
User’s Manual
V3.40

μC/ USB HostTM

Universal Serial Bus Host Stack

Micriμm

1290 Weston Road, Suite 306

Weston, FL 33326

USA

www.micrium.com

Designations used by companies to distinguish their products are often claimed as

trademarks. In all instances where Micriμm Press is aware of a trademark claim, the product

name appears in initial capital letters, in all capital letters, or in accordance with the

vendor’s capitalization preference. Readers should contact the appropriate companies for

more complete information on trademarks and trademark registrations. All trademarks and

registered trademarks in this book are the property of their respective holders.

Copyright © 2013 by Micriμm except where noted otherwise. All rights reserved. Printed in

the United States of America. No part of this publication may be reproduced or distributed

in any form or by any means, or stored in a database or retrieval system, without the prior

written permission of the publisher; with the exception that the program listings may be

entered, stored, and executed in a computer system, but they may not be reproduced for

publication.

The programs and code examples in this book are presented for instructional value. The

programs and examples have been carefully tested, but are not guaranteed to any particular

purpose. The publisher does not offer any warranties and does not guarantee the accuracy,

adequacy, or completeness of any information herein and is not responsible for any errors

or omissions. The publisher assumes no liability for damages resulting from the use of the

information in this book or for any infringement of the intellectual property rights of third

parties that would result from the use of this information.

600-uC-USB-Host-001

Table of Contents

Chapter 1 About USB .. 8
1-1 Introduction .. 8
1-1-1 Bus Topology ... 8
1-1-2 USB Host .. 9
1-1-3 USB Device .. 9
1-2 Data Flow Model .. 10
1-2-1 Endpoint ... 10
1-2-2 Pipes ... 11
1-2-3 Transfer Types ... 11
1-3 Physical Interface and Power Management 14
1-3-1 Speed ... 14
1-3-2 Power Distribution ... 15
1-4 Device Structure and Enumeration ... 15
1-4-1 USB Device Structure .. 15
1-4-2 Device States ... 17
1-4-3 Enumeration ... 18

Chapter 2 Getting Started ... 20
2-1 Prerequisites .. 21
2-2 Downloading the Source Code Files ... 22
2-3 Installing the Files .. 24
2-4 Building the Sample Application ... 25
2-4-1 Understanding Micrium Examples .. 25
2-4-2 Including USB Host Stack Source Code .. 27
2-4-3 Copying and Modifying Template Files .. 28
2-4-4 Modifying the Application Configuration File 32
2-5 Running the Sample Application ... 33
3

Chapter 3 Architecture .. 38
3-1 USB Host Stack Overview ... 39
3-1-1 USB Host Stack Modules .. 40
3-1-2 USB Host Stack Dependencies ... 43
3-2 Sending and Receiving Data ... 44
3-3 Task Model ... 44
3-3-1 Hub Task .. 44
3-3-2 Asynchronous Task ... 46
3-4 Enumeration Process ... 46

Chapter 4 Configuration .. 48
4-1 Static Stack Configuration ... 48
4-1-1 USB Host Configuration .. 49
4-1-2 USB Classes Configuration ... 52
4-1-3 Debug Configuration .. 53
4-2 Application Specific Configuration ... 54
4-2-1 Task Priorities .. 55
4-2-2 Task Stack Sizes .. 55
4-3 Host Controller Driver Configuration ... 56
4-3-1 Host Controller Configuration Structure ... 56
4-3-2 Host Controller Initialization .. 58
4-4 Configuration Examples .. 62
4-4-1 Single Host Controller and Unique Device ... 63
4-4-2 Single Host Controller and Multiple Devices 64
4-4-3 Multi-Host Controllers and Multiple Devices 67

Chapter 5 Host Driver Guide ... 72
5-1 Host Driver Model .. 73
5-2 Host Driver API ... 73
5-3 Interrupt Handling .. 77
5-3-1 Single USB ISR Vector with ISR Handler Argument 78
5-3-2 Single USB ISR Vector ... 78
5-3-3 Multiple USB ISR Vectors with ISR Handler Arguments 79
5-3-4 Multiple USB ISR Vectors .. 79
5-4 Host Controller Driver Configuration ... 80
5-5 Memory Allocation ... 80
5-6 CPU and Board Support .. 80
5-7 USB Host Controller Driver Functional Model 82
4

5-7-1 Root Hub Interactions .. 82
5-7-2 Endpoint Opening .. 83
5-7-3 URB Submit .. 84

Chapter 6 Communication Device Class ... 90
6-1 Overview ... 91
6-2 Class Implementation .. 94
6-3 Configuration and Initialization .. 95
6-3-1 General Configuration .. 95
6-3-2 Class Initialization .. 95
6-3-3 Device Connection and Disconnection Handling 96
6-4 Abstract Control Model (ACM) Subclass .. 98
6-4-1 Configuration and Initialization .. 98
6-4-2 Connection and Disconnection Handling ... 99
6-4-3 Demo Application ... 101

Chapter 7 Human Interface Device Class .. 104
7-1 Overview ... 105
7-1-1 Report ... 105
7-2 Class Implementation .. 110
7-3 Configuration and Initialization .. 111
7-3-1 General Configuration .. 111
7-3-2 Class Initialization .. 112
7-3-3 Device Connection and Disconnection Handling 113
7-4 Demo Application ... 115
7-4-1 Demo Application Configuration ... 116

Chapter 8 Mass Storage Class ... 117
8-1 Overview ... 118
8-1-1 Mass Storage Class Protocol .. 118
8-1-2 Endpoints ... 119
8-1-3 Mass Storage Class Requests .. 119
8-1-4 Small Computer System Interface (SCSI) ... 120
8-2 Class Implementation .. 120
8-3 Configuration and Initialization .. 122
8-3-1 General Configuration .. 122
8-3-2 Class Initialization .. 122
5

8-3-3 Device Connection and Disconnection Handling 123
8-4 Demo Application ... 124
8-4-1 Demo Application Configuration ... 127

Chapter 9 Porting μC/USB-Host to your Kernel .. 129
9-1 Overview ... 129
9-2 Porting the Stack to your Kernel ... 131
9-2-1 Task Creation ... 131
9-2-2 Semaphore ... 131
9-2-3 Mutex .. 133
9-2-4 Message Queue ... 134

Appendix A Core API Reference ... 135
A-1 Host Functions ... 136
A-2 Host Controller Functions .. 141
A-3 Class Management Functions ... 148
A-4 Kernel Abstraction Functions .. 150

Appendix B CDC API Reference .. 169
B-1 CDC Functions ... 170
B-2 ACM Functions ... 174

Appendix C HID API Reference ... 201
C-1 HID Functions ... 202

Appendix D MSC API Reference ... 225
D-1 MSC Functions ... 226
D-2 File System MSC Driver Functions .. 228

Appendix E Host Controller Driver API Reference ... 231
E-1 Host Driver Functions .. 232
E-2 Root Hub Driver Functions .. 253
E-3 Host Driver BSP Functions .. 267
6

Appendix F Error Codes .. 271
F-1 Generic Error Codes .. 272
F-2 Device Error Codes .. 272
F-3 Configuration Error Codes ... 272
F-4 Interface Error Codes .. 273
F-5 Endpoint Error Codes .. 273
F-6 URB Error Codes ... 273
F-7 Descriptor Error Codes .. 274
F-8 Host Controller Error Codes .. 274
F-9 Kernel Layer Error Codes .. 274
F-10 Class Error Codes .. 275
F-11 HUB Class Error Codes ... 275
F-12 Human Interface Device (HID) Class Error Codes 275
F-13 Mass Storage Class (MSC) Error Codes ... 276
7

Chapter

1

About USB

This chapter presents a quick introduction to USB. The first section in this chapter

introduces the basic concepts of the USB specification Revision 2.0. The second section

explores the data flow model. The third section gives details about the device operation.

Lastly, the fourth section describes USB device logical organization.

The full protocol is described extensively in the USB Specification Revision 2.0 at

http://www.usb.org.

1-1 INTRODUCTION

The Universal Serial Bus (USB) is an industry standard maintained by the USB Implementers

Forum (USB-IF) for serial bus communication. The USB specification contains all the

information about the protocol such as the electrical signaling, the physical dimension of

the connector, the protocol layer, and other important aspects. USB provides several

benefits compared to other communication interfaces such as ease of use, low cost, low

power consumption and, fast and reliable data transfer.

1-1-1 BUS TOPOLOGY

USB can connect a series of devices using a tiered star topology. The key elements in USB

topology are the host, hubs, and devices, as illustrated in Figure 1-1. Each node in the

illustration represents a USB hub or a USB device. At the top level of the graph is the root

hub, which is part of the host. There is only one host in the system. The specification allows

up to seven tiers and a maximum of five non-root hubs in any path between the host and a

device. Each tier must contain at least one hub except for the last tier where only devices

are present. Each USB device in the system has a unique address assigned by the host

through a process called enumeration (see section 1-4-3 on page 18 for more details on

enumeration).
8

Chapter 1
The host learns about the device capabilities during enumeration, which allows the host

operating system to load a specific driver for a particular USB device. The maximum

number of peripherals that can be attached to a host is 127, including the root hub.

Figure 1-1 Bus topology

1-1-2 USB HOST

The USB host communicates with the devices using a USB host controller. The host is

responsible for detecting and enumerating devices, managing bus access, performing error

checking, providing and managing power, and exchanging data with the devices.

1-1-3 USB DEVICE

A USB device implements one or more USB functions where a function provides one

specific capability to the system. Examples of USB functions are keyboards, webcam,

speakers, or a mouse. The requirements of the USB functions are described in the USB class

specification. For example, keyboards and mice are implemented using the Human

Interface Device (HID) specification.

USB devices must also respond to requests from the host. For example, on power up, or

when a device is connected to the host, the host queries the device capabilities during

enumeration, using standard requests.
9

Data Flow Model
1-2 DATA FLOW MODEL

This section defines the elements involved in the transmission of data across USB.

1-2-1 ENDPOINT

Endpoints function as the point of origin or the point of reception for data. An endpoint is a

logical entity identified using an endpoint address. The endpoint address of a device is

fixed, and is assigned when the device is designed, as opposed to the device address,

which is assigned by the host dynamically during enumeration. An endpoint address

consists of an endpoint number field (0 to 15), and a direction bit that indicates if the

endpoint sends data to the host (IN) or receives data from the host (OUT). The maximum

number of endpoints allowed on a single device is 32.

Endpoints contain configurable characteristics that define the behavior of a USB device:

■ Bus access requirements

■ Bandwidth requirement

■ Error handling

■ Maximum packet size that the endpoint is able to send or receive

■ Transfer type

■ Direction in which data is sent and receive from the host

ENDPOINT ZERO REQUIREMENT

Endpoint zero (also known as Default Endpoint) is a bi-directional endpoint used by the

USB host system to get information, and configure the device via standard requests. All

devices must implement an endpoint zero configured for control transfers (see section

“Control Transfers” on page 11 for more information).
10

Chapter 1
1-2-2 PIPES

A USB pipe is a logical association between an endpoint and a software structure in the USB

host software system. USB pipes are used to send data from the host software to the

device’s endpoints. A USB pipe is associated to a unique endpoint address, type of transfer,

maximum packet size, and interval for transfers.

The USB specification defines two types of pipes based on the communication mode:

■ Stream Pipes: Data carried over the pipe is unstructured.

■ Message Pipes: Data carried over the pipe has a defined structure.

The USB specification requires a default control pipe for each device. A default control pipe

uses endpoint zero. The default control pipe is a bi-directional message pipe.

1-2-3 TRANSFER TYPES

The USB specification defines four transfer types that match the bandwidth and services

requirements of the host and the device application using a specific pipe. Each USB transfer

encompasses one or more transactions that send data to and from the endpoint. The notion

of transactions is related to the maximum payload size defined by each endpoint type, that

is when a transfer is greater than this maximum, it will be split into one or more transactions

to fulfill the action.

CONTROL TRANSFERS

Control transfers are used to configure and retrieve information about the device

capabilities. They are used by the host to send standard requests during and after

enumeration. Standard requests allow the host to learn about the device capabilities; for

example, how many and which functions the device contains. Control transfers are also

used for class-specific and vendor-specific requests.

A control transfer contains three stages: Setup, Data, and Status. These stages are listed in

Table 1-1.
11

Data Flow Model
Table 1-1 Control Transfer Stages

BULK TRANSFERS

Bulk transfers are intended for devices that exchange large amounts of data where the

transfer can take all of the available bus bandwidth. Bulk transfers are reliable, as error

detection and retransmission mechanisms are implemented in hardware to guarantee data

integrity. However, bulk transfers offer no guarantee on timing. Printers and mass storage

devices are examples of devices that use bulk transfers.

INTERRUPT TRANSFERS

Interrupt transfers are designed to support devices with latency constrains. Devices using

interrupt transfers can schedule data at any time. Devices using interrupt transfer provide a

polling interval which determines when the scheduled data is transferred over the bus.

Interrupt transfers are typically used for event notifications.

ISOCHRONOUS TRANSFERS

Isochronous transfers are used by devices that require data delivery at a constant rate with a

certain degree of error-tolerance. Retransmission is not supported by isochronous transfers.

Audio and video devices use isochronous transfers.

USB DATA FLOW MODEL

Table 1-2 shows a graphical representation of the data flow model.

Stage Description

Setup The Setup stage includes information about the request. This SETUP stage represents

one transaction.

Data The Data stage contains data associated with request. Some standard and

class-specific request may not require a Data stage. This stage is an IN or OUT

directional transfer and the complete Data stage represents one ore more transactions.

Status The Status stage, representing one transaction, is used to report the success or failure

of the transfer. The direction of the Status stage is opposite to the direction of the Data

stage. If the control transfer has no Data stage, the Status stage always is from the

device (IN).
12

Chapter 1
Figure 1-2 USB data flow

F1-2(1) The host software uses standard requests to query and configure the device

using the default pipe. The default pipe uses endpoint zero (EP0).

F1-2(2) USB pipes allow associations between the host application and the device’s

endpoints. Host applications send and receive data through USB pipes.

F1-2(3) The host controller is responsible for the transmission, reception, packing and

unpacking of data over the bus.

F1-2(4) Data is transmitted via the physical media.

F1-2(5) The device controller is responsible for the transmission, reception, packing

and unpacking of data over the bus. The USB controller informs the USB

device software layer about several events such as bus events and transfer

events.

F1-2(6) The device software layer responds to the standard request, and implements

one or more USB functions as specified in the USB class document.

��
�����

	
�
�
�
�

��
������

��
�����

��
������

��
������

��
�������

��
�����

��
������

��
�����

��
������

��
������

��
�������

	
�
�
�
�

�������

����������

!

�������

����������

�

���������	�

�	

��	
��	� �������

��!
"
 ���� #�

��!
"
 ���� #!

�
$��
#�� ����
� %

�� ��&
�����

�����������	�

������	� ������	�

�������
�

�����������	�

�	 ���������	���	�

�����

�

�
$��

'�� %��%
�
(

'�

�

!

"
#

��	
��	�
13

Physical Interface and Power Management
TRANSFER COMPLETION

The notion of transfer completion is only relevant for control, bulk and interrupt transfers as

isochronous transfers occur continuously and periodically by nature. In general, control,

bulk and interrupt endpoints must transmit data payload sizes that are less than or equal to

the endpoint’s maximum data payload size. When a transfer’s data payload is greater than

the maximum data payload size, the transfer is split into several transactions whose payload

is maximum-sized except the last transaction which contains the remaining data. A transfer

is deemed complete when:

■ The endpoint transfers exactly the amount of data expected.

■ The endpoint transfers a short packet, that is a packet with a payload size less than the

maximum.

■ The endpoint transfers a zero-length packet.

1-3 PHYSICAL INTERFACE AND POWER MANAGEMENT

USB transfers data and provides power using four-wire cables. The four wires are: Vbus, D
+,

D- and Ground. Signaling occurs on the D+ and D- wires.

1-3-1 SPEED

The USB 2.0 specification defines three different speeds.

■ Low Speed: 1.5 Mb/s

■ Full Speed: 12 Mb/s

■ High Speed: 480 Mb/s
14

Chapter 1
1-3-2 POWER DISTRIBUTION

The host can supply power to USB devices that are directly connected to the host. USB

devices may also have their own power supplies. USB devices that use power from the

cable are called bus-powered devices. Bus-powered devices can draw a maximum of 500

mA from the host. USB devices that have an alternative source of power are called

self-powered devices.

1-4 DEVICE STRUCTURE AND ENUMERATION

Before the host application can communicate with a device, the host needs to understand

the capabilities of the device. This process takes place during device enumeration. After

enumeration, the host can assign and load a specific driver to allow communication

between the application and the device.

During enumeration, the host assigns an address to the device, reads descriptors from the

device, and selects a configuration that specifies power and interface requirements. In order

for the host to learn about the device’s capabilities, the device must provide information

about itself in the form of descriptors.

This section describes the device’s logical organization from the USB host’s point of view.

1-4-1 USB DEVICE STRUCTURE

From the host’s point of view, USB devices are internally organized as a collection of

configurations, interfaces and endpoints.

CONFIGURATION

A USB configuration specifies the capabilities of a device. A configuration consists of a

collection of USB interfaces that implement one or more USB functions. Typically only one

configuration is required for a given device. However, the USB specification allows up to

255 different configurations. During enumeration, the host selects a configuration. Only one

configuration can be active at a time. The device uses a configuration descriptor to inform

the host about a specific configuration’s capabilities.
15

Device Structure and Enumeration
INTERFACE

A USB interface or a group of interfaces provides information about a function or class

implemented by the device. An interface can contain multiple mutually exclusive settings

called alternate settings. The device uses an interface descriptor to inform the host about a

specific interface’s capabilities. Each interface descriptor contains a class, subclass, and

protocol codes defined by the USB-IF, and the number of endpoints required for a

particular class implementation.

ALTERNATE SETTINGS

Alternate settings are used by the device to specify mutually exclusive settings for each

interface. The default alternate settings contain the default settings of the device. The device

also uses an interface descriptor to inform the host about an interface’s alternate settings.

ENDPOINT

An interface requires a set of endpoints to communicate with the host. Each interface has

different requirements in terms of the number of endpoints, transfer type, direction,

maximum packet size, and maximum polling interval. The device sends an endpoint

descriptor to notify the host about endpoint capabilities.

Figure 1-3 shows the hierarchical organization of a USB device. Configurations are grouped

based on the device’s speed. A high-speed device might have a particular configuration in

both high-speed and low/full speed.
16

Chapter 1
Figure 1-3 USB device structure

1-4-2 DEVICE STATES

The USB 2.0 specification defines six different states and are listed in Table 1-2.

Device States Description

Attached The device is in the Attached state when it is connected to the host or a hub port. The

hub must be connected to the host or to another hub.

Powered A device is considered in the Powered state when it starts consuming power from the

bus. Only bus-powered devices use power from the host. Self-powered devices are in

the Powered state after port attachment.

Default After the device has been powered, it should not respond to any request or

transactions until it receives a reset signal from the host. The device enters in the

Default state when it receives a reset signal from the host. In the Default state, the

device responds to standard requests at the default address 0.

Address During enumeration, the host assigns a unique address to the device. When this

occurs, the device moves from the Default state to the Address state.

����$
�����$
�

�
$��

)�

���
�*#�

��%�&����

��	$��$	�

+�&
�

+�&
�

�"
� �"

 ,�

���
�*#�

���
�* ,�

�"
�

+�&
 ,�

'��(�$

&���

��	$��$	�

�
$��

-�."�

���
�*#�

+�&
�

+�&
�

�"
� �"

 ,�

���
�*#� ���

�* ,�

�"
�

+�&
 ,�

��
�

��
/

��
 ,�

)���	������%$	�����

�����%$	������

*���	�����(�
�����

��
�

��
/

��
 ,� +�
������

*���	�����
,
��	�����������%�
17

Device Structure and Enumeration
Table 1-2 USB Device States

1-4-3 ENUMERATION

Enumeration is the process where the host configures the device and learns about the

device’s capabilities. The host starts enumeration after the device is attached to one of the

root or external hub ports. The host learns about the device’s manufacturer, vendor/product

IDs and release versions by sending a Get Descriptor request to obtain the device descriptor

and the maximum packet size of the default pipe (control endpoint 0). Once that is done,

the host assigns a unique address to the device which will tell the device to only answer

requests at this unique address. Next, the host gets the capabilities of the device by a series

of Get Descriptor requests. The host iterates through all the available configurations to

retrieve information about number of interfaces in each configuration, interfaces classes,

and endpoint parameters for each interface and will lastly finish the enumeration process by

selecting the most suitable configuration.

Configured After the host assigns an address to the device, the host must select a configuration.

After the host selects a configuration, the device enters the Configured state. In this

state, the device is ready to communicate with the host applications.

Suspended The device enters into Suspended state when no traffic has been seen over the bus for

a specific period of time. The device retains the address assigned by the host in the

Suspended state. The device returns to the previous state after traffic is present in the

bus.

Device States Description
18

Chapter 1
19

Chapter

2

Getting Started

This chapter gives you some insight into how to install and use the μC/USB-Host stack. The

following topics are explained in this chapter:

■ Prerequisites

■ Downloading the source code files

■ Installing the files

■ Building the sample application

■ Running the sample application

After the completion of this chapter, you should be able to build and run your first USB host

application using the μC/USB-Host stack.
20

Chapter 2
2-1 PREREQUISITES

Before running your first USB host application, you must ensure that you have a minimal set

of required tools and components:

■ A toolchain/IDE for your specific microcontroller

■ A development board

■ The μC/USB-Host stack with at least one of its USB class

■ A Host Controller Driver (HCD) that is compatible with your hardware for the

μC/USB-Host stack

■ A Board Support Package (BSP) for your development board

■ Other software products required by μC/USB-Host (μC/OS-II or μC/OS-III, μC/CPU,

μC/LIB, and μC/FS, when the Mass Storage Class is used)

■ An example project

If Micriμm does not support your USB host controller or BSP, you will have to write your

own HCD. Refer to Chapter 5, “Host Driver Guide” on page 72 for more information on

writing your own USB HCD. You can also ask Micriμm to develop the driver for your

specific host controller.
21

Downloading the Source Code Files
2-2 DOWNLOADING THE SOURCE CODE FILES

μC/USB-Host can be downloaded from the Micriμm customer portal. The distribution

package includes the full source code and documentation. You can log into the Micrium

customer portal at the address below to begin your download (you must have a valid

license to gain access to the file):

http://micrium.com/login

μC/USB-Host depends on other modules, and you need to install all the required modules

before building your application. Depending on the availability of support for your

hardware platform, ports and drivers may or may not be available for download from the

customer portal. Table 2-1 shows the module dependency for μC/USB-Host.

Module Name Required Note(s)

μC/USB-Host Core YES Hardware independent USB Host core stack.

μC/USB-Host Driver YES USB Host Controller Driver (HCD). Available only if Micriμm

supports your controller, otherwise you have to develop it

yourself or ask Micriμm to do it for you. Certain multi-host

configurations might require to have more than one driver.

μC/USB-Host HID Class Optional Available only if you purchased the Human Interface Device

(HID) class.

μC/USB-Host MSC Class Optional Available only if you purchased the Mass Storage Class (MSC).

μC/USB-Host CDC ACM

Class

Optional Available only if you purchased the Communication Device

Class (CDC) with the Abstract Control Model (ACM) subclass.

μC/CPU Core YES Provides CPU specific data types and functions.

μC/CPU Port YES Available only if Micriμm has support for your target architecture

μC/LIB Core YES Micriμm run-time library

μC/LIB Port Optional Available only if Micriμm has support for your target architecture

μC/OS-II Core Optional Available only if your application is using μC/OS-II

μC/OS-II Port Optional Available only if Micriμm has support for your target architecture

μC/OS-III Core Optional Available only if your application is using μC/OS-III

μC/OS-III Port Optional Available only if Micriμm has support for your target architecture

μC/FS Optional Micriμm’s File System (FS). Required only if your application

uses the Mass Storage Class.
22

Chapter 2
Table 2-1 μC/USB-Host Module Dependency

Table 2-1 indicates that all the μC/USB-Host classes are optional because there is no

required class to purchase with the μC/USB-Host Core and Driver. The class to purchase

will depend on your needs. But don’t forget that you need a class to build a complete USB

project. Table 2-1 also indicates that μC/OS-II and -III Core and Port are optional. Indeed,

μC/USB-Host stack does not assume a specific kernel to work with, but it still requires one.

μC/FS Driver for MSC device Optional Required only if your application uses the Mass Storage Class.

μC/Clk Optional Required for μC/FS

Module Name Required Note(s)
23

Installing the Files
2-3 INSTALLING THE FILES

Once all the distribution packages have been downloaded to your host machine, extract all

the files at the root of your C:\ drive for instance. The package may be extracted to any

location. After extracting all the files, the directory structure should look as illustrated in

Figure 2-1. In the example, all Micrium products sub-folders shown in Figure 2-1 will be

located in C:\Micrium\Software\. Note that the μC/FS and μC/Clk products are shown in

Figure 2-1 but are only required if the Mass Storage Class is used.

Figure 2-1 Directory Tree for μC/USB-Host

uC-CPU

<Architecture>

uC-LIB

<Architecture>

Ports

uCOS-II(III)

<Architecture>

Ports

Source

uC-USB-Host-V3

Class

Source

App

Cfg

HCD

CDC

HID

MSC

OS

uC-FS

Source

CFG

Dev

FAT

MSC

OS

uC-Clk

Source

OS
24

Chapter 2
2-4 BUILDING THE SAMPLE APPLICATION

This section describes all the steps required to build a USB-based application. The

instructions provided in this section are not intended for any particular toolchain, but

instead are described in a generic way that can be adapted to any toolchain.

The best way to start building a USB-based project is to start from an existing project. If you

are using μC/OS-II or μC/OS-III, Micriμm provides example projects for multiple

development boards and compilers. If your target board is not listed on Micriμm’s web site,

you can download an example project for a similar board or microcontroller.

The purpose of the sample project is to allow your USB host to enumerate a device and

perform basic communication with HID, MSC or CDC ACM devices depending on which

class(es) you purchased. After you have successfully completed and run the sample project,

you can use it as a starting point to run other USB class demos you may have purchased.

μC/USB-Host requires a Real-Time Operating System (RTOS). The following assumes that

you have a working example project running on μC/OS-II or μC/OS-III.

2-4-1 UNDERSTANDING MICRIUM EXAMPLES

A Micriμm example project is usually placed in the following directory structure.

\Micrium

 \Software

 \EvalBoards

 \<manufacturer>

 \<board_name>

 \<compiler>

 \<project name>

 .

Note that Micriμm does not provide by default an example project with the μC/USB-Host

distribution package. Micriμm examples are provided to customers in specific situations. If it

happens that you receive a Micriμm example, the directory structure shown above is

generally used by Micriμm. You may use a different directory structure to store the

application and toolchain projects files.
25

Building the Sample Application
\Micrium

This is where Micriμm places all software components and projects. This directory is

generally located at the root directory.

\Software

This sub-directory contains all software components and projects.

\EvalBoards

This sub-directory contains all projects related to evaluation boards supported by Micriμm.

\<manufacturer>

This is the name of the manufacturer of the evaluation board. In some cases this can also be

the name of the microcontroller manufacturer.

\<board name>

This is the name of the evaluation board.

\<compiler>

This is the name of the compiler or compiler manufacturer used to build the code for the

evaluation board.

\<project name>

The name of the project that will be demonstrated. For example a simple μC/USB-Host with

μC/OS-III project might have the project name ‘uCOS-III-USBH’.

.

These are the source files for the project. This directory contains configuration files

app_cfg.h, os_cfg.h, os_cfg_app.h, cpu_cfg.h and other project-required sources files.

os_cfg.h is a configuration file used to configure μC/OS parameters such as the

maximum number of tasks, events, objects, which μC/OS services are enabled

(semaphores, mailboxes, queues), and so on. os_cfg.h is a required file for any μC/OS

application. See the μC/OS-III (or μC/OS-II) documentation and books for further

information.

app.c contains the application code for the example project. As with most C programs,

code execution starts at main(). At a minimum, app.c initializes μC/OS and creates a

startup task that initializes other Micriμm modules.
26

Chapter 2
app_cfg.h is a configuration file for your application. This file contains #defines to

configure the priorities and stack sizes of your application and the Micriμm modules’ tasks.

app_<module>.c and app_<module>.h These optional files contain the Micriμm

modules’ (μC/TCP-IP, μC/FS, μC/USB-Host, etc) initialization code. They may or may

not be present in the example projects.

2-4-2 INCLUDING USB HOST STACK SOURCE CODE

First, include the following files in your project from the μC/USB-Host source code

distribution, as indicated in Figure 2-2.

Figure 2-2 μC/USB-Host Source Code

Second, add the following include paths to your project’s C compiler settings:

\Micrium\Software\uC-USB-Host-V3

\Micrium\Software\uC-USB-Host-V3\HCD\<controller>\BSP\<board name>

If you are using the MSC class, you might need to add the following include path as well:

\Micrium\Software\uC-USB-Host-V3\Class\MSC

uC-USB-Host-V3

Class

usbh_<class>.c

<class>

HCD

usbh_drv_<controller>.c

<controller>

BSP

<board name>

usbh_bsp_<controller>.c
OS

<kernel>

usbh_os.c

Source

usbh_class.c

usbh_core.c

usbh_hub.c
27

Building the Sample Application
2-4-3 COPYING AND MODIFYING TEMPLATE FILES

Copy the files from the application template and configuration folders into your application

as illustrated in Figure 2-3.

Figure 2-3 Copying Template Files.

app_usbh.h/.c are the master template for USB host application-specific initialization code.

This file contains the function App_USBH_Init(), which initializes the USB host stack and

class-specific demos. Depending on the Kernel used, you might have to modify the

USBH_STK data type for the kernel task‘s stacks.

app_usbh_<class>.c contains a template to initialize and use a certain class. This file

contains the class demo application. In general, the class application initializes the class,

registers the class driver to the core, and performs some communication once a device is

connected. Refer to the chapter(s) of the USB class(es) you purchased for more details

about the class demos.

usbh_cfg.h is a configuration file used to setup μC/USB-Host stack parameters such as the

maximum number of devices, endpoints, or class-related parameters.

usbd_hc_cfg.h/.c are configuration files used to set the Host Controller Driver(s)

parameters such as base address, dedicated memory base address/size and number of

endpoints.

uC-USB-Host-V3

App EvalBoards

<manufacturer>

<board name>

<compiler>

<project name>

CDC

HID

MSC

app_usbh.h/.c

app_usbh_cdc_acm.h/.c

app_usbh_hid.h/.c
app_usbh_keyboard.h/.c
app_usbh_mouse.h/.c

uC-FS-V4 app_usbh_msc.h/.c

Cfg

Template usbh_cfg.h
usbh_hc_cfg.h/.c
28

Chapter 2
MODIFY HOST CONTROLLER CONFIGURATION

Modify the host controller configuration file (usbh_hc_cfg.c) as needed for your

application and USB Host Controller (HC). Refer to the driver specific readme file located in

the \Micrium\Software\uC-USB-Host-V3\HCD\<driver name> folder for more details on

how to fill this structure. Listing 2-1 describes the structure’s content. Note that you should

declare one structure per HC you will use.

Listing 2-1 Host Controller Configuration Template

L2-1(1) Give your HC configuration a meaningful name by replacing the word

“Template”.

L2-1(2) Specify the base address of your USB HC.

L2-1(3) If your target has dedicated memory for the USB HC, you can specify its base

address and size here. Depending on the USB HC, dedicated memory can be

used to allocate driver buffers or DMA descriptors.

L2-1(4) If the USB HC has direct access to the system memory, specify DEF_ENABLED

here. Otherwise, DEF_DISABLED should be specified.

L2-1(5) Specify the maximum length of the buffers that will be sent/received by the HC.

L2-1(6) Specify the maximum of simultaneously opened bulk endpoints.

L2-1(7) Specify the maximum of simultaneously opened interrupt endpoints.

L2-1(8) Specify the maximum of simultaneously opened isochronous endpoints.

