

IQS266 DATASHEET

2x3 Channel projected capacitive trackpad controller with self-capacitive wake-up

The IQS266 ProxSense® IC is a 2x3 projected capacitive trackpad designed for low power mobile applications. This trackpad is perfect to implement on a single sided ITO touch screen for wearables. A self-capacitive channel is used for wake-up which keeps the power consumption in low-power less than 5 uA. Other features include automatic tuning for sense electrodes, internal reference capacitor and internal regulator to reduce total system cost.

Features

- Capacitive sensing
 - Parasitic capacitive load cancellation
 - Fully adjustable sensing options
 - Self capacitive prox channel (CH0)
 - 2x3 Projected capacitive trackpad (CH1-6)
- > **Zoom and Low power** options for minimal power consumption
- Multiple integrated UI options based on years of experience in sensing on fixed and mobile platforms:
 - **Proximity / Touch**
 - Proximity wake-up from low power using distributed proximity channel
 - Gesture recognition:
 - ...1 Swipes: Up, down, left, right (segment indication for left & right swipes)
 - ...2 Adjustable swipe length and time limitations
 - ...3 Taps: Single taps with segment indication
 - ..4 Adjustable tap size and time limitation
- Automatic Tuning Implementation (ATI)
- > Minimal external components
- > Fast I²C compatible interface
- > **RDY indication** for event mode operation
- > Event or Streaming mode
- > Small package size: QFN(3x3)-16
- > Supply voltage: 1.8V to 3.3V

QFN(3x3)-16 package Representation only

Available	Packages
TA	QFN(3x3)-16
-20°C to 85°C	IQS266

Applications

- > Wearables
- Navigational controls
- > White goods and appliances
- > Office equipment, toys, sanitary ware
- > Proximity detection that enables backlighting activation (Patented)
- Wake-up from standby applications
- Replacement electromechanical for switches and keypads
- GUI trigger and GUI control proximity detection
- Electronic Keypads or Pin pads

Contents

IC	S266 DATAS	HEET	1
1	INTRODU	CTION	5
	1.1	FUNCTIONAL OVERVIEW	5
	1.2	PACKAGING AND PIN-OUT	6
	FIGURE 1.1	IQS266 PIN LAYOUT (REPRESENTATION ONLY DEVICE MARKING DIFFERS)	6
	TABLE 1.1	IQS266 PIN-OUT	6
	1.3	Reference Design	7
	FIGURE 1.2	IQS266 Reference Design	7
	FIGURE 1.3	IQS266 RECOMMENDED TRACKPAD LAYOUT (TOP VIEW) WITH COORDINATE SYSTEM AND SEGMENT ALLOCATION	7
2	USER CON	NFIGURABLE OPTIONS	8
	2.1	ProxSetting0	8
	2.2	ProxSettings1	9
	2.3	ProxSettings2	
	2.4	ProxSettings3	10
	2.5	EVENT MASK	11
	2.6	ZOOM TIMEOUT	11
	2.7	HALT TIMEOUT	11
	2.8	RDY TIMEOUT	11
	2.9	NORMAL MODE (NM) PERIOD	11
	2.10	LOW POWER (LP) PERIOD	12
	2.11	Proximity threshold CH0	12
	2.12	TOUCH THRESHOLDS	
	2.13	ATI TARGET	12
	2.14	BASE VALUES	
	2.15	GESTURE SETTINGS	
	FIGURE 2.1	SWIPE GESTURE REQUIREMENTS	
3	PROXSEN	SE [®] MODULE	13
	3.1	CHARGE TRANSFER CONCEPT	13
	3.2	RATE OF CHARGE CYCLES	14
	FIGURE 3.1	IQS266 CHARGE SEQUENCE TIMING DIAGRAM.	14
	3.3	LTA vs Reference Values	14
	3.4	DETERMINE TOUCH OR PROX.	15
	3.5	ATI	15
4	COMMUN	NICATION	17
	4.1	CONTROL BYTE	17
	FIGURE 4.1	IQS266 CONTROL BYTE.	17
	4.2	I ² C Read	17
	FIGURE 4.2	CURRENT ADDRESS READ.	17
	FIGURE 4.3	RANDOM READ	17
	I ² C WRITE	17	
	FIGURE 4.4	I ² C Write	
	4.3	END OF COMMUNICATION SESSION / WINDOW	17
	4.4	I ² C Sub-address	17
	TABLE 4.1	I ² C SUB-ADDRESS SELECTION.	17
	4.5	RDY HAND-SHAKE ROUTINE	18
	4.6	I ² C Specific Commands	18

	4.7	I ² C I/O CHARACTERISTICS	18
	TABLE 4.2	IQS266 I ² C INPUT VOLTAGE	18
	TABLE 4.3	IQS266 I ² C OUTPUT VOLTAGE	18
5	MEMORY	Y MAP	19
	5.1	0x00 Device info	22
	5.2	0x01 FLAGS	23
	5.3	0x02 – 0x03 Trackpad data	24
	5.4	0x04 Prox & Touch data	25
	5.5	0x05 – 0x06 AC filtered channel count data	26
	5.6	0x07 – 0x0B Channel count data	27
	5.7	0x0C - 0x0D LTA DATA	27
	5.8	0x0E - 0x12 REF DATA	27
	5.9	0x13 - 0x19 DELTAS	28
	5.10	0x80 – 0x81 Prox settings	29
	5.11	0x82 Event mask	32
	5.12	0x82 offset 1 – 0x83 offset 1 Timeout periods	32
	5.13	0x84 Report rates	33
	5.14	0x85 – 0x88 Thresholds	34
	5.15	0x89 – 0x8A Channel settings	37
	5.16	0x8B TAP GESTURE SETTINGS	39
	5.17	0x8C Swipe gesture settings	40
	5.18	0x8D – 0x93 Multipliers and compensation: CH0 – CH6	41
6	ELECTRIC	CAL CHARACTERISTICS	44
	6.1	ABSOLUTE MAXIMUM SPECIFICATIONS	44
	TABLE 6.1	ABSOLUTE MAXIMUM SPECIFICATION	44
	TABLE 6.2	IQS266 GENERAL OPERATING CONDITIONS	44
	TABLE 6.3	ELECTRODE SPECIFICATIONS — SELF CAPACITANCE	44
	TABLE 6.4	ELECTRODE SPECIFICATIONS — PROJECTED CAPACITANCE	44
	6.2	Power On-reset/Brown out	45
	TABLE 6.5	POWER ON-RESET AND BROWN OUT DETECTION SPECIFICATIONS	45
	6.3	DIGITAL INPUT/OUTPUT TRIGGER LEVELS	45
	TABLE 6.6	DIGITAL INPUT/OUTPUT TRIGGER LEVEL SPECIFICATIONS	45
	6.4	CURRENT CONSUMPTION	45
	TABLE 6.7	CAPACITIVE SENSING CURRENT CONSUMPTION	45
	6.5	DEVICE TIMING DESCRIPTIONS	46
	TABLE 6.8	WATCH DOG TIMEOUTS	46
7	PACKAGE	E INFORMATION	47
	7.1	PACKAGE SPECIFICATIONS.	47
	FIGURE 7.1	QFN(3x3)–16 PACKAGE DIMENSIONS	
	7.2	RECOMMENDED PCB FOOTPRINT	
	FIGURE 7.2	IQS266 RECOMMENDED PCB FOOTPRINT	47
	7.3	DEVICE MARKING	
	7.4	TAPE AND REEL SPECIFICATION	
	7.5	MSL LEVEL	
8	DATASHE	EET REVISIONS	51
	8.1	REVISION HISTORY	E1
	8.2	ERRATA	
	5.2	ENVIA	

List of abbreviations

ATI	Automatic Tuning Implementation
AC	Alternating Current
ACF	AC Filtered Counts
СН	Channel
CS	Sampling capacitor
CX	Self capacitive electrode
I ² C	Inter-Integrated Circuit
LTA	Long Term Average
N/C	Not connect
NM	Normal Mode
LP	Low Power
RX	Receiving electrode
RDY	Ready interrupt signal
SCL	I ² C serial clock signal
SDA	I ² C serial data signal
TX	Transmitting electrode

1 Introduction

1.1 Functional overview

The IQS266 is a single self capacitive proximity and 6 channel projected trackpad sensor featuring an internal voltage regulator and reference capacitor (C_s).

