, alternatively, an external clock can be applied.

Flexible transmit and receive DSP paths are available to up and down sample the desired intermediate frequency (IF) or RF signal(s) to manageable data interface rates aligned with bandwidth requirements. The transmit and receive DSP paths are symmetric and consist of four coarse digital upconversion (DUC) and digital downconversion (DDC) blocks in the main datapath along with eight fine DUC and DDC blocks in the channelizer datapath. Each block includes a 48-bit NCO configurable for integer or fractional mode of operation. The channelizer datapath enables an efficient implementation to support multiband applications where up to eight RF bands can be supported. Each of the DUC and DDC blocks are bypassable and offer flexible interpolating and decimation factors. The NCO in each block also supports coherent frequency hopping.


Additional features are also included in the receive and transmit datapaths as well as elsewhere to facilitate system integration. Both datapaths include adjustable delay lines to compensate for mismatch in channel delay paths that may occur external to the device. The transmit datapath includes digital gain control, fine delay adjust, and power amplifier protection to simplify DPD integration in a multiband transmitter. The receive path includes a flexible programmable 192-tap finite impulse response (PFIR) filter. The filter can be allocated across one or more ADCs for receive equalization with support for four different profiles. These profiles can be selected using the GPIOx pins. The receive datapath also includes a fast and slow signal detection capability in support of automatic gain control (AGC). Transmit and receive data formatting can be real or complex with resolutions of 8, 12, 16, and 24 bits depending on the JESD204B or the JESD204C mode. The AD9082 also allows complete bypass of the transmit and receive DSP paths enabling Nyquist operation.

The device also supports fast frequency hopping via GPIOx and a low latency digital loopback capability. An on-chip TMU is also included and can be used as part of a thermal management solution. Power savings option in support of time division duplex (TDD) applications are included.

A 16-lane JESD204 transceiver port is available to support the high data throughput rates on the receive and transmit datapaths. Eight SERDES lanes are designated for the transmit datapaths, while the other 8 lanes are designated for the receive datapaths with the option to support two links. The transceiver port supports JESD204C up to 16.22 GSPS or JESD204B up to 15.5 GSPS lane rates. The JESD204 data link layer is highly flexible allowing optimization of the lane count (or rate) required to support a target throughput rate. Internal synchronization for deterministic latency and phase alignment as well as multichip synchronization are possible via an external alignment signal (SYSREF).

07-31-2018-A

OUTLINE DIMENSIONS

Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
AD9082BBPZ-4D2AC	-40°C to +85°C	324-Ball Ball Grid Array, Thermally Enhanced [BGA_ED], JESD204B and JESD204C	BP-324-3
AD9082BBPZRL-4D2AC	-40°C to +85°C	324-Ball Ball Grid Array, Thermally Enhanced [BGA_ED], JESD204B and JESD204C	BP-324-3
AD9082-FMCA-EBZ		AD9082 Evaluation Board with High Performance Analog Network	

 1 Z = RoHS Compliant Part.

©2020 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D21496-9/20(A)

www.analog.com

Rev. A | Page 33 of 33