USBD_DEV_CFG USBH_HC_TemplateCfg = { (1)

 (CPU_ADDR)0x00000000u, (2)

 (CPU_ADDR)0x00000000u, (3)

 0u,

 DEF_ENABLED, (4)

 1024u, (5)

 2u, (6)

 2u, (7)

 0u (8)

};
29

Building the Sample Application
MODIFY USB APPLICATION INITIALIZATION CODE

Listing 2-2 shows the code that you should modify based on your specific configuration done

previously. You should modify the parts that are highlighted by the text in bold. The code

snippet is extracted from the function App_USBH_Init() defined in app_usbh.c. The

complete initialization sequence performed by App_USBH_Init() is presented in Listing 2-4.

Listing 2-2 App_USBH_Init() in app_usbh.c

L2-2(1) Include the USB driver BSP header file that is specific to your board. This file

can be found in the following folder:

\Micrium\Software\uC-USB-Host\HCD\<controller>\BSP\<board name>

L2-2(2) Initialize the USB host stack’s internal variables, structures and kernel port.

L2-2(3) Specify the address of the host controller configuration structure that you

modified in section “Modify Host Controller Configuration” on page 29.

#include <usbh_bsp_template.h> (1)

CPU_BOOLEAN App_USBH_Init (void)

{

 USBH_ERR err;

 CPU_INT08U hc_nbr;

 err = USBH_Init(&AsyncTaskInfo, (2)

 &HubTaskInfo);

 hc_nbr = USBH_HC_Add(&USBH_HC_TemplateCfg, (3)

 &TemplateHCD_DrvAPI, (4)

 &TemplateHCD_RH_API, (5)

 &TemplateBSP_API, (6)

 &err);

 err = USBH_HC_Start(hc_nbr); (7)

}

30

Chapter 2
L2-2(4) Specify the address of the host controller driver’s API structure. The driver’s API

structure is defined in the driver’s header file usually named

usbh_hcd_<controller>.h.

L2-2(5) Specify the address of the host controller driver’s Root Hub (RH) API structure.

The RH API structure is defined in the driver’s header file usually named

usbh_hcd_<controller>.h.

L2-2(6) Specify the address of the host controller driver’s Board Support Package (BSP)

API structure. The BSP API structure is defined in the BSP header file usually

named usbh_bsp_<board name>.h.

L2-2(7) Starts the given host controller. If you have more than one host controller, you

should first add them all and then start each of them.
31

Building the Sample Application
2-4-4 MODIFYING THE APPLICATION CONFIGURATION FILE

The USB application initialization code templates assume the presence of app_cfg.h. The

following #defines must be present in app_cfg.h in order to build the sample application.

Listing 2-3 Application Configuration #defines

L2-3(1) APP_CFG_USBH_EN enables or disables the USB host application initialization

code.

L2-3(2) These #defines relate to the μC/USB-Host kernel requirements. The

μC/USB-Host core requires two tasks, one to manage hub requests (device

connection and enumeration) and another to manage asynchronous transfers.

To properly set the priority of the asynchronous and hub tasks, refer to

Appendix 4, “Task Priorities” on page 55.

#define APP_CFG_USBH_EN DEF_ENABLED (1)

#define USBH_OS_CFG_ASYNC_TASK_PRIO 4u (2)

#define USBH_OS_CFG_HUB_TASK_PRIO 3u

#define USBH_OS_CFG_ASYNC_TASK_STK_SIZE 512u

#define USBH_OS_CFG_HUB_TASK_STK_SIZE 512u

#define APP_CFG_USBH_CDC_EN DEF_ENABLED (3)

#define APP_CFG_USBH_HID_EN DEF_ENABLED

#define APP_CFG_USBH_MSC_EN DEF_ENABLED

#define LIB_MEM_CFG_OPTIMIZE_ASM_EN DEF_DISABLED (4)

#define LIB_MEM_CFG_ARG_CHK_EXT_EN DEF_ENABLED

#define LIB_MEM_CFG_ALLOC_EN DEF_ENABLED

#define LIB_MEM_CFG_HEAP_SIZE 4096u

#define TRACE_LEVEL_OFF 0u (5)

#define TRACE_LEVEL_INFO 1u

#define TRACE_LEVEL_DBG 2u

#define APP_CFG_TRACE_LEVEL TRACE_LEVEL_DBG (6)

#define APP_CFG_TRACE printf (7)

#define APP_TRACE_INFO(x) \

((APP_CFG_TRACE_LEVEL >= TRACE_LEVEL_INFO) ? (void)(APP_CFG_TRACE x) : (void)0)

#define APP_TRACE_DBG(x) \

((APP_CFG_TRACE_LEVEL >= TRACE_LEVEL_DBG) ? (void)(APP_CFG_TRACE x) : (void)0)
32

Chapter 2
L2-3(3) This #define enables the USB host class-specific demo. You can enable one or

more USB host class-specific demos. If you enable several USB host

class-specific demos, you will be able to communicate with more than one type

of devices.

L2-3(4) Configure the desired size of the heap memory. Heap memory is used by

μC/USB-Host drivers that use internal buffers and DMA descriptors which are

allocated at run-time. It is also used to allocate extra USB Request Blocks (URB)

for each endpoint. Refer to the μC/LIB documentation for more details on the

other μC/LIB constants.

L2-3(5) Most Micriμm examples contain application trace macros to output

human-readable debugging information. Two levels of tracing are enabled:

INFO and DBG. INFO traces high-level operations, and DBG traces high-level

operations and return errors. Application-level tracing is different from

μC/USB-Host tracing (refer to section 4-2 on page 54 for more details).

L2-3(6) Define the application trace level.

L2-3(7) Specify which function should be used to redirect the output of

human-readable application tracing. You can select the standard output via

printf(), or another output such as a text terminal using a serial interface.

Note that each class requires its own applications-specific configuration. These

configurations are described in the class chapters.

2-5 RUNNING THE SAMPLE APPLICATION

The first step to integrate the demo application into your application code is to call

App_USBH_Init(). This function is responsible for the following steps:

■ Initializing the USB host stack.

■ Calling USB host class-specific application code.

■ Adding host controller(s) to the stack.

■ Starting the host controller(s).
33

Running the Sample Application
The App_USBH_Init() function is described in Listing 2-4.

Listing 2-4 App_USBH_Init() Function

#if (APP_CFG_USBH_EN == DEF_ENABLED)

CPU_BOOLEAN App_USBH_Init (void)

{

 USBH_ERR err;

 CPU_INT08U hc_nbr;

 err = USBH_Init(&AsyncTaskInfo, (1)

 &HubTaskInfo);

 if (err != USBH_ERR_NONE) {

 /* $$$$ Handle error */

 return (DEF_FAIL);

 }

#if (APP_CFG_USBH_<class>_EN == DEF_ENABLED)

 err = App_USBH_<class>_Init(); (2)

 if (err != USBH_ERR_NONE) {

 /* $$$$ Handle error */

 return (DEF_FAIL);

 }

#endif

 hc_nbr = USBH_HC_Add(&USBH_HC_TemplateCfg, (3)

 &TemplateHCD_DrvAPI,

 &TemplateHCD_RH_API,

 &TemplateBSP_API,

 &err);

 if (err != USBH_ERR_NONE) {

 /* $$$$ Handle error */

 return (DEF_FAIL);

 }

 err = USBH_HC_Start(hc_nbr); (4)

 if (err != USBH_ERR_NONE) {

 /* $$$$ Handle error */

 return (DEF_FAIL);

 }

 return (DEF_OK);

}

#endif
34

Chapter 2
L2-4(1) USBH_Init() initializes the USB host stack. This must be the first USB host

function called by your application’s initialization code. If μC/USB-Host is used

with μC/OS-II or -III, OSInit() must be called prior to USBH_Init() in order

to initialize the kernel services.

L2-4(2) Initialize the class-specific application demos by calling the function

App_USBH_<class>_Init() where <class> can be CDC, HID or MSC.

Class-specific demos are enabled and disabled using the

APP_CFG_USBH_<class>_EN #define.

L2-4(3) USBH_HC_Add() creates and adds a USB host controller to the stack. If your

target supports multiple host controllers, you can add multiple USB host

controllers. The function USBD_HC_Add() returns a host controller number; this

number is used as a parameter for subsequent operations on host controller(s).

L2-4(4) After all the host controller(s) have been successfully added to the stack and

the class(es) have been initialized, USBH_HC_Start() should be called for each

host controller. This function will enable interrupts on the host controller and

will start listening for device connections. If you have more than one USB host

controller, pay particular attention to the order you start them. For instance,

companion USB host controllers should be started before the main controller.

See Appendix 4, “Host Controller Initialization” on page 58 for more details

about companion USB host controllers.
35

Running the Sample Application
After building and downloading the application to your target, you should be able to

successfully connect a device to it through USB. Once a USB device is connected, the host

stack will detect the connection of a new device and will start the enumeration process. The

stack will then probe each of the classes that have been added in order to find one that can

handle the device. If no driver is found for your device, you will not be able to

communicate with it. Once a class driver is found, the host stack is ready to communicate

with the device. Table 2-2 lists the different section(s) you should refer to for more details

on each USB class demo.

Table 2-2 USB Class Demos References

Class Refer to...

CDC ACM See “Demo Application” on page 101.

HID See “Demo Application” on page 115.

MSC See “Demo Application” on page 124.
36

Chapter 2
37

Chapter

3

Architecture

μC/USB-Host has been designed to be modular and adaptable to a variety of Central

Processing Units (CPUs), real-time kernels, USB host controllers, and C compilers.

In this chapter, you will learn how the μC/USB-Host structure and core functionality have

been implemented. It is not required that you read and understand this chapter to be able

to use μC/USB-Host, but it will certainly help you to understand the key concepts.
38

Chapter 3
3-1 USB HOST STACK OVERVIEW

Figure 3-1 shows an overview of the relationships between the different modules and layers

of the μC/USB-Host stack.

Figure 3-1 Overview of the μC/USB-Host Stack

F3-1(1) For more information on the application layer, see Table 3-1.

F3-1(2) For more information on the USB class layer, see Table 3-2.

F3-1(3) For more information on the class control layer, see Table 3-3.

F3-1(4) For more information on the core layer, see Table 3-4.

F3-1(5) For more information on the kernel abstraction layer, see Table 3-5.

F3-1(6) For more information on the Host Controller Driver layer, see Table 3-6.

����

����	��
�������	
��
���	�

����	��
�������	
��
���	�

����	��
�������	
��
���	
���

����	��
�������	
�

����	��
�������	
�

����	��
�������	

���

��������

��������

�����	��
����	�����

���	����� �����	���	�������	
�� �!	"�����#

$���	%&&�
���
�

'��
��
'��
��	

��������
�
	
�����

���

���

���

������

�	�
39

USB Host Stack Overview
3-1-1 USB HOST STACK MODULES

APPLICATION

Table 3-1 summarizes the application layer characteristics.

Table 3-1 Application Layer Characteristics

Your application interacts with the USB classes, the class control layer, and the core layer via

a set of defined APIs and callbacks. See class chapters and API reference appendices for

more details about the interactions.

USB CLASS LAYER

Table 3-2 summarizes the class layer characteristics.

Table 3-2 USB Class Layer Characteristics

Each class specific implementation (endpoint communication, specific protocol,

data/messaging format) is located in this layer. Except for the Hub class, your application

will interact with this layer to communicate with devices.

Name Application layer

Description This is where your USB application is located

Interacts with Core layer

USB class layer

Class control layer

Files involved app_cfg.h

usbh_hc_cfg.h/.c

usbh_cfg.h

other files part of your application

Name USB class layer

Description This is where the class specific implementations are located

Interacts with Application layer

Core layer

Kernel abstraction layer

Class control layer

Files involved usbh_hub.h/.c

usbh_<class>.c/.h
40

Chapter 3
CLASS CONTROL LAYER

Table 3-3 summarizes the class control layer characteristics.

Table 3-3 Class Control Layer Characteristics

The class control layer is in charge of the association between a device function and a USB

class driver. Your application registers the class driver(s) it needs to the class control layer

during initialization. Once a device is connected and has been enumerated, the class control

layer will probe each class driver until it finds a class that can handle the device or one of its

functions.

CORE LAYER

Table 3-4 summarizes the core layer characteristics.

Table 3-4 Core Layer Characteristics

The core layer is the heart of the μC/USB-Host stack. This is where the device enumeration,

communication and general management is handled. This is also where the general

management of host controllers is handled.

Name USB class control layer

Description Manage the device function <-> class driver association

Interacts with Application layer

USB class layer

Core layer

Files involved usbh_class.h/.c

Name USB core layer

Description Manage devices connection, enumeration and communication

Interacts with Application layer

Class control layer

USB class layer

Host Controller Driver(s) (HCD)

Kernel abstraction layer

Files involved usbh_core.h/.c
41

USB Host Stack Overview
KERNEL ABSTRACTION LAYER

Table 3-5 summarizes the kernel abstraction layer characteristics.

Table 3-5 Kernel Abstraction Layer Characteristics

The kernel abstraction layer is a module that provides typical kernel services to the stack

(task management, semaphore, mutex, etc...). μC/USB-Host assumes the presence of a

real-time kernel, and this layer allows the USB host stack to be used with nearly any

real-time kernel available. At the very least, the kernel used should provide the following

services:

■ Task creation at run-time

■ Task delay

■ Semaphore

■ Mutex

■ Message queue

Micriμm provides a kernel abstraction layer for μC/OS-II and μC/OS-III. For more

information on how to port μC/USB-Host to a real-time kernel, see Chapter 9, “Porting

μC/USB-Host to your Kernel” on page 129.

Name Kernel abstraction layer

Description Offers an abstraction between the USB host stack and the real-time kernel.

Interacts with USB class layer

Host Controller Driver(s) (HCD)

Files involved usbh_os.h/.c
42

Chapter 3
HOST CONTROLLER DRIVER LAYER

Table 3-4 summarizes the host controller driver layer characteristics.

Table 3-6 Host Controller Driver Layer Characteristics

The HCD layer is an abstraction between the core layer and the host controller(s) hardware.

It handles all the operations that are specific to the hardware (initialization, device and

endpoints allocation/configuration, reception/transmission of USB packets, events report to

the core, etc.). The USB host controller functions are encapsulated and implemented in the

usbh_hcd_<controller>.c file. In order to have independent configuration for clock

gating, interrupt controller and I/O pins control, specific to your board, another file must be

implemented. This file is named usbh_bsp_<controller>.c, it is called the Board Specific

Package (BSP). It contains everything that is closely related to the hardware on which the

product will be used. Depending on the platform used, a project using μC/USB-Host may

contain more than one HCD. For more information on how to integrate/use multiple host

controllers within μC/USB-Host, see Chapter 4, “Configuration” on page 48. For more

information on how to write a HCD, see Chapter 5, “Host Driver Guide” on page 72.

3-1-2 USB HOST STACK DEPENDENCIES

The USB host stack depends on other Micriμm products. Following is a list of them.

LIBRARIES

Given that μC/USB-Host is designed to be used in safety critical applications, some of the

“standard” library functions such as strcpy(), memset(), etc. have been rewritten to

conform to the same quality standards as the rest of the USB Host stack. All these standard

functions are part of a separate Micriμm product called μC/LIB. μC/USB-Host depends on

this product. In addition, some data objects in USB controller drivers and core layer are

created at run-time which implies the use of memory allocation from the heap function

Mem_HeapAlloc().

Name Host Controller Driver (HCD) layer

Description Offers an abstraction between the host controller(s) hardware and the core layer.

Interacts with Core layer

Files involved usbh_hcd_<controller>.h/.c

usbh_bsp_<controller>.h/.c
43

Sending and Receiving Data
CPU LAYER

μC/USB-Host can work with either an 8, 16, 32 or even 64-bit CPU, but it must have

information about the CPU used. The CPU layer defines such information as the C data type

corresponding to 16-bit and 32-bit variables, whether the CPU has little or big endian

memory organization, and how interrupts are disabled and enabled on the CPU.

CPU-specific files are found in the \uC-CPU directory and are used to adapt μC/USB-Host to

a different CPU.

3-2 SENDING AND RECEIVING DATA

μC/USB-Host is capable of sending and receiving data in two different ways: synchronously

and asynchronously. In synchronous mode, the class/application blocks until the transfer

operation completes or an error or time-out occurs. In asynchronous mode, the

class/application does not block. An internal task of μC/USB-Host calls a class/application

callback function once the transfer has completed. It will also inform of any error that could

have occurred during the transfer. Note that for control transfers, only the synchronous

mode is available.

3-3 TASK MODEL

For its proper operation, μC/USB-Host core layer requires two tasks called hub and async

task. The following sections describe these two tasks.

3-3-1 HUB TASK

When a hub (root or external) reports a status change on one of its ports to the host, the

host must interrogate it to discover what happened. The hub task is used for that process.

Once a port status change is reported by a hub, a hub event is added to a queue to be

further processed by the hub task. This task also handles the enumeration of any newly

connected devices. The hub task is part of the hub class and is implemented as a state

machine as illustrated in Figure 3-2.
44

Chapter 3
Figure 3-2 Hub Task State Machine

F3-2(1) Once the hub task is resumed, it will take the first hub event from the queue

and will execute a series of operations on each of its port(s).

F3-2(2) The host requests the port status. Port status contains information like device

connection status, port enable status, reset state, speed of the connected

device, etc. It also indicates which field changed since the last port status

report. For more information on port status, see the Universal Serial Bus

specification, revision 2.0, section 11.24.2.7.

��

���
�
	������	
���
(�)

���
��	��

�����)*���	��

���
�
	���
(�	
���(����� +����	&���

,���	���
��

,��	����	���-�	&������

.��	&���	������

$/�

0�

��#

�1#

�2#

*���	�����	������	
���
(�)

*���	�����	���
(�	���(
����� ���
��	��

�����)

�����3

�	���
��	�&���	
�
�	��&���	��

���
�
	

��	����

*���	�
����	������	
���
(�)

*���	�
����	���
(�	���(
�����

.��	&���	������

0�

�4#

$/�

$/�

0�

$/�

.�	��	
�5�	���	&���	
�	
�
����

0�
45

Enumeration Process
F3-2(3) When a device is connected, the first thing to do is to reset it. Once the device

has been properly reset, the hub task will request the port status once again.

The new port status should indicate that the port reset status changed.

F3-2(4) At this point, the device has been reset and the necessary resources to handle it

have been allocated by the stack. It is now time to inform the core of the

presence of a new device so it can enumerate it. For more information on how

the core enumerates a newly connected device, see section 3-4 “Enumeration

Process” on page 46.

3-3-2 ASYNCHRONOUS TASK

This task manages all the asynchronous transfers that have been initiated by the class or the

application. Once the transfer has completed, the core will be notified of the completion by the

Host Controller Driver (HCD). If the transfer was initiated with an asynchronous API, this task is

resumed and will call the class/application callback function. Note that this task is never used

with control transfers as no asynchronous APIs are available for this type of transfer.

3-4 ENUMERATION PROCESS

Once a device has been connected and recognized/allocated by the hub task (as described in

section 3-3-1 “Hub Task” on page 44), the device will be enumerated by the core. The

enumeration is a process by which the host learns about the device’s capabilities and functions.

Figure 3-3 summarizes the enumeration process as executed by the μC/USB-Host stack.

Figure 3-3 Enumeration Process as Executed by μC/USB-Host

+���	���
��	�����
&���

+���	�
���	6	�����	��	���
��	
�����
&���

�&����	3�5	&��7��	�
8�	��	
��
����	�
�&�

��

+���	����	���
��	�����
&���

���	���
��	�������

+���	��
�
(����
�
	�����
&�����#

+���	�
���	9	�����	��	
��
�
(����
�
	�����
&���

+���
���	�����	��
(��	��	
��
�
(����
�
	�����
�&���

+���	����	��
�
(����
�
	
�����
&���

+���	3�
���������	�
�	
&������	���

(�

 �	�����	��
�
(����
�
	&����
�	

	���
��

���	��
�
(����
�
	�	��	���	
���
��

��#

�1#

�2#

�4#

�:#

�;#

�<#

�6#

�9#

���#
46

Chapter 3
F3-3(1) First step consists in reading the first 8 bytes of the device descriptor. At this

point, the maximum packet size of the device control endpoints is unknown to

the core, hence it is impossible to read more than 8 bytes.

F3-3(2) The core retrieves and updates the maximum packet size of the control

endpoints from the information contained in the first 8 bytes of the device

descriptor.

F3-3(3) Now that the core knows what is the maximum packet size of the control

endpoints, it can request the full device descriptor.

F3-3(4) Since the beginning, the device always responded to the default address 0. At

this point, the core gives the device a unique address via a SetAddress request.

F3-3(5) If the manufacturer and product string index contained in the device descriptor

are non-zero, the core requests their content. This is only useful for tracing and

debugging purposes.

F3-3(6) At this moment, the core must read the configuration descriptor(s). Since the

total length of the configuration descriptor is unknown, it is necessary to read

the 9 first bytes of the configuration descriptor to retrieve its total length.

F3-3(7) With the partial configuration descriptor, the core is now aware of the total

length and knows how many bytes should be requested from the device.

F3-3(8) The core reads the entire configuration descriptor.

F3-3(9) If another configuration is available on the device, the core will read its

descriptor as well. It will then have to go back to step (6).

F3-3(10) Once all the configuration descriptors have been read, the core will, by default,

set the first configuration. You are now ready to communicate with the device

via your application.
47

Chapter

4

Configuration

Before running it, μC/USB-Host you must configure it properly. There are three groups of

configuration parameters:

■ Static stack configuration

■ Application specific configuration

■ Host Controller Driver (HCD) configuration

This chapter explains how to setup all these groups of configuration. The last section of this

chapter also provides examples of configuration following examples of typical use.

4-1 STATIC STACK CONFIGURATION

μC/USB-Host is configurable at compile time via approximately 30 #defines in the

application’s copy of usbh_cfg.h. μC/USB-Host uses #defines when possible, because

they allow code and data sizes to be scaled at compile time based on enabled features and

the configured number of USB objects. This allows the Read-Only Memory (ROM) and

Random-Access Memory (RAM) footprints of μC/USB-Host to be adjusted based on

application requirements.

It is recommended that the configuration process begins with the default configuration

values which in the next sections will be shown in bold.

The sections in this chapter are organized following the order in μC/USB-Host’s template

configuration file, usbh_cfg.h.
48

Configuration
4-1-1 USB HOST CONFIGURATION

USBH_CFG_MAX_NBR_DEVS

USBH_CFG_MAX_NBR_DEVS configures the maximum number of devices supported by the

μC/USB-Host stack. USB uses a tiered star topology. Up to five external hubs can connect in

series with a limit of 127 peripherals and hubs including the root hub. There is one root hub

per USB host controller. USBH_CFG_MAX_NBR_DEVS value should always be less than 127

physical devices. If the host accepts only one single device with no use of external hubs,

the value may be set to 1. Default value is 4.

USBH_CFG_MAX_NBR_CFGS

USBH_CFG_MAX_NBR_CFGS sets the maximum number of USB configurations per USB device.

Most of the commercial USB devices support only one configuration. Refer to the Universal

Serial Bus specification, Revision 2.0, section 9.2.3 for more details about USB

configuration. Default value is 1.

USBH_CFG_MAX_NBR_IFS

USBH_CFG_MAX_NBR_IFS configures the maximum number of interfaces available per

configuration. This value greatly depends on the USB class(es) used. Most of the supported

classes require at least one interface, while CDC ACM requires two. Refer to the Universal

Serial Bus specification, Revision 2.0, section 9.2.3 for more details about USB interfaces.

Default value is 2. If a composite/compound device is to be attached to the μC/USB-Host

stack, you may need to increase this value to 3 or 4.

USBH_CFG_MAX_NBR_EPS

USBH_CFG_MAX_NBR_EPS configures the maximum number of allowed endpoints per

interface alternate setting. This value greatly depends on the USB class(es) used. For

information on how many endpoints are needed for each class, refer to the class specific

chapter. In general, an interface needs a pair of non-control endpoints for bidirectional

communication. Default value is 2.
49

Configuration
USBH_CFG_MAX_NBR_CLASS_DRVS

USBH_CFG_MAX_NBR_CLASS_DRVS configures the maximum number of class drivers (HID,

MSC, etc.) supported by the μC/USB-Host stack. The value should be greater or equal to 2

because the μC/USB-Host stack always integrates the Hub class counting for one class

driver. Thus the minimum value would be one Hub class + one of the supported classes.

The default value is 4.

USBH_CFG_MAX_CFG_DATA_LEN

USBH_CFG_MAX_CFG_DATA_LEN configures the maximum length of the buffer dedicated to

receive the entire configuration descriptor content sent by the device. The full configuration

descriptor contains the configuration descriptor itself, all Interfaces and their associated

endpoint descriptors and any class-specific descriptors. Default value is 256. This value is

convenient for standard classes such as CDC ACM, HID and MSC.

USBH_CFG_MAX_HUBS

USBH_CFG_MAX_HUBS configures the maximum number of hubs supported by the

μC/USB-Host stack. The hubs encompass external hubs and root hub(s). In general, there is

one root hub per host controller (HC). Default value is 2 (1 root hub + 1 external hub).

USBH_CFG_MAX_HUB_PORTS

USBH_CFG_MAX_HUB_PORTS specifies the maximum number of ports that can be active and

managed at the same time per external hub connected to the host. If

USBH_CFG_MAX_HUB_PORTS is set to a value less than the actual number of ports available

on a hub, then the rest of the ports on this hub will be rendered unusable. For instance, if

the value is 4 and the hub has 7 ports, 3 ports are inactive. If you connect a device to one

of these 3 inactive ports, the host stack will not detect the connection. Currently on the

market, the number of ports for external hubs can range from 2 to 7 with the most common

being 4 and 7. Default value is 7.

Figure 4-1 shows two 7-port hubs. One of them has a peculiarity explained below.
50

Configuration
Figure 4-1 7-Port Hubs

F4-1(1) This 7-port hub is a normal external hub. The host will identify this hub as one

unique device.

F4-1(2) For the user, this 7-port hub looks externally the same as the one on the left,

that is one upstream port connecting to the host and 7 downstream ports

connecting to devices. In fact, this hub is composed of two hubs in series.

Internally, the fourth port of Hub 1 is connected to the upstream port of Hub 2.

You may encounter commercial 7-port external hubs that are designed

internally as shown on the right hub. When this hub is connected to

μC/USB-Host, the stack will see two devices. It will enumerate twice the hub:

one enumeration for Hub 1 and one enumeration for Hub 2. Thus, you may

need to increase USBH_CFG_MAX_NBR_DEVS to avoid reaching the maximum

number of supported devices.

USBH_CFG_MAX_STR_LEN

USBH_CFG_MAX_STR_LEN specifies the maximum buffer length aimed to receive a string

retrieved from the device as part of a GetDescriptor(String) request. If logging is not enabled

(constant USBH_CFG_PRINT_LOG set to DEF_DISABLED), then USBH_CFG_MAX_STR_LEN can

be set to 0. Default value is 256.

�����

� � �

�����

� � � �

���

� � � � � � �
��	

��	
51

Configuration
USBH_CFG_STD_REQ_TIMEOUT

USBH_CFG_STD_REQ_TIMEOUT specifies a timeout expressed in milliseconds used during

control transfers. This timeout defines the time allowed for the device to complete the

standard request initiated by the host. Default value is 5000. Refer to the Universal Serial

Bus specification, Revision 2.0, section 9.2.6.4 for more details about timeouts during

standard device requests.

USBH_CFG_STD_REQ_RETRY

USBH_CFG_STD_REQ_RETRY specifies the maximum number of attempts to get a certain

descriptor. Default value is 3.

USBH_CFG_MAX_NBR_HC

USBH_CFG_MAX_NBR_HC specifies the maximum number of Host Controllers (HC) supported

by the μC/USB-Host stack. Default value is 1.

USBH_CFG_MAX_ISOC_DESC

USBH_CFG_MAX_ISOC_DESC configures the maximum number of isochronous descriptors

available for all isochronous endpoints. Default value is 1.

USBH_CFG_MAX_EXTRA_URB_PER_DEV

USBH_CFG_MAX_EXTRA_URB_PER_DEV configures the maximum number of additional USB

Request Blocks (URB) available to perform streaming communication using asynchronous

mode. Default value is 1.

4-1-2 USB CLASSES CONFIGURATION

Refer to USB class chapters for more details about configuration constants related to each

USB class.
52

Configuration
4-1-3 DEBUG CONFIGURATION

Configurations in this section only need to be set during development/debug stages. Debug

configuration allows you to output useful debug messages on a serial terminal or a

debugger console. A set of debug macros are used in the different layers of μC/USB-Host.

Different levels of debug messages can be chosen.

USBH_CFG_PRINT_LOG

USBH_CFG_PRINT_LOG enables or disables the functions to print messages to debug or trace

the stack's flow of execution. When set to DEF_ENABLED, this configuration constant defines

the following macro: USBH_PRINT_LOG(). This macro is used in different layers of

μC/USB-Host and gives you debug information specific to a certain class, the core and the

driver. Default value is DEF_DISABLED.

USBH_CFG_PRINT_ERR

USBH_CFG_PRINT_ERR enables or disables the debug messages that indicate a specific error

code. When set to DEF_ENABLED, this configuration constant defines the following macro:

USBH_PRINT_ERR(). This macro is used in different layers of μC/USB-Host and gives you

error codes specific to a certain class or the core. Default value is DEF_DISABLED.

USBH_PRINTF

USBH_PRINTF macro allows you to output your debug messages on a debugger console or

serial terminal by mapping USBH_PRINTF to a certain printf() function or equivalent.

USBH_PRINTF is used by the macros USBH_PRINT_LOG() and USBH_PRINT_ERR() as shown

in Code Listing 4-1.
53

Configuration
Listing 4-1 Debug Macros

L4-1(1) In this example, USBH_PRINTF is mapped to a standard printf() function

defined in the standard I/O library, stdio.h, provided by the toolchain. Debug

messages will be outputted on the debugger’s console window.

L4-1(2) If USBH_CFG_PRINT_LOG is set to DEF_ENABLED, informative messages will be

outputted to the console using the classic formatting allowed by the printf()

function.

L4-1(3) If USBH_CFG_PRINT_ERR is set to DEF_ENABLED, any error will be outputted to

the console using a formatting such that the name of the function in which the

error has been flagged, the line number at which the error was detected and

the error code will be displayed.

4-2 APPLICATION SPECIFIC CONFIGURATION

This section defines the configuration constants related to μC/USB-Host but that are

application-specific. All these configuration constants relate to the kernel. For many kernels,

the μC/USB-Host task priorities and stack sizes will need to be explicitly configured for the

particular kernel (consult the specific kernel’s documentation for more information).

These configuration constants should be defined in an application’s app_cfg.h file.

#include <stdio.h>

#define USBH_PRINTF printf (1)

#if (USBH_CFG_PRINT_LOG == DEF_ENABLED)

#define USBH_PRINT_LOG(...) USBH_PRINTF(__VA_ARGS__) (2)

#endif

#if (USBH_CFG_PRINT_ERR == DEF_ENABLED) (3)

#define USBH_PRINT_ERR(err) USBH_PRINTF("ERR:%s:%d:err=%d\n", __FUNCTION__, __LINE__, err);

#else

#define USBH_PRINT_ERR(err)

#endif
54

Configuration
4-2-1 TASK PRIORITIES

As mentioned in section 3-3 “Task Model” on page 44, μC/USB-Host needs one hub task

and one async task for its proper operation. The priority of μC/USB-Host’s hub and async

task greatly depends on the USB requirements of your application. For some applications, it

might be better to set the hub task at a high priority, especially if your application requires a

lot of tasks and is CPU intensive. The hub task is responsible for the device’s

connection/disconnection detection and enumeration. In that case, if the hub task has a low

priority, the device connection will still be detected and it will be enumerated but the

notification of a device enumeration completed to your application may be delayed. The

μC/USB-Host stack allows the classes or your application tasks to exchange data in

synchronous or asynchronous mode. The μC/USB-Host async task is in charge of the

asynchronous transfers. In the case where the classes use or your application deals with

asynchronous transfers, it is a good idea to set the async task with a higher priority than the

hub task. You may want to be notified about an asynchronous transfer completion before a

new device connection. The async task could have a lower priority than your application

tasks if you know you will have quite a lot of code in your asynchronous callback functions.