The device has 6 pins for the connection of sense electrodes, which consist of 1 self electrode, for proximity wake-up, as well as 2 receivers and 3 transmitters, for a 2x3 trackpad. Three pins are used for serial data communication through the I²CTM compatible protocol, including an optional RDY pin.

The device automatically tracks slow varying environmental changes via various filters, detects swipe and tap gestures in various directions and segments on the trackpad. The device is equipped with an Automatic Tuning Implementation (ATI) to adjust the device for optimal sensitivity.

1.2 Packaging and Pin-Out

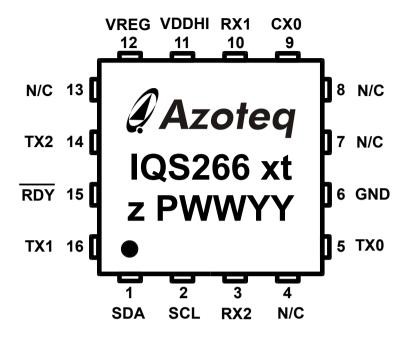


Figure 1.1 IQS266 Pin layout (representation only device marking differs)

Table 1.1 IQS266 Pin-out

Pin	Name	Type	Function
1	SDA	Digital	I ² C Serial Data
2	SCL	Digital	I ² C Serial Clock
3	RX2	Analogue	Receive Electrode
4	N/C	-	Not Connected
5	TX0	Transmitter	Transmit Electrode
6	GND	Supply Input	GND Reference
7	N/C	-	Not Connected
8	N/C	-	Not Connected
9	CX0	Analogue	Receive Electrode
10	RX1	Analogue	Receive Electrode
11	VDDHI	Supply Input	Supply Voltage Input
12	VREG	Analogue Output	Internal Regulator Pin
13	N/C	-	Not connected
14	TX2	Transmitter	Transmit electrode
15	RDY	Digital Output	Serial Ready Interrupt
16	TX1	Transmitter	Transmit electrode

1.3 Reference Design

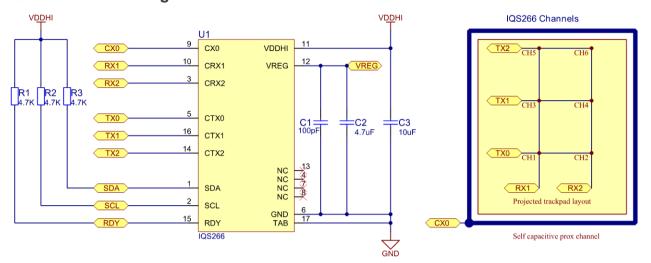


Figure 1.2 IQS266 Reference Design

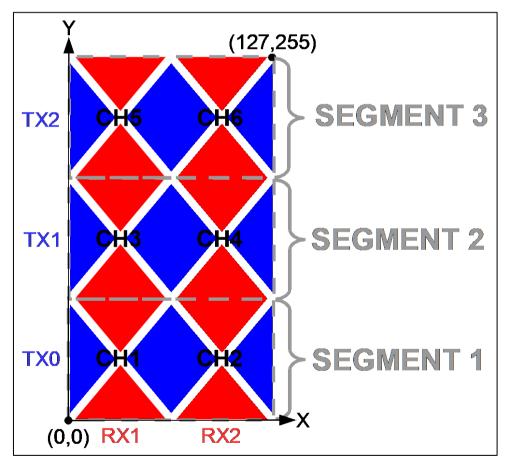


Figure 1.3 IQS266 Recommended trackpad layout (top view) with coordinate system and segment allocation

2 User configurable options

2.1 ProxSetting0

2.1.1 Disable ATI

The IQS266 can automatically retune sensor electrodes when the counts drift outside a predefined ATI band. This allows the IQS266 to keep optimal sensitivity during different environment. To disable the feature, the "ATI OFF" bit needs to be set in the ProxSettings0 register (0x80; byte 0). Disabling this feature only disables the automatic retuning; the MCU can at any time still force retuning with the Redo-ATI command.

2.1.2 Partial ATI

If it is required to have the ATI time reduced, the IQS266 can use partial ATI by setting the "ATI Partial" bit in the ProxSettings0 register (0x80; byte 0). The designer must also specify the sensitivity multiplier (option 1 to 4) as the IQS266 will only calculate the compensation multiplier and compensation. The Partial ATI option reduces start-up and re-tuning times, but does require the designer to verify that the base values achieved are within the desired range.

2.1.3 **ATI Band**

The user has the option to select the re-tuning band as ¼ of the ATI target (default is 1/8 of the ATI target) if it is desired to have a wider range for the counts to drift with environmental change before the device retune the electrodes. The wider band is achieved by setting the "ATI BAND" bit in the ProxSettings0 register (0x80; byte 0).

2.1.4 Redo-ATI

The IQS266 can be forced to ATI at any time, regardless of present events. To force retuning set the "Redo ATI" bit in the ProxSettings0 register (0x80; byte 0). The "Redo ATI" bit will automatically clear after having been set.

2.1.5 **Reseed**

The IQS266 LTA and REF values can be reseeded to the count values at any time to

clear any output event. If count values are outside the ATI band, retuning will be triggered. To reseed set the "Reseed" bit in the ProxSettings0 register (0x80; byte 0). The "Reseed" bit will automatically clear after having been set.

Setting the Reseed bit will shift all LTA filters to a value of LTA_{new} = CS + 8 (CS - 8 for Self). The LTA will then track the CS value until they are even.

Performing a reseed action on the LTA filters, will effectively clear any proximity and/or touch conditions that may have been established prior to the reseed call.

2.1.6 Debug ATI

In order to facilitate faster start-up and retuning times, the communication windows are stopped during ATI on the IQS266. If the designer would like to be able to read data after every charge cycle during ATI, the communication can be enabled by setting the "Debug ATI" bit in the ProxSettings0 register (0x80; byte 0). A communication window can still be forced by the MCU with a RDY handshake (pulling the RDY line low) at any time even if the "Debug ATI" bit is not set.

2.1.7 Increase stability

The IQS266's analogue circuitry settling time can be increased (at the cost of higher current consumption) in order to have a more stable conversion in respect to the internal regulator. The longer settling time is enabled by setting the "Increase stability" bit in the ProxSettings0 register (0x80; byte 0).

2.1.8 Force Halt

The user has the option to halt the LTA and REF values to avoid any reseed or re-tuning events from taking place. This can be used in situations where the counts are expected to go in the wrong direction as a result of a controlled action in the application. To freeze the LTA and REF avlues set the "Force Halt" bit in the ProxSettings0 register (0x80; byte 0).

2.2 ProxSettings1

2.2.1 Comms WDT off

The WDT (watchdog timer) is used to reset the IC if a problem (for example a voltage spike) occurs during communication. The WDT will time-out (and thus reset the device) after t_{WDT} if no valid communication occurred during this time.