For more details about synchronous and asynchronous communication, refer to section 3-2

“Sending and Receiving Data” on page 44.

For the μC/OS-II and μC/OS-III RTOS ports, the following constants must be configured

within app_cfg.h:

■ USBH_OS_CFG_HUB_TASK_PRIO

■ USBH_OS_CFG_ASYNC_TASK_PRIO

4-2-2 TASK STACK SIZES

For the μC/OS-II and μC/OS-III RTOS ports, the following constants must be configured

within app_cfg.h to set the internal task stack sizes:

■ USBH_OS_CFG_HUB_TASK_STK_SIZE 512

■ USBH_OS_CFG_ASYNC_TASK_STK_SIZE 512

The arbitrary stack size of 512 is a good starting point for most applications.
55

Configuration
The only guaranteed method of determining the required task stack sizes is to calculate the

maximum stack usage for each task. Obviously, the maximum stack usage for a task is the

total stack usage along the task’s most-stack-greedy function path. Note that the

most-stack-greedy function path is not necessarily the longest or deepest function path.

The easiest and best method for calculating the maximum stack usage for any task/function

should be performed statically by the compiler or by a static analysis tool since these can

calculate function/task maximum stack usage based on the compiler’s actual code

generation and optimization settings. So for optimal task stack configuration, we

recommend to invest in a task stack calculator tool compatible with your build toolchain.

4-3 HOST CONTROLLER DRIVER CONFIGURATION

During the initialization of the μC/USB-Host stack, you will have to initialize all the host

controllers of your platform. In order to do that, for each host controller, you need to:

1 Declare a configuration structure of type USBH_HC_CFG containing all the characteristics

of the host controller.

2 Add the host controller to the stack using the function USBH_HC_Add().

3 Start the host controller operations by calling the function USBH_HC_Start().

4-3-1 HOST CONTROLLER CONFIGURATION STRUCTURE

The host controller configuration structure is declared in usbh_hc_cfg.h and defined in the

file usbh_hc_cfg.c (refer to section 2-4-3 “Copying and Modifying Template Files” on

page 28 for an example of initializing this structure). These files are distributed as templates,

and you must modify them to have the proper configuration for your USB Host Controller

(HC). A reference to the structure USBH_HC_CFG needs to be passed to the USBH_HC_Add()

function, which allocates a HC. Each host controller driver comes with a specific readme file

located in \Micrium\Software\uC-USB-Host-V3\HCD\<driver name> giving more

information about the host controller specificities and limitations. You should refer to it to

help you configure the structure USBH_HC_CFG.

The fields of the following structure presented in Listing 4-2 are the parameters needed to

configure the USB Host Controller Driver (HCD):
56

Configuration
Listing 4-2 USB Host Controller Driver Configuration Structure

L4-2(1) Base address of the USB HC hardware registers

L4-2(2) Base address of the USB HC dedicated memory.

L4-2(3) Size of the USB HC dedicated memory.

L4-2(4) Flag indicating if the HC can access the system memory from which

application/class/core data buffers have been allocated. If the flag is set to

DEF_DISABLED, buffers will be copied from system memory to the dedicated

memory accessed by the HC. This flag applies to HCs and their associated

drivers that support DMA.

L4-2(5) Maximum buffer length used to receive and send data. If the field

DataBufFromSysMemEn is set to DEF_ENABLED, the host controller cannot

access the system memory. Thus the HCD will allocate an associated data

buffer from the HC’s dedicated memory and pass the buffer information to the

HC for processing. If the field DataBufFromSysMemEn is set to DEF_DISABLED,

the HCD will directly pass the buffer allocated from the system memory to the

HC.

L4-2(6) Maximum number of open bulk endpoints.

L4-2(7) Maximum number of open interrupt endpoints.

L4-2(8) Maximum number of open isochronous endpoints.

USBH_HC_CFG USBH_HC_OHCI_Cfg_AT91SAM9M10 = {

 (CPU_ADDR)0x00700000, (1)

 (CPU_ADDR)0, (2)

 0, (3)

 DEF_ENABLED, (4)

 1024u, (5)

 10u, (6)

 10u, (7)

 0u (8)

};
57

Configuration
4-3-2 HOST CONTROLLER INITIALIZATION

Once the Host Controller (HC) configuration structure is ready, you will be able to add your

HC to the μC/USB-Host stack and to start its operations. Figure 4-2 and Figure 4-3 introduce

some typical HC architectures within a microcontroller.

Figure 4-2 Typical Host Controller Architectures

F4-2(1) The single HC is the most widespread architecture among embedded USB

hosts. The single HC can be a vendor-specific, an Enhanced Host Controller

Interface (EHCI) or an Open Host Controller Interface (OHCI) controller.

F4-2(2) Some embedded systems contain several HCs. Here, this multi-host architecture

has two HCs. Each one manages its own root hub composed of two ports.

Figure 4-3 gives another example of a multi-host architecture. Here, a main HC shares a root

hub with one ore more other HCs. The other HCs are called Companion controllers. You

may find this type of architecture with EHCI and OHCI controllers where the main host

controller would be an EHCI controller and companion controllers would be OHCI

controllers. In general, an embedded systems’ microcontroller will have one EHCI

associated with one OHCI. An EHCI controller can only be in charge of high-speed devices.

Low- and full-speed devices are handled by the OHCI controller(s). Refer respectively to

Enhanced Host Controller Interface Specification for Universal Serial Bus, Revision 1.0,

March 12 2002 and OpenHCI Specification for USB, 09/14/99, Release 1.0a for more details

about EHCI and OHCI controllers respectively.

	
�

����
��

�

���
�
� �

���

����
��

�

���
�
� �

	
�

����

�

���
�
� �

���

��	 ��	
58

Configuration
Figure 4-3 Multi-Host Architecture

The template file app_usbh.c shows an example of HC initialization in the function

App_USBH_Init(). Listing 4-3 presents the body of this function. The example in this

function corresponds to a single HC architecture as shown in Figure 4-2 (left drawing). The

example can be easily extended to describe the multi-host architecture shown in Figure 4-2

(right drawing).

Listing 4-3 Single Host Controller Initialization

CPU_BOOLEAN App_USBH_Init (void)

{

 USBH_ERR err;

 CPU_INT08U hc_nbr;

...

 (1)

 hc_nbr = USBH_HC_Add(&USBH_HC_TemplateCfg, (2)

 &TemplateHCD_DrvAPI, (3)

 &TemplateHCD_RH_API, (4)

 &TemplateBSP_API, (5)

 &err);

 if (err != USBH_ERR_NONE) {

 return (DEF_FAIL);

 }

 err = USBH_HC_Start(hc_nbr); (6)

 if (err != USBH_ERR_NONE) {

 return (DEF_FAIL);

 }

 return (DEF_OK);

}

	
�

��
���
�
���
���������
�

�

���
�
� �

���

����

59

Configuration
L4-3(1) Add the unique HC to the stack by calling USBH_HC_Add(). This function will

allocate and initialize certain internal structures associated to the HC and used

by the core layer to manage the HC. It will also initialize the controller itself

and get its speed. Several parameters are passed to USBH_HC_Add().

USBH_HC_Add() will return a HC number. In case of a multi-host architecture

with two HCs, the second controller is added to the stack by calling one more

time USBH_HC_Add(). USBH_HC_Add() will return a HC number unique to this

second HC.

L4-3(2) USBH_HC_TemplateCfg is the HC configuration structure of type USBH_HC_CFG

previously initialized in usbh_hc_cfg.c.

L4-3(3) TemplateHCD_DrvAPI is the HC driver’s API structure of type

USBH_HC_DRV_API defined in the HC driver header file,

usbh_hcd_<controller>.h. It defines the functions of the HC driver enabling

the USB host stack core to talk to the controller. Refer to section “USB

Controller API” on page 73 for more details about the USBH_HC_DRV_API

structures and the associated API.

L4-3(4) TemplateHCD_RH_API is the HC driver’s Root Hub (RH) API structure of type

USBH_HC_RH_API defined in the HC driver header file,

usbh_hcd_<controller>.h. It contains some functions permitting the root

hub management. Refer to section “Root Hub API” on page 75 for more details

about the USBH_HC_RH_API structures and the associated API.

L4-3(5) TemplateBSP_API is the HC driver’s Board Support Package (BSP) API

structure of type USBH_HC_BSP_API defined in the BSP header file,

usbh_bsp_<controller>.h. It contains functions enabling the driver to

configure the BSP part (that is USB clock, USB interrupt handler setup, etc.).

Refer to section 5-6 “CPU and Board Support” on page 80 for more details

about the USBH_HC_BSP_API structures and the associated API.

L4-3(6) Start the USB operations of the HC. USBH_HC_Start() is called by passing the

HC number previously obtained. This function will basically enable any

interrupts that let the HC know about any root hub port events (for example,

device connection/disconnection). In case of a multi-host architecture with two

HCs, the second controller is started by calling once again USBH_HC_Start()

with the correct HC number.
60

Configuration
Listing 4-4 illustrates a multi-host initialization corresponding to Figure 4-3. In this example,

a multi-host architecture composed of one EHCI and one OHCI is considered.

Listing 4-4 Multi-Host Controllers Initialization

L4-4(1) Add the EHCI controller to the μC/USB-Host stack by specifying its characteristics

configuration, its associated driver API, root hub API and BSP API.

CPU_BOOLEAN App_USBH_Init (void)

{

 USBH_ERR err;

 CPU_INT08U ohci_hc_nbr;

 CPU_INT08U ehci_hc_nbr;

 ...

 ehci_hc_nbr = USBH_HC_Add(&USBH_HC_EHCI_Cfg_Template, (1)

 &EHCI_DrvAPI,

 &EHCI_RH_API,

 &Template_EHCI_BSP_API,

 &err);

 if (err != USBH_ERR_NONE) {

 return (DEF_FAIL);

 }

 ohci_hc_nbr = USBH_HC_Add(&USBH_HC_OHCI_Cfg_Template, (2)

 &OHCI_DrvAPI,

 &OHCI_RH_API,

 &Template_OHCI_BSP_API,

 &err);

 if (err != USBH_ERR_NONE) {

 return (DEF_FAIL);

 }

 err = USBH_HC_Start(ohci_hc_nbr); (3)

 if (err != USBH_ERR_NONE) {

 return (DEF_FAIL);

 }

 err = USBH_HC_Start(ehci_hc_nbr); (4)

 if (err != USBH_ERR_NONE) {

 return (DEF_FAIL);

 }

 return (DEF_OK);

}

61

Configuration
L4-4(2) Add the OHCI controller to the μC/USB-Host stack by specifying its

characteristics configuration, its associated driver API, root hub API and BSP API.

L4-4(3) Start the OHCI controller operations.

L4-4(4) Start the EHCI controller operations.

In the case of multi-host controllers initialization, it is recommended to add first all your

HCs to the μC/USB-Host stack and then to start their operations. It is especially important

for an EHCI controller working with OHCI controllers and sharing the same root hub. By

default, the EHCI controller has the ownership of the root hub’s ports. If the device

connected to a certain port cannot be managed by the EHCI controller, the port ownership

goes to one of the OHCI controllers. As the EHCI controller relies on OHCI controllers,

OHCI controllers should be started before the EHCI controller.

For vendor-specific HCs, you might change the add/start host controller order for: adding

the first controller to the stack and starting it with USBH_HC_Start(), then adding a second

HC and starting it, and so on. In general, a vendor-specific controller will not share the

same root hub with another vendor-specific controller. But adding all your HCs followed by

starting each HC is a good practice.

4-4 CONFIGURATION EXAMPLES

This section provides examples of configuration for μC/USB-Host stack based on some bus

topology configurations. This section will only give examples of static stack configuration,

as the application-specific configuration greatly depends on your application. Also, the host

controller driver configuration depends on the hardware you use.

The following examples are presented:

■ A single host controller and a unique USB device connected to it.

■ A single host controller and multiple USB devices connected to it.

■ Multi-host controllers and multiple USB devices connected to them.
62

Configuration
4-4-1 SINGLE HOST CONTROLLER AND UNIQUE DEVICE

This example is the most simple bus topology you can find in which one USB device is

connected to the only port of the host controller. In our example, the USB device is a Mass

Storage Class (MSC) device. Figure 4-4 introduces the first bus topology example. The

platform has only one host controller whose root hub is composed of 1 port. A MSC device

composed of a pair of bulk endpoints to communicate is connected to this only port.

Figure 4-4 Single Host Controller and Unique Device Configuration

Table 4-1 shows the values that should be set for the different configuration constants

described earlier in order to support this bus topology.

Configuration Value Explanation

USBH_CFG_MAX_NBR_DEVS 1 Only one USB device accepted at a time.

USBH_CFG_MAX_NBR_CFGS 1 Only one configuration is needed for a MSC device.

USBH_CFG_MAX_NBR_IFS 1 Only one interface is required to describe a MSC function.

USBH_CFG_MAX_NBR_EPS 2 MSC interface requires two bulk endpoints to communicate.

USBH_CFG_MAX_NBR_CLASS_DRVS 2 Hub class always present in the USB Host stack + MSC class

USBH_CFG_MAX_CFG_DATA_LEN 50 Size of a Configuration Descriptor sent by a MSC device must be

less than 50 bytes.

In general, a full MSC Configuration Descriptor =

size(Configuration Descriptor) + size(Interface Descriptor) + 2 *

size(Endpoint Descriptor) = 9 + 9 + 2 * 7 = 32 bytes. You should

consider adding a safety margin in case the MSC Configuration

Descriptor exceeds 32 bytes (e.g. 50 bytes).

��������

���������

�

���
�
�

������

�������������

	
��� !�
"�

	
���
#�$�"�
63

Configuration
Table 4-1 Constant Values for Single Host Controller and Unique Device Configuration Example

4-4-2 SINGLE HOST CONTROLLER AND MULTIPLE DEVICES

This example adds a bit of complexity to the basic example previously shown in Figure 4-4.

This time, the USB Host stack has to support up to 2 external hubs in series and a certain

number of USB devices. The platform still contains only one host controller with one port.

The bus topology presented in Figure 4-5 is composed of:

■ 2 external hubs with 4 ports each. Each external hub is composed of one interrupt

endpoint used for port events notification.

■ 3 Mass Storage Class (MSC) devices. Each MSC device is composed of a pair of bulk

endpoints to communicate.

■ 2 Human Interface Devices (HID). Each HID is composed of one interrupt endpoint to

communicate.

An embedded host with limited capabilities can support such bus topology with a certain

depth of hubs in series and a few USB devices at the same time.

USBH_CFG_MAX_HUBS 1 Only one hub (root hub) supported.

USBH_CFG_MAX_HUB_PORTS 1 The root hub has only one port.

USBH_CFG_MAX_STR_LEN 256 This value ensures that the USB Host stack can get any length of

strings characters sent by the MSC device. This value could be

lower. In general, any string describing the device is less than 50

characters.

USBH_CFG_STD_REQ_TIMEOUT 5000 The device has 5 seconds to complete a standard request sent

by the host.

USBH_CFG_STD_REQ_RETRY 3 If a standard request fails, the host attempts up to 3 times to get

a successful request.

USBH_CFG_MAX_NBR_HC 1 One host controller on this platform.

USBH_CFG_MAX_ISOC_DESC 1 Even if the MSC device does not use isochronous endpoints but

only control and bulk endpoints, this value must be set to 1.

USBH_CFG_MAX_EXTRA_URB_PER_DEV 1 This value should be set at least to 1.

Configuration Value Explanation
64

Configuration
Figure 4-5 Single Host Controller and Multiple Devices Configuration

Table 4-2 shows the values that should be set for the different configuration constants

described earlier in order to support this bus topology.

Configuration Value Explanation

USBH_CFG_MAX_NBR_DEVS 7 2 external hubs + 5 other USB devices (in our example, 3 MSC

and 2 HID). An external hub is also considered as a device.

μC/USB-Host enumerates an external hub as it would do with

any other USB devices. Notice that if the maximum number of

supported devices has been reached, the stack will simply

disregard any other USB devices trying to connect. In that case, a

message could be displayed to the user saying that the

maximum number of devices has been reached.

USBH_CFG_MAX_NBR_CFGS 1 Only one configuration is usually needed for an external hub, a

MSC device or a HID device.

��������

���������

�

���
�
�

������

�������������

	
��� !�
"�

	
���
#�$�"�

������

�������������

	
��� !�
"�

	
���
#�$�"�

������

�������������

	
��� !�
"�

	
���
#�$�"�

������

� %����������

 �����
&�� !�"�

������

� %����������

 �����
&�� !�"�

���

��	����������

 �����
&�� !�"�

� �� �

���

��	����������

 �����
&�� !�"�

� � � �
65

Configuration
USBH_CFG_MAX_NBR_IFS 1 Only one interface is required to describe a Hub, a MSC or a HID

function.

USBH_CFG_MAX_NBR_EPS 2 The maximum number of endpoints needed among all the

interfaces in this bus topology is taken. MSC interface requires

two bulk endpoints to communicate. Hub and HID interfaces use

only one endpoint for communication.

USBH_CFG_MAX_NBR_CLASS_DRVS 3 Hub class (always present in the USB Host stack) + MSC class +

HID class.

USBH_CFG_MAX_CFG_DATA_LEN 100 Size of a Configuration Descriptor sent by an external hub, a

MSC or HID device must be less than 100 bytes.

In general:

A full HUB Configuration Descriptor = size(Configuration

Descriptor) + size(Interface Descriptor) + size(Hub Descriptor) +

1* size(Endpoint Descriptor) = 9 + 9 + 9 + 1 * 7 = 34 bytes.

A full MSC Configuration Descriptor = size(Configuration

Descriptor) + size(Interface Descriptor) + 2 * size(Endpoint

Descriptor) = 9 + 9 + 2 * 7 = 32 bytes.

A full HID Configuration Descriptor = size(Configuration

Descriptor) + size(Interface Descriptor) + size(HID Descriptor) + 1*

size(Endpoint Descriptor) = 9 + 9 + 12 + 1 * 7 = 37 bytes.

Among HUB, MSC and HID, HID has the longest configuration

descriptor. The value of USBH_CFG_MAX_CFG_DATA_LEN should be

at least equal to the longest configuration descriptor size. A

safety margin should be added. It is particularly true here

because the HID descriptor has a size that varies according to

the number of reports contained in the HID device. The HID

descriptor size is given by this formula (9 + (N * 3)) with N =

number of reports.

USBH_CFG_MAX_HUBS 3 1 root hub + 2 external hubs in series.

USBH_CFG_MAX_HUB_PORTS 4 It should always be set to the maximum of ports on the hub.

USBH_CFG_MAX_STR_LEN 256 This value ensures that the USB Host stack can get any length of

strings of characters sent by any of USB devices. This value

could be lower. In general, any string describing the device is less

than 50 characters.

USBH_CFG_STD_REQ_TIMEOUT 5000 The device has 5 seconds to complete a standard request sent

by the host.

USBH_CFG_STD_REQ_RETRY 3 If a standard request fails, the host attempts up to 3 times to get

a successful request.

USBH_CFG_MAX_NBR_HC 1 One host controller on this platform.

Configuration Value Explanation
66

Configuration
Table 4-2 Constant Values for Single Host Controller and Multiple Devices Configuration Example

4-4-3 MULTI-HOST CONTROLLERS AND MULTIPLE DEVICES

This example describes a more complex bus topology. Here, the USB Host stack has to

support up to 5 external hubs in series and a certain number of USB devices. The platform

contains 2 host controllers. Each root hub associated to one host controller provides 2 ports.

The bus topology presented in Figure 4-6 is composed of:

■ 6 external hubs with 4 ports each. Among the 6 external hubs, up to 5 hubs are in

series which is the maximum allowed by the USB 2.0 specification. Each external hub is

composed of one interrupt endpoint used for port events notification.

■ 6 Mass Storage Class (MSC) devices. Each MSC device is composed of a pair of bulk

endpoints to communicate.

■ 3 Human Interface Devices (HID). Each HID is composed of one interrupt endpoint to

communicate.

■ 2 composite devices composed of one HID function and one MSC function.

This bus topology requires an embedded host with good capabilities to support the

maximum depth of hubs in series and several USB devices connected at the same time to

root hubs and external hubs.

USBH_CFG_MAX_ISOC_DESC 1 Even if external hubs, MSC and HID devices do not use

isochronous endpoints, this value must be set to 1.

USBH_CFG_MAX_EXTRA_URB_PER_DEV 1 This value should be set at least to 1.

Configuration Value Explanation
67

Configuration
Figure 4-6 Multi-Host Controllers and Multiple Devices Configuration

����

������

�������������

	
��� !�
"�

	
���
#�$�"�

������

�������������

	
��� !�
"�

	
���
#�$�"�

������

�������������

	
��� !�
"�

	
���
#�$�"�

������

� %����������

 �����
&�� !�"�

������

� %����������

 �����
&�� !�"�

���

��	����������

 �����
&�� !�"�

� � �

��������

���������

�

���
�
� �

��������

���������

�

���
�
� �

���

��	����������

 �����
&�� !�"�

� � �

������

�������������

	
��� !�
"�

	
���
#�$�"�

������

� %����������

 �����
&�� !�"�

������

�������������

	
��� !�
"�

	
���
#�$�"�

������

�������������

	
��� !�
"�

	
���
#�$�"�

�

���

��	����������

 �����
&�� !�"�

� � � �

���

��	����������

 �����
&�� !�"�

� � � �

���

��	����������

 �����
&�� !�"�

� � � �

���

��	����������

 �����
&�� !�"�

� � � �

���

��	����������

 �����
&�� !�"�

� � � �

�

������

� %���������� �������������

	
��� !�
"�

	
���
#�$�"�

 �����
&�� !�"�

������

� %���������� �������������

	
��� !�
"�

	
���
#�$�"�

 �����
&�� !�"�
68

Configuration
Table 4-3 shows the values that should be set for the different configuration constants

described earlier in order to support this bus topology.

Configuration Value Explanation

USBH_CFG_MAX_NBR_DEVS 17 6 external hubs + 11 other USB devices (in our example, 6 MSC,

3 HID and 2 composite devices). An external hub is also

considered as a device. μC/USB-Host enumerates an external

hub as it would do with any other USB devices. Notice that if the

maximum number of supported devices has been reached, the

stack will simply disregard any other USB devices trying to

connect. In that case, a message could be displayed to the user

saying that the maximum number of devices has been reached.

USBH_CFG_MAX_NBR_CFGS 1 Only one configuration is usually needed for an external hub, a

MSC device, a HID device or a composite device.

USBH_CFG_MAX_NBR_IFS 2 A single device with a Hub, MSC or HID function requires only

one interface to be described. But the configuration inside the

composite device is composed of two interfaces. Thus, we take

the maximum of required interfaces among all configurations to

be supported.

USBH_CFG_MAX_NBR_EPS 2 The maximum number of endpoints needed among all the

interfaces in this bus topology is taken. MSC interface requires

two bulk endpoints to communicate. Hub and HID interfaces use

only one endpoint for communication.

USBH_CFG_MAX_NBR_CLASS_DRVS 3 Hub class (always present in the USB Host stack) + MSC class +

HID class.
69

Configuration
USBH_CFG_MAX_CFG_DATA_LEN 100 Size of a Configuration Descriptor sent by an external hub, a

MSC or HID device must be less than 100 bytes.

In general:

A full HUB Configuration Descriptor = size(Configuration

Descriptor) + size(Interface Descriptor) + size(Hub Descriptor) +

1* size(Endpoint Descriptor) = 9 + 9 + 9 + 1 * 7 = 34 bytes.

A full MSC Configuration Descriptor = size(Configuration

Descriptor) + size(Interface Descriptor) + 2 * size(Endpoint

Descriptor) = 9 + 9 + 2 * 7 = 32 bytes.

A full HID Configuration Descriptor = size(Configuration

Descriptor) + size(Interface Descriptor) + size(HID Descriptor) + 1*

size(Endpoint Descriptor) = 9 + 9 + 12 + 1 * 7 = 37 bytes.

Full Configuration Descriptor for the composite device = full

HID Configuration Descriptor + size(Interface Descriptor for

MSC) + 2 * size(Endpoint Descriptor) = 37 + 9 + 2 * 7 = 60 bytes.

Among HUB, MSC, HID and composite device, the composite

device has the longest configuration descriptor. The value of

USBH_CFG_MAX_CFG_DATA_LEN should be at least equal to the

longest configuration descriptor size. A safety margin should be

added. It is particularly true here because the HID descriptor has

a size that varies according to the number of reports contained in

the HID device. The HID descriptor size is given by this formula (9

+ (N * 3)) with N = number of reports.

USBH_CFG_MAX_HUBS 8 2 root hubs + 6 external hubs.

USBH_CFG_MAX_HUB_PORTS 4 The number of active ports per hub is limited to 4. It limits also

the number of other USB devices that the USB host stack can

manage. In case 7-port hubs are used in this bus topology, only 4

devices will be managed by the USB host stack because the 3

other ports would be inactive. You may increase the value of this

constant to 7 to allow up to 7 active ports per hub.

USBH_CFG_MAX_STR_LEN 256 This value ensures that the USB Host stack can get any length of

strings of characters sent by any of USB devices. This value

could be lower. In general, any string describing the device is less

than 50 characters.

USBH_CFG_STD_REQ_TIMEOUT 5000 The device has 5 seconds to complete a standard request sent

by the host.

USBH_CFG_STD_REQ_RETRY 3 If a standard request fails, the host attempts up to 3 times to get

a successful request.

USBH_CFG_MAX_NBR_HC 2 Two host controllers on this platform.

Configuration Value Explanation
70

Configuration
Table 4-3 Constant Values for Multi-Host Controllers and Multiple Devices Configuration Example

USBH_CFG_MAX_ISOC_DESC 1 Even if external hubs, MSC, HID and CDC devices do not use

isochronous endpoints, this value must be set to 1.

USBH_CFG_MAX_EXTRA_URB_PER_DEV 1 This value should be set at least to 1.

Configuration Value Explanation
71

Chapter

5

Host Driver Guide

There are many USB Host Controllers (HC) available on the market and each requires a

driver to work with μC/USB-Host. The amount of code necessary to port a specific USB HC

to μC/USB-Host greatly depends on it’s complexity and features.

If not already available, a driver can be developed, as described in this chapter. However, it

is recommended to modify an already existing host driver with the new host’s specific code

following the Micriμm coding convention for consistency. It is also possible to adapt drivers

written for other USB host stacks or examples provided by the chip manufacturer, especially

if the driver is short and it is a matter of simply copying data to and from the HC.

This chapter describes the hardware (host) driver architecture for μC/USB-Host, including:

■ Host Driver API Definition(s)

■ Host Root Hub API Definition(s)

■ Host Configuration

■ Memory Allocation

■ CPU and Board Support

Micriμm provides sample configuration code free of charge; however, the sample code will

likely require modifications depending on the combination of processor, evaluation board,

and USB HC(s).
72

Chapter 5
5-1 HOST DRIVER MODEL

No particular memory interface is required by μC/USB-Host's driver model. Therefore, the

USB Host Controller (HC) may use the assistance of a Direct Memory Access (DMA)

controller to transfer data or handle the data transfers directly.

5-2 HOST DRIVER API

USB CONTROLLER API

All Host Controller Drivers (HCD) must declare an instance of the appropriate HCD API

structure as a global variable within the source code. The API structure is an ordered list of

function pointers utilized by μC/USB-Host when Host Controller (HC) hardware services are

required.

A sample HCD API structure is shown in Listing 5-1.

Listing 5-1 HCD Interface API

USBH_HC_DRV_API USBH_<controller>_DrvAPI = {

 USBH_<controller>_Init, (1)

 USBH_<controller>_Start, (2)

 USBH_<controller>_Stop, (3)

 USBH_<controller>_SpdGet, (4)

 USBH_<controller>_Suspend, (5)

 USBH_<controller>_Resume, (6)

 USBH_<controller>_FrameNbrGet, (7)

 USBH_<controller>_EP_Open, (8)

 USBH_<controller>_EP_Close, (9)

 USBH_<controller>_EP_Abort, (10)

 USBH_<controller>_EP_IsHalt, (11)

 USBH_<controller>_URB_Submit, (12)

 USBH_<controller>_URB_Complete, (13)

 USBH_<controller>_URB_Abort, (14)

};
73

Host Driver API
Note: It is the HCD developers’ responsibility to ensure that all of the functions listed within

the API are properly implemented and that the order of the functions within the API

structure is correct. The different function pointers are:

L5-1(1) HC initialization/add

L5-1(2) HC start

L5-1(3) HC stop

L5-1(4) Get maximum speed of HC

L5-1(5) HC suspend

L5-1(6) HC resume

L5-1(7) Retrieve frame number

L5-1(8) Open an endpoint

L5-1(9) Close an endpoint

L5-1(10) Abort endpoint and pending URB(s)

L5-1(11) Retrieve endpoint halt status

L5-1(12) Submit an URB

L5-1(13) Complete/free an URB

L5-1(14) Abort an URB

The details of each API function are described in section E-1 “Host Driver Functions” on

page 232.
74

Chapter 5
ROOT HUB API

All Host Controller Drivers (HCD) must declare an instance of the appropriate Root Hub

(RH) API structure as a global variable within the source code. The RH API structure is an

ordered list of function pointers utilized by μC/USB-Host when RH hardware services are

required.

A sample HCD RH API structure is shown below.

Listing 5-2 RH Driver Interface API

The different function pointers are:

L5-2(1) Get port status

L5-2(2) Get hub descriptor

L5-2(3) Set port enable

L5-2(4) Clear port enable

L5-2(5) Clear port enable change flag

L5-2(6) Set power on port

USBH_HC_RH_API USBH_<controller>_RH_API = {

 USBH_<controller>_PortStatusGet, (1)

 USBH_<controller>_HubDescGet, (2)

 USBH_<controller>_PortEnSet, (3)

 USBH_<controller>_PortEnClr, (4)

 USBH_<controller>_PortEnChngClr, (5)

 USBH_<controller>_PortPwrSet, (6)

 USBH_<controller>_PortPwrClr, (7)

 USBH_<controller>_PortResetSet, (8)

 USBH_<controller>_PortResetChngClr, (9)

 USBH_<controller>_PortSuspendClr, (10)

 USBH_<controller>_PortConnChngClr, (11)

 USBH_<controller>_RHSC_IntEn, (12)

 USBH_<controller>_RHSC_IntDis, (13)

};
75

Host Driver API
L5-2(7) Clear power on port

L5-2(8) Set reset state on port

L5-2(9) Clear port reset change flag

L5-2(10) Clear port suspend

L5-2(11) Clear port connection change flag

L5-2(12) Enable RH interrupts

L5-2(13) Disable RH interrupts

The details of each RH API function are described in Appendix E, “Root Hub Driver

Functions” on page 253.

Note: μC/USB-Host HCD API function names may not be unique. Name clashes between

HCDs are avoided by never globally prototyping HCD functions and ensuring that all

references to functions within the driver are obtained by pointers within the API structure.

The developer may arbitrarily name the functions within the source file so long as the API

structure is properly declared. The user application should never need to call API functions.

Unless special care is taken, calling HCD functions may lead to unpredictable results due to

reentrancy.

When writing your own HCD, you can assume that each driver API function accepts a

pointer to a structure of the type USBH_HC_DRV as its first parameter. Through this structure,

you will be able to access the following fields:

Listing 5-3 USB HC Driver Data Type

typedef struct usbh_hc_drv USBH_HC_DRV;

struct usbh_hc_drv {

 CPU_INT08U Nbr; (1)

 void *DataPtr; (2)

 USBH_DEV *RH_DevPtr; (3)

 USBH_HC_CFG *HC_CfgPtr; (4)

 USBH_HC_DRV_API *API_Ptr; (5)

 USBH_HC_RH_API *RH_API_Ptr; (6)

 USBH_HC_BSP_API *BSP_API_Ptr; (7)

};
76

Chapter 5
L5-3(1) Unique index to identify HC.

L5-3(2) Pointer to HCD specific data.

L5-3(3) Pointer to RH device structure.

L5-3(4) Pointer to HCD configuration.

L5-3(5) Pointer to HCD API structure.

L5-3(6) Pointer to RH API structure.

L5-3(7) Pointer to Board Support Package (BSP) API structure.

5-3 INTERRUPT HANDLING

Interrupt handling is accomplished using the following multi-level scheme.

1 Processor level kernel-aware interrupt handler

2 Host Controller Driver (HCD) interrupt handler

During initialization, the HCD registers all necessary interrupt sources with the Board Support

Package (BSP) interrupt management code. You can also accomplish this by plugging an

interrupt vector table during compile time. Once the global interrupt vector sources are

configured and an interrupt occurs, the system will call the first-level interrupt handler. The

first-level interrupt handler is responsible for performing all kernel required steps prior to

calling the USB HCD interrupt handler: USBH_<controller>_ISR_Handler(). Depending

on the platform architecture (that is the way the kernel handles interrupts) and the USB HC

interrupt vectors, the HCD interrupt handler implementation may follow one of the models

described in the next sections.
77

Interrupt Handling
5-3-1 SINGLE USB ISR VECTOR WITH ISR HANDLER
ARGUMENT

If the platform architecture allows parameters to be passed to ISR handlers and the USB HC

has a single interrupt vector for the USB host, the first-level interrupt handler may be

defined as:

PROTOTYPE

void USBH_<controller>_BSP_IntHandler (void *p_arg);

ARGUMENTS

p_arg Pointer to USB HC driver structure that must be typecast to a pointer to

USBH_HC_DRV.

5-3-2 SINGLE USB ISR VECTOR

If the platform architecture does not allow parameters to be passed to ISR handlers and the

USB HC has a single interrupt vector for the USB host, the first-level interrupt handler may

be defined as:

PROTOTYPE

void USBH_<controller>_BSP_IntHandler (void);

ARGUMENTS

None.

NOTES / WARNINGS

In this configuration, the pointer to the USB HC driver structure must be stored globally in

the BSP. Since the pointer to the USB HC driver structure is never modified, the BSP

initialization function, USBH_<controller>_BSP_Init(), can save its address for later use.
78

Chapter 5
5-3-3 MULTIPLE USB ISR VECTORS WITH ISR HANDLER
ARGUMENTS

If the platform architecture allows parameters to be passed to ISR handlers and the USB HC

has multiple interrupt vectors for the USB host (e.g., USB events, DMA transfers, ...), the

first-level interrupt handler may need to be split into multiple sub-handlers. Each sub-handler

would be responsible for managing the status reported to the different vectors. For example,

the first-level interrupt handlers for a USB HC that redirects USB events to one interrupt vector

and the status of DMA transfers to a second interrupt vector may be defined as:

PROTOTYPE

void USBH_<controller>_BSP_EventIntHandler (void *p_arg);

void USBH_<controller>_BSP_DMA_IntHandler (void *p_arg);

ARGUMENTS

p_arg Pointer to USB HC driver structure that must be typecast to a pointer to

USBH_HC_DRV.

5-3-4 MULTIPLE USB ISR VECTORS

If the platform architecture does not allow parameters to be passed to ISR handlers and the

USB HC has multiple interrupt vectors for the USB host (e.g., USB events, DMA transfers), the

first-level interrupt handler may need to be split into multiple sub-handlers. Each sub-handler

would be responsible for managing the status reported to the different vectors. For example,

the first-level interrupt handlers for a USB HC that redirects USB events to one interrupt vector

and the status of DMA transfers to a second interrupt vector may be defined as:

PROTOTYPE

void USBH_<controller>_BSP_EventIntHandler (void);

void USBH_<controller>_BSP_DMA_IntHandler (void);

ARGUMENTS

None.
79

Host Controller Driver Configuration
NOTES / WARNINGS

In this configuration, the pointer to the USB HC driver structure must be stored globally in

the BSP. Since the pointer to the USB HC driver structure is never modified, the BSP

initialization function, USBH_<controller>_BSP_Init(), can save its address for later use.

5-4 HOST CONTROLLER DRIVER CONFIGURATION

The USB Host Controller Driver (HCD) characteristics must be shared with the USB host

stack through configuration parameters. All of these parameters are provided through a

global structure of type USBH_HC_CFG. This structure is declared in the file usbh_hc_cfg.h,

and defined in the file usbh_hc_cfg.c (refer to section “Modify Host Controller

Configuration” on page 29 for an example on how to initialize this structure). These files are

distributed as templates, and you should modify them to have the proper configuration for

your USB Host Controller (HC). Refer to section 4-3 “Host Controller Driver Configuration”

on page 56 for further details on HCD configuration.

5-5 MEMORY ALLOCATION

Memory allocation in the driver can be simplified by the use of memory allocation functions

available from Micriμm’s μC/LIB module. μC/LIB’s memory allocation functions provide

allocation of memory from dedicated memory space (e.g., USB RAM) or general purpose

heap. The driver may use the pool functionality offered by μC/LIB. Memory pools use

fixed-sized blocks that can be dynamically allocated and freed during application execution.

Memory pools may be convenient to manage objects needed by the driver. The objects

could be for instance data structures mandatory for DMA operations. For more information

on using μC/LIB memory allocation functions, consult the μC/LIB documentation.

5-6 CPU AND BOARD SUPPORT

The USB host stack supports big-endian and little-endian CPU architectures.

In order for HCDs to be platform-independent, it is necessary to provide a layer of code that

abstracts details such as clocks, interrupt controllers, input/output (IO) pins, and other

hardware modules configuration. With this board support package (BSP) code layer, it is

possible for the majority of the USB host stack to be independent of any specific hardware,
80

Chapter 5
and for device drivers to be reused on different architectures and bus configurations without

the need to modify stack or driver source code. These procedures are also referred as the

USB host BSP for a particular development board.

A sample host BSP interface API structure is shown in Listing 5-4.

Listing 5-4 Host Controller BSP Interface API

L5-4(1) HC BSP initialization function pointer

L5-4(2) HC BSP interrupt register function pointer

L5-4(3) HC BSP interrupt un-register function pointer

The details of each HC BSP API function are described in section E-3 “Host Driver BSP

Functions” on page 267.

USBH_HC_BSP_API USBH_<controller>_BSP_API = {

 USBH_<controller>_BSP_Init, (1)

 USBH_<controller>_BSP_IntReg, (2)

 USBH_<controller>_BSP_IntUnReg (3)

};
81

USB Host Controller Driver Functional Model
5-7 USB HOST CONTROLLER DRIVER FUNCTIONAL MODEL

This section describes the functional model of some typical operations in which the HCD

will be involved. These functional models include:

■ Root Hub interactions

■ Endpoint open

■ URB submit

5-7-1 ROOT HUB INTERACTIONS

Typically, a Root Hub (RH) will be addressed via a (set) of hardware registers. From the

point of view of the core module, the RH is not different from another external hub. It will

be managed by the Hub class through the use of Hub class-specific requests. It must then

provide informations on RH port(s) in the same format as would do an external hub using

the GetPortStatus request. This request returns two fields: wPortStatus and wPortChange.

Some Host Controller (HC) hardware will provide port(s) status in this format via their

hardware registers, but some will not. In case they don’t, the driver should declare the two

following variables for each of its RH port(s) within its internal data structure as shown in

Listing 5-5.

Listing 5-5 Root Hub Port Status Variables

The variable RH_PortStatus[<port_number>] should be filled the same way as the

wPortStatus field of the GetPortStatus request. See Table 11-21 of the Universal Serial Bus

Specification, revision 2.0, at page 427 for more details.

typedef struct usbh_<controller>_data {

 ...

 CPU_INT16U RH_PortStatus[<port number>];

 CPU_INT16U RH_PortChng[<port number>];

 ...

} USBH_<controller>_DATA;
82

Chapter 5
The variable RH_PortChng[<port_number>] should be filled the same way as the

wPortChange field of the GetPortStatus request. See Table 11-22 of the Universal Serial Bus

Specification, revision 2.0, at page 431 for more details.

These fields will be requested by the core using the

USBH_<controller>_PortStatusGet() function. Depending on your Host Controller (HC)

hardware, some of the bits can be updated by reading hardware registers when this

function is invocated or when interrupts are triggered. When your hardware controller

generates an interrupt to inform about a device connect/disconnect, it is also important to

notify the core module after updating the RH_PortStatus and RH_PortChng variables (if

necessary). This is done by calling USBH_HUB_RH_Event(p_hc_drv->RH_DevPtr).

Listing 5-6 shows an example of how the core should be notified of a device

connect/disconnect from the ISR.

Listing 5-6 Device Connect/Disconnect Core Notification

5-7-2 ENDPOINT OPENING

LIST-BASED HOST CONTROLLERS

List-based controllers (like OHCI or EHCI controllers) generally have two or more lists of

opened endpoints (async list, periodic list, ...). The lists represent data structures that are

located in a memory region that is shared between the HC and HCD. Depending on the

format of these lists and on the type of endpoint, opening an endpoint generally simply

consist in allocating, initializing and adding a new entry to the list for the endpoint.

Bandwidth usage should also be updated when a new periodic endpoint (interrupt and

isochronous) is added.

if (<device connected>) {

 DEF_BIT_SET(p_data->RH_PortChng, USBH_HUB_STATUS_PORT_CONN);

 DEF_BIT_SET(p_data->RH_PortStatus, USBH_HUB_STATUS_PORT_CONN);

 USBH_HUB_RH_Event(p_hc_drv->RH_DevPtr);

}

if (<device disconnected>) {

 DEF_BIT_SET(p_data->RH_PortChng, USBH_HUB_STATUS_PORT_CONN);

 DEF_BIT_CLR(p_data->RH_PortStatus, USBH_HUB_STATUS_PORT_CONN);

 USBH_HUB_RH_Event(p_hc_drv->RH_DevPtr);

}

83

USB Host Controller Driver Functional Model
NON LIST-BASED HOST CONTROLLERS

Host Controllers (HC) that are not list-based generally have a limited list of pipes used as

endpoints. Moreover, the pipes may also have a defined type (control, bulk, interrupt or

isochronous). It is the responsibility of the USBH_<controller>_EP_Open() function to find

an available pipe of the requested type and mark it as used.

5-7-3 URB SUBMIT

A USB Request Block (URB) is a structure that represents a USB transfer and that contains

important information on that transfer. In μC/USB-Host, an URB is represented using the

USBH_URB structure. Some of the fields of this structure must be set/updated or read by the

driver. Listing 5-7 presents some important fields of the USBH_URB structure.

Listing 5-7 USBH_URB Structure Important Fields

L5-7(1) Contains the state of the URB. The driver should not set this field but might

need to read it. The available URB states are described in Table 5-1.

typedef struct usbh_urb USBH_URB;

struct usbh_urb {

 CPU_REG08 State; (1)

 USBH_EP *EP_Ptr; (2)

 USBH_ERR Err; (3)

 void *UserBufPtr; (4)

 CPU_INT32U UserBufLen; (5)

 void *DMA_BufPtr; (6)

 CPU_INT32U DMA_BufLen; (7)

 CPU_INT32U XferLen; (8)

 void *ArgPtr; (9)

 USBH_TOKEN Token; (10)

 ...

};
84

Chapter 5
Table 5-1 URB States

L5-7(2) Pointer to the endpoint structure to which this URB is attached. Should not be

modified by the driver.

L5-7(3) Field that should be set by the driver to inform the core of any error during

transfer. Table 5-2 summarizes some error codes that a driver could assign to

this field.

Table 5-2 URB Error Codes

L5-7(4) Pointer to the data buffer that needs to be transferred/filled with received data.

Should not be modified by the driver.

L5-7(5) Length, in octets, of the data buffer. Should not be modified by the driver.

L5-7(6) On DMA-based controllers, pointer to the data buffer that will be

transferred/filled with received data by the DMA controller. Especially useful

when the buffer needs to be copied into a USB dedicated memory to be

read/written by the DMA controller.

Error code Description

USBH_URB_STATE_NONE The URB has been submitted to the core.

USBH_URB_STATE_SCHEDULED The URB has been scheduled in the HC.

USBH_URB_STATE_QUEUED The URB has completed.

USBH_URB_STATE_ABORTED The URB has been aborted by the core or the application.

Error code Description

USBH_ERR_NONE URB has completed successfully.

USBH_ERR_HC_IO Input Output (IO) error occurred with the HC.

USBH_ERR_EP_STALL Endpoint is in a stall condition.

USBH_ERR_EP_NACK Device returned a NACK handshake and the HC has no hardware

assistance to re-submit the URB.
85

USB Host Controller Driver Functional Model
L5-7(7) Length, in octets, of the DMA buffer.

L5-7(8) Contains the length, in octets, of the data transferred. This must be updated by

the driver.

L5-7(9) Pointer available to set driver specific data related to this URB.

L5-7(10) Indicate the token of the transfer. Especially useful with control transfers. This

field should not be modified by the driver. Can be one of the following:

■ USBH_TOKEN_SETUP

■ USBH_TOKEN_OUT

■ USBH_TOKEN_IN

LIST-BASED HOST CONTROLLERS WITHOUT DEDICATED MEMORY

On a list-based Host Controller (HC), submitting a new URB generally consists in allocating,

initializing and adding a transfer to the endpoint list. The DMA controller will access the

buffer data directly from the application buffer. Once the HC notifies of the transfer

completion via an interrupt, the driver must update the p_urb->XferLen field accordingly

and call USBH_URB_Done() within its ISR.

LIST-BASED HOST CONTROLLERS WITH DEDICATED MEMORY

Submitting an URB on a list-based controller using dedicated memory for data buffer is

similar to a controller that does not use dedicated memory. For OUT endpoints, the main

difference is that before inserting the transfer to the endpoint list, the driver must copy the

buffer content to the dedicated memory. The field p_urb->DMA_BufPtr should be used by

the driver to point to the buffer in dedicated memory. For IN endpoints, before submitting a

transfer, the driver must set the field p_urb->DMA_BufPtr to make it point to an empty

region of the dedicated memory that can hold up to p_urb->UserBufLen octets of data.

Once the transfer has completed and the function USBH_URB_Done() has been invoked, the

core module will call the function USBH_<controller>_URB_Complete(). The driver must

copy the data to the field p_urb->UserBufPtr at this moment.
86

Chapter 5
NON LIST-BASED HOST CONTROLLERS

Host Controllers (HC) that are not list-based generally use a FIFO for data transfers. FIFOs

generally have a limited depth and are likely to be unable to hold an entire transfer,

especially if it is a large transfer. Figure 5-1 summarizes the operations that must be done by

the driver in this case.

Figure 5-1 URB Submit when HC is not List-Based

F5-1(1) Driver must write data to FIFO until it is full or the buffer is empty.

0���
#%���#��#"�"�#1#'����#��� '�
�

��� '�
�#�����
�
%#��2

���#��� '�
�3

���&&
�#'����#��#�
�%

444

2
�
���� #�����
�
%#��2

444

� %#��#��� '�
�3

5
'

��

��

��!)67�� �����
�86�2!6�
9�����

+���#��!)6�2!6��
��

+��:#"�"�#��#���������� #9
��
�

� %#��#�
�
���� 3

5
'

5
'

��

-�.

-�.
- .

-!.
87

USB Host Controller Driver Functional Model
F5-1(2) The driver can now update the p_urb->XferLen field. It must then determine

if the transfer is completed. It can simply be determined by comparing the total

amount of data transferred with p_urb->UserBufLen.

F5-1(3) Once the reception has completed, the driver must copy the data from the

FIFO to the buffer at p_urb->UserBufPtr.

F5-1(4) Many conditions must be considered to evaluate if a reception is complete. The

following list describes the condition where the reception is considered

complete.

■ The last transaction had a length of zero.

■ The last transaction had a length that is less than the maximum packet size of the

endpoint.

■ The total amount of data received is equal to p_urb->UserBufLen.
88

Chapter 5
89

Chapter

6

Communication Device Class

This chapter describes the Communications Device Class (CDC) class and the associated

CDC subclass supported by μC/USB-Host. μC/USB-Host currently supports the Abstract

Control Model (ACM) subclass.

The CDC and the associated subclass implementation complies with the following

specifications:

■ Universal Serial Bus, Class Definitions for Communications Devices, revision 1.2,

November 3 2010.

■ Universal Serial Bus, Communications, Subclass for PSTN Devices, revision 1.2,

February 9, 2007.

CDC includes various telecommunication and networking devices. Telecommunication

devices encompass analog modems, analog and digital telephones, ISDN terminal adapters,

etc. Networking devices contain, for example, ADSL and cable modems, Ethernet adapters

and hubs. CDC defines a framework to encapsulate existing communication services

standards, such as V.250 (for modems over telephone network) and Ethernet (for local area

network devices), using a USB link. A communication device is in charge of device

management, call management when needed and data transmission. CDC defines seven

major groups of devices. Each group belongs to a model of communication which may

include several subclasses. Each group of devices has its own specification document

besides the CDC base class. The seven groups are:

■ Public Switched Telephone Network (PSTN), devices including voiceband modems,

telephones and serial emulation devices.

■ Integrated Services Digital Network (ISDN) devices, including terminal adaptors and

telephones.
90

Communication Device Class
■ Ethernet Control Model (ECM) devices, including devices supporting the IEEE 802

family (for instance cable and ADSL modems, WiFi adaptors).

■ Asynchronous Transfer Mode (ATM) devices, including ADLS modems and other

devices connected to ATM networks (workstations, routers, LAN switches).

■ Wireless Mobile Communications (WMC) devices, including multi-function

communications handset devices used to manage voice and data communications.

■ Ethernet Emulation Model (EEM) devices which exchange Ethernet-framed data.

■ Network Control Model (NCM) devices, including high-speed network devices (High

Speed Packet Access modems, Line Terminal Equipment)

6-1 OVERVIEW

A CDC device is composed of several interfaces to implement a certain function. It is

formed by the following interfaces:

■ Communications Class Interface (CCI)

■ Data Class Interface (DCI)

A CCI is responsible for the device management and optionally the call management. The

device management enables the general configuration and control of the device and the

notification of events to the host. The call management enables the establishment and

termination of calls. Call management might be multiplexed through a DCI. A CCI is

mandatory for all CDC devices. It identifies the CDC function by specifying the

communication model supported by the CDC device. The interface(s) following the CCI can

be any defined USB class interface, such as Audio or a vendor-specific interface. The

vendor-specific interface is represented specifically by a DCI.

A DCI is responsible for data transmission. The data transmitted and/or received do not follow

a specific format. Data could be raw data from a communication line, data following a

proprietary format, etc. All the DCIs following the CCI can be seen as subordinate interfaces.
91

Communication Device Class
A CDC device must have at least one CCI and zero or more DCIs. One CCI and any

subordinate DCI together provide a feature to the host. This capability is also referred to as

a function. In a CDC composite device, you could have several functions. And thus, the

device would be composed of several sets of CCI and DCI(s) as shown in Figure 6-1.

Figure 6-1 CDC Composite Device

A CDC device is likely to use the following combination of endpoints:

■ A pair of control IN and OUT endpoints called the default endpoint.

■ An optional bulk or interrupt IN endpoint.

■ A pair of bulk or isochronous IN and OUT endpoints.

Table 6-1 provides a list of all the different types of endpoints distinguished by their data

flow direction, interface and application.

Table 6-1 CDC Endpoint Use

Endpoint Direction Interface Use for

Control IN Device-to-host CCI Standard requests for enumeration, class-specific

requests, device management and optionally call

management.

Control OUT Host-to-device CCI Standard requests for enumeration, class-specific

requests, device management and optionally call

management.

Interrupt or bulk IN Device-to-host CCI Events notification, such as ring detect, serial line

status, network status.

Bulk or isochronous IN Device-to-host DCI Raw or formatted data communication.

Bulk or isochronous OUT Host-to-device DCI Raw or formatted data communication.

����������

"
 ���� #;/

++�

�+�

�+�

"
 ���� #;�

++�

�+�

"
 ���� #;<

++�

�
%��
92

Communication Device Class
Most communication devices use an interrupt endpoint to notify the host of any events.

The seven major models of communication encompass several subclasses. A subclass

describes the way the device should use the CCI to handle the device management and call

management. Table 6-2 shows all the possible subclasses and the communication model

they belong to.

Table 6-2 CDC Subclasses

Subclass
Communication

model
Example of devices using this subclass

Direct Line Control Model PSTN Modem devices directly controlled by the USB host

Abstract Control Model PSTN Serial emulation devices, modem devices controlled through

a serial command set

Telephone Control Model PSTN Voice telephony devices

Multi-Channel Control Model ISDN Basic rate terminal adaptors, primary rate terminal adaptors,

telephones

CAPI Control Model ISDN Basic rate terminal adaptors, primary rate terminal adaptors,

telephones

Ethernet Networking Control

Model

ECM DOC-SIS cable modems, ADSL modems that support

PPPoE emulation, Wi-Fi adaptors (IEEE 802.11-family), IEEE

802.3 adaptors

ATM Networking Control

Model

ATM ADSL modems

Wireless Handset Control

Model

WMC Mobile terminal equipment connecting to wireless devices

Device Management WMC Mobile terminal equipment connecting to wireless devices

Mobile Direct Line Model WMC Mobile terminal equipment connecting to wireless devices

OBEX WMC Mobile terminal equipment connecting to wireless devices

Ethernet Emulation Model EEM Devices using Ethernet frames as the next layer of transport.

Not intended for routing and Internet connectivity devices

Network Control Model NCM IEEE 802.3 adaptors carrying high-speed data bandwidth on

network
93

Communication Device Class
6-2 CLASS IMPLEMENTATION

μC/USB-Host Communication Device Class (CDC) is designed to allow subclasses to be

built on top of it. It offers an API to the subclasses that allows to communicate using Data

Class Interface (DCI) and Communication Class Interface (CCI). Figure 6-2 shows how CDC

base and subclass(es) interact.

Figure 6-2 CDC Implementation

F6-2(1) CDC base class offers an API to the subclasses that allows to communicate with

a CDC device via DCI and CCI.

F6-2(2) Your application interacts with the subclass for the communication.

F6-2(3) Upon device connection, your application must add a reference on the device

and release it on device disconnection.

F6-2(4) At initialization, your application must register the CDC driver to the core.

����

=+.��!,)�'�#+��
#� %#+� �����
�#���$
�

+�+#!�'
#+��''

����������

+�+#�
9���''

����
�����

-�.

-�.

- .

-!.
94

Communication Device Class
6-3 CONFIGURATION AND INITIALIZATION

6-3-1 GENERAL CONFIGURATION

There is only one configuration constant necessary to customize the CDC host base class.

This constant is located in the usbh_cfg.h file. Table 6-3 shows a description of this

constant.

Table 6-3 CDC Configuration Constant

6-3-2 CLASS INITIALIZATION

In order to be integrated to the core and considered on a device connection, the CDC base

class driver must be added to the core class driver list. This is done by calling

USBH_ClassDrvReg() and is described in Listing 6-1.

Listing 6-1 CDC Initialization

L6-1(1) First parameter is a CDC class driver structure. It is defined in usbh_cdc.h.

L6-1(2) Second parameter is a pointer to the application’s callback function. This

function will be called upon CDC device connection/disconnection.

L6-1(3) Last parameter is an optional pointer to application specific data.

Constant Description

USBH_CDC_CFG_MAX_DEV Configures the maximum number of CDC functions the class can handle.

USBH_ERR App_USBH_CDC_Init (void)

{

 USBH_ERR err;

 ...

 err = USBH_ClassDrvReg(&USBH_CDC_ClassDrv, (1)

 App_USBH_CDC_ClassNotify, (2)

 (void *)0); (3)

 return(err);

}

95

Communication Device Class
6-3-3 DEVICE CONNECTION AND DISCONNECTION HANDLING

Upon connection/disconnection of a CDC device, your application will be notified via a

callback function. Listing describes the operations that must be performed at that moment.

static void App_USBH_CDC_ClassNotify (void *p_class_dev,

 CPU_INT08U is_conn,

 void *p_ctx)

{

 USBH_ERR err;

 USBH_CDC_DEV *p_cdc_dev;

 CPU_INT08U sub_class;

 CPU_INT08U protocol;

 (void)&p_ctx;

 p_cdc_dev = (USBH_CDC_DEV *)p_class_dev;

 switch (is_conn) {

 case USBH_CLASS_DEV_STATE_CONN:

 err = USBH_CDC_RefAdd(p_cdc_dev); (1)

 if (err != USBH_ERR_NONE) {

 /* $$$$ Handle error */

 return;

 }

 err = USBH_CDC_SubclassGet(p_cdc_dev, &sub_class); (2)

 if (err != USBH_ERR_NONE) {

 /* $$$$ Handle error */

 (void)USBH_CDC_RefRel(p_cdc_dev);

 return;

 }

 err = USBH_CDC_ProtocolGet(p_cdc_dev, &protocol); (3)

 if (err != USBH_ERR_NONE) {

 /* $$$$ Handle error */

 (void)USBH_CDC_RefRel(p_cdc_dev);

 return;

 }

 /* $$$$ Subclass specific operations. */ (4)

 break;
96

Communication Device Class
Listing 6-2 CDC Device Connection/Disconnection

L6-2(1) Add an application reference to this CDC device by calling

USBH_CDC_RefAdd().

L6-2(2) At this point, your application is not aware of what is the CDC subclass used by

the device. A call to this function will let you retrieve the subclass code.

L6-2(3) Your application can optionally need to retrieve the protocol code of the CDC

device.

L6-2(4) Subclass specific initialization must be performed here. Refer to your specific

subclass section of this chapter for more details.

L6-2(5) Subclass specific de-initialization must be performed here. Refer to your

specific subclass section of this chapter for more details.

L6-2(6) On a CDC device disconnection, your application must release its reference.

 case USBH_CLASS_DEV_STATE_DISCONN:

 /* $$$$ Subclass specific operations. */ (5)

 (void)USBH_CDC_RefRel(p_cdc_dev); (6)

 break;

 default:

 break;

 }

}

97

Communication Device Class
6-4 ABSTRACT CONTROL MODEL (ACM) SUBCLASS

The ACM subclass is used by two types of communication devices:

■ Devices supporting AT commands (for instance, voiceband modems).

■ Serial emulation devices which are also called Virtual COM port devices.

Micriμm’s ACM subclass implementation complies with the following specification:

Universal Serial Bus, Communications, Subclass for PSTN Devices, revision 1.2, February 9,

2007.

6-4-1 CONFIGURATION AND INITIALIZATION

GENERAL CONFIGURATION

There is only one configuration constant necessary to customize the ACM subclass. This

constant is located in the usbh_cfg.h file. Table 6-3 shows a description of this constant.

Table 6-4 CDC ACM Subclass Configuration Constant

SUBCLASS INITIALIZATION

The ACM subclass does not have to be registered to the core, but it must be initialized. This

is done by calling USBH_CDC_ACM_GlobalInit().

Constant Description

USBH_CDC_ACM_CFG_MAX_DEV Configures the maximum number of CDC ACM functions the class can

handle. Should be <= USBH_CDC_CFG_MAX_DEV.
98

Communication Device Class
6-4-2 CONNECTION AND DISCONNECTION HANDLING

Upon connection/disconnection of a CDC ACM device, your application will be notified via

a callback function as described in Listing . A few ACM subclass specific steps must be

performed as well at that moment.

ACM subclass specific operations on device connection and disconnection are described in

Listing 6-3.

static void App_USBH_CDC_ClassNotify (USBH_CDC_DEV *p_class_dev,

 CPU_INT08U is_conn,

 void *p_ctx)

{

 USBH_ERR err;

 USBH_CDC_ACM_DEV *p_cdc_acm_dev;

 CPU_INT08U sub_class;

 CPU_INT08U protocol;

 (void)&p_ctx;

 switch (is_conn) {

 case USBH_CLASS_DEV_STATE_CONN:

 /* $$$$ CDC base class specific operations. */

 if (sub_class != USBH_CDC_CONTROL_SUBCLASS_CODE_ACM) { (1)

 /* $$$$ Handle error */

 (void)USBH_CDC_RefRel(p_cdc_dev);

 return;

 }

 if ((protocol != USBH_CDC_CONTROL_PROTOCOL_CODE_USB) && (2)

 (protocol != USBH_CDC_CONTROL_PROTOCOL_CODE_V_25_AT) &&

 (protocol != USBH_CDC_CONTROL_PROTOCOL_CODE_VENDOR)) {

 /* $$$$ Handle error */

 (void)USBH_CDC_RefRel(p_cdc_dev);

 return;

 }
99

Communication Device Class
Listing 6-3 CDC ACM Device Connection/Disconnection

 p_cdc_acm_dev = USBH_CDC_ACM_Add(p_cdc_dev, (3)

 &err);

 if (err != USBH_ERR_NONE) {

 /* $$$$ Handle error */

 (void)USBH_CDC_RefRel(p_cdc_dev);

 return;

 }

 USBH_CDC_ACM_EventRxNotifyReg(p_cdc_acm_dev, (4)

 App_USBH_CDC_ACM_SerEventNotify);

 err = USBH_CDC_ACM_LineCodingSet(p_cdc_acm_dev, (5)

 USBH_CDC_ACM_LINE_CODING_BAUDRATE_19200,

 USBH_CDC_ACM_LINE_CODING_STOP_BIT_2,

 USBH_CDC_ACM_LINE_CODING_PARITY_NONE,

 USBH_CDC_ACM_LINE_CODING_DATA_BITS_8);

 if (err != USBH_ERR_NONE) {

 /* $$$$ Handle error */

 (void)USBH_CDC_ACM_Remove(p_cdc_acm_dev);

 (void)USBH_CDC_RefRel(p_cdc_dev);

 return;

 }

 err = USBH_CDC_ACM_LineStateSet(p_cdc_acm_dev, (6)

 USBH_CDC_ACM_DTR_SET,

 USBH_CDC_ACM_RTS_SET);

 if (err != USBH_ERR_NONE) {

 /* $$$$ Handle error */

 (void)USBH_CDC_ACM_Remove(p_cdc_acm_dev);

 (void)USBH_CDC_RefRel(p_cdc_dev);

 return;

 }

 break;

 case USBH_CLASS_DEV_STATE_DISCONN:

 USBH_CDC_ACM_Remove(p_cdc_acm_dev); (7)

 /* $$$$ CDC base class specific operations. */

 break;

 default:

 break;

 }

}

100

Communication Device Class
L6-3(1) Ensure that the connected CDC device uses ACM subclass.

L6-3(2) Make sure the protocol code used is supported by the subclass/application.

L6-3(3) Instantiate an ACM device for the connected CDC device.

L6-3(4) Registers an application callback function that will be called by the subclass on

reception of notification event from the device.

L6-3(5) Set device’s line coding parameters.

L6-3(6) Set device line state.

L6-3(7) Free the instantiated ACM reference on device disconnection.

6-4-3 DEMO APPLICATION

A simple demo application is provided with the host Abstract Control Model (ACM)

subclass. This demo application can be used as a starting point to create your own

application. It is intended to be used with a CDC ACM USB modem that supports AT

commands. For more information on AT commands, visit the following web page:

http://support.microsoft.com/kb/164660. Note that the demo application handles only one

CDC ACM device at a time and thus you should not attempt to connect more than one CDC

ACM device at a time.

Upon a CDC ACM device connection, the demo application will initiate a few AT commands

and wait for modem‘s response. Here is the list of the commands that will be issued:

■ ATQ0V1E0

■ ATI0

■ ATI1

■ ATI2

■ ATI3

■ ATI7
101

Communication Device Class
The response received from the device will then be displayed on the output terminal if

application tracing is enabled. Listing 6-4 shows an example of output given by the demo

application with an USRobotics Model 5637 modem.

Listing 6-4 CDC ACM Demo Application Output Example

========== AT CMD ==========

ATQ0V1E0

====== STATUS / DATA =======

ATQ0V1E0

OK

========== AT CMD ==========

ATI0

====== STATUS / DATA =======

5601

OK

========== AT CMD ==========

ATI1

====== STATUS / DATA =======

5588

OK

========== AT CMD ==========

ATI2

====== STATUS / DATA =======

OK

========== AT CMD ==========

ATI3

====== STATUS / DATA =======

U.S. Robotics 56K FAX USB V1.2.23

OK

========== AT CMD ==========

ATI7

====== STATUS / DATA =======

Configuration Profile...