The WDT can be disabled during development by setting the "WDT Off" bit in the ProxSettings1 register (0x80; byte 1). It is not recommended to disable the WDT for production.

2.2.2 Event Mode

By default, the device operates in full streaming mode. There is an option for an event driven I²C communication mode (also called "Event Mode"), with the RDY pin ONLY indicating a communication window after a prescribed event has occurred.

These events include:

- > LP (low power) event
- > Swipes (up / down / left / right)
- > Tap
- > ATI
- > TP (trackpad) event
- > Touch
- > Proximity

The RDY pin will indicate events in the following manner:

- LP event: Single RDY low on LP entry and again on exit
- Swipe Detected: Single RDY low on swipes
- 3. Tap Detected: Single RDY low
- 4. **ATI:** RDY low on ATI start & again on ATI completing
- 5. **TP event:** RDY pin low after completion of every charge cycle while a touch remains detected on a channel.
- 6. **Touch:** RDY low on each touch entry and exit occurring.
- 7. Prox: RDY low on entry and exit

For trackpad events, the device will stream data continuously (after every charge cycle) when a touch is present on one of the channels, even if Event Mode is enabled.

Event Mode can be enabled by setting the "Event Mode" bit in the ProxSettings1 register (0x80; byte 1).

Note: The device is also capable of functioning without a RDY line on a polling basis. To change settings during event mode the RDY Hand-Shake Routine should be followed.

2.2.3 LTA Beta

The speed at which the LTA will follow the counts when no event is present (no filter halt) can be changed by adjusting the beta values for the LTA filter. Four options are available by setting the "LTA Beta" bits in the ProxSettings1 register (0x80; byte 1).

2.2.4 AC Filter

The AC filter is implemented to provide better stability of Counts (CS) in electrically noisy environments.

The filter also enforces a longer minimum sample time for detecting proximity events on CH0, which will result in a slower response rate when the device enters low power modes. The filter can be disabled.

The count filter can be disabled, or the speed (amount of filtering) adjusted by setting the "ACF" bits in the ProxSettings1 register (0x80; byte 1).

2.3 ProxSettings2

2.3.1 Wake both directions

The IQS266 can wake from low power in both directions of count movement (of the proximity threshold). This could be used to sense release events from low power mode. To enable sensing in both directions, set the "Wake both dir" bit in the ProxSettings2 register (0x81; byte 0).

2.3.2 Clear TP flags

The TP flags will stay set from the last active event. To clear the TP flags with each valid

comms window, set the "Clear TP flags" bit in the ProxSettings2 register (0x81; byte 0).

2.3.3 **NP segment rate**

The IQS266 does a NP (normal power) conversion during low power where all active channels are charged even though the IC is only monitoring CH0 for a wake-up event. To change the rate of the NP segments, configure the lower three bits called "NP segment rate" in the ProxSettings2 register (0x81; byte 0). The rate is calculated as a desired multiple of the "Low power period"

2.4 ProxSettings3

2.4.1 ACK Reset

After start-up, and after every reset event, the "Show Reset" flag will be set in the System Flags register (0x01; byte 0).

The "Show Reset" bit can be read to determine whether a reset has occurred on the device (it is recommended to be continuously monitored). This bit will be set '1' after a reset.

The SHOW_RESET bit will be cleared (set to '0') by writing a '1' into the "ACK Reset" bit in Prox settings 3 register (0x81; byte 1). A reset will typically take place if a timeout during communication occurs.

2.4.2 **Off mode**

The IQS266 has the option to switch the device off during inactive states of operation. The device will only wake up again on activity on the SDA line (all device register memory will be lost). A reset will occur when the device wakes up and the IC needs to be setup again. This is suitable for applications that require no device operation during defined operation states. To switch to off mode set the "Off mode" bit in the ProxSettings3 register (0x81; byte 1).

2.4.3 **Projected Bias**

The IQS266 has the option to change the bias current of the Rx channels during projected sensing mode. A larger bias current is required when using larger electrodes but will also increase the IC power consumption. The bias

current is default on $5\mu A$ and can be changed to $10\mu A$. To select $10 \mu A$ set the "Proj Bias" bit in the ProxSettings3 register (0x81; byte 1).

2.4.4 Float CX

During the charge transfer process, the channels (CX0 electrode for CH0 Self or Rx electrodes for projected trackpad channels) that are not being processed during the current conversion are effectively grounded to decrease the effects of noise-coupling between the sense electrodes. Grounding these traces is useful in applications with long tracks between IC and sense electrode.

There is the option to float the CX (or Rx) lines in between charging. This is particularly useful for applications with a self-capacitive CH0 button with a thick overlay, where more sensitivity is required, or in application that need to avoid false triggers from water on the overlays. To float channels set the "Float Cx" bit in the ProxSettings3 register (0x81; byte 1).

2.4.5 Halt charge mode

The charging sequence of the IQS266 can be halted on command. This function is useful for applications where the IQS266 can be completely halted without resetting the registers. The device will enter a low-power mode without doing conversions on the channels. To enable "Halt charge" set bit in the ProxSettings3 register (0x81; byte 1). To disable "Halt charge" toggle the RDY line. LP period register (0x84; byte 1) should be greater than 0 when "Halt charge" is activated. The LP period should be chosen based on the required low-power current consumption.

2.4.6 CH0 distributed

The IQS266 device by default performs a self capacitive conversion for channel 0 on the CX0 pin. An option bit is provided to change channel 0 to a distributed self capacitive prox channel charging on pins CX0, RX1 & RX2 simultaneously. To enable this function for channel 0 set the "CH0 distributed" bit in the ProxSettings3 register (0x81; byte 1).

2.4.7 Charge transfer frequency slow CH1 – 6

The IQS266 can reduce the charge transfer frequency for applications that require extra sensitivity (for example very thick overlays). The charge transfer frequency can be halved. The default charge transfer frequency for projected operation is 2MHz and can be slowed down to 1MHz by setting the "Xfer slow CH1 – 6" bit in the ProxSettings3 register (0x81; byte 1).

2.4.8 Charge transfer frequency slow CH0

The IQS266 can reduce the charge transfer frequency for applications that require extra sensitivity (for example very thick overlays). The charge transfer frequency can be halved. The default charge transfer frequency for self capacitive operation is 1MHz and can be slowed down to 500kHz. If the channel 0 distributed setting is used the charge transfer frequency for the projected operation is 2MHz and can be slowed down to 1MHz by setting the "Xfer slow CH0" bit in the ProxSettings3 register (0x81; byte 1).

2.5 Event mask

The IQS266 can be configured to report only desired events by masking out unwanted events from the Events register (0x01; byte 1). This is only applied during event mode and is particularly useful where communication is only required on certain desired events while still having the IQS266 waking from low power and sensing as required without interrupting the master/MCU. Clearing the corresponding bits in the Event mask register (0x82; byte 0) will disable or mask an event from reporting during event mode.

2.6 Zoom timeout

A normal power mode is defined for the IQS266 during which normal power conversions is performed. The zoom timeout defines the time to remain in the normal power mode before switching to low power mode. The zoom timeout can be set in periods of

500ms. Any event triggered (proximity or touch) before timeout occurs will clear the timer and start timing again from the last reported event. Configure Zoom timeout register (0x82; byte 1).

2.7 Halt timeout

The LTA filter for all channels will halt on proximity or touch events. A halt timeout is implemented for the IQS266 to terminate a halted filter condition to ensure that no stuck conditions remain indefinitely active. A halt timeout occurs during a stationary touch or prox condition on one or more channels without any change in events/flags for the configured timeout period. After timeout is reached a redo ATI command is self-induced by the IQS266 in order to recalibrate all channels and clear any stuck activations. The halt timeout can be set in decimal increments of 500ms. Any additional event triggered or active event cleared before timeout occurs will clear the timer and start timing again. Configure Halt timeout register (0x83; byte 0).

2.8 RDY timeout

If no communication is initiated from the master/host MCU within the first t_{COMMS} (t_{COMMS} = 2.56ms default) of the RDY line indicating that data is available (i.e. RDY = low), the device will resume with the next cycle of charge transfers and the data from the previous conversions will be lost. The timeout time is adjustable in steps of 0.64ms in the RDY timeout register (0x83; byte 1). There is also a WDT (t_{I2C}) that cannot be disabled, for when communication has started but not been completed, for example when the bus is being held by another device. t_{I2C} = 62ms.

2.9 Normal mode (NM) period

The IQS266 normal mode period specifies the sampling time for normal mode conversions (fastest possible conversion period for all

channels active). The default normal mode period is 10ms and can be configured in increments of 1ms using the NM period register (0x84; byte 0).

2.10 Low power (LP) period

The LP period of the IQS266 specifies the sampling time for channel 0 during low power mode and halt charge mode. By default, the low power mode period is equal to zero which means that the IQS266 will not enter low power. For any other configured period in increments of 16ms, low power will be entered upon zoom timeout and use that sampling period. Use the LP period register (0x84; byte 1) to configure the low power sampling period of channel 0. The VREG voltage should not drop with more than 50 mV. A bigger capacitor on VREG can be used for longer LP periods.

2.11 Proximity threshold CH0

A proximity threshold for channel 0 can be selected for the application, to obtain the desired proximity trigger level. The proximity threshold is selectable between 1 (most sensitive) and 255 (least sensitive) counts. These threshold values (i.e. 1-255) are specified in Counts (CS) in the Proximity threshold CH0 register (0x85; byte 0). The default proximity threshold is 6 counts. For a proximity threshold, higher than CH0 touch threshold a proximity event will be forced during a touch.

2.12 Touch Thresholds

A touch threshold for each channel can be selected by the designer to obtain the desired touch sensitivity and is selectable between 1/256 (most sensitive) to 255/256 (least sensitive). The touch threshold is calculated as a fraction of the Long-Term Average (LTA) or Reference Values (REF) given by,

$$T_{THR} = \frac{x}{256} \times LTA \text{ (Ch0)}$$

or

$$T_{THR} = \frac{x}{256} \times REF$$
 (Ch1-6)

With lower target values (therefore lower LTA/REF) the touch threshold will be lower and vice versa.

Individual touch thresholds can be set for each channel (including channel 0), by writing to the touch threshold registers. Registers start from 0x85; byte 0 and continues to 0x88; byte 1 for channels 0 to 6. The default touch threshold is 40/256 times the LTA/REF.

2.13 ATI target

The IQS266 ATI targets for channel 0 and all the other channels (1-6) can be adjusted independently. The ATI target should be selected during product design and development and corresponding prox and touch thresholds should be selected and evaluated according to the desired target value. The ATI target can be adjusted in multiple increments of 8 counts (0-255 * 8counts) using either ATI target CH1-6 register (0x89; byte 0) or ATI target CH0 (0x89; byte 1).

2.14 Base values

The IQS266 has the option to change the base value of the proximity channel (CH0) and the trackpad channels (CH1 to CH6) during the Full ATI algorithm. This provides the user with another option to select the sensitivity of the IQS266 without changes in the hardware (RX/TX sizes and routing, etc.).

The base values are set by writing to the Base value register (0x8A; byte 0). There are 16 different options to choose from. To choose a custom base value, select partial ATI.

The base value influences the overall sensitivity of the channel and establishes a base count which is used during the ATI algorithm. A lower base value will typically result in a higher sensitivity of the respective channel, as lower multipliers will be selected, and more compensation would be required.

2.15 **Gesture Settings**

The gesture engine can be configured by changing the parameters in registers 0x8B and 0x8C.

The tap gesture requires that a touch is made and released in the same location and within a short period of time. Some small amount of movement from the initial coordinate must be allowed to compensate for shift in the finger coordinate during the release. This bound is defined in the Tap Threshold register (0x8B; byte 1), which specifies the maximum length of a square area on the trackpad coordinate output data (0x03) in which the tap must occur. Exceeding this maximum square area will not recognise a valid tap gesture. Similarly, the Tap Timer Limit register (0x8B; byte 0) defines the maximum duration in ms that will result in a valid gesture. That is, the touch should be released before the time period in the Tap Timer Limit Register is reached.

All four swipe gestures work in the same manner and are only differentiated in their direction. The direction is defined with respect to the origin (0, 0) of the trackpad, at Rx1, Tx0. If the touch is moving away from the origin, it is considered a right or up swipe and if it is moving towards the origin, it is a left or down swipe. A swipe gesture event is only reported when a moving touch meets all three of the following conditions:

- A minimum continuous distance is travelled from its initial coordinates, as defined by the value in the Swipe threshold register (0x8C; byte 1).
- 2. The distance in (1) is covered within the time specified in the Swipe Timer Limit register (0x8C, byte 0).
- 3. The angle of the swipe gesture as determined by its starting coordinate and the coordinate at which the touch is released, does not exceed the thresholds as shown in Figure 2.1.

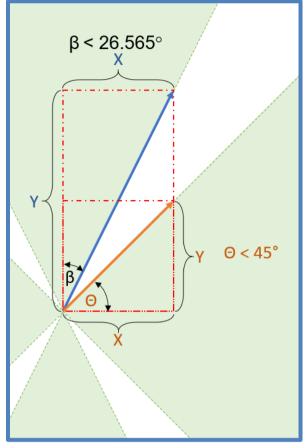


Figure 2.1 Swipe Gesture Requirements

3 ProxSense® Module

The IQS266 contains a ProxSense® module that uses patented technology to provide detection of proximity and touch conditions on numerous sensing lines.

The ProxSense® module is a combination of hardware and software, based on the principles of charge transfer measurements.

3.1 Charge Transfer Concept

On ProxSense® devices like the IQS266, capacitance measurements are taken with a charge transfer process that is periodically initiated.

For projected capacitive sensing, the device measures the capacitance between 2 electrodes referred to as the transmitter (TX) and receiver (RX).

The measuring process is referred to as a charge transfer cycle and consists of the following:

- Discharging of an internal sampling capacitor (C_s) and the electrode capacitors (mutual: TX & RX) on a channel.
- charging of TX's connected to the channel for each charge transfer.
- and then a series of charge transfers from the RX's to the internal sampling capacitors (C_s), until the trip voltage is reached.

The number of charge transfers required to reach the trip voltage on a channel is referred to as the Current Samples (**CS**) or Count value (Counts).

Please note: Attaching scope probes to the CTX/CRX pins will influence the capacitance of the sense electrodes and therefore the related CS values of those channels. This will have an instant effect on the CS measurements.

3.2 Rate of Charge Cycles

The IQS266 samples all its active channels (up to 6 projected channels and 1 capacitive channel). The charge sequence (as measured on the receive electrodes) is shown in Figure 3.1. After the channels are charged the IQS266 process the channel data and goes to sleep until the sampling period ends. If the sampling period ends, the charge transfer cycle of each channel will begin.