Product Type Canada USB

...
102

Communication Device Class
DEMO APPLICATION CONFIGURATION

Before running the CDC ACM demo application, you must configure it properly. The

configuration constants that must be set are located in the app_cfg.h file. Table 6-5 lists

the preprocessor constants that must be defined.

Table 6-5 Demo Application Configuration Constants

Preprocessor Constants Description Default Value

APP_CFG_USBH_EN Enables μC/USB-Host in your application. DEF_ENABLED

APP_CFG_USBH_CDC_EN Enables CDC ACM demo application. DEF_ENABLED

APP_CFG_USBH_CDC_MAIN_TASK_PRIO CDC ACM application task priority. 21

APP_CFG_USBH_CDC_MAIN_TASK_STK_SIZE CDC ACM application task stack size. 1000
103

Chapter

7

Human Interface Device Class

This chapter describes the Human Interface Device (HID) class supported by μC/USB-Host.

The HID implementation complies with the following specifications:

■ Device Class Definition for Human Interface Devices (HID), 6/27/01, Version 1.11.

■ Universal Serial Bus HID Usage Tables, 10/28/2004, Version 1.12.

The HID class encompasses devices used by humans to control computer operations.

Keyboards, mice, pointing devices, game devices are some examples of typical HID devices.

The HID class can also be used in a composite device that contains some controls such as

knobs, switches, buttons and sliders. HID data can exchange data for any purpose using

only control and interrupt transfers. The HID class is one of the oldest and most popular

USB classes. This class also includes various types of output directed to the user information

(e.g. LEDs on a keyboard).
104

Human Interface Device Class
7-1 OVERVIEW

A HID device is composed of the following endpoints:

■ A pair of control IN and OUT endpoints called the default endpoint.

■ An interrupt IN endpoint.

■ An optional interrupt OUT endpoint.

Table 7-1 describes the use of the different endpoints:

Table 7-1 HID Class Endpoints Use

7-1-1 REPORT

A host and a HID device exchange data using reports. A report contains formatted data

giving information about controls and other physical entities of the HID device. A control is

manipulable by the user and operates an aspect of the device. For instance, a control can be

a button on a mouse or a keyboard, a switch, etc. Other entities inform the user about the

state of certain device’s features. For instance, LEDs on a keyboard notify the user about the

caps lock on, the numeric keypad active, etc.

Endpoint Direction Used for

Control IN Device-to-host Standard requests for enumeration, class-specific requests, and data

communication (Input, Feature reports sent to the host with GET_REPORT

request).

Control OUT Host-to-device Standard requests for enumeration, class-specific requests and data

communication (Output, Feature reports received from the host with

SET_REPORT request).

Interrupt IN Device-to-host Data communication (Input and Feature reports).

Interrupt OUT Host-to-device Data communication (Output and Feature reports).
105

Human Interface Device Class
The format and the use of a report data is understood by the host by analyzing the content

of a Report descriptor. Analyzing the content is done by a parser. The Report descriptor

describes the data provided by each control in a device. It is composed of items. An item is

a piece of information about the device and consists of a 1-byte prefix and variable-length

data. Refer to “Device Class Definition for Human Interface Devices (HID) Version 1.11”,

section 5.6 and 6.2.2 for more details about the item format.

There are three principal types of items:

■ Main item defines or groups certain types of data fields.

■ Global item describes data characteristics of a control.

■ Local item describes data characteristics of a control.

Each item type is defined by different functions. An item function can also be called a tag.

An item function can be seen as a sub-item that belongs to one of the three principal item

types. Table 7-2 gives a brief overview of the item’s functions in each item type. For a

complete description of the items in each category, refer to Device Class Definition for

Human Interface Devices (HID) Version 1.11, section 6.2.2.

Item type Item function Description

Main Input Describes information about the data provided by one or more physical

controls.

Output Describes data sent to the device.

Feature Describes device configuration information sent to or received from the

device which influences the overall behavior of the device or one of its

components.

Collection Group related items (Input, Output or Feature).

End of Collection Closes a collection.
106

Human Interface Device Class
Table 7-2 Item’s Function Description for each Item Type

Global Usage Page Identifies a function available within the device.

Logical Minimum Defines the lower limit of the reported values in logical units.

Logical Maximum Defines the upper limit of the reported values in logical units.

Physical Minimum Defines the lower limit of the reported values in physical units, that is the

Logical Minimum expressed in physical units.

Physical Maximum Defines the upper limit of the reported values in physical units, that is the

Logical Maximum expressed in physical units.

Unit Exponent Indicates the unit exponent in base 10. The exponent ranges from -8 to +7.

Unit Indicates the unit of the reported values. For instance, length, mass,

temperature units, etc.

Report Size Indicates the size of the report fields in bits.

Report ID Indicates the prefix added to a particular report.

Report Count Indicates the number of data fields for an item.

Push Places a copy of the global item state table on the CPU stack.

Pop Replaces the item state table with the last structure from the stack.

Local Usage Represents an index to designate a specific Usage within a Usage Page. It

indicates the vendor’s suggested use for a specific control or group of

controls. A usage supplies information to an application developer about

what a control is actually measuring.

Usage Minimum Defines the starting usage associated with an array or bitmap.

Usage Maximum Defines the ending usage associated with an array or bitmap.

Designator Index Determines the body part used for a control. Index points to a designator in

the Physical descriptor.

Designator Minimum Defines the index of the starting designator associated with an array or bitmap.

Designator Maximum Defines the index of the ending designator associated with an array or bitmap.

String Index String index for a String descriptor. It allows a string to be associated with a

particular item or control.

String Minimum Specifies the first string index when assigning a group of sequential strings

to controls in an array or bitmap.

String Maximum Specifies the last string index when assigning a group of sequential strings

to controls in an array or bitmap.

Delimiter Defines the beginning or end of a set of local items.

Item type Item function Description
107

Human Interface Device Class
A control’s data must define at least the following items:

■ Input, Output or Feature Main items.

■ Usage Local item.

■ Usage Page Global item.

■ Logical Minimum Global item.

■ Logical Maximum Global item.

■ Report Size Global item.

■ Report Count Global item.

Figure 7-1 shows the representation of a Mouse Report descriptor content from a host HID

parser perspective. The mouse has three buttons (left, right and wheel).

Figure 7-1 Report Descriptor Content from a Host HID Parser View

�������	
���	
��

�
�����
�����

�������	
���	
�������� �������	
���	
��

�
�����
�����

����
������
�����������

����
�������
��������

���	
��
 ���

���	
��
�����
�

!�����"
�����
�#����

!�����"
����
����������

!�����"
����
�#����

���	
��$

���	
��%

&�	����� ����
'�()

&�	����� �*��
�()
"
�����
�������(

"
�����+�,
��
-

"
�����
��������

"
�����+�,
��
�.

���	
� ����
/�������

���	
� �*��
/������.

&�	����� ����
0

&�	����� �*��
�

"
�����
�������.

"
�����+�,
��
�

�(�

�.�
108

Human Interface Device Class
F7-1(1) The Usage Page item function specifies the general function of the device. In

this example, the HID device belongs to a generic desktop control.

F7-1(2) The Collection Application groups Main items that have a common purpose

and may be familiar to applications. In the diagram, the group is composed of

three Input Main items. For this collection, the suggested use for the controls is

a mouse as indicated by the Usage item.

F7-1(3) Nested collections may be used to give more details about the use of a single

control or group of controls to applications. In this example, the Collection

Physical, nested into the Collection Application, is composed of the same 3

Input items forming the Collection Application. The Collection Physical is used

for a set of data items that represent data points collected at one geometric

point. In the example, the suggested use is a pointer as indicated by the Usage

item. Here the pointer usage refers to the mouse position coordinates and the

system software will translate the mouse coordinates in movement of the

screen cursor.

F7-1(4) Nested usage pages are also possible and give more details about a certain

aspect within the general function of the device. In this case, two Inputs items

are grouped and correspond to the buttons of the mouse. One Input item

defines the three buttons of the mouse (right, left and wheel) in terms of

number of data fields for the item (Report Count item), size of a data field

(Report Size item) and possible values for each data field (Usage Minimum and

Maximum, Logical Minimum and Maximum items). The other Input item is a

13-bit constant allowing the Input report data to be aligned on a byte

boundary. This Input item is used only for padding purposes.

F7-1(5) Another nested usage page referring to a generic desktop control is defined for the

mouse position coordinates. For this usage page, the Input item describes the data

fields corresponding to the x- and y-axis as specified by the two Usage items.
109

Human Interface Device Class
After analyzing the previous mouse Report descriptor content, the host’s HID parser is able

to interpret the Input report data sent by the device with an interrupt IN transfer or in

response to a GET_REPORT request. The Input report data corresponding to the mouse

Report descriptor shown in Figure 7-1 is presented in Table 7-3. The total size of the report

data is 4 bytes. Different types of reports may be sent over the same endpoint. For the

purpose of distinguishing the different types of reports, a 1-byte report ID prefix is added to

the data report. If a report ID was used in the example of the mouse report, the total size of

the report data would be 5 bytes.

Table 7-3 Input Report Sent to Host and Corresponding to the State of a 3-Buttons Mouse.

A Physical descriptor indicates the part or parts of the body intended to activate a control or

controls. An application may use this information to assign a functionality to the control of a

device. A Physical descriptor is an optional class-specific descriptor and most devices have

little gain for using it. Refer to “Device Class Definition for Human Interface Devices (HID)

Version 1.11” section 6.2.3 for more details about this descriptor.

7-2 CLASS IMPLEMENTATION

μC/USB-Host Human Interface Device (HID) class is designed to support multiple

interfaces/report IDs HID devices. It offers a report descriptor parser that will be able to

determine the usage and the number of report IDs and types of the device. This allows the

application to listen on specific input report IDs and send feature/output reports. The

reports received from the device will be passed to your application in a raw format, letting

the application parse it and handle any specific element(s).

Bit offset Bit count Description

0 1 Button 1 (left button).

1 1 Button 2 (right button).

2 1 Button 3 (wheel button).

3 13 Not used.

16 8 Position on axis X.

24 8 Position on axis Y.
110

Human Interface Device Class
7-3 CONFIGURATION AND INITIALIZATION

7-3-1 GENERAL CONFIGURATION

There are many configuration constants necessary to customize the HID host class. These

constants are located in the usbh_cfg.h file. Table 7-2 shows their description.

Figure 7-2 HID Configuration Constants

Constant Description

USBH_HID_CFG_MAX_DEV Maximum number of HID functions the class can handle.

USBH_HID_CFG_MAX_NBR_APP_COLL Maximum number of application collections per HID function.

USBH_HID_CFG_MAX_NBR_REPORT_ID Maximum number of report IDs per HID function.

USBH_HID_CFG_MAX_NBR_REPORT_FMT Maximum number of report formats per application collection.

USBH_HID_CFG_MAX_NBR_USAGE Maximum number of usages per report format.

USBH_HID_CFG_MAX_TX_BUF_SIZE Length in octets of transmission buffer (used with output and feature

reports).

USBH_HID_CFG_MAX_RX_BUF_SIZE Length in octets of reception buffer (must be at least equal to the

length of the longest input report).

USBH_HID_CFG_MAX_NBR_RXCB Maximum number of application callback functions associated to

input report per HID function.

USBH_HID_CFG_MAX_REPORT_DESC_LEN Maximum length in octets of the report descriptor.

USBH_HID_CFG_MAX_ERR_CNT Maximum number of communication errors that can occur before

the communication is stopped.

USBH_HID_CFG_MAX_GLOBAL Maximum number of push/pop items.

USBH_HID_CFG_MAX_COLL Maximum number of collections.
111

Human Interface Device Class
7-3-2 CLASS INITIALIZATION

In order to be integrated to the core and considered on a device connection, the HID class

driver must be added to the core class driver list. This is done by calling

USBH_ClassDrvReg() and is described in Listing 7-1.

Listing 7-1 HID Initialization

L7-1(1) First parameter is the HID class driver structure. It is defined in usbh_hid.h.

L7-1(2) Second parameter is a pointer to the application’s callback function. This

function will be called upon HID device connection/disconnection.

L7-1(3) Last parameter is an optional pointer to application specific data.

USBH_ERR App_USBH_HID_Init (void)

{

 USBH_ERR err;

 ...

 err = USBH_ClassDrvReg(&USBH_HID_ClassDrv, (1)

 App_USBH_HID_ClassNotify, (2)

 (void *)0); (3)

 return(err);

}

112

Human Interface Device Class
7-3-3 DEVICE CONNECTION AND DISCONNECTION HANDLING

Upon connection/disconnection of a HID device, your application will be notified via a

callback function. Listing describes the operations that must be performed at that moment.

static void App_USBH_HID_ClassNotify (void *p_class_dev,

 CPU_INT08U is_conn,

 void *p_ctx)

{

 CPU_INT08U nbr_report_id;

 CPU_INT08U report_id_cnt;

 USBH_HID_REPORT_ID *p_report_id_array;

 USBH_HID_REPORT_ID *p_report_id;

 USBH_HID_DEV *p_hid_dev;

 USBH_ERR err;

 (void)&p_ctx;

 p_hid_dev = (USBH_HID_DEV *)p_class_dev;

 switch (is_conn) {

 case USBH_CLASS_DEV_STATE_CONN:

 err = USBH_HID_RefAdd(p_hid_dev); (1)

 if (err != USBH_ERR_NONE) {

 /* $$$$ Handle error */

 return;

 }

 err = USBH_HID_IdleSet(p_hid_dev, 0u, 0u); (2)

 if (err == USBH_ERR_EP_STALL) {

 /* $$$$ Handle error. */ (3)

 } else if (err != USBH_ERR_NONE) {

 /* $$$$ Handle error. */

 return;

 }

 err = USBH_HID_Init(p_hid_dev); (4)

 if (err != USBH_ERR_NONE) {

 /* $$$$ Handle error */

 return;

 }
113

Human Interface Device Class
Listing 7-2 HID Device Connection/Disconnection

L7-2(1) First step is to add an application reference to this HID device by calling the

function USBH_HID_RefAdd().

L7-2(2) You should then immediately call the function USBH_HID_IdleSet(). This will

set the idle time of the HID device. Some devices may fail to respond correctly

if the SetIdle request is not issued at that moment. For more information of the

SetIdle request, see Device Class Definition for Human Interface Devices (HID),

Version 1.11, section 7.2.4.

 err = USBH_HID_GetReportIDArray(p_hid_dev, (5)

 &p_report_id_array,

 &nbr_report_id);

 if (err != USBH_ERR_NONE) {

 /* $$$$ Handle error */

 return;

 }

 for (report_id_cnt = 0u; report_id_cnt < nbr_report_id; report_id_cnt++) {

 p_report_id = &p_report_id_array[report_id_cnt];

 if (p_report_id->Type != 0x08u) { (6)

 continue;

 }

 if (p_hid_dev->Usage == USBH_HID_APP_USAGE_KBD) {

 err = USBH_HID_RegRxCB(p_hid_dev, (7)

 p_report_id->ReportID,

 (USBH_HID_RXCB_FNCT)App_USBH_KBD_CallBack,

 (void *)p_hid_dev);

 } else if (p_hid_dev->Usage == USBH_HID_APP_USAGE_MOUSE) {

 err = USBH_HID_RegRxCB(p_hid_dev,

 p_report_id->ReportID,

 (USBH_HID_RXCB_FNCT)App_USBH_MouseCallBack,

 (void *)p_hid_dev);

 }

 }

 break;

 case USBH_CLASS_DEV_STATE_DISCONN:

 USBH_HID_RefRel(p_hid_dev); (8)

 break;

 }

}

114

Human Interface Device Class
L7-2(3) Some HID devices do not support the SetIdle request and thus will reply with a

STALL handshake. This is normal and the function should not return in this

case.

L7-2(4) The function USBH_HID_Init() should then be called. At this moment, the

report descriptor will be requested and parsed.

L7-2(5) In order to listen to incoming input reports sent by the device, your application

needs to set callback function(s). In order to retrieve the reports list, the

function USBH_HID_GetReportIDArray() should be called.

L7-2(6) Skip report IDs that are not of INPUT type.

L7-2(7) You can set different application callback functions for each report ID

depending on the device usage. The usage defined in p_hid_dev->Usage is

the first usage local item of the report descriptor. Your application callback

function can be set by calling the function USBH_HID_RegRxCB(). Note that this

callback function will receive the rough report and will have to parse it

manually.

L7-2(8) Release the application‘s reference to the HID device.

7-4 DEMO APPLICATION

A simple demo application is provided with the host Human Interface Device (HID) class.

This demo application can be used as a starting point to create your own application. This

demo application expect a certain report format and is compatible with the majority of the

mice and keyboards using US layout available on the market. However, there might be mice

or keyboards that use slightly different reports and thus you will have to parse the report

differently. Also note that you will have to write your own report parser for other device

types like gamepads.

Depending on the device type (mouse or keyboard), the demo application will output

status on the default output console. If a mouse is connected, the output will look like

Listing 7-3. If the device is a keyboard, the console will display the key pressed.
115

Human Interface Device Class
Listing 7-3 Demo Application Output when a Mouse is Connected

7-4-1 DEMO APPLICATION CONFIGURATION

Before running the HID demo application, you must configure it properly. The

configuration constants that must be set are located in the app_cfg.h file. Table 7-4 lists

the preprocessor constants that must be defined.

Table 7-4 Demo Application Configuration Constants

Pointer at (x, y) = (-202, 308)

Pointer at (x, y) = (-221, 307)

Pointer at (x, y) = (-225, 306)

Pointer at (x, y) = (-228, 305)

Pointer at (x, y) = (-230, 304)

Pointer at (x, y) = (-231, 303)

Pointer at (x, y) = (-232, 302)

Left button pressed

Left button released

Pointer at (x, y) = (-243, 296)

Pointer at (x, y) = (-247, 295)

Pointer at (x, y) = (-253, 294)

Pointer at (x, y) = (-256, 293)

Right button pressed

Pointer at (x, y) = (-258, 292)

Pointer at (x, y) = (-260, 291)

Pointer at (x, y) = (-261, 290)

Right button released

Preprocessor Constants Description Default Value

APP_CFG_USBH_EN Enables μC/USB-Host in your application. DEF_ENABLED

APP_CFG_USBH_HID_EN Enables HID demo application. DEF_ENABLED
116

Chapter

8

Mass Storage Class

This section describes the Mass Storage Class (MSC) supported by μC/USB-Host. The MSC

implementation offered by μC/USB-Host is in compliance with the following specifications:

■ Universal Serial Bus Mass Storage Class Specification Overview, Revision 1.3 Sept. 5, 2008.

■ Universal Serial Bus Mass Storage Class Bulk-Only Transport, Revision 1.0 Sept. 31, 1999.

MSC is a protocol that enables the transfer of information between a USB device and a host.

The information is anything that can be stored electronically: executable programs, source

code, documents, images, configuration data, or other text or numeric data. The USB device

appears as an external storage medium to the host.

A file system defines how the files are organized in the storage media. The USB mass

storage class specification does not require any particular file system to be used on

conforming devices. Instead, it provides a simple interface to read and write sectors of data

using the Small Computer System Interface (SCSI) transparent command set.

The USB mass storage host class supports two transport protocols:

■ Bulk-Only Transport (BOT)

■ Control/Bulk/Interrupt (CBI) Transport.

The mass storage device class supported by μC/USB-Host implements the SCSI transparent

command set using the BOT protocol only, which signifies that only bulk endpoints will be

used to transmit data and status information. The MSC implementation supports only one

logical unit.
117

Chapter 8
8-1 OVERVIEW

8-1-1 MASS STORAGE CLASS PROTOCOL

The MSC protocol is composed of three phases:

■ The Command Transport

■ The Data Transport

■ The Status Transport

Mass storage commands are sent by the host through a structure called the Command Block

Wrapper (CBW). For commands requiring a data transport stage, the host will attempt to

send or receive the exact number of bytes from the device as specified by the length and

flag fields of the CBW. After the data transport stage, the host attempts to receive a

Command Status Wrapper (CSW) from the device detailing the status of the command as

well as any data residue (if any). For commands that do not include a data transport stage,

the host attempts to receive the CSW directly after CBW is sent. The protocol is detailed in

Figure 8-1.

Figure 8-1 MSC Protocol

2
�%:

+���� %#��� '����#
�+!0�

����,�
�#�����#)�'�� ����,� #���#)�'��

����
'#��� '����#
�+�0�
118

Overview
8-1-2 ENDPOINTS

On the host side, in compliance with the BOT specification, a MSC device is composed of

the following endpoints:

■ A pair of control IN and OUT endpoints called default endpoint.

■ A pair of bulk IN and OUT endpoints.

Table 8-1 indicates the different uses of the endpoints.

Table 8-1 MSC Endpoint Use

8-1-3 MASS STORAGE CLASS REQUESTS

There are two defined control requests for the MSC BOT protocol. These requests and their

descriptions are detailed in Table 8-2.

Table 8-2 Mass Storage Class Requests

Endpoint Direction Used for

Control IN

Control OUT

Device to Host

Host to Device

Enumeration and MSC class-specific requests

Bulk IN

Bulk OUT

Device to Host

Host to Device

Receive CSW and data

Send CBW and data

Class Requests Description

Bulk-Only Mass Storage Reset This request is used to reset the mass storage device and its associated

interface. This request readies the device to receive the next command block.

Get Max LUN This request is used to return the highest logical unit number (LUN) supported

by the device. For example, a device with LUN 0 and LUN 1 will return a value

of 1. A device with a single logical unit will return 0 or stall the request. The

maximum value that can be returned is 15.
119

Chapter 8
8-1-4 SMALL COMPUTER SYSTEM INTERFACE (SCSI)

SCSI is a set of standards for handling communication between computers and peripheral

devices. These standards include commands, protocols, electrical interfaces and optical

interfaces. Storage devices that use other hardware interfaces such as USB, use SCSI

commands for obtaining device/host information and controlling the device’s operation and

transferring blocks of data in the storage media.

SCSI commands cover a vast range of device types and functions and as such, devices need

a subset of these commands. In general, the following commands are necessary for basic

communication:

■ INQUIRY

■ READ CAPACITY(10)

■ READ(10)

■ REQUEST SENSE

■ TEST UNIT READY

■ WRITE(10)

8-2 CLASS IMPLEMENTATION

μC/USB-Host Mass Storage Class (MSC) requires a File System (FS) to work properly.

Micriμm’s μC/FS supports μC/USB-Host MSC and is the recommended FS. Figure 8-2

describes how your application interacts with MSC, the core module, and μC/FS.
120

Class Implementation
Figure 8-2 MSC Interactions

F8-2(1) μC/FS sees the USB MSC class as a storage device driver.

F8-2(2) All the operations on files and folders from your application are done via

μC/FS. Your application cannot access a MSC device using μC/USB-Host MSC

without the use of a file system. For more information on how to perform file

and folder operations, refer to the μC/FS user manual.

F8-2(3) Upon device connection, your application must add a reference on the device

and release it on device disconnection.

F8-2(4) At initialization, your application must register the MSC driver to the core.

����

1�2�+�'3�������
���#���������
�����4
�

 ����+����	
������

�����������

1�25+

���	
��
��

���

���

���

���
121

Chapter 8
8-3 CONFIGURATION AND INITIALIZATION

8-3-1 GENERAL CONFIGURATION

There is only one configuration constant necessary to customize the MSC host class. This

constant is located in the usbh_cfg.h file. Table 8-3 shows a description of this constant.

Figure 8-3 MSC Configuration Constant

8-3-2 CLASS INITIALIZATION

In order to be integrated to the core and considered on a device connection, the MSC class

driver must be added to the core class driver list. This is done by calling

USBH_ClassDrvReg() and is described in Listing 8-1.

Listing 8-1 MSC Initialization

L8-1(1) First parameter is MSC class driver structure. It is defined in usbh_msc.h.

L8-1(2) Second parameter is a pointer to the application’s callback function. This

function will be called upon MSC device connection/disconnection.

L8-1(3) Last parameter is an optional pointer to application specific data.

Constant Description

USBH_MSC_CFG_MAX_DEV Configures the maximum number of MSC functions the class can

handle.

USBH_ERR App_USBH_MSC_Init (void)

{

 USBH_ERR err;

 ...

 err = USBH_ClassDrvReg(&USBH_MSC_ClassDrv, (1)

 App_USBH_MSC_ClassNotify, (2)

 (void *)0); (3)

 return (err);

}

122

Configuration and Initialization
8-3-3 DEVICE CONNECTION AND DISCONNECTION HANDLING

Upon connection/disconnection of a MSC device, your application will be notified via a

callback function. Listing 8-2 describes the operations that must be performed at that

moment.

Listing 8-2 MSC Device Connection/Disconnection

static void App_USBH_MSC_ClassNotify (void *p_class_dev,

 CPU_INT08U is_conn,

 void *p_ctx)

{

 USBH_MSC_DEV *p_msc_dev;

 USBH_ERR err_usbh;

 FS_ERR err_fs;

 CPU_INT32U unit_nbr;

 (void)&p_ctx;

 p_msc_dev = (USBH_MSC_DEV *)p_class_dev;

 switch (is_conn) {

 case USBH_CLASS_DEV_STATE_CONN:

 err_usbh = USBH_MSC_RefAdd(p_msc_dev); (1)

 if (err_usbh != USBH_ERR_NONE) {

 /* $$$$ Handle error */

 return;

 }

 unit_nbr = FSDev_MSC_DevOpen(p_msc_dev, &err_fs); (2)

 if (err_fs != FS_ERR_NONE) {

 FSDev_MSC_DevClose(p_msc_dev);

 USBH_MSC_RefRel(p_msc_dev);

 /* $$$$ Handle error */

 return;

 }

 break;

 case USBH_CLASS_DEV_STATE_DISCONN:

 FSDev_MSC_DevClose(p_msc_dev); (3)

 USBH_MSC_RefRel(p_msc_dev);

 break;

 default:

 break;

 }

}

123

Chapter 8
L8-2(1) On a MSC device connection, the first step is to add an application reference to

this MSC device by calling the function USBH_MSC_RefAdd().

L8-2(2) Second step consists of allocating/opening a MSC device in the File System

(FS). This is done by calling FSDev_MSC_DevOpen(). If this call is successful,

you will now be able to communicate with the device using μC/FS. The

connected MSC device will have the following mounting point:

msc:<unit_nbr>://.

L8-2(3) On MSC device disconnection, your application must de-allocate/close the MSC

device in the FS and release its reference.

8-4 DEMO APPLICATION

A simple demo application is provided with the host Mass Storage Class (MSC). This demo

application can be used as a starting point to create your own application.

Upon connection of a MSC device, the demo application will open a file, perform a

write/read operation, and close the file. Listing 8-3 describes the file operations that are

performed by the demo application.
124

Demo Application
#define USBH_MSC_DEMO_FS_EXAMPLE_FILE "msc:x:\\MSPrint.txt"

#define APP_USBH_MSC_FS_BUF_SIZE 49u

static CPU_INT08U App_USBH_MSC_BufTx[] = "This is USB Mass Storage Demo sample output file.";

static void App_USBH_MSC_FileTask (void *p_ctx)

{

 ...

 (void)&p_ctx;

 (void)Str_Copy(&name[0u], APP_USBH_MSC_FS_EXAMPLE_FILE);

 while (DEF_TRUE) {

 unit_nbr = (CPU_INT32U)USBH_OS_MsgQueueGet(App_USBH_MSC_DevQ, (1)

 0u,

 &err_usbh);

 if (err_usbh != USBH_ERR_NONE) {

 continue;

 }

 name[4u] = ASCII_CHAR_DIGIT_ZERO + (CPU_CHAR)unit_nbr;

 p_file = FSFile_Open(name, (2)

 (FS_FILE_ACCESS_MODE_CREATE |

 FS_FILE_ACCESS_MODE_WR |

 FS_FILE_ACCESS_MODE_RD),

 &err_fs);

 if (err_fs != FS_ERR_NONE) {

 continue;

 }

 len_wr = FSFile_Wr(p_file, (3)

 (void *)&App_USBH_MSC_BufTx[0u],

 APP_USBH_MSC_FS_BUF_SIZE,

 &err_fs);

 if ((err_fs != FS_ERR_NONE) ||

 (len_wr != APP_USBH_MSC_FS_BUF_SIZE)) {

 FSFile_Close(p_file, &err_fs);

 continue;

 }

 FSFile_PosSet(p_file,

 0u,

 FS_FILE_ORIGIN_START,

 &err_fs);

 if (err_fs != FS_ERR_NONE) {

 FSFile_Close(p_file, &err_fs);

 continue;

 }
125

Chapter 8
Listing 8-3 MSC Demo Application

L8-3(1) The application’s file task pends on a queue. Once a device is connected, the

queue is posted from the application class notification callback with the unit

number of the connected MSC device.

L8-3(2) The file named MSPrint.txt is opened in the root folder of the MSC device. If

the file is not present, it will be created.

L8-3(3) The string This is the USB Mass Storage Demo sample output file. is written to

the MSPrint.txt file.

L8-3(4) The content of the file is read back.

L8-3(5) The written and read content of the file are compared. If they match, the demo

application indicates a success.

 len_rd = FSFile_Rd(p_file, (4)

 (void *)&App_USBH_MSC_BufRx[0u],

 APP_USBH_MSC_FS_BUF_SIZE,

 &err_fs);

 if ((err_fs != FS_ERR_NONE) ||

 (len_rd != APP_USBH_MSC_FS_BUF_SIZE)) {

 FSFile_Close(p_file, &err_fs);

 continue;

 }

 APP_TRACE_INFO(("Comparing original data and data read from USB drive... "));

 cmp = Mem_Cmp((void *)&App_USBH_MSC_BufTx[0u], (5)

 (void *)&App_USBH_MSC_BufRx[0u],

 APP_USBH_MSC_FS_BUF_SIZE);

 if (cmp == DEF_YES) {

 APP_TRACE_INFO(("Passed\n\r"));

 } else {

 APP_TRACE_INFO(("Failed!\n\r"));

 }

 FSFile_Close(p_file, &err_fs);

 }

}

126

Demo Application
8-4-1 DEMO APPLICATION CONFIGURATION

Before running the MSC demo application, you must configure it properly. The

configuration constants that must be set are located in the app_cfg.h file. Table 8-3 lists

the preprocessor constants that must be defined.

Table 8-3 Demo Application Configuration Constants

In order to use the demo application, you must properly configure μC/FS. Refer to the

μC/FS user manual for more information on how to configure, initialize and use this

product.

Preprocessor Constants Description Default Value

APP_CFG_USBH_EN Enables μC/USB-Host in your application. DEF_ENABLED

APP_CFG_USBH_MSC_EN Enables MSC demo application. DEF_ENABLED

APP_CFG_USBH_MSC_FILE_TASK_PRIO MSC application task priority. 20

APP_CFG_USBH_MSC_FILE_TASK_STK_SIZE MSC application task stack size. 1000
127

Chapter 8
128

Chapter

9

Porting μC/USB-Host to your Kernel

μC/USB-Host requires a Kernel (also known as a Real-Time Operating System, RTOS). In

order to make it usable with nearly any kernels available on the market, it has been

designed to be easily portable. Micriμm provides a port for both μC/OS-II and μC/OS-III

and recommends using one of these kernels. In case you need to use another kernel, this

chapter will explain you how to port μC/USB-Host to your kernel.

9-1 OVERVIEW

In order to be portable to other kernels, μC/USB-Host uses an abstraction layer to

instantiate and use kernel services. Figure 9-1 shows how the different modules of

μC/USB-Host interacts with the kernel via the abstraction layer.
129

Chapter 9
Figure 9-1 μC/USB-Host Interactions with the Kernel

Each USB class implementation and the core layer interacts with the kernel abstraction layer.

The kernel abstraction layer is shared by all the modules. It offers a unified API to the stack

to access common kernel services such as task creation and semaphore creation/pend/post,

etc. Your application should not use the abstraction layer. It should interact directly with the

kernel. However, for maintenance simplicity, the demo applications provided by Micriμm

uses the kernel abstraction layer.