Typical timings of the charge sequence will differ with each application, depending on the setup of the IQS266. For example, the sense (or charge time) is affected by the target counts and charge transfer frequency, while process time is dependent on ATI checking for counts within the allowed band and filter settings. Communication time is affected by the amount of data read (as well as the sequence thereof) and I2C communication frequency.

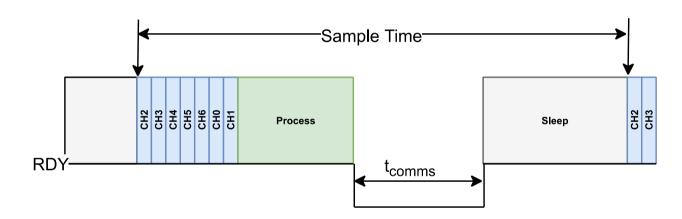


Figure 3.1 IQS266 Charge Sequence timing diagram.

3.3 LTA vs Reference Values

The Long-term Average (LTA) and reference values can be seen as the baseline. The baseline values are calculated to continuously adapt to any environmental drift. These values are calculated from the CS value for each channel.

For **CH0** a Long Term Average (**LTA**) is calculated (16 bit unsigned integer values). The count (CS) values (16 bit unsigned integer values) are processed and compared to the LTA to detect Touch and Proximity events on **CH0**.

For **Ch1-Ch6** a reference value of each channel's counts is taken during the normal power update in Low Power. This reference

value is compared to the counts during normal power to calculate the trackpad coordinates and detect proximity and touch events for each channel.

3.4 Determine Touch or Prox

An event is determined by comparing the CS value with the LTA (Ch0) or Reference (Ch1-6) Since the CS reacts differently when comparing the self- with the mutual capacitance technology, the user should consider only the conditions for the technology used.

An event is recorded if:

- > Self (Ch0): CS < LTA Threshold
- > Projected(Ch1-6): CS > REF + Threshold

Threshold can be either a Proximity or Touch threshold, depending on the current channel being processed.

Note that a proximity condition will be forced enabled if there is a touch condition on any channel.

Please refer to **Section 2.11** and **2.12** for proximity and touch threshold selections.

3.5 **ATI**

The Automatic Tuning Implementation (ATI) is a sophisticated technology implemented on the new ProxSense® series devices. It allows for optimal performance of the devices for a wide range of sense electrode capacitances, without modification or addition of external components.

The ATI allows the tuning of two parameters, an ATI Multiplier and an ATI Compensation, to adjust the Count values for an attached sense electrode.

ATI allows the designer to optimize a specific design by adjusting the sensitivity and stability of each channel through the adjustment of the ATI parameters.

The IQS266 has a full ATI function. The full-ATI function is default enabled, but can be disabled by setting the AUTO_ATI_OFF bit, or changed

to partial by setting the ATI_PARTIAL bit in PROX SETTINGS 0.

The ATI_BUSY bit will be set while an ATI event is busy.

For more information regarding the ATI algorithm, please contact Azoteq at: ProxSenseSupport@azoteq.com

3.5.1 ATI Sensitivity

On the IQS266 device, the user can specify the BASE value and the TARGET value for Channel 0 and for Channel 1-6.

A rough estimation of sensitivity can be calculated as:

$$Sensitivity \propto \frac{TARGET}{BASE}$$

As can be seen from this equation, the sensitivity can be increased by either increasing the Target value or decreasing the Base value. It should, however, be noted that a higher sensitivity will yield a higher noise susceptibility.

3.5.2 ATI Target

The target value is reached by adjusting the COMPENSATION bits for each channel (ATI target limited to 2048 counts).

The target value is written into the respective channel's TARGET registers. The value written into these registers multiplied by 8 will yield the new target value.

3.5.3 ATI Base (Multiplier)

The following parameters will influence the base value:

- PROJ_BIAS bits: Adjusts the biasing of some analogue parameters in the mutual capacitive operated IC. (Only applicable in mutual capacitance mode.)
- > Charge Transfer Frequency
- > MULTIPLIER bits.

The base value used for the ATI function can be implemented in 2 ways:

- ATI_PARTIAL = 0. ATI automatically adjusts MULTIPLIER bits to reach a selected base value1.
- 2. ATI_PARTIAL = 1. The designer can specify the multiplier settings. These settings will give a custom base value from where the compensation bits will be automatically implemented to reach the required target value. The base value is determined by two sets of multiplier bits. Sensitivity Multipliers which will also scale the compensation to normalise the sensitivity and Compensation Multipliers to adjust the gain.

3.5.4 Re-ATI

An automatic re-ATI event will occur if the counts are outside its re-ATI limits. The re-ATI limit or ATI boundary is calculated as the target value divided by 8. For example:

> Target = 512, Re-ATI will occur if CS is outside 512±64.

A re-ATI event can also be issued by the host MCU by setting the REDO_ATI bit. The REDO_ATI bit will clear automatically after the ATI event was started.

Note: Re-ATI will automatically clear all proximity, touch and halt status bits.

3.5.5 ATI ERROR

The ATI error bit (read only) indicates to the user that the ATI targets where not reached. Adjustments of the base values or ATI BANDs are required.

1 ATI function will use PROJ_BIAS (if applicable) and will only adjust the MULTIPLIER bits to reach the base values.

4 Communication

The IQS266 device interfaces to a master controller via a 3-wire (SDA, SCL and RDY) serial interface bus that is I²CTM compatible, with a maximum communication speed of 400kbit/s.

4.1 Control Byte

The Control byte indicates the 7-bit device address (44H default) and the Read/Write indicator bit. The structure of the control byte is shown in Figure 4.1.

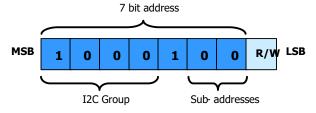


Figure 4.1 IQS266 Control Byte.

The I²C device has a 7-bit Slave Address (default 0x44H) in the control byte as shown in Figure 4.1. To confirm the address, the software compares the received address with the device address. Sub-address values can be set by OTP programming options.

4.2 I2C Read

To read from the device a *current address read* can be performed. This assumes that the address-command is already setup as desired.

Figure 4.2 Current Address Read.

If the address-command must first be specified, then a *random read* must be performed. In this case a WRITE is initially performed to setup the address-command, and then a repeated start is used to initiate the READ section.

Random Read											
	Start	Control Byte		Address- command		Start	Control Byte		Data n		Stop
	S	Adr + WRITE	ACK		ACK	S	Adr + READ	ACK		NACK	s

Figure 4.3 Random Read

4.3 **I2C Write**

To write settings to the device a *Data Write* is performed. Here the Address-Command is always required, followed by the relevant data bytes to write to the device.

Figure 4.4 I²C Write

4.4 End of Communication Session / Window

Similar to other Azoteq I²C devices, to end the I²C communication session, a STOP command must be issued. When sending numerous read and write commands in one communication cycle, a repeated start command must be used to stack them together (since a STOP will jump out of the communication window, which is not desired).

The STOP will then end the communication, and the IQS266 will return to process a new set of data. After the conversion, the communication window will again become available (RDY set LOW; after each conversion during streaming mode operation; only after an event detection during event mode operation).

4.5 I²C Sub-address

The IQS266 has four available sub addresses, 44H (default) to 47H, which allows up to four devices on a single I^2C bus.

4.5.1 Internal sub-address selection

Selecting the sub-address via OTP bits allows the user 4 different options:

Table 4.1 I²C sub-address selection

FG25	FG26	Device Address
0	0	0x44
0	1	0x45
1	0	0x46
1	1	0x47

4.6 RDY Hand-Shake Routine

The master or host MCU has the capability to request a communication window at any time, by pulling the RDY line low. The communication window will open directly following the current conversion cycle. For more details please refer to the communication interface guide.