μC/USB-Host requires a kernel that minimally offers the following services:

■ Task creation

■ Semaphores

■ Mutex

Plus, the Mass Storage Class (MSC) demo application provided by Micriμm requires message

queuing.

����

����	��
�������	
��
���	�

����	��
�������	
��
���	�

����	��
�������	
��
���	
���

����	��
�������	
�

����	��
�������	
�

����	��
�������	

���

��������

��������

�����	��
����	�����

���	����� �����	���	�������	
�� �!	"�����#

$���	%&&�
���
�

'��
��
'��
��	

��������
�
	
�����
130

Porting the Stack to your Kernel
9-2 PORTING THE STACK TO YOUR KERNEL

A template kernel abstraction layer file is provided with μC/USB-Host. It is located in the

following folder:

\Micrium\Software\uC-USB-Host-V3\OS\Template

9-2-1 TASK CREATION

μC/USB-Host requires a few tasks to work properly:

■ One for the async task

■ One for the hub task

■ One for the Communication Device Class (CDC) demo application (optional)

■ One for the Mass Storage Class (MSC) demo application (optional)

To instantiate these tasks, μC/USB-Host will call the USBH_OS_TaskCreate() function

twice. This function must be implemented in your kernel abstraction layer.

For further details on how to implement this function, refer to Appendix A, “Kernel

Abstraction Functions” on page 150.

9-2-2 SEMAPHORE

μC/USB-Host requires several semaphores to work properly:

■ One for the async task

■ One for the hub task

■ One per endpoint

■ One for the CDC demo application (optional)
131

Chapter 9
Listing 9-1 shows how the number of semaphores required should be computed in your

kernel abstraction layer (if necessary).

Listing 9-1 Semaphore Number Computation

Table 9-1 summarizes the semaphores related functions that must be implemented in your

kernel abstraction layer.

Table 9-1 Semaphore API

For further details on how to implement these functions, refer to Appendix A, “Kernel

Abstraction Functions” on page 150.

#define USBH_OS_SEM_REQUIRED (3u + (((USBH_CFG_MAX_NBR_EPS * USBH_CFG_MAX_NBR_IFS) + 1u) * \

 USBH_CFG_MAX_NBR_DEVS))

Function Description

USBH_OS_SemCreate() Creates/instantiates a semaphore.

USBH_OS_SemDestroy() Destroys a semaphore.

USBH_OS_SemWait() Waits/pends on a semaphore.

USBH_OS_SemWaitAbort() Aborts pend on a semaphore.

USBH_OS_SemPost() Posts a semaphore.
132

Porting the Stack to your Kernel
9-2-3 MUTEX

μC/USB-Host requires several mutexes (mutual exclusion) to work properly:

■ One per Host Controller Driver (HCD)

■ One per device

■ One per USB function

■ One per endpoint

Listing 9-2 shows how the number of mutex required should be computed in your kernel

abstraction layer (if necessary).

Listing 9-2 Mutex Number Computation

Table 9-2 summarizes the mutex related functions that must be implemented in your kernel

abstraction layer.

Table 9-2 Mutex API

For further details on how to implement these functions, refer to Appendix A, “Kernel

Abstraction Functions” on page 150.

#define USBH_OS_MUTEX_REQUIRED ((((USBH_CFG_MAX_NBR_EPS * USBH_CFG_MAX_NBR_IFS) + 1u) * \

 USBH_CFG_MAX_NBR_DEVS) + \

 USBH_CFG_MAX_NBR_DEVS + USBH_CFG_MAX_NBR_HC + \

 USBH_CDC_CFG_MAX_DEV + USBH_HID_CFG_MAX_DEV + \

 USBH_MSC_CFG_MAX_DEV)

Function Description

USBH_OS_MutexCreate() Creates/instantiates a mutex.

USBH_OS_MutexLock() Locks a mutex.

USBH_OS_MutexUnlock() Unlocks a mutex.

USBH_OS_MutexDestroy() Destroys a mutex.
133

Chapter 9
9-2-4 MESSAGE QUEUE

μC/USB-Host’s MSC demo application requires a message queue to work properly.

Table 9-3 summarizes the message queue related functions that must be implemented in

your kernel abstraction layer. If the MSC demo application is not used within your project,

you can leave these functions empty.

Table 9-3 Message Queues API

For further details on how to implement these functions, refer to Appendix A, “Kernel

Abstraction Functions” on page 150.

Function Description

USBH_OS_MsgQueueCreate() Creates/instantiates a message queue.

USBH_OS_MsgQueuePut() Posts a message to the queue.

USBH_OS_MsgQueueGet() Pends on the queue and returns the first element.
134

Appendix

A

Core API Reference

This appendix provides a reference to the μC/USB-Host core layer API. The following

information is provided for each of the services:

■ A brief description

■ The function prototype

■ The filename of the source code

■ A description of the arguments passed to the function

■ A description of returned value(s)

■ Specific notes and warnings regarding use of the service
135

Appendix A
A-1 HOST FUNCTIONS

A-1-1 USBH_Init()

Allocates and initializes resources required by the USB Host stack.

FILES

usbh_core.h/usbh_core.c

PROTOTYPE

ARGUMENTS

async_task_info Structure that contains information on asynchronous task.

hub_task_info Structure that contains information on hub task.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_ALLOC

USBH_ERR_INVALID_ARG

USBH_ERR_CLASS_DRV_ALLOC

USBH_ERR_OS_SIGNAL_CREATE

USBH_ERR_OS_TASK_CREATE

CALLERS

Application.

USBH_ERR USBH_Init (USBH_KERNEL_TASK_INFO *async_task_info,

 USBH_KERNEL_TASK_INFO *hub_task_info);
136

NOTES / WARNINGS

USBH_Init() must be called:

■ Only once from a product’s application.

■ After product’s OS has been initialized.
137

Appendix A
A-1-2 USBH_VersionGet()

Get the μC/USB-Host software version.

FILES

usbh_core.h/usbh_core.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

μC/USB-Host version.

CALLERS

Application.

NOTES / WARNINGS

The value returned is multiplied by 10000. For example, version 3.40.02, would be returned

as 34002.

CPU_INT32U USBH_VersionGet (void)
138

A-1-3 USBH_Suspend()

Suspends the USB Host stack by calling suspend for every class driver loaded followed by a

call to the suspend function of each host controller.

FILES

usbh_core.h/usbh_core.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

Host Controller Driver error code.

CALLERS

Application.

NOTES / WARNINGS

This call will move all the connected devices to the suspend state as well.

USBH_ERR USBH_Suspend (void)
139

Appendix A
A-1-4 USBH_Resume()

Resumes the USB Host stack by calling every host controller resume function and then

calling resume for every class driver loaded.

FILES

usbh_core.h/usbh_core.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

Host Controller Driver error code.

CALLERS

Application.

NOTES / WARNINGS

Calling this function will also resume the bus activity with all the devices connected.

USBH_ERR USBH_Resume (void)
140

A-2 HOST CONTROLLER FUNCTIONS

A-2-1 USBH_HC_Add()

Adds a host controller.

FILES

usbh_core.h/usbh_core.c

PROTOTYPE

ARGUMENTS

p_hc_cfg Pointer to specific USB host controller configuration.

p_drv_api Pointer to specific USB host controller driver API.

p_hc_rh_api Pointer to specific USB host controller root hub driver API.

p_hc_bsp_api Pointer to specific USB host controller board-specific API.

p_err Pointer to variable that will receive the return error code from

this function:

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_HC_ALLOC

USBH_ERR_DEV_ALLOC

USBH_ERR_OS_SIGNAL_CREATE

Host Controller Driver error code

CPU_INT08U USBH_HC_Add (USBH_HC_CFG *p_hc_cfg,

 USBH_HC_DRV_API *p_drv_api,

 USBH_HC_RH_API *p_hc_rh_api,

 USBH_HC_BSP_API *p_hc_bsp_api,

 USBH_ERR *p_err);
141

Appendix A
RETURNED VALUE

Host Controller index if host controller successfully added.

USBH_HC_NBR_NONE Otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.
142

A-2-2 USBH_HC_Start()

Starts the given host controller.

FILES

usbh_core.h/usbh_core.c

PROTOTYPE

ARGUMENTS

hc_nbr Host controller number.

RETURNED VALUE

Error code from this function:

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_DESC_INVALID

USBH_ERR_CFG_MAX_CFG_LEN

USBH_ERR_UNKNOWN

USBH_ERR_EP_INVALID_STATE

USBH_ERR_HC_IO

USBH_ERR_EP_STALL

USBH_ERR_DRIVER_NOT_FOUND

USBH_ERR_OS_SIGNAL_CREATE

Host Controller Driver error code

CALLERS

Application.

NOTES / WARNINGS

None.

USBH_ERR USBH_HC_Start (CPU_INT08U hc_nbr);
143

Appendix A
A-2-3 USBH_HC_Stop()

Stops the given host controller.

FILES

usbh_core.h/usbh_core.c

PROTOTYPE

ARGUMENTS

hc_nbr Host controller number.

RETURNED VALUE

Error code from this function:

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

Host Controller Driver error code

CALLERS

Application.

NOTES / WARNINGS

None.

USBH_ERR USBH_HC_Stop (CPU_INT08U hc_nbr);
144

A-2-4 USBH_HC_PortEn()

Enable specified port of given host controller's root hub.

FILES

usbh_core.h/usbh_core.c

PROTOTYPE

ARGUMENTS

hc_nbr Host controller number.

port_nbr Port number.

RETURNED VALUE

Error code from this function:

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_UNKNOWN

USBH_ERR_EP_INVALID_STATE

USBH_ERR_HC_IO

USBH_ERR_EP_STALL

Host Controller Driver error code

CALLERS

Application.

NOTES / WARNINGS

None.

USBH_ERR USBH_HC_PortEn (CPU_INT08U hc_nbr,

 CPU_INT08U port_nbr);
145

Appendix A
A-2-5 USBH_HC_PortDis()

Disable specified port of given host controller's root hub.

FILES

usbh_core.h/usbh_core.c

PROTOTYPE

ARGUMENTS

hc_nbr Host controller number.

port_nbr Port number.

RETURNED VALUE

Error code from this function:

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_UNKNOWN

USBH_ERR_EP_INVALID_STATE

USBH_ERR_HC_IO

USBH_ERR_EP_STALL

Host Controller Driver error code

CALLERS

Application.

NOTES / WARNINGS

None.

USBH_ERR USBH_HC_PortDis (CPU_INT08U hc_nbr,

 CPU_INT08U port_nbr);
146

A-2-6 USBH_HC_FrameNbrGet()

Gets current frame number.

FILES

usbh_core.h/usbh_core.c

PROTOTYPE

ARGUMENTS

hc_nbr Host controller number.

p_err Pointer to variable that will receive the return error code from this function :

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

Host Controller Driver error code

RETURNED VALUE

Curent frame number processed by the Host Controller.

CALLERS

Application.

NOTES / WARNINGS

None.

CPU_INT32U USBH_HC_FrameNbrGet (CPU_INT08U hc_nbr,

 USBH_ERR *p_err);
147

Appendix A
A-3 CLASS MANAGEMENT FUNCTIONS

A-3-1 USBH_ClassDrvReg()

Registers a class driver to the USB host stack.

FILES

usbh_class.h/usbh_class.c

PROTOTYPE

ARGUMENTS

p_class_drv Pointer to the class driver.

class_notify_fnct Class notification function pointer.

p_class_notify_ctx Class notification function context pointer.

RETURNED VALUE

Error code from this function:

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_CLASS_DRV_ALLOC

CALLERS

Application.

NOTES / WARNINGS

None.

USBH_ERR USBH_ClassDrvReg (USBH_CLASS_DRV *p_class_drv,

 USBH_CLASS_NOTIFY_FNCT class_notify_fnct,

 void *p_class_notify_ctx);
148

A-3-2 USBH_ClassDrvUnreg()

Unregisters a class driver from the USB host stack.

FILES

usbh_class.h/usbh_class.c

PROTOTYPE

ARGUMENTS

p_class_drv Pointer to the class driver.

RETURNED VALUE

Error code from this function:

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_CLASS_DRV_NOT_FOUND

CALLERS

Application.

NOTES / WARNINGS

None.

USBH_ERR USBH_ClassDrvUnreg (USBH_CLASS_DRV *p_class_drv)
149

Appendix A
A-4 KERNEL ABSTRACTION FUNCTIONS

A-4-1 USBH_OS_LayerInit()

Initializes the kernel abstraction layer.

FILES

usbh_os.h/usbh_os.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

Error code from this function:

USBH_ERR_NONE

USBH_ERR_ALLOC

CALLERS

USBH_Init().

NOTES / WARNINGS

None.

USBH_ERR USBH_OS_LayerInit (void)
150

A-4-2 USBH_OS_VirToBus()

Converts from virtual address to physical address if the operating system uses virtual

memory.

FILES

usbh_os.h/usbh_os.c

PROTOTYPE

ARGUMENTS

x Virtual address to convert

RETURNED VALUE

The corresponding physical address

CALLERS

■ OHCI driver

■ EHCI driver

NOTES / WARNINGS

Most of the embedded operating systems don’t use virtual memory addressing. Hence, this

function can be implemented as shown in Listing A-1.

Listing A-1 Typical USBH_OS_VirToBus() Function Implementation

void *USBH_OS_VirToBus (void *x)

void *USBH_OS_VirToBus (void *x)

{

 return (x);

}

151

Appendix A
A-4-3 USBH_OS_BusToVir()

Converts from physical address to virtual address if the operating system uses virtual

memory.

FILES

usbh_os.h/usbh_os.c

PROTOTYPE

ARGUMENTS

x Physical address to convert

RETURNED VALUE

The corresponding virtual address

CALLERS

■ OHCI driver

■ EHCI driver

NOTES / WARNINGS

Most of the embedded kernels don’t use virtual memory addressing. Hence, this function

can be implemented as shown in Listing A-2.

Listing A-2 Typical USBH_OS_BusToVir() Function Implementation

void *USBH_OS_BusToVir (void *x)

void *USBH_OS_BusToVir (void *x)

{

 return (x);

}

152

A-4-4 USBH_OS_TaskCreate()

Creates a task.

FILES

usbh_os.h/usbh_os.c

PROTOTYPE

ARGUMENTS

p_name Pointer to a string that contains a name to assign to the task (can be NULL)

prio Priority of the task

task_fnct Pointer to the task’s function body

p_data Pointer to the data that is passed to the task function

p_stk Pointer to the beginning of the task’s stack

stk_size Size of the task’s stack

p_task Pointer to a variable that will receive the handle of the task

RETURNED VALUE

Error code from this function:

USBH_ERR_NONE

USBH_ERR_ALLOC

USBH_ERR_OS_TASK_CREATE

USBH_ERR USBH_OS_TaskCreate (CPU_CHAR *p_name,

 CPU_INT32U prio,

 USBH_TASK_FNCT task_fnct,

 void *p_data,

 CPU_INT32U *p_stk,

 CPU_INT32U stk_size,

 USBH_HTASK *p_task)
153

Appendix A
CALLERS

■ Core layer

■ Micriμm’s CDC and MSC demo applications

NOTES / WARNINGS

None.
154

A-4-5 USBH_OS_DlyMS()

Delays the current task by the specified delay in milliseconds.

FILES

usbh_os.h/usbh_os.c

PROTOTYPE

ARGUMENTS

dly Delay, in milliseconds

RETURNED VALUE

None.

CALLERS

Various.

NOTES / WARNINGS

None.

void USBH_OS_DlyMS (CPU_INT32U dly)
155

Appendix A
A-4-6 USBH_OS_DlyUS()

Delays the current task by the specified delay in microseconds.

FILES

usbh_os.h/usbh_os.c

PROTOTYPE

ARGUMENTS

dly Delay, in microseconds

RETURNED VALUE

None.

CALLERS

Host Controller Driver.

NOTES / WARNINGS

None.

void USBH_OS_DlyUS (CPU_INT32U dly)
156

A-4-7 USBH_OS_MutexCreate()

Creates a mutex.

FILES

usbh_os.h/usbh_os.c

PROTOTYPE

ARGUMENTS

p_mutex Pointer to variable that will receive handle of the mutex.

RETURNED VALUE

Error code from this function:

USBH_ERR_NONE

USBH_ERR_ALLOC

USBH_ERR_OS_SIGNAL_CREATE

CALLERS

Various.

NOTES / WARNINGS

None.

USBH_ERR USBH_OS_MutexCreate (USBH_HMUTEX *p_mutex)
157

Appendix A
A-4-8 USBH_OS_MutexLock()

Acquires/locks a mutex.

FILES

usbh_os.h/usbh_os.c

PROTOTYPE

ARGUMENTS

mutex Mutex handle.

RETURNED VALUE

Error code from this function:

USBH_ERR_NONE

USBH_ERR_OS_TIMEOUT

USBH_ERR_OS_FAIL

CALLERS

Various.

NOTES / WARNINGS

None.

USBH_ERR USBH_OS_MutexLock (USBH_HMUTEX mutex)
158

A-4-9 USBH_OS_MutexUnlock()

Releases a mutex.

FILES

usbh_os.h/usbh_os.c

PROTOTYPE

ARGUMENTS

mutex Mutex handle.

RETURNED VALUE

Error code from this function:

USBH_ERR_NONE

USBH_ERR_OS_FAIL

CALLERS

Various.

NOTES / WARNINGS

None.

USBH_ERR USBH_OS_MutexUnlock (USBH_HMUTEX mutex)
159

Appendix A
A-4-10 USBH_OS_MutexDestroy()

Destroys a mutex.

FILES

usbh_os.h/usbh_os.c

PROTOTYPE

ARGUMENTS

mutex Mutex handle.

RETURNED VALUE

Error code from this function:

USBH_ERR_NONE

USBH_ERR_OS_FAIL

USBH_ERR_FREE

CALLERS

Various.

NOTES / WARNINGS

None.

USBH_ERR USBH_OS_MutexDestroy (USBH_HMUTEX mutex)
160

A-4-11 USBH_OS_SemCreate()

Creates a semaphore initialized with the given count.

FILES

usbh_os.h/usbh_os.c

PROTOTYPE

ARGUMENTS

p_sem Pointer to variable that will receive handle of the semaphore

cnt Count value with which the semaphore will be initialized

RETURNED VALUE

Error code from this function:

USBH_ERR_NONE

USBH_ERR_OS_SIGNAL_CREATE

USBH_ERR_ALLOC

CALLERS

Various.

NOTES / WARNINGS

None.

USBH_ERR USBH_OS_SemCreate (USBH_HSEM *p_sem,

 CPU_INT32U cnt)
161

Appendix A
A-4-12 USBH_OS_SemDestroy()

Destroys a semaphore.

FILES

usbh_os.h/usbh_os.c

PROTOTYPE

ARGUMENTS

sem Semaphore handle

RETURNED VALUE

Error code from this function:

USBH_ERR_NONE

USBH_ERR_OS_FAIL

USBH_ERR_FREE

CALLERS

Various.

NOTES / WARNINGS

None.

USBH_ERR USBH_OS_SemDestroy (USBH_HSEM sem)
162

A-4-13 USBH_OS_SemWait()

Pends on a semaphore.

FILES

usbh_os.h/usbh_os.c

PROTOTYPE

ARGUMENTS

sem Semaphore handle

timeout Timeout value, expressed in milliseconds

RETURNED VALUE

Error code from this function:

USBH_ERR_NONE

USBH_ERR_OS_TIMEOUT

USBH_ERR_OS_ABORT

USBH_ERR_OS_FAIL

CALLERS

Various.

NOTES / WARNINGS

None.

USBH_ERR USBH_OS_SemWait (USBH_HSEM sem,

 CPU_INT32U timeout)
163

Appendix A
A-4-14 USBH_OS_SemWaitAbort()

Aborts a semaphore and resumes all tasks pending on it.

FILES

usbh_os.h/usbh_os.c

PROTOTYPE

ARGUMENTS

sem Semaphore handle

RETURNED VALUE

Error code from this function:

USBH_ERR_NONE

USBH_ERR_OS_FAIL

CALLERS

Various.

NOTES / WARNINGS

None.

USBH_ERR USBH_OS_SemWaitAbort (USBH_HSEM sem)
164

A-4-15 USBH_OS_SemPost()

Posts a semaphore.

FILES

usbh_os.h/usbh_os.c

PROTOTYPE

ARGUMENTS

sem Semaphore handle

RETURNED VALUE

Error code from this function:

USBH_ERR_NONE

USBH_ERR_OS_FAIL

CALLERS

Various.

NOTES / WARNINGS

None.

USBH_ERR USBH_OS_SemPost (USBH_HSEM sem)
165

Appendix A
A-4-16 USBH_OS_MsgQueueCreate()

Creates a message queue.

FILES

usbh_os.h/usbh_os.c

PROTOTYPE

ARGUMENTS

p_start Pointer to the base address of the message queue storage area

size Size of the queue

p_err Pointer to variable that will receive the return error code from this function

USBH_ERR_NONE

USBH_ERR_ALLOC

USBH_ERR_OS_SIGNAL_CREATE

RETURNED VALUE

Handle of the message queue.

CALLERS

Micriμm’s MSC demo application.

NOTES / WARNINGS

This function can be left empty if Micriμm’s MSC demo application is not used.

USBH_HQUEUE USBH_OS_MsgQueueCreate (void **p_start,

 CPU_INT16U size,

 USBH_ERR *p_err)
166

A-4-17 USBH_OS_MsgQueuePut()

Posts a message to a message queue.

FILES

usbh_os.h/usbh_os.c

PROTOTYPE

ARGUMENTS

msg_q Message queue handle

p_msg Pointer to the message to post

RETURNED VALUE

Error code from this function:

USBH_ERR_NONE

USBH_ERR_OS_FAIL

CALLERS

Micriμm’s MSC demo application.

NOTES / WARNINGS

This function can be left empty if Micriμm’s MSC demo application is not used.

USBH_ERR USBH_OS_MsgQueuePut (USBH_HQUEUE msg_q,

 void *p_msg)
167

Appendix A
A-4-18 USBH_OS_MsgQueueGet()

Pends on a queue and retrieves the first message from it.

FILES

usbh_os.h/usbh_os.c

PROTOTYPE

ARGUMENTS

msg_q Message queue handle

timeout Pointer to the message to post

p_err Pointer to variable that will receive the return error code from this function

USBH_ERR_NONE

USBH_ERR_OS_TIMEOUT

USBH_ERR_OS_ABORT

USBH_ERR_OS_FAIL

RETURNED VALUE

Pointer to the first message from the queue.

CALLERS

Micriμm’s MSC demo application.

NOTES / WARNINGS

This function can be left empty if Micriμm’s MSC demo application is not used.

void *USBH_OS_MsgQueueGet (USBH_HQUEUE msg_q,

 CPU_INT32U timeout,

 USBH_ERR *p_err)
168

Appendix

B

CDC API Reference

This appendix provides a reference to the μC/USB-Host Communication Device Class

(CDC) and the Abstract Control Model (ACM) subclass API. The following information is

provided for each of the services:

■ A brief description

■ The function prototype

■ The filename of the source code

■ A description of the arguments passed to the function

■ A description of returned value(s)

■ Specific notes and warnings regarding use of the service
169

Appendix B
B-1 CDC FUNCTIONS

B-1-1 USBH_CDC_RefAdd()

Increments the CDC device's application reference counter.

FILES

usbh_cdc.h/usbh_cdc.c

PROTOTYPE

ARGUMENTS

p_cdc_dev Pointer to the CDC device.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

CALLERS

Application.

NOTES / WARNINGS

None.

USBH_ERR USBH_CDC_RefAdd (USBH_CDC_DEV *p_cdc_dev)
170

B-1-2 USBH_CDC_RefRel()

Decrements the CDC device's application reference counter. Frees the device if there is not

anymore references to it.

FILES

usbh_cdc.h/usbh_cdc.c

PROTOTYPE

ARGUMENTS

p_cdc_dev Pointer to the CDC device.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_FREE

CALLERS

Application.

NOTES / WARNINGS

None.

USBH_ERR USBH_CDC_RefRel (USBH_CDC_DEV *p_cdc_dev)
171

Appendix B
B-1-3 USBH_CDC_SubclassGet()

Retrieves CDC device‘s subclass code.

FILES

usbh_cdc.h/usbh_cdc.c

PROTOTYPE

ARGUMENTS

p_cdc_dev Pointer to the CDC device.

p_subclass Pointer to variable that will receive the subclass code.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

CALLERS

Application.

NOTES / WARNINGS

None.

USBH_ERR USBH_CDC_SubclassGet(USBH_CDC_DEV *p_cdc_dev,

 CPU_INT08U *p_subclass)
172

B-1-4 USBH_CDC_ProtocolGet()

Retrieves CDC device‘s protocol code.

FILES

usbh_cdc.h/usbh_cdc.c

PROTOTYPE

ARGUMENTS

p_cdc_dev Pointer to the CDC device.

p_protocol Pointer to variable that will receive the protocol code.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

CALLERS

Application.

NOTES / WARNINGS

None.

USBH_ERR USBH_CDC_ProtocolGet(USBH_CDC_DEV *p_cdc_dev,

 CPU_INT08U *p_protocol)
173

Appendix B
B-2 ACM FUNCTIONS

B-2-1 USBH_CDC_ACM_GlobalInit()

Initializes all the USB CDC ACM structures and global variables.

FILES

usbh_acm.h/usbh_acm.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_ALLOC

CALLERS

Application.

NOTES / WARNINGS

This function must be called only once at initialization.

USBH_ERR USBH_CDC_ACM_GlobalInit (void)
174

B-2-2 USBH_CDC_ACM_Add()

Allocates memory for a CDC ACM device structure, reads ACM descriptor from the interface

and retrieves ACM events and requests supported by the device.

FILES

usbh_acm.h/usbh_acm.c

PROTOTYPE

ARGUMENTS

p_cdc_dev Pointer to the CDC device.

p_err Pointer to variable that will receive the return error code from

this function.

USBH_ERR_NONE

USBH_ERR_ALLOC

USBH_ERR_DESC_INVALID

USBH_ERR_INVALID_ARG

RETURNED VALUE

Pointer to the CDC ACM device.

CALLERS

Application.

NOTES / WARNINGS

None.

USBH_CDC_ACM_DEV *USBH_CDC_ACM_Add (USBH_CDC_DEV *p_cdc_dev,

 USBH_ERR *p_err)
175

Appendix B
B-2-3 USBH_CDC_ACM_Remove()

Frees CDC ACM device.

FILES

usbh_acm.h/usbh_acm.c

PROTOTYPE

ARGUMENTS

p_cdc_acm_dev Pointer to the CDC ACM device.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_FREE

USBH_ERR_INVALID_ARG

CALLERS

Application.

NOTES / WARNINGS

None.

USBH_ERR USBH_CDC_ACM_Remove (USBH_CDC_ACM_DEV *p_cdc_acm_dev)
176

B-2-4 USBH_CDC_ACM_EventRxNotifyReg()

Registers callback function to be called when serial state is received from device.

FILES

usbh_acm.h/usbh_acm.c

PROTOTYPE

ARGUMENTS

p_cdc_acm_dev Pointer to the CDC ACM device.

p_serial_state_notify Pointer to callback function.

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

None.

void USBH_CDC_ACM_EventRxNotifyReg (USBH_CDC_ACM_DEV *p_cdc_acm_dev,

 USBH_CDC_SERIAL_STATE_NOTIFY p_serial_state_notify)
177

Appendix B
B-2-5 USBH_CDC_ACM_LineCodingSet()

Specifies typical asynchronous line-character formatting properties by sending a

SetLineCoding class request to the device.

FILES

usbh_acm.h/usbh_acm.c

PROTOTYPE

ARGUMENTS

p_cdc_acm_dev Pointer to the CDC ACM device.

baud_rate Baud rate in bits per second.

USBH_CDC_ACM_LINE_CODING_BAUDRATE_110

USBH_CDC_ACM_LINE_CODING_BAUDRATE_300

USBH_CDC_ACM_LINE_CODING_BAUDRATE_1200

USBH_CDC_ACM_LINE_CODING_BAUDRATE_2400

USBH_CDC_ACM_LINE_CODING_BAUDRATE_4800

USBH_CDC_ACM_LINE_CODING_BAUDRATE_9600

USBH_CDC_ACM_LINE_CODING_BAUDRATE_19200

USBH_CDC_ACM_LINE_CODING_BAUDRATE_38400

USBH_CDC_ACM_LINE_CODING_BAUDRATE_56700

USBH_CDC_ACM_LINE_CODING_BAUDRATE_115200

USBH_CDC_ACM_LINE_CODING_BAUDRATE_230400

USBH_CDC_ACM_LINE_CODING_BAUDRATE_460800

USBH_CDC_ACM_LINE_CODING_BAUDRATE_921600

USBH_ERR USBH_CDC_ACM_LineCodingSet (USBH_CDC_ACM_DEV *p_cdc_acm_dev,

 CPU_INT32U baud_rate,

 CPU_INT08U stop_bits,

 CPU_INT08U parity_val,

 CPU_INT08U data_bits)
178

stop_bits Stop bits value.

USBH_CDC_ACM_LINE_CODING_STOP_BIT_1

USBH_CDC_ACM_LINE_CODING_STOP_BIT_1_5

USBH_CDC_ACM_LINE_CODING_STOP_BIT_2

parity_val Parity value.

USBH_CDC_ACM_LINE_CODING_PARITY_NONE

USBH_CDC_ACM_LINE_CODING_PARITY_ODD

USBH_CDC_ACM_LINE_CODING_PARITY_EVEN

USBH_CDC_ACM_LINE_CODING_PARITY_MARK

USBH_CDC_ACM_LINE_CODING_PARITY_SPACE

data_bits Number of data bits.

USBH_CDC_ACM_LINE_CODING_DATA_BITS_5

USBH_CDC_ACM_LINE_CODING_DATA_BITS_6

USBH_CDC_ACM_LINE_CODING_DATA_BITS_7

USBH_CDC_ACM_LINE_CODING_DATA_BITS_8

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_NOT_SUPPORTED

USBH_ERR_INVALID_ARG

USBH_ERR_DEV_NOT_READY

USBH_ERR_UNKNOWN

USBH_ERR_EP_INVALID_STATE

USBH_ERR_HC_IO

USBH_ERR_EP_STALL

Host Controller Driver error code

CALLERS

Application.
179

Appendix B
NOTES / WARNINGS

The SetLineCoding request is described in Universal Serial Bus Communications Class

Subclass Specification for PSTN Devices, revision 1.2 section 6.3.10.
180

B-2-6 USBH_CDC_ACM_LineCodingGet()

Retrieves current device‘s asynchronous line-character formatting properties by sending a

GetLineCoding class request to the device.

FILES

usbh_acm.h/usbh_acm.c

PROTOTYPE

ARGUMENTS

p_cdc_acm_dev Pointer to the CDC ACM device.

p_baud_rate Pointer to variable that will receive the current baud rate in bits

per second.

USBH_CDC_ACM_LINE_CODING_BAUDRATE_110

USBH_CDC_ACM_LINE_CODING_BAUDRATE_300

USBH_CDC_ACM_LINE_CODING_BAUDRATE_1200

USBH_CDC_ACM_LINE_CODING_BAUDRATE_2400

USBH_CDC_ACM_LINE_CODING_BAUDRATE_4800

USBH_CDC_ACM_LINE_CODING_BAUDRATE_9600

USBH_CDC_ACM_LINE_CODING_BAUDRATE_19200

USBH_CDC_ACM_LINE_CODING_BAUDRATE_38400

USBH_CDC_ACM_LINE_CODING_BAUDRATE_56700

USBH_CDC_ACM_LINE_CODING_BAUDRATE_115200

USBH_CDC_ACM_LINE_CODING_BAUDRATE_230400

USBH_CDC_ACM_LINE_CODING_BAUDRATE_460800

USBH_CDC_ACM_LINE_CODING_BAUDRATE_921600

USBH_ERR USBH_CDC_ACM_LineCodingGet (USBH_CDC_ACM_DEV *p_cdc_acm_dev,

 CPU_INT32U *p_baud_rate,

 CPU_INT08U *p_stop_bits,

 CPU_INT08U *p_parity_val,

 CPU_INT08U *p_data_bits)
181

Appendix B
p_stop_bits Pointer to variable that will receive the current stop bits value.