4.7 I²C Specific Commands

4.7.1 Show Reset

After start-up, and after every reset event, the "Show Reset" flag will be set in the System Flags register (0x01H; byte 0).

The "Show Reset" bit can be read to determine whether a reset has occurred on the device (it is recommended to be continuously monitored). This bit will be set '1' after a reset.

The SHOW_RESET bit will be cleared (set to '0') by writing a '0' into the "Show Reset" bit. A reset will typically take place if a timeout during communication occurs.

4.7.2 I2C Timeout

If no communication is initiated from the master/host MCU within the first t_{COMMS} (t_{COMMS} = 2.56 ms default) of the RDY line indicating that data is available (i.e. RDY =

low), the device will resume with the next cycle of charge transfers and the data from the previous conversions will be lost. The timeout time is adjustable in steps of 0.64ms in the RDY timeout register (0x83; byte 1). There is also a timeout (t_{I2C}) that cannot be disabled, for when communication has started but not been completed, for example when the bus is being held by another device. t_{I2C} = 62ms.

4.8 I²C I/O Characteristics

The IQS266 requires the input voltages given in Table 4.2, for detecting high ("1") and low ("0") input conditions on the I²C communication lines (SDA, SCL and RDY).

Table 4.2 IQS266 I²C Input voltage

	Input Voltage (V)
Vin _{LOW}	0.3*VDDHI
Vin _{HIGH}	0.7*VDDHI

Table 4.3 provides the output voltage levels of the IQS266 device during I²C communication.

Table 4.3 IQS266 I²C Output voltage

	Output Voltage (V)
Vout _{LOW}	GND +0.2 (max.)
Vouthigh	VDDHI – 0.2 (min.)

5 Memory map

Full Address	Byte offset	Group Name	Item Name	Data Access
0x00	0	Device info	PRODUCT_NUM	Read-Only
UXUU	1	Device into	VERSION_NUM	Read-Only
0x01	0	Flags	SYSFLAGS0	Read-Only
UXU I	1	Flags	EVENTS	Read-Only
0x02	0		TP_FLAGS	Read-Only
0x02	1	Trackpad data	Reserved	Read-Only
0x03	0	таскрай цата	X_CURR	Read-Only
0.003	1		Y_CURR	Read-Only
0.404	0	Prox & Touch data	PROX_CHANNEL0	Read-Only
0x04	1	FIOX & TOUCH data	TOUCH_CHANNELS	Read-Only
0x05	0		ACF_CH0_LOW	Read-Only
COXU	1		ACF_CH0_HIGH	Read-Only
0x06	0		CH1_LOW	Read-Only
UXUU	1		CH1_HIGH	Read-Only
0x07	0	Channel Counts data	CH2_LOW	Read-Only
UXU1	1		CH2_HIGH	Read-Only
0,400	0		CH3_LOW	Read-Only
80x0	1	Channel Counts data	CH3_HIGH	Read-Only
0x09	0		CH4_LOW	Read-Only
0x09	1		CH4_HIGH	Read-Only
0x0A	0		CH5_LOW	Read-Only
UXUA	1		CH5_HIGH	Read-Only
0x0B	0		CH6_LOW	Read-Only
UXUD	1		CH6_HIGH	Read-Only
0x0C	0		LTA_CH0_ LOW	Read-Only
UXUC	1		LTA_CH0_ HIGH	Read-Only
0x0D	0		REF_CH1_ LOW	Read-Only
UXUD	1		REF_CH1_ HIGH	Read-Only
٥٧٥٢	0		REF_CH2_LOW	Read-Only
0x0E	1	LTA and REF data	REF_CH2_ HIGH	Read-Only
0x0F	0	LIA and REF dala	REF_CH3_ LOW	Read-Only
UXUF	1		REF_CH3_ HIGH	Read-Only
0v40	0		REF_CH4_ LOW	Read-Only
0x10	1		REF_CH4_ HIGH	Read-Only
0v44	0		REF_CH5_ LOW	Read-Only
0x11	1		REF_CH5_ HIGH	Read-Only

Full Address	Byte offset	Group Name	Item Name	Data Access
0x12	0		REF_CH6_ LOW	Read-Only
UXIZ	1		REF_CH6_ HIGH	Read-Only
0v42	0		DELTA_CH0_LOW	Read-Only
0x13	1		DELTA_CH0_HIGH	Read-Only
0x14	0		DELTA_CH1_LOW	Read-Only
UX14	1		DELTA_CH1_HIGH	Read-Only
0x15	0		DELTA_CH2_LOW	Read-Only
UXIO	1		DELTA_CH2_HIGH	Read-Only
0v46	0	Deltas	DELTA_CH3_LOW	Read-Only
0x16	1	Dellas	DELTA_CH3_HIGH	Read-Only
0.47	0		DELTA_CH4_LOW	Read-Only
0x17	1		DELTA_CH4_HIGH	Read-Only
0.40	0		DELTA_CH5_LOW	Read-Only
0x18	1		DELTA_CH5_HIGH	Read-Only
0.40	0		DELTA_CH6_LOW	Read-Only
0x19	1		DELTA_CH6_HIGH	Read-Only
0.400	0	Draw authin se	PROX_SETTINGS0	Read-Write
0x80	1		PROX_SETTINGS1	Read-Write
0.404	0	Prox settings	PROX_SETTINGS2	Read-Write
0x81	1		PROX_SETTINGS3	Read-Write
0.400	0	Event mask	EVENT_MASK	Read-Write
0x82	1		ZOOM_TIMEOUT	Read-Write
0x83	0	Timeout periods	HALT_TIMEOUT	Read-Write
UXOS	1		RDY_TIMEOUT	Read-Write
0x84	0	Depart rates	NM_PERIOD	Read-Write
0X04	1	Report rates	LP_PERIOD	Read-Write
0.49.5	0		PROX_THR_CH0	Read-Write
0x85	1		TOUCH_THR_CH0	Read-Write
0x86	0		TOUCH_THR_CH1	Read-Write
UXOU	1	Thresholds	TOUCH_THR_CH2	Read-Write
0.497	0	mesnoids	TOUCH_THR_CH3	Read-Write
0x87	1		TOUCH_THR_CH4	Read-Write
0x88	0		TOUCH_THR_CH5	Read-Write
UX00	1		TOUCH_THR_CH6	Read-Write
0.00	0		ATI_TARGET_CH1-6	Read-Write
0x89	1	Channel acttings	ATI_TARGET_CH0	Read-Write
0x8A	0	Channel settings	BASE_VALUE_CH1-6_CH0	Read-Write
UXUA	1		ACTIVE_CHANNELS	Read-Write

Full Address	Byte offset	Group Name	Item Name	Data Access
0x8B	0	Ton gooture cottings	TAP_TIMER_LIMIT	Read-Write
UX8B	1	Tap gesture settings	TAP_THRESHOLD	Read-Write
0x8C	0	Suine gesture estings	SWIPE_TIMER_LIMIT	Read-Write
UXOC	1	Swipe gesture settings	SWIPE_THRESHOLD	Read-Write
0x8D	0		SENS & COMP 0	Read-Write
UXOD	1		COMPENSATION 0	Read-Write
0x8E	0	Multipliers and compensation	SENS & COMP 1	Read-Write
UXOE	1		COMPENSATION 1	Read-Write
0x8F	0		SENS & COMP 2	Read-Write
UXOF	1		COMPENSATION 2	Read-Write
0x90	0		SENS & COMP 3	Read-Write
0x90	1		COMPENSATION 3	Read-Write
0x91	0		SENS & COMP 4	Read-Write
UX91	1		COMPENSATION 4	Read-Write
0x92	0		SENS & COMP 5	Read-Write
UX9Z	1		COMPENSATION 5	Read-Write
0x93	0		SENS & COMP 6	Read-Write
0x93	1		COMPENSATION 6	Read-Write