USBH_CDC_ACM_LINE_CODING_STOP_BIT_1

USBH_CDC_ACM_LINE_CODING_STOP_BIT_1_5

USBH_CDC_ACM_LINE_CODING_STOP_BIT_2

p_parity_val Pointer to variable that will receive the current parity value.

USBH_CDC_ACM_LINE_CODING_PARITY_NONE

USBH_CDC_ACM_LINE_CODING_PARITY_ODD

USBH_CDC_ACM_LINE_CODING_PARITY_EVEN

USBH_CDC_ACM_LINE_CODING_PARITY_MARK

USBH_CDC_ACM_LINE_CODING_PARITY_SPACE

p_data_bits Pointer to variable that will receive the current number of data

bits.

USBH_CDC_ACM_LINE_CODING_DATA_BITS_5

USBH_CDC_ACM_LINE_CODING_DATA_BITS_6

USBH_CDC_ACM_LINE_CODING_DATA_BITS_7

USBH_CDC_ACM_LINE_CODING_DATA_BITS_8

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_NOT_SUPPORTED

USBH_ERR_INVALID_ARG

USBH_ERR_DEV_NOT_READY

USBH_ERR_UNKNOWN

USBH_ERR_EP_INVALID_STATE

USBH_ERR_HC_IO

USBH_ERR_EP_STALL

Host Controller Driver error code

CALLERS

Application.
182

NOTES / WARNINGS

The GetLineCoding request is described in Universal Serial Bus Communications Class

Subclass Specification for PSTN Devices, revision 1.2, section 6.3.11.
183

Appendix B
B-2-7 USBH_CDC_ACM_LineStateSet()

Generates RS-232/V.24 style control signals by sending a SetControlLineState request to the

device.

FILES

usbh_acm.h/usbh_acm.c

PROTOTYPE

ARGUMENTS

p_cdc_acm_dev Pointer to the CDC ACM device.

dtr_bit Indicates to DCE if DTE is present or not. This signal

corresponds to V.24 signal 108/2 and RS-232 signal DTR.

USBH_CDC_ACM_DTR_SET

USBH_CDC_ACM_DTR_CLR

rts_bit Carrier control for half duplex modems. This signal corresponds

to V.24 signal 105 and RS-232 signal RTS.

USBH_CDC_ACM_RTS_SET

USBH_CDC_ACM_RTS_CLR

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_NOT_SUPPORTED

USBH_ERR_INVALID_ARG

USBH_ERR_DEV_NOT_READY

USBH_ERR_UNKNOWN

USBH_ERR USBH_CDC_ACM_LineStateSet (USBH_CDC_ACM_DEV *p_cdc_acm_dev,

 CPU_INT08U dtr_bit,

 CPU_INT08U rts_bit)
184

USBH_ERR_EP_INVALID_STATE

USBH_ERR_HC_IO

USBH_ERR_EP_STALL

Host Controller Driver error code

CALLERS

Application.

NOTES / WARNINGS

The SetControlLineState request is described in Universal Serial Bus Communications Class

Subclass Specification for PSTN Devices, revision 1.2, section 6.3.12.
185

Appendix B
B-2-8 USBH_CDC_ACM_BreakSend()

Sends special carrier modulation that generates an RS-232 style break.

FILES

usbh_acm.h/usbh_acm.c

PROTOTYPE

ARGUMENTS

p_cdc_acm_dev Pointer to the CDC ACM device.

break_time Duration of the break signal, in milliseconds.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_NOT_SUPPORTED

USBH_ERR_INVALID_ARG

USBH_ERR_DEV_NOT_READY

USBH_ERR_UNKNOWN

USBH_ERR_EP_INVALID_STATE

USBH_ERR_HC_IO

USBH_ERR_EP_STALL

Host Controller Driver error code

CALLERS

Application.

USBH_ERR USBH_CDC_ACM_BreakSend (USBH_CDC_ACM_DEV *p_cdc_acm_dev,

 CPU_INT16U break_time)
186

NOTES / WARNINGS

The SendBreak request is described in Universal Serial Bus Communications Class Subclass

Specification for PSTN Devices, revision 1.2, section 6.3.13.
187

Appendix B
B-2-9 USBH_CDC_ACM_CmdSend()

Sends an encapsulated command to the device using a class-specific request.

FILES

usbh_acm.h/usbh_acm.c

PROTOTYPE

ARGUMENTS

p_cdc_acm_dev Pointer to the CDC ACM device.

p_buf Pointer to buffer that contains the command.

buf_len Buffer length in octets.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_DEV_NOT_READY

USBH_ERR_UNKNOWN

USBH_ERR_EP_INVALID_STATE

USBH_ERR_HC_IO

USBH_ERR_EP_STALL

Host Controller Driver error code

CALLERS

Application.

USBH_ERR USBH_CDC_ACM_CmdSend (USBH_CDC_ACM_DEV *p_cdc_acm_dev,

 CPU_INT08U *p_buf,

 CPU_INT32U buf_len)
188

NOTES / WARNINGS

The SendEncapsulatedCommand request is described in Universal Serial Bus Class

Definitions for Communications Devices, revision 1.2, section 6.2.1.
189

Appendix B
B-2-10 USBH_CDC_ACM_RespRx()

Receives encapsulated response from device.

FILES

usbh_acm.h/usbh_acm.c

PROTOTYPE

ARGUMENTS

p_cdc_acm_dev Pointer to the CDC ACM device.

p_buf Pointer to buffer that will receive the response from the device.

buf_len Buffer length in octets.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_DEV_NOT_READY

USBH_ERR_UNKNOWN

USBH_ERR_EP_INVALID_STATE

USBH_ERR_HC_IO

USBH_ERR_EP_STALL

Host Controller Driver error code

CALLERS

Application.

USBH_ERR USBH_CDC_ACM_RespRx (USBH_CDC_ACM_DEV *p_cdc_acm_dev,

 CPU_INT08U *p_buf,

 CPU_INT32U buf_len)
190

NOTES / WARNINGS

The GetEncapsulatedResponse request is described in Universal Serial Bus Class Definitions

for Communications Devices, revision 1.2, section 6.2.2.
191

Appendix B
B-2-11 USBH_CDC_ACM_DataTx()

Sends data to CDC ACM device. This function is blocking.

FILES

usbh_acm.h/usbh_acm.c

PROTOTYPE

ARGUMENTS

p_cdc_acm_dev Pointer to the CDC ACM device.

p_buf Pointer to transmit buffer.

buf_len Buffer length in octets.

p_err Variable that will receive the return error code from this

function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_EP_INVALID_TYPE

USBH_ERR_EP_INVALID_STATE

Host Controller Driver error code

RETURNED VALUE

Number of octets transmitted.

CALLERS

Application.

CPU_INT32U USBH_CDC_ACM_DataTx (USBH_CDC_ACM_DEV *p_cdc_acm_dev,

 void *p_buf,

 CPU_INT32U buf_len,

 USBH_ERR *p_err)
192

NOTES / WARNINGS

None.
193

Appendix B
B-2-12 USBH_CDC_ACM_DataRx()

Receives data from CDC ACM device. This function is blocking.

FILES

usbh_acm.h/usbh_acm.c

PROTOTYPE

ARGUMENTS

p_cdc_acm_dev Pointer to the CDC ACM device.

p_buf Pointer to buffer that will contain the received data.

buf_len Buffer length in octets.

p_err Variable that will receive the return error code from this

function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_EP_INVALID_TYPE

USBH_ERR_EP_INVALID_STATE

Host Controller Driver error code

RETURNED VALUE

Number of octets received.

CALLERS

Application.

CPU_INT32U USBH_CDC_ACM_DataRx (USBH_CDC_ACM_DEV *p_cdc_acm_dev,

 void *p_buf,

 CPU_INT32U buf_len,

 USBH_ERR *p_err)
194

NOTES / WARNINGS

None.
195

Appendix B
B-2-13 USBH_CDC_ACM_DataTxAsync()

Sends data to CDC ACM device. This function is non-blocking.

FILES

usbh_acm.h/usbh_acm.c

PROTOTYPE

ARGUMENTS

p_cdc_acm_dev Pointer to the CDC ACM device.

p_buf Pointer to buffer that contains data to transmit.

buf_len Buffer length in octets.

tx_cmpl_notify Function that will be invoked upon completion of transmit

operation.

p_tx_cmpl_arg Pointer to application‘s argument that will be passed as

parameter of tx_cmpl_notify.

USBH_ERR USBH_CDC_ACM_DataTxAsync (USBH_CDC_ACM_DEV *p_cdc_acm_dev,

 void *p_buf,

 CPU_INT32U buf_len,

 USBH_CDC_DATA_NOTIFY tx_cmpl_notify,

 void *p_tx_cmpl_arg)
196

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_EP_INVALID_TYPE

USBH_ERR_EP_INVALID_STATE

USBH_ERR_ALLOC

USBH_ERR_UNKNOWN

Host Controller Driver error code

CALLERS

Application.

NOTES / WARNINGS

None.
197

Appendix B
B-2-14 USBH_CDC_ACM_DataRxAsync()

Receives data from CDC ACM device. This function is non-blocking.

FILES

usbh_acm.h/usbh_acm.c

PROTOTYPE

ARGUMENTS

p_cdc_acm_dev Pointer to the CDC ACM device.

p_buf Pointer to buffer that will contain the received data.

buf_len Buffer length in octets.

rx_cmpl_notify Function that will be invoked upon completion of receive

operation.

p_rx_cmpl_arg Pointer to application‘s argument that will be passed as

parameter of rx_cmpl_notify.

USBH_ERR USBH_CDC_ACM_DataRxAsync (USBH_CDC_ACM_DEV *p_cdc_acm_dev,

 void *p_buf,

 CPU_INT32U buf_len,

 USBH_CDC_DATA_NOTIFY rx_cmpl_notify,

 void *p_rx_cmpl_arg)
198

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_EP_INVALID_TYPE

USBH_ERR_EP_INVALID_STATE

USBH_ERR_ALLOC

USBH_ERR_UNKNOWN

Host Controller Driver error code

CALLERS

Application.

NOTES / WARNINGS

None.
199

Appendix B
200

Appendix

C

HID API Reference

This appendix provides a reference to the μC/USB-Host Human Interface Device (HID)

class API. The following information is provided for each of the services:

■ A brief description

■ The function prototype

■ The filename of the source code

■ A description of the arguments passed to the function

■ A description of returned value(s)

■ Specific notes and warnings regarding use of the service
201

Appendix C
C-1 HID FUNCTIONS

C-1-1 USBH_HID_Init()

Initializes the HID device, reads & parses the report descriptor and creates the report ID list.

FILES

usbh_hid.h/usbh_hid.c

PROTOTYPE

ARGUMENTS

p_hid_dev Pointer to the HID device.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_DESC_ALLOC

USBH_ERR_HID_RD_PARSER_FAIL

USBH_ERR_UNKNOWN

USBH_ERR_EP_INVALID_STATE

USBH_ERR_HC_IO

USBH_ERR_EP_STALL

USBH_ERR_DESC_EXTRA_NOT_FOUND

USBH_ERR_DESC_INVALID

USBH_ERR_DEV_NOT_READY

USBH_ERR_ALLOC

Host controller driver error code

CALLERS

Application.

USBH_ERR USBH_HID_Init (USBH_HID_DEV *p_hid_dev)
202

NOTES / WARNINGS

None.
203

Appendix C
C-1-2 USBH_HID_RefAdd()

Increments the HID device's application reference counter.

FILES

usbh_hid.h/usbh_hid.c

PROTOTYPE

ARGUMENTS

p_hid_dev Pointer to the HID device.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_OS_ABORT

USBH_ERR_OS_FAIL

CALLERS

Application.

NOTES / WARNINGS

None.

USBH_ERR USBH_HID_RefAdd (USBH_HID_DEV *p_hid_dev)
204

C-1-3 USBH_HID_RefRel()

Decrements the HID device's application reference counter. Frees the device if there is not

anymore references to it.

FILES

usbh_hid.h/usbh_hid.c

PROTOTYPE

ARGUMENTS

p_hid_dev Pointer to the HID device.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_OS_ABORT

USBH_ERR_OS_FAIL

CALLERS

Application.

NOTES / WARNINGS

None.

USBH_ERR USBH_HID_RefRel (USBH_HID_DEV *p_hid_dev)
205

Appendix C
C-1-4 USBH_HID_GetReportIDArray()

Returns the array of Report ID structures and the number of Report ID structures.

FILES

usbh_hid.h/usbh_hid.c

PROTOTYPE

ARGUMENTS

p_hid_dev Pointer to the HID device.

p_report_id Pointer to variable that will receive the array of report ID

structures.

p_nbr_report_id Pointer to variable that will receive the number of report ID

structures.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_DEV_NOT_READY

CALLERS

Application.

NOTES / WARNINGS

None.

USBH_ERR USBH_HID_GetReportIDArray (USBH_HID_DEV *p_hid_dev,

 USBH_HID_REPORT_ID **p_report_id,

 CPU_INT08U *p_nbr_report_id)
206

C-1-5 USBH_HID_GetAppCollArray()

Returns application collection structures array and number of application collection

structures.

FILES

usbh_hid.h/usbh_hid.c

PROTOTYPE

ARGUMENTS

p_hid_dev Pointer to the HID device.

p_app_coll Pointer to variable that will receive the array of application

collection structures.

p_nbr_app_coll Pointer to variable that will receive the number of application

collection structures.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_DEV_NOT_READY

CALLERS

Application.

NOTES / WARNINGS

None.

USBH_ERR USBH_HID_GetAppCollArray (USBH_HID_DEV *p_hid_dev,

 USBH_HID_APP_COLL **p_app_coll,

 CPU_INT08U *p_nbr_app_coll)
207

Appendix C
C-1-6 USBH_HID_IsBootDev()

Tests whether the HID interface belongs to the boot subclass.

FILES

usbh_hid.h/usbh_hid.c

PROTOTYPE

ARGUMENTS

p_hid_dev Pointer to the HID device.

p_err Pointer to the variable that will receive the return error code from this

function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_DEV_NOT_READY

RETURNED VALUE

DEF_TRUE Device belongs to boot subclass.

DEF_FALSE Otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

CPU_BOOLEAN USBH_HID_IsBootDev (USBH_HID_DEV *p_hid_dev,

 USBH_ERR *p_err)
208

C-1-7 USBH_HID_RxReport()

Receives input or feature report from the device. This function is blocking.

FILES

usbh_hid.h/usbh_hid.c

PROTOTYPE

ARGUMENTS

p_hid_dev Pointer to the HID device.

report_id Report ID.

p_buf Pointer to buffer that will receive the report.

buf_len Buffer length, in octets.

timeout_ms Timeout, in milliseconds.

p_err Pointer to variable that will receive the return error code from this function.

USBH_ERR_NONE
USBH_ERR_INVALID_ARG
USBH_ERR_DEV_NOT_READY
USBH_ERR_NULL_PTR
USBH_ERR_EP_INVALID_TYPE
USBH_ERR_EP_INVALID_STATE
USBH_ERR_UNKNOWN
USBH_ERR_HC_IO
USBH_ERR_EP_STALL
Host controller driver error code

CPU_INT08U USBH_HID_RxReport (USBH_HID_DEV *p_hid_dev,

 CPU_INT08U report_id,

 void *p_buf,

 CPU_INT08U buf_len,

 CPU_INT16U timeout_ms,

 USBH_ERR *p_err)
209

Appendix C
RETURNED VALUE

Number of octets received.

CALLERS

Application.

NOTES / WARNINGS

p_buf contains only the report data without the report ID.
210

C-1-8 USBH_HID_TxReport()

Sends report to the device. This function is blocking.

FILES

usbh_hid.h/usbh_hid.c

PROTOTYPE

ARGUMENTS

p_hid_dev Pointer to the HID device.

report_id Report ID.

p_buf Pointer to the buffer that contains the report.

buf_len Buffer length, in octets.

timeout_ms Timeout, in milliseconds.

p_err Pointer to variable that will receive the return error code from this function.

USBH_ERR_NONE
USBH_ERR_INVALID_ARG
USBH_ERR_DEV_NOT_READY
USBH_ERR_NULL_PTR
USBH_ERR_EP_INVALID_TYPE
USBH_ERR_EP_INVALID_STATE
USBH_ERR_UNKNOWN
USBH_ERR_HC_IO
USBH_ERR_EP_STALL
Host controller driver error code

CPU_INT08U USBH_HID_TxReport (USBH_HID_DEV *p_hid_dev,

 CPU_INT08U report_id,

 void *p_buf,

 CPU_INT08U buf_len,

 CPU_INT16U timeout_ms,

 USBH_ERR *p_err)
211

Appendix C
RETURNED VALUE

Number of octets sent.

CALLERS

Application.

NOTES / WARNINGS

Do not add the report ID to p_buf, it will be added automatically.
212

C-1-9 USBH_HID_RegRxCB()

Registers a callback function to receive reports from the device asynchronously. The

callback function will be associated to the given report ID.

FILES

usbh_hid.h/usbh_hid.c

PROTOTYPE

ARGUMENTS

p_hid_dev Pointer to the HID device.

report_id Report ID.

async_fnct Callback function.

p_async_arg Pointer to context that will be passed to callback function.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_DEV_NOT_READY

USBH_ERR_HID_NOT_IN_REPORT

USBH_ERR_ALLOC

USBH_ERR_HID_REPORT_ID

CALLERS

Application.

USBH_ERR USBH_HID_RegRxCB (USBH_HID_DEV *p_hid_dev,

 CPU_INT08U report_id,

 USBH_HID_RXCB_FNCT async_fnct,

 void *p_async_arg)
213

Appendix C
NOTES / WARNINGS

None.
214

C-1-10 USBH_HID_UnregRxCB()

Unregisters the callback function for the given report ID.

FILES

usbh_hid.h/usbh_hid.c

PROTOTYPE

ARGUMENTS

p_hid_dev Pointer to the HID device.

report_id Report ID.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_HID_REPORTID_NOT_REGISTERED

USBH_ERR_DEV_NOT_READY

CALLERS

Application.

NOTES / WARNINGS

None.

USBH_ERR USBH_HID_UnregRxCB (USBH_HID_DEV *p_hid_dev,

 CPU_INT08U report_id)
215

Appendix C
C-1-11 USBH_HID_ProtocolSet()

Sets protocol (boot/report) of the HID device.

FILES

usbh_hid.h/usbh_hid.c

PROTOTYPE

ARGUMENTS

p_hid_dev Pointer to the HID device.

protocol Protocol to set.

USBH_HID_REQ_PROTOCOL_BOOT

USBH_HID_REQ_PROTOCOL_REPORT

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_DEV_NOT_READY

USBH_ERR_UNKNOWN

USBH_ERR_EP_INVALID_STATE

USBH_ERR_HC_IO

USBH_ERR_EP_STALL

Host controller driver error code

CALLERS

Application.

USBH_ERR USBH_HID_ProtocolSet (USBH_HID_DEV *p_hid_dev,

 CPU_INT16U protocol)
216

NOTES / WARNINGS

For more information on the Set_Protocol request, see Device Class Definition for Human

Interface Devices (HID), 6/27/01, Version 1.11, section 7.2.6.
217

Appendix C
C-1-12 USBH_HID_ProtocolGet()

Gets protocol (boot/report) of the HID device.

FILES

usbh_hid.h/usbh_hid.c

PROTOTYPE

ARGUMENTS

p_hid_dev Pointer to the HID device.

p_protocol Pointer to variable that will receive the protocol code of the

device.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_DEV_NOT_READY

USBH_ERR_UNKNOWN

USBH_ERR_EP_INVALID_STATE

USBH_ERR_HC_IO

USBH_ERR_EP_STALL

Host controller driver error code

CALLERS

Application.

USBH_ERR USBH_HID_ProtocolGet (USBH_HID_DEV *p_hid_dev,

 CPU_INT16U *p_protocol)
218

NOTES / WARNINGS

For more information on the Get_Protocol request, see Device Class Definition for Human

Interface Devices (HID), 6/27/01, Version 1.11, section 7.2.5.
219

Appendix C
C-1-13 USBH_HID_IdleSet()

Sets idle state duration for a given report ID.

FILES

usbh_hid.h/usbh_hid.c

PROTOTYPE

ARGUMENTS

p_hid_dev Pointer to the HID device.

report_id Report ID. If 0, idle state request will apply to all the report IDs.

dur Duration of the idle state in milliseconds.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_DEV_NOT_READY

USBH_ERR_UNKNOWN

USBH_ERR_EP_INVALID_STATE

USBH_ERR_HC_IO

USBH_ERR_EP_STALL

Host controller driver error code

CALLERS

Application.

USBH_ERR USBH_HID_IdleSet (USBH_HID_DEV *p_hid_dev,

 CPU_INT08U report_id,

 CPU_INT32U dur)
220

NOTES / WARNINGS

For more information on the Set_Idle request, see Device Class Definition for Human

Interface Devices (HID), 6/27/01, Version 1.11, section 7.2.4.
221

Appendix C
C-1-14 USBH_HID_IdleGet()

Gets idle duration for given report ID.

FILES

usbh_hid.h/usbh_hid.c

PROTOTYPE

ARGUMENTS

p_hid_dev Pointer to the HID device.

report_id Report ID.

p_err Pointer to variable that will receive the return error code from this function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_DEV_NOT_READY

USBH_ERR_UNKNOWN

USBH_ERR_EP_INVALID_STATE

USBH_ERR_HC_IO

USBH_ERR_EP_STALL

Host controller driver error code

RETURNED VALUE

Idle duration in milliseconds.

CALLERS

Application.

CPU_INT32U USBH_HID_IdleGet (USBH_HID_DEV *p_hid_dev,

 CPU_INT08U report_id,

 USBH_ERR *p_err)
222

NOTES / WARNINGS

For more information on the Get_Idle request, see Device Class Definition for Human

Interface Devices (HID), 6/27/01, Version 1.11, section 7.2.3.
223

Appendix C
224

Appendix

D

MSC API Reference

This appendix provides a reference to the μC/USB-Host Mass Storage Class (MSC) API. The

following information is provided for each of the services:

■ A brief description

■ The function prototype

■ The filename of the source code

■ A description of the arguments passed to the function

■ A description of returned value(s)

■ Specific notes and warnings regarding use of the service
225

Appendix D
D-1 MSC FUNCTIONS

D-1-1 USBH_MSC_RefAdd()

Increments the MSC device's application reference counter.

FILES

usbh_msc.h/usbh_msc.c

PROTOTYPE

ARGUMENTS

p_msc_dev Pointer to the MSC device.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_OS_ABORT

USBH_ERR_OS_FAIL

CALLERS

Application’s MSC device connection callback.

NOTES / WARNINGS

None.

USBH_ERR USBH_MSC_RefAdd (USBH_MSC_DEV *p_msc_dev)
226

D-1-2 USBH_MSC_RefRel()

Decrements the MSC device's application reference counter. Frees the device if there is not

anymore references to it.

FILES

usbh_msc.h/usbh_msc.c

PROTOTYPE

ARGUMENTS

p_msc_dev Pointer to the MSC device.

RETURNED VALUE

Error code from this function.

USBH_ERR_NONE

USBH_ERR_INVALID_ARG

USBH_ERR_OS_ABORT

USBH_ERR_OS_FAIL

CALLERS

Application’s MSC device disconnection callback.

NOTES / WARNINGS

None.

USBH_ERR USBH_MSC_RefRel (USBH_MSC_DEV *p_msc_dev)
227

Appendix D
D-2 FILE SYSTEM MSC DRIVER FUNCTIONS

The functions described in this section only apply to μC/FS.

D-2-1 FSDev_MSC_DevOpen

Adds a MSC unit.

FILES

fs_dev_msc.h/fs_dev_msc.c

PROTOTYPE

ARGUMENTS

p_msc_dev Pointer to the MSC device.

p_err Pointer to variable that will receive the return error code from

this function:

FS_ERR_NONE

FS_ERR_NULL_PTR

FS_ERR_DEV_UNIT_NONE_AVAIL

FS_ERR_DEV_IO

FS_ERR_DEV_TIMEOUT

RETURNED VALUE

Unit number to which device has been assigned.

CALLERS

Application’s MSC device connection callback.

FS_QTY FSDev_MSC_DevOpen (USBH_MSC_DEV *p_msc_dev,

 FS_ERR *p_err)
228

NOTES / WARNINGS

The return value should be used to form the name of the volume. For example, if the

return value is 4, the volume name is msc:4:. A file name file.txt in the root directory of this

volume would have the full path: msc:4:\\file.txt.
229

Appendix D
D-2-2 FSDev_MSC_DevClose

Closes a MSC unit.

FILES

fs_dev_msc.h/fs_dev_msc.c

PROTOTYPE

ARGUMENTS

p_msc_dev Pointer to the MSC device.

RETURNED VALUE

None.

CALLERS

Application’s MSC device disconnection callback.

NOTES / WARNINGS

None.

void FSDev_MSC_DevClose (USBH_MSC_DEV *p_msc_dev)
230

Appendix

E

Host Controller Driver API Reference

This appendix provides a reference to the Host Controller Driver (HCD) API. The following

information is provided for each of the services:

■ A brief description

■ The function prototype

■ The filename of the source code

■ A description of the arguments passed to the function

■ A description of returned value(s)

■ Specific notes and warnings regarding use of the service

Note that since every HCD function is accessed only by function pointers via the HCD’s API

structure, they do not need to be globally available and should therefore be declared as

‘static’.
231

Appendix E
E-1 HOST DRIVER FUNCTIONS

E-1-1 USBH_<controller>_Init()

Initializes all internal variables and hardware registers necessary for host controller’s driver

proper operations. This function should not start the host controller or enable interrupts.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

USBH_HC_Add() via 'p_hc_drv_api->Init()'.

NOTES / WARNINGS

1 This function relies heavily on the implementation of several host board support

package (BSP) functions. See “Host Driver BSP Functions” on page 267 for more

information on device BSP functions.

2 The Init() function generally performs the following operations, however, depending

on the host controller being initialized, functionality may need to be added or removed:

static void USBH_<controller>_Init (USBH_HC_DRV *p_hc_drv

 USBH_ERR *p_err);
232

■ Configures clock gating to the USB host, configure all necessary I/O pins and ports,

and configure the related hardware interrupts. This is generally performed via the

device’s BSP function pointer, Init(), implemented in usbh_bsp_<controller>.c

(see section E-3-1 on page 267).

■ Resets USB controller or USB controller registers.

■ Disables and clears pending USB and root hub interrupts (should already be

cleared).

■ For DMA hosts: Allocate memory for all necessary descriptors. This is performed via

calls to μC/LIB’s memory module. If memory allocation fails, set p_err to

USBH_ERR_ALLOC and return.

■ Sets p_err to USBH_ERR_NONE if initialization proceeded as expected. Otherwise,

set p_err to an appropriate error code.
233

Appendix E
E-1-2 USBH_<controller>_Start()

Starts the host controller by enabling USB host controller’s interrupts.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

USBH_HC_Start() via 'p_hc_drv_api->Start()'.

NOTES / WARNINGS

The Start() function performs the following operations:

1 Registers driver’s ISR to the interrupt vector. This is generally performed via the device’s

BSP function pointer, ISR_Reg(), implemented in usbh_bsp_<controller>.c (see

section E-3-2 on page 268). The host’s BSP ISR_Reg() is also responsible for enabling

the host interrupt controller.

2 Clears all interrupt flags.

3 Enables interrupts on the hardware controller. The host interrupt controller should have

already been configured within the host driver Init() function.

static void USBH_<controller>_Start (USBH_HC_DRV *p_hc_drv

 USBH_ERR *p_err);
234

4 Enables the controller.

5 Sets p_err equal to USBH_ERR_NONE if no errors have occurred. Otherwise, set p_err to

an appropriate error code.
235

Appendix E
E-1-3 USBH_<controller>_Stop()

Stops the host controller by disabling USB host controller’s interrupts.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

USBH_HC_Stop() via 'p_hc_drv_api->Stop()'.

NOTES / WARNINGS

Typically, the Stop() function performs the following operations:

1 Disables the controller.

2 Clears and disables interrupts on the hardware device.

3 Unregisters the driver’s ISR from the interrupt vector. This is generally performed via the

device’s BSP function pointer, ISR_Unreg(), implemented in usbh_bsp.c (see section

E-3-3 on page 269). The host’s BSP ISR_Unreg() is also responsible for disabling the

host interrupt controller.

static void USBH_<controller>_Stop (USBH_HC_DRV *p_hc_drv

 USBH_ERR *p_err);
236

4 Sets p_err equal to USBH_ERR_NONE if no errors have occurred. Otherwise, set p_err to

an appropriate error code.
237

Appendix E
E-1-4 USBH_<controller>_SpdGet()

Returns the speed of the host controller.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

Host controller speed.

USBH_DEV_SPD_LOW

USBH_DEV_SPD_FULL

USBH_DEV_SPD_HIGH

CALLERS

USBH_HC_Add() via 'p_hc_drv_api->SpdGet()'.

NOTES / WARNINGS

The function must set p_err equal to USBH_ERR_NONE if no errors have occurred.

Otherwise, it must set p_err to an appropriate error code.

static USBH_DEV_SPD USBH_<controller>_SpdGet (USBH_HC_DRV *p_hc_drv,

 USBH_ERR *p_err);
238

E-1-5 USBH_<controller>_Suspend()

Suspends all communications on the host controller.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

USBH_Suspend() via 'p_hc_drv_api->Suspend()'.

NOTES / WARNINGS

1 This function should suspend all the transfers on the host controller. The transfers

queues (if any), should not be flushed.

2 The function must set p_err equal to USBH_ERR_NONE if no errors have occurred.

Otherwise, it must set p_err to an appropriate error code.

static void USBH_<controller>_Suspend (USBH_HC_DRV *p_hc_drv,

 USBH_ERR *p_err);
239

Appendix E
E-1-6 USBH_<controller>_Resume()

Resumes all communications on the host controller.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

USBH_Resume() via 'p_hc_drv_api->Resume()'.

NOTES / WARNINGS

1 This function should resume all the transfers on the host controller.

2 The function must set p_err equal to USBH_ERR_NONE if no errors have occurred.

Otherwise, it must set p_err to an appropriate error code.

static void USBH_<controller>_Resume (USBH_HC_DRV *p_hc_drv,

 USBH_ERR *p_err);
240

E-1-7 USBH_<controller>_FrameNbrGet()

Returns the USB frame count of the host controller.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

USB frame count.

CALLERS

USBH_HC_FrameNbrGet() via 'p_hc_drv_api->FrameNbrGet()'.

NOTES / WARNINGS

The function must set p_err equal to USBH_ERR_NONE if no errors have occurred.

Otherwise, it must set p_err to an appropriate error code.

static CPU_INT32U USBH_<controller>_FrmNbrGet (USBH_HC_DRV *p_hc_drv,

 USBH_ERR *p_err);
241

Appendix E
E-1-8 USBH_<controller>_EP_Open()

Opens and configures an endpoint given its characteristics (endpoint type, endpoint

address, maximum packet size, etc).

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

p_ep Pointer to a structure describing the endpoint.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

■ USBH_EP_Open() via 'p_hc_drv_api->EP_Open()'

■ USBH_EP_Reset() via 'p_hc_drv_api->EP_Open()'

■ USBH_EP_DevDescRead() via 'p_hc_drv_api->EP_Open()'

■ USBH_EP_DevAddrSet() via 'p_hc_drv_api->EP_Open()'

■ USBH_DfltEP_Open() via 'p_hc_drv_api->EP_Open()'.

static void USBH_<controller>_EP_Open (USBH_HC_DRV *p_hc_drv,

 USBH_EP *p_ep

 USBH_ERR *p_err);
242

NOTES / WARNINGS

1 The endpoint open function allocates the resources needed for the endpoint and

endpoint management. It also configures any hardware registers related to the

endpoint.