5.1 0x00 Device info

5.1.1 **Product number**

PRODUCT NUM (0x00, offset 0)										
Bit Number	7	6	5	4	3	2	1	0		
Data Access	R	R	R	R	R	R	R	R		
Name				Product	number					
Default	0	1	0	0	1	0	1	0		
Delault				0x4A =	= D'74					

Bit definitions:

> Bit 7-0: Device product number

5.1.2 Version number

VERSION NUM (0x00, offset 1)											
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R	R R R R R R									
Name				Version	Number						
Default	0	0	0	0	0	0	1	0			
Default				0x03	= D'3						

Bit definitions:

> Bit 7-0: Device software version number

5.2 **0x01 Flags**

5.2.1 **System flags**

	SYSFLAGS0 (0x01, offset 0)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R	R	R	-	R	R	R	R			
Name	SHOW RESET	NP_SEG LT_N_UP	ATI ERROR	-	NP SEG ACTIVE	IN ATI	IGNORE GLOBAL HALT	LP ACTIVE			

Bit definitions:

- > Bit 7: Show reset
 - 0: No reset event
 - 1: A device reset has occurred and needs to be acknowledged.
- > Bit 6: NP segment LTA/REF Update
 - 0: LTA/REF updates enable
 - 1: LTA updates blocked
- > Bit 5: ATI error
 - 0: No ATI error occurred
 - 1: An ATI error occurred
- > Bit 3: NP segment active
 - 0: Normal power segment is inactive
 - 1: Normal power segment is active
- > Bit 2: In ATI
 - 0: No channels are in ATI
 - 1: System is busy executing an ATI
- > Bit 1: Ignore global halt
 - 0: Global halt is not ignored
 - 1: Global halt is ignored
- > Bit 0: Low power active
 - 0: Low power mode is inactive
 - 1: Low power mode is active

5.2.2 **Events**

	Events (0x01, offset 1)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R	-	R	R	R	R	R	R			
Name	LP EVENT	-	SWIPE EVENT	TAP EVENT	ATI EVENT	TP EVENT	TOUCH EVENT	PROX EVENT			

- > Bit 7: Low power event flag
 - 0: No event to report
 - 1: A low power event has occurred to signal low power mode entry

- > Bit 5: Swipe event flag
 - 0: No event to report
 - 1: A swipe event has occurred and should be handled
- > Bit 4: Tap event flag
 - 0: No event to report
 - 1: A tap event has occurred and should be handled
- > Bit 3: ATI event flag
 - 0: No event to report
 - 1: An ATI event has occurred and should be handled
- > Bit 2: Trackpad event flag
 - 0: No event to report
 - 1: A trackpad event has occurred and should be handled
- > Bit 1: Touch event flag
 - 0: No event to report
 - 1: A touch event has occurred and should be handled
- > Bit 0: Proximity event flag
 - 0: No event to report
 - 1: A proximity event has occurred and should be handled

5.3 **0x02 – 0x03 Trackpad data**

5.3.1 Trackpad flags

	TP FLAGS (0x02, offset 0)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R	R	R	R	R	R	R	R			
Name	SEG_1	SEG_0	SWIPE RIGHT	SWIPE LEFT	SWIPE DOWN	SWIPE UP	TAP	TP ACTIVE			

- Bit 7-6: Trackpad segment
 - 00: No trackpad segment event activation
 - 01: Segment 1 trackpad event activation (Y: 0 85)
 - 10: Segment 2 trackpad event activation (Y: 85 170)
 - 11: Segment 3 trackpad event activation (Y: 170 255)
- > Bit 5: Swipe right
 - 0: No swipe event to report
- > Bit 4: Swipe left
 - 0: No swipe event to report
- > Bit 3: Swipe down
 - 0: No swipe event to report
- > Bit 2: Swipe up
 - 0: No swipe event to report
- > Bit 1: Tap
 - 0: No tap event to report
- > Bit 0: TP active

- 1: Swipe right event occurred
- 1: Swipe left event occurred
- 1: Swipe down event occurred
- 1: Swipe up event occurred
- 1: Tap event occurred

• 0: Trackpad not actively in use

• 1: Trackpad actively in use

5.3.2 X current position

	X CURR (0x03, offset 0)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R	R	R	R	R	R	R	R			
Name	X CURR										

Bit definitions:

- > Bit 0 7:
 - 0 127: X current position in decimal

5.3.3 Y current position

Y CURR (0x03, offset 1)										
Bit Number	7	6	5	4	3	2	1	0		
Data Access	R	R	R	R	R	R	R	R		
Name		Y_CURR								

Bit definitions:

- \rightarrow Bit 0 7:
 - 0 255: Y current position in decimal

5.4 **0x04 Prox & Touch data**

5.4.1 Prox channel 0

PROX_CHANNEL0 (0x04, offset 0)									
Bit Number	7	6	5	4	3	2	1	0	
Data Access	-	-	-	-	-	-	-	R	
Name	-	-	-	-	-	-	-	CH0	

- > Bit 1: Channel 0 Prox
 - 0: No prox condition present on channel 0
 - 1: A prox condition is present on channel 0

5.4.2 Touch channels

	TOUCH_CHANNELS (0x04, offset 1)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R	R	R	R	R	R	R	R			
Name	-	CH6	CH5	CH4	CH3	CH2	CH1	CH0			

Bit definitions:

- > Bit 6: Channel 6 touch
 - 0: No touch on channel 6
- > Bit 5: Channel 5 touch
 - 0: No touch on channel 5
- > Bit 4: Channel 4 touch
 - 0: No touch on channel 4
- > Bit 3: Channel 3 touch
 - 0: No touch on channel 3
- > Bit 2: Channel 2 touch
 - 0: No touch on channel 2
- > Bit 1: Channel 1 touch
 - 0: No touch on channel 1
- > Bit 0: Channel 0 touch
 - 0: No touch on channel 0

- 1: Touch present on channel 6
- 1: Touch present on channel 5
- 1: Touch present on channel 4
- 1: Touch present on channel 3
- 1: Touch present on channel 2
- 1: Touch present on channel 1
- 1: Touch present on channel 0

5.5 0x05 – 0x06 AC filtered channel count data

ACF_CH0											
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R	R R R R R R									
Name	ACF Channel Low										
Bit Number	15	14	13	12	11	10	9	8			
Data Access	R	R	R	R	R	R	R	R			
Name		ACF Channel High									

Bit definitions:

> Bit 0-15: AC filtered or raw value counts

5.6 0x07 - 0x0B Channel count data

	Counts_CH1-6										
Bit Number	7	7 6 5 4 3 2 1 0									
Data Access	R	R R R R R R									
Name	Channel Counts Low										
Bit Number	15	14	13	12	11	10	9	8			
Data Access	R	R	R	R	R	R	R	R			
Name	Channel Counts High										

Bit definitions:

> Bit 0-15: Raw value counts

5.7 **0x0C – 0x0D LTA data**

	LTA CH0										
Bit Number	7	7 6 5 4 3 2 1 0									
Data Access	R	R R R R R R									
Name		LTA Channel Low									
Bit Number	15	14	13	12	11	10	9	8			
Data Access	R	R R R R R R									
Name	LTA Channel High										