2 The function must set p_err equal to USBH_ERR_NONE if no errors have occurred.

Otherwise, it must set p_err to an appropriate error code.
243

Appendix E
E-1-9 USBH_<controller>_EP_Close()

Closes an endpoint, and un-initializes/clears endpoint configuration in hardware.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

p_ep Pointer to a structure describing the endpoint.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

■ USBH_EP_Close() via 'p_hc_drv_api->EP_Close()'

■ USBH_EP_Reset() via 'p_hc_drv_api->EP_Close()'

■ USBH_EP_DevDescRead() via 'p_hc_drv_api->EP_Close()'

■ USBH_EP_DevAddrSet() via 'p_hc_drv_api->EP_Close()'

NOTES / WARNINGS

1 The endpoint close function frees the resources allocated to the endpoint and endpoint

management. It also un-initializes/clears any hardware registers related to the endpoint.

static void USBH_<controller>_EP_Close (USBH_HC_DRV *p_hc_drv,

 USBH_EP *p_ep

 USBH_ERR *p_err);
244

2 The function must set p_err equal to USBH_ERR_NONE if no errors have occurred.

Otherwise, it must set p_err to an appropriate error code.
245

Appendix E
E-1-10 USBH_<controller>_EP_Abort()

Aborts any pending transfer(s) on endpoint.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

p_ep Pointer to a structure describing the endpoint.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

USBH_EP_Reset() via 'p_hc_drv_api->EP_Abort()'.

NOTES / WARNINGS

1 The endpoint abort function flushes all pending transfers on the endpoint.

2 The function must set p_err equal to USBH_ERR_NONE if no errors have occurred.

Otherwise, it must set p_err to an appropriate error code.

static void USBH_<controller>_EP_Abort (USBH_HC_DRV *p_hc_drv,

 USBH_EP *p_ep

 USBH_ERR *p_err);
246

E-1-11 USBH_<controller>_EP_IsHalt()

Retrieves endpoint halt (stall) status.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

p_ep Pointer to a structure describing the endpoint.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

Endpoint halt status.

CALLERS

USBH_URB_Submit() via 'p_hc_drv_api->EP_IsHalt()'.

NOTES / WARNINGS

The function must set p_err equal to USBH_ERR_NONE if no errors have occurred.

Otherwise, it must set p_err to an appropriate error code.

static CPU_BOOLEAN USBH_<controller>_EP_IsHalt (USBH_HC_DRV *p_hc_drv,

 USBH_EP *p_ep

 USBH_ERR *p_err);
247

Appendix E
E-1-12 USBH_<controller>_URB_Submit()

Submits a USB Request Block (URB) on an endpoint.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

p_urb Pointer to a structure that represents the URB.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

USBH_URB_Submit() via 'p_hc_drv_api->URB_Submit()'.

NOTES / WARNINGS

1 The URB_Submit() function performs the following operations:

■ If host controller supports Direct Memory Access (DMA), prepares DMA descriptor

and adds it to the proper endpoint transfers list.

■ If host controller does not support DMA, depending on your host controller, you

may have to copy data to different hardware registers/buffers depending on the

transfer type.

static void USBH_<controller>_URB_Submit (USBH_HC_DRV *p_hc_drv,

 USBH_URB *p_urb,

 USBH_ERR *p_err);
248

■ Signals the host controller to start the transfer by writing to the necessary hardware

register(s).

■ Sets p_err equal to USBH_ERR_NONE if no errors have occurred. Otherwise, sets

p_err to an appropriate error code.
249

Appendix E
E-1-13 USBH_<controller>_URB_Complete()

Signals URB completion.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

p_urb Pointer to a structure that represents the URB.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

USBH_URB_Complete() via 'p_hc_drv_api->URB_Complete()'.

NOTES / WARNINGS

1 The URB_Complete() function performs the following operations:

■ If host controller supports DMA, frees any DMA descriptor used for the transfer.

■ If host controller does not support DMA and the transfer is a data reception, copies

URB’s buffer to application’s buffer.

■ Sets the error code p_urb->Err of the URB depending on the transfer result. If no

error occured, sets it to USBH_ERR_NONE.

static void USBH_<controller>_URB_Complete (USBH_HC_DRV *p_hc_drv,

 USBH_URB *p_urb,

 USBH_ERR *p_err);
250

E-1-14 USBH_<controller>_URB_Abort()

Aborts a URB.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

p_urb Pointer to a structure that represents the URB.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

USBH_URB_Complete() via 'p_hc_drv_api->URB_Abort()'.

NOTES / WARNINGS

1 The URB_Abort() function performs the following operations:

■ If host controller supports DMA, frees any DMA descriptor used for the transfer.

■ Sets p_urb->Err to USBH_ERR_URB_ABORT.

■ Clears any hardware registers that were set for the transfer.

static void USBH_<controller>_URB_Abort (USBH_HC_DRV *p_hc_drv,

 USBH_URB *p_urb,

 USBH_ERR *p_err);
251

Appendix E
■ Sets p_err equal to USBH_ERR_NONE if no errors have occurred. Otherwise, sets

p_err to an appropriate error code.
252

E-2 ROOT HUB DRIVER FUNCTIONS

These functions are designed to emulate typical requests that the host could make to an

external hub.

E-2-1 USBH_<controller>_PortStatusGet()

Retrieves status of the specified root hub port.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

port_nbr Root hub’s port number.

p_port_status Port status structure to fill.

RETURNED VALUE

DEF_OK If operation is successful.

DEF_FAIL If any error occurred.

CALLERS

USBH_HUB_RHCtrlReq() via 'p_hc_rh_api->PortStatusGet()'.

static CPU_BOOLEAN USBH_<controller>_PortStatusGet (USBH_HC_DRV *p_hc_drv,

 CPU_INT08U port_nbr,

 USBH_HUB_PORT_STATUS *p_port_status);
253

Appendix E
NOTES / WARNINGS

This function emulates a standard GetPortStatus control request. p_port_status structure

should be filled as described in Universal Serial Bus Specification, Revision 2.0, section

11.24.2.6. Most of root hubs use hardware registers to describe the state of their port(s).
254

E-2-2 USBH_<controller>_HubDescGet()

Retrieves root hub descriptor.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

p_buf Buffer that will contain the root hub descriptor.

buf_len Length (in octets) of the buffer.

RETURNED VALUE

DEF_OK If operation is successful.

DEF_FAIL If any error occurred.

CALLERS

USBH_HUB_RHCtrlReq() via 'p_hc_rh_api->HubDescGet()'.

NOTES / WARNINGS

This function emulates a standard GetHubDescriptor control request. p_buf should be filled

as described in Universal Serial Bus Specification, Revision 2.0, section 11.23.2.1. The

content of the root hub descriptor is usually retrieved by knowing its characteristics (using

hardware data sheets, for example) and by looking at the content of some hardware

registers. Fill p_buf up to buf_len. Do not return DEF_FAIL if buf_len is smaller than the

normal hub descriptor length.

static CPU_BOOLEAN USBH_<controller>_HubDescGet (USBH_HC_DRV *p_hc_drv,

 void *p_buf,

 CPU_INT08U buf_len);
255

Appendix E
E-2-3 USBH_<controller>_PortEnSet()

Sets root hub port enable.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

port_nbr Root hub’s port number.

RETURNED VALUE

DEF_OK If operation is successful.

DEF_FAIL If any error occurred.

CALLERS

USBH_HUB_RHCtrlReq() via 'p_hc_rh_api->PortEnSet()'.

NOTES / WARNINGS

This function emulates a standard SetPortFeature PORT_ENABLE control request. For more

information on that request, see the Universal Serial Bus specification, revision 2.0. section

11.24.2.13 Set Port Feature. Set necessary hardware register(s) to enable specified port.

static CPU_BOOLEAN USBH_<controller>_PortEnSet (USBH_HC_DRV *p_hc_drv,

 CPU_INT08U port_nbr);
256

E-2-4 USBH_<controller>_PortEnClr()

Clears root hub port enable.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

port_nbr Root hub’s port number.

RETURNED VALUE

DEF_OK If operation is successful.

DEF_FAIL If any error occurred.

CALLERS

USBH_HUB_RHCtrlReq() via 'p_hc_rh_api->PortEnClr()'.

NOTES / WARNINGS

This function emulates a standard ClearPortFeature PORT_ENABLE control request. For

more information on that request, see the Universal Serial Bus specification, revision 2.0.

section 11.24.2.2 Clear Port Feature. Set necessary hardware register(s) to disable specified

port.

static CPU_BOOLEAN USBH_<controller>_PortEnClr (USBH_HC_DRV *p_hc_drv,

 CPU_INT08U port_nbr);
257

Appendix E
E-2-5 USBH_<controller>_PortEnChngClr()

Clears root hub port enable change notification.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

port_nbr Root hub’s port number.

RETURNED VALUE

DEF_OK If operation is successful.

DEF_FAIL If any error occurred.

CALLERS

USBH_HUB_RHCtrlReq() via 'p_hc_rh_api->PortEnChngClr()'.

NOTES / WARNINGS

This function emulates a standard ClearPortFeature C_PORT_ENABLE control request. Set

necessary hardware register(s) to disable change notification of specified port enable state.

static CPU_BOOLEAN USBH_<controller>_PortEnChngClr (USBH_HC_DRV *p_hc_drv,

 CPU_INT08U port_nbr);
258

E-2-6 USBH_<controller>_PortPwrSet()

Sets root hub port power.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

port_nbr Root hub’s port number.

RETURNED VALUE

DEF_OK If operation is successful.

DEF_FAIL If any error occurred.

CALLERS

USBH_HUB_RHCtrlReq() via 'p_hc_rh_api->PortPwrSet()'.

NOTES / WARNINGS

This function emulates a standard SetPortFeature PORT_POWER control request. Set

necessary hardware register(s) to enable power on specified port.

static CPU_BOOLEAN USBH_<controller>_PortPwrSet (USBH_HC_DRV *p_hc_drv,

 CPU_INT08U port_nbr);
259

Appendix E
E-2-7 USBH_<controller>_PortPwrClr()

Clears root hub port power.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

port_nbr Root hub’s port number.

RETURNED VALUE

DEF_OK If operation is successful.

DEF_FAIL If any error occurred.

CALLERS

USBH_HUB_RHCtrlReq() via 'p_hc_rh_api->PortPwrClr()'.

NOTES / WARNINGS

This function emulates a standard ClearPortFeature PORT_POWER control request. Set

necessary hardware register(s) to disable power on specified port.

static CPU_BOOLEAN USBH_<controller>_PortPwrClr (USBH_HC_DRV *p_hc_drv,

 CPU_INT08U port_nbr);
260

E-2-8 USBH_<controller>_PortResetSet()

Sets root hub port reset state.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

port_nbr Root hub’s port number.

RETURNED VALUE

DEF_OK If operation is successful.

DEF_FAIL If any error occurred.

CALLERS

USBH_HUB_RHCtrlReq() via 'p_hc_rh_api->PortResetSet()'.

NOTES / WARNINGS

This function emulates a standard SetPortFeature PORT_RESET control request. Set

necessary hardware register(s) to put specified port in the reset state.

static CPU_BOOLEAN USBH_<controller>_PortResetSet (USBH_HC_DRV *p_hc_drv,

 CPU_INT08U port_nbr);
261

Appendix E
E-2-9 USBH_<controller>_PortResetChngClr()

Clears port reset state notification.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

port_nbr Root hub’s port number.

RETURNED VALUE

DEF_OK If operation is successful.

DEF_FAIL If any error occurred.

CALLERS

USBH_HUB_RHCtrlReq() via 'p_hc_rh_api->PortResetChngClr()'.

NOTES / WARNINGS

This function emulates a standard ClearPortFeature C_PORT_RESET control request. Set

necessary hardware register(s) to disable reset state change notification on specified port.

static CPU_BOOLEAN USBH_<controller>_PortResetChngClr (USBH_HC_DRV *p_hc_drv,

 CPU_INT08U port_nbr);
262

E-2-10 USBH_<controller>_PortSuspendClr()

Clears root hub port suspend state.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

port_nbr Root hub’s port number.

RETURNED VALUE

DEF_OK If operation is successful.

DEF_FAIL If any error occurred.

CALLERS

USBH_HUB_RHCtrlReq() via 'p_hc_rh_api->PortSuspendClr()'.

NOTES / WARNINGS

This function emulates a standard ClearPortFeature PORT_SUSPEND control request. Set

necessary hardware register(s) to disable port suspend state on specified port.

static CPU_BOOLEAN USBH_<controller>_PortSuspendClr (USBH_HC_DRV *p_hc_drv,

 CPU_INT08U port_nbr);
263

Appendix E
E-2-11 USBH_<controller>_PortConnChngClr()

Clears root hub port connection change notification.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

port_nbr Root hub’s port number.

RETURNED VALUE

DEF_OK If operation is successful.

DEF_FAIL If any error occurred.

CALLERS

USBH_HUB_RHCtrlReq() via 'p_hc_rh_api->PortConnChngClr()'.

NOTES / WARNINGS

This function emulates a standard ClearPortFeature C_PORT_CONNECTION control request.

Set necessary hardware register(s) to disable port connection change notification on

specified port.

static CPU_BOOLEAN USBH_<controller>_PortConnChngClr (USBH_HC_DRV *p_hc_drv,

 CPU_INT08U port_nbr);
264

E-2-12 USBH_<controller>_IntEn()

Enables root hub interrupts.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

RETURNED VALUE

DEF_OK If operation is successful.

DEF_FAIL If any error occurred.

CALLERS

USBH_HUB_EventReq() via 'p_hc_rh_api->IntEn()'.

NOTES / WARNINGS

None.

static CPU_BOOLEAN USBH_<controller>_IntEn (USBH_HC_DRV *p_hc_drv);
265

Appendix E
E-2-13 USBH_<controller>_IntDis()

Disables root hub interrupts.

FILES

Every host controller driver’s usbh_hcd_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

RETURNED VALUE

DEF_OK If operation is successful.

DEF_FAIL If any error occurred.

CALLERS

USBH_HUB_RHEvent() via 'p_hc_rh_api->IntDis()'.

NOTES / WARNINGS

None.

static CPU_BOOLEAN USBH_<controller>_IntDis (USBH_HC_DRV *p_hc_drv);
266

E-3 HOST DRIVER BSP FUNCTIONS

E-3-1 USBH_<controller>_BSP_Init()

Initializes board-specific USB controller dependencies.

FILES

Every host controller driver’s usbh_bsp_<controller>.c

PROTOTYPE

ARGUMENTS

p_hc_drv Pointer to USB host driver structure.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

USBH_<controller>_Init().

NOTES / WARNINGS

The function must set p_err equal to USBH_ERR_NONE if no errors have occurred.

Otherwise, it must set p_err to an appropriate error code.

static void USBH_<controller>_BSP_Init (USBH_HC_DRV *p_hc_drv,

 USBH_ERR *p_err);
267

Appendix E
E-3-2 USBH_<controller>_BSP_ISR_Reg()

Registers USB driver’s ISR to interrupt vector.

FILES

Every host controller driver’s usbh_bsp_<controller>.c

PROTOTYPE

ARGUMENTS

isr_fnct Pointer to driver’s ISR handler.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

USBH_<controller>_Start().

NOTES / WARNINGS

The function must set p_err equal to USBH_ERR_NONE if no errors have occurred.

Otherwise, it must set p_err to an appropriate error code.

static void USBH_<controller>_BSP_ISR_Reg (CPU_FNCT_PTR isr_fnct,

 USBH_ERR *p_err);
268

E-3-3 USBH_<controller>_BSP_ISR_Unreg()

Unregisters USB driver’s ISR to interrupt vector.

FILES

Every host controller driver’s usbh_bsp_<controller>.c

PROTOTYPE

ARGUMENTS

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

USBH_<controller>_Stop().

NOTES / WARNINGS

The function must set p_err equal to USBH_ERR_NONE if no errors have occurred.

Otherwise, it must set p_err to an appropriate error code.

static void USBH_<controller>_BSP_ISR_Unreg (USBH_ERR *p_err);
269

Appendix E
270

Appendix

F

Error Codes

This appendix provides a brief explanation of μC/USB-Host error codes defined in

usbh_err.h. Any error codes not listed here may be searched in usbh_err.h for both their

numerical value and use. This appendix also contains class-specific error codes.

Each error has a numerical value. The error codes are grouped. The definition of the

groups are:

Error code group Numbering series

GENERIC 0

DEVICE 100

CONFIGURATION 200

INTERFACE 300

ENDPOINT 400

USB REQUEST BLOCK (URB) 500

DESCRIPTOR 600

HOST CONTROLLER (HC) 700

KERNEL LAYER 800

CLASS 1000

HUB CLASS 1200

HUMAN INTERFACE DEVICE (HID) CLASS 1300

MASS STORAGE CLASS (MSC) 1400
271

Appendix F
F-1 GENERIC ERROR CODES

F-2 DEVICE ERROR CODES

F-3 CONFIGURATION ERROR CODES

Number Code name Description

0 USBH_ERR_NONE No error.

1 USBH_ERR_FAIL Hardware error occurred.

2 USBH_ERR_ALLOC Object/memory allocation failed.

3 USBH_ERR_FREE Object/memory de-allocation failed.

4 USBH_ERR_INVALID_ARG Invalid argument(s).

5 USBH_ERR_NULL_PTR Pointer argument(s) passed NULL pointer(s).

6 USBH_ERR_BW_NOT_AVAIL Bandwidth not available for endpoint.

7 USBH_ERR_NOT_SUPPORTED Feature or request not supported.

8 USBH_ERR_UNKNOWN Unknown error occurred.

Number Code name Description

100 USBH_ERR_DEV_ALLOC Device allocation failed. Consider increasing

USBH_CFG_MAX_NBR_DEVS constant.

101 USBH_ERR_DEV_NOT_READY Device is not ready.

102 USBH_ERR_DEV_NOT_RESPONDING Device is not responding.

103 USBH_ERR_DEV_NOT_HS Device is not High-Speed.

Number Code name Description

200 USBH_ERR_CFG_ALLOC Configuration allocation failed. Consider increasing

USBH_CFG_MAX_NBR_CFGS constant.

201 USBH_ERR_CFG_MAX_CFG_LEN Configuration descriptor too long. Consider increasing

USBH_CFG_MAX_CFG_DATA_LEN constant.
272

F-4 INTERFACE ERROR CODES

F-5 ENDPOINT ERROR CODES

F-6 URB ERROR CODES

Number Code name Description

300 USBH_ERR_IF_ALLOC Interface allocation failed. Consider increasing

USBH_CFG_MAX_NBR_IFS constant.

Number Code name Description

400 USBH_ERR_EP_ALLOC Endpoint allocation failed. Consider increasing

USBH_CFG_MAX_NBR_EPS constant.

401 USBH_ERR_EP_FREE Endpoint de-allocation failed.

402 USBH_ERR_EP_INVALID_STATE Endpoint is in an invalid state.

403 USBH_ERR_EP_INVALID_TYPE Endpoint type is invalid.

404 USBH_ERR_EP_STALL Endpoint is in a stall condition.

405 USBH_ERR_EP_NACK Endpoint transaction returned a NAK handshake.

406 USBH_ERR_EP_NOT_FOUND Endpoint not found.

Number Code name Description

500 USBH_ERR_URB_ABORT URB has been aborted.
273

Appendix F
F-7 DESCRIPTOR ERROR CODES

F-8 HOST CONTROLLER ERROR CODES

F-9 KERNEL LAYER ERROR CODES

Number Code name Description

600 USBH_ERR_DESC_ALLOC Isochronous descriptor allocation failed. Consider

increasing USBH_CFG_MAX_ISOC_DESC constant.

601 USBH_ERR_DESC_INVALID Descriptor contains at least one invalid field.

602 USBH_ERR_DESC_LANG_ID_NOT_SUPPORTED Language ID is not supported.

603 USBH_ERR_DESC_EXTRA_NOT_FOUND Extra descriptor not found.

Number Code name Description

700 USBH_ERR_HC_ALLOC Host Controller allocation failed. Consider increasing

USBH_CFG_MAX_NBR_HC constant.

701 USBH_ERR_HC_INIT Host Controller initialization failed.

702 USBH_ERR_HC_START Host Controller start failed.

703 USBH_ERR_HC_IO Host Controller general Input/Output error.

704 USBH_ERR_HC_HALTED Host Controller in halted state.

705 USBH_ERR_HC_PORT_RESET Host Controller port reset error.

Number Code name Description

800 USBH_ERR_OS_TASK_CREATE Task creation failed.

801 USBH_ERR_OS_SIGNAL_CREATE Signal creation failed

802 USBH_ERR_OS_DEL Service close failed.

803 USBH_ERR_OS_TIMEOUT Signal pend timed-out.

804 USBH_ERR_OS_ABORT Signal pend aborted.

805 USBH_ERR_OS_FAIL Operation failed.
274

F-10 CLASS ERROR CODES

F-11 HUB CLASS ERROR CODES

F-12 HUMAN INTERFACE DEVICE (HID) CLASS ERROR CODES

Number Code name Description

1000 USBH_ERR_CLASS_PROBE_FAIL Class probing failed.

1001 USBH_ERR_CLASS_DRV_NOT_FOUND Class driver not found.

1002 USBH_ERR_CLASS_DRV_ALLOC Class driver allocation failed. Consider increasing

USBH_CFG_MAX_NBR_CLASS_DRVS constant.

Number Code name Description

1200 USBH_ERR_HUB_INVALID_PORT_NBR Invalid port number.

1201 USBH_ERR_HUB_PORT Port error.

Number Code name Description

1300 USBH_ERR_HID_ITEM_LONG Long items not supported.

1301 USBH_ERR_HID_ITEM_UNKNOWN Unknown item type.

1302 USBH_ERR_HID_MISMATCH_COLL Collection mismatch.

1303 USBH_ERR_HID_NOT_APP_COLL Not an application collection.

1304 USBH_ERR_HID_REPORT_OUTSIDE_COLL Report not part of a collection.

1305 USBH_ERR_HID_MISMATCH_PUSH_POP Push/pop items mismatch.

1306 USBH_ERR_HID_USAGE_PAGE_INVALID Invalid usage page.

1307 USBH_ERR_HID_REPORT_ID Invalid report ID.

1308 USBH_ERR_HID_REPORT_CNT Invalid report count.

1309 USBH_ERR_HID_PUSH_SIZE Invalid push size.

1310 USBH_ERR_HID_POP_SIZE Invalid pop size.

1311 USBH_ERR_HID_REPORT_INVALID_VAL Report format contains invalid value(s).

1312 USBH_ERR_HID_RD_PARSER_FAIL Report descriptor parsing failed.
275

Appendix F
F-13 MASS STORAGE CLASS (MSC) ERROR CODES

1313 USBH_ERR_HID_NOT_IN_REPORT No IN report.

Number Code name Description

1400 USBH_ERR_MSC_CMD_FAILED CSW command error status.

1401 USBH_ERR_MSC_CMD_PHASE CSW phase error status.

1402 USBH_ERR_MSC_IO MSC Input/Output error.

1403 USBH_ERR_MSC_LUN_ALLOC Logical unit allocation failed.

Number Code name Description
276

	Table of Contents
	About USB
	1-1 Introduction
	1-1-1 Bus Topology
	1-1-2 USB Host
	1-1-3 USB Device

	1-2 Data Flow Model
	1-2-1 Endpoint
	1-2-2 Pipes
	1-2-3 Transfer Types

	1-3 Physical Interface and Power Management
	1-3-1 Speed
	1-3-2 Power Distribution

	1-4 Device Structure and Enumeration
	1-4-1 USB Device Structure
	1-4-2 Device States
	1-4-3 Enumeration

	Getting Started
	2-4-1 Understanding Micrium Examples
	2-4-2 Including USB Host Stack Source Code
	2-4-3 Copying and Modifying Template Files
	2-4-4 Modifying the Application Configuration File

	Architecture
	3-1-1 USB Host Stack Modules
	3-1-2 USB Host Stack Dependencies
	3-3-1 Hub Task
	3-3-2 Asynchronous Task

	Configuration
	4-1-1 USB Host Configuration
	4-1-2 USB Classes Configuration
	4-1-3 Debug Configuration
	4-2-1 Task Priorities
	4-2-2 Task Stack Sizes
	4-3-1 Host Controller Configuration Structure
	4-3-2 Host Controller Initialization
	4-4-1 Single Host Controller and Unique Device
	4-4-2 Single Host Controller and Multiple Devices
	4-4-3 Multi-Host Controllers and Multiple Devices

	Host Driver Guide
	5-3-1 Single USB ISR Vector with ISR Handler Argument
	5-3-2 Single USB ISR Vector
	5-3-3 Multiple USB ISR Vectors with ISR Handler Arguments
	5-3-4 Multiple USB ISR Vectors
	5-7-1 Root Hub Interactions
	5-7-2 Endpoint Opening
	5-7-3 URB Submit

	Communication Device Class
	6-3-1 General Configuration
	6-3-2 Class Initialization
	6-3-3 Device Connection and Disconnection Handling
	6-4-1 Configuration and Initialization
	6-4-2 Connection and Disconnection Handling
	6-4-3 Demo Application

	Human Interface Device Class
	7-1-1 Report
	7-3-1 General Configuration
	7-3-2 Class Initialization
	7-3-3 Device Connection and Disconnection Handling
	7-4-1 Demo Application Configuration

	Mass Storage Class
	8-1-1 Mass Storage Class Protocol
	8-1-2 Endpoints
	8-1-3 Mass Storage Class Requests
	8-1-4 Small Computer System Interface (SCSI)
	8-3-1 General Configuration
	8-3-2 Class Initialization
	8-3-3 Device Connection and Disconnection Handling
	8-4-1 Demo Application Configuration

	Porting µC/USB-Host to your Kernel
	9-2-1 Task Creation
	9-2-2 Semaphore
	9-2-3 Mutex
	9-2-4 Message Queue

	Core API Reference
	A-1 Host Functions
	A-1-1 USBH_Init()
	A-1-2 USBH_VersionGet()
	A-1-3 USBH_Suspend()
	A-1-4 USBH_Resume()

	A-2 Host Controller Functions
	A-2-1 USBH_HC_Add()
	A-2-2 USBH_HC_Start()
	A-2-3 USBH_HC_Stop()
	A-2-4 USBH_HC_PortEn()
	A-2-5 USBH_HC_PortDis()
	A-2-6 USBH_HC_FrameNbrGet()

	A-3 Class Management Functions
	A-3-1 USBH_ClassDrvReg()
	A-3-2 USBH_ClassDrvUnreg()

	A-4 Kernel Abstraction Functions
	A-4-1 USBH_OS_LayerInit()
	A-4-2 USBH_OS_VirToBus()
	A-4-3 USBH_OS_BusToVir()
	A-4-4 USBH_OS_TaskCreate()
	A-4-5 USBH_OS_DlyMS()
	A-4-6 USBH_OS_DlyUS()
	A-4-7 USBH_OS_MutexCreate()
	A-4-8 USBH_OS_MutexLock()
	A-4-9 USBH_OS_MutexUnlock()
	A-4-10 USBH_OS_MutexDestroy()
	A-4-11 USBH_OS_SemCreate()
	A-4-12 USBH_OS_SemDestroy()
	A-4-13 USBH_OS_SemWait()
	A-4-14 USBH_OS_SemWaitAbort()
	A-4-15 USBH_OS_SemPost()
	A-4-16 USBH_OS_MsgQueueCreate()
	A-4-17 USBH_OS_MsgQueuePut()
	A-4-18 USBH_OS_MsgQueueGet()

	CDC API Reference
	B-1 CDC Functions
	B-1-1 USBH_CDC_RefAdd()
	B-1-2 USBH_CDC_RefRel()
	B-1-3 USBH_CDC_SubclassGet()
	B-1-4 USBH_CDC_ProtocolGet()

	B-2 ACM Functions
	B-2-1 USBH_CDC_ACM_GlobalInit()
	B-2-2 USBH_CDC_ACM_Add()
	B-2-3 USBH_CDC_ACM_Remove()
	B-2-4 USBH_CDC_ACM_EventRxNotifyReg()
	B-2-5 USBH_CDC_ACM_LineCodingSet()
	B-2-6 USBH_CDC_ACM_LineCodingGet()
	B-2-7 USBH_CDC_ACM_LineStateSet()
	B-2-8 USBH_CDC_ACM_BreakSend()
	B-2-9 USBH_CDC_ACM_CmdSend()
	B-2-10 USBH_CDC_ACM_RespRx()
	B-2-11 USBH_CDC_ACM_DataTx()
	B-2-12 USBH_CDC_ACM_DataRx()
	B-2-13 USBH_CDC_ACM_DataTxAsync()
	B-2-14 USBH_CDC_ACM_DataRxAsync()

	HID API Reference
	C-1 HID Functions
	C-1-1 USBH_HID_Init()
	C-1-2 USBH_HID_RefAdd()
	C-1-3 USBH_HID_RefRel()
	C-1-4 USBH_HID_GetReportIDArray()
	C-1-5 USBH_HID_GetAppCollArray()
	C-1-6 USBH_HID_IsBootDev()
	C-1-7 USBH_HID_RxReport()
	C-1-8 USBH_HID_TxReport()
	C-1-9 USBH_HID_RegRxCB()
	C-1-10 USBH_HID_UnregRxCB()
	C-1-11 USBH_HID_ProtocolSet()
	C-1-12 USBH_HID_ProtocolGet()
	C-1-13 USBH_HID_IdleSet()
	C-1-14 USBH_HID_IdleGet()

	MSC API Reference
	D-1 MSC Functions
	D-1-1 USBH_MSC_RefAdd()
	D-1-2 USBH_MSC_RefRel()

	D-2 File System MSC Driver Functions
	D-2-1 FSDev_MSC_DevOpen
	D-2-2 FSDev_MSC_DevClose

	Host Controller Driver API Reference
	E-1 Host Driver Functions
	E-1-1 USBH_<controller>_Init()
	E-1-2 USBH_<controller>_Start()
	E-1-3 USBH_<controller>_Stop()
	E-1-4 USBH_<controller>_SpdGet()
	E-1-5 USBH_<controller>_Suspend()
	E-1-6 USBH_<controller>_Resume()
	E-1-7 USBH_<controller>_FrameNbrGet()
	E-1-8 USBH_<controller>_EP_Open()
	E-1-9 USBH_<controller>_EP_Close()
	E-1-10 USBH_<controller>_EP_Abort()
	E-1-11 USBH_<controller>_EP_IsHalt()
	E-1-12 USBH_<controller>_URB_Submit()
	E-1-13 USBH_<controller>_URB_Complete()
	E-1-14 USBH_<controller>_URB_Abort()

	E-2 Root Hub Driver Functions
	E-2-1 USBH_<controller>_PortStatusGet()
	E-2-2 USBH_<controller>_HubDescGet()
	E-2-3 USBH_<controller>_PortEnSet()
	E-2-4 USBH_<controller>_PortEnClr()
	E-2-5 USBH_<controller>_PortEnChngClr()
	E-2-6 USBH_<controller>_PortPwrSet()
	E-2-7 USBH_<controller>_PortPwrClr()
	E-2-8 USBH_<controller>_PortResetSet()
	E-2-9 USBH_<controller>_PortResetChngClr()
	E-2-10 USBH_<controller>_PortSuspendClr()
	E-2-11 USBH_<controller>_PortConnChngClr()
	E-2-12 USBH_<controller>_IntEn()
	E-2-13 USBH_<controller>_IntDis()

	E-3 Host Driver BSP Functions
	E-3-1 USBH_<controller>_BSP_Init()
	E-3-2 USBH_<controller>_BSP_ISR_Reg()
	E-3-3 USBH_<controller>_BSP_ISR_Unreg()

	Error Codes
	F-1 Generic Error Codes
	F-2 Device Error Codes
	F-3 Configuration Error Codes
	F-4 Interface Error Codes
	F-5 Endpoint Error Codes
	F-6 URB Error Codes
	F-7 Descriptor Error Codes
	F-8 Host Controller Error Codes
	F-9 Kernel Layer Error Codes
	F-10 Class Error Codes
	F-11 HUB Class Error Codes
	F-12 Human Interface Device (HID) Class Error Codes
	F-13 Mass Storage Class (MSC) Error Codes