Bit definitions:

> Bit 0-15: LTA filter value output

5.8 **0x0E - 0x12 REF data**

				REF CH1-6				
Bit Number	7	6	5	4	3	2	1	0
Data Access	R	R	R	R	R	R	R	R
Name				REF Cha	nnel Low			
Bit Number	15	14	13	12	11	10	9	8
Data Access	R	R	R	R	R	R	R	R
Name		REF Channel High						

Bit definitions:

> Bit 0-15: Reference value output

5.9 **0x13 - 0x19 Deltas**

	Delta CHx										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R	R	R	R	R	R	R	R			
Name				Delta Cha	annel Low						
Bit Number	15	14	13	12	11	10	9	8			
Data Access	R	R R R R R R									
Name		Delta Channel High									

- > Bit 0-15: Delta value of channel
 - Delta = LTA ACF (CH0)
 - Delta = ACF- REF (CH1-6)

5.10 **0x80 - 0x81 Prox settings**

5.10.1 Prox settings 0

	PROX_SETTINGS_0 (0x80, offset 0)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name	AUTO ATI_OFF	ATI PARTIAL	ATI BAND	REDO ATI	DO RESEED	DEBUG ATI	INC STABL	FORCE HALT			
Default	0	0	0	0	0	0	0	0			
Delault				00							

Bit definitions:

> Bit 7: Auto ATI

0: Auto ATI on1: Auto ATI off

> Bit 6: ATI partial

0: Normal ATI active

• 1: Partial ATI active (Sensitivity multipliers are selected by the user and kept fixed)

> Bit 5: ATI band

0: Normal ATI band1: Large ATI band

> Bit 4: Redo ATI

0: None1: Redo an ATI

> Bit 3: Do reseed

0: None1: Do a reseed operation

> Bit 2: Debug ATI

0: No communication during ATI
 1: Communication during ATI allowed

> Bit 1: Increase stability

0: Normal analogue settling time

1: Increased analogue settling time for more stability

> Bit 0: Force halt

0: Normal halting
 1: Force halt Ch0 LTA and Ch1-6 REF

5.10.2 Prox settings 1

	PROX_SETTINGS_1 (0x80, offset 1)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name	COMMS WDT OFF	EVENT MODE	Ch0 LTA	FILTER	-	-	Ch0 AC	FILTER			
Default	0	0	0	1	0	0	0	1			
Delault				0x′	11						

- > Bit 7: Communication watch dog timer off
 - 0: Communication watch dog timer enabled. Reset will occur if timeout occurs.
 - 1: Communication watch dog timer disabled. Reset will not occur upon timeout.

It is not advised to disable the communication watch dog timer.

- > Bit 6: Event mode:
 - 0: Streaming mode communication enabled
 - 1: Event mode communication enabled
- > Bit 5-4: CH0 LTA filter beta selection
 - 00: LTA beta = 1/512
 - 01: LTA beta = 1/256
- > Bit 1-0: CH0 AC filter beta selection
 - 00: AC filter off
 - 01: ACF beta = 1

- 10: LTA beta = 1/128
- 11: LTA beta = 1/64
- 10: ACF beta = 2
- 11: ACF beta = 3

5.10.3 Prox settings 2

PROX_SETTINGS_2 (0x81, offset 0)										
Bit Number	7	6	5	4	3	2	1	0		
Data Access	-	-	R/W	-	R/W	R/W	R/W	R/W		
Name	-	-	WAKE BOTH DIR	-	CLEAR TP FLAGS	NP_	SEGMENT_F	RATE		
5 ("	0	0	0	0	0	0	1	1		
Default				0x0)3					

- > Bit 5: Wake both directions
 - 0: Normal activation in only one direction of count movement respective to LTA/REF.
 - 1: Activation in both directions of count movement respective to LTA/REF.
- > Bit 4: Clear trackpad flags
 - 0: Trackpad flags stay set from last active trackpad event
 - 1: Trackpad flags are cleared after each communication window
- > Bit 2-0: NP SEGMENT RATE
- > 0 7: Normal power segment rate = 2^(NP_SEGMENT_RATE)
 - b'000 = 0: 1
 - b'001 = 1: 2
 - b'010 = 2: 4
 - b'011 = 3: 8

- b'100 = 4: 16
 - b'101 = 5: 32
- b'110 = 6: 64
- b'111 = 7: 128

5.10.4 Prox settings 3

	PROX_SETTINGS_3 (0x81, offset 1)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Name	ACK RESET	OFF MODE	PROJ BIAS	FLOAT CX	HALT CHARGE	CH0 DIST	XFER SLOW CH1- 6	XFER SLOW CH0				
Default	0	0	0	0	0	0	0	0				
Delault	0x00											

- > Bit 7: Acknowledge reset
 - 0: None
 - 1: Command to clear the SHOW RESET flag
- > Bit 6: Off mode
 - 0: IC in on mode
 - 1: IC in off mode
- > Bit 5: Projected bias current setting
 - 0: Normal projected biasing current (5μA)
 - 1: Increased projected biasing current (10µA)
- > Bit 4: Float Cx pins
 - 0: Ground Cx pins while not actively charged
 - 1: Float Cx pins while not actively charged
- > Bit 3: Halt charge
 - 0: Normal charging
 - 1: Halt all channel charging
- > Bit 2: Channel 0 distributed
 - 0: Self capacitive charging on CX0 pin. No distributed prox channel.
 - 1: Distributed self capacitive prox channel charging on pins CX0, RX1 & RX2 simultaneously.
- > Bit 1: Slow charging frequency on channel 1-6
 - 0: Normal charging frequency: 2MHz
 - 1: Slow charging frequency: 1MHz
- > Bit 0: Slow charging frequency on channel 0
 - 0: Normal charging frequency: 1MHz
 - 1: Slow charging frequency: 500kHz

5.11 **0x82 Event mask**

	Event mask (0x82, offset 0)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R	-	R	R	R	R	R	R			
Name	LP EVENT AMSK	-	SWIPE EVENT MASK	TAP EVENT MASK	ATI EVENT MASK	TP EVENT MASK	TOUCH EVENT MASK	PROX EVENT MASK			
Default	1	-	1	1	1	1	1	1			
Delault	0xFF										

Bit definitions:

0: Event is masked out

> Bit 5: Swipe event mask

• 0: Event is masked out

> Bit 4: Tap event mask

• 0: Event is masked out

> Bit 3: ATI event mask

• 0: Event is masked out

> Bit 2: Trackpad event mask

0: Event is masked out

> Bit 1: Touch event mask

0: Event is masked out

> Bit 0: Proximity event mask

0: Event is masked out

• 1: Event is active

1: Event is active

1: Event is active

• 1: Event is active

1: Event is active

1: Event is active

1: Event is active

5.12 0x82 offset 1 – 0x83 offset 1 Timeout periods

5.12.1 Zoom timeout period

Zoom timeout (0x82, offset 1)											
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name				Zoom time	out period						
Default	0	0	0	0	1	0	1	0			
Delault	0x0A = D'10 * 500ms = 5sec										

- > Bit 7-0:
 - 0-255: Zoom timeout period in 500ms increments.

5.12.2 Halt timeout period

			Halt time	eout (0x83,	offset 0)			
Bit Number	7	6	5	4	3	2	1	0
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Name			N	ormal mode s	ampling perio	od		
Default	0	0	1	0	1	0	0	0
Delault			0	x28 = D'40 * 5	500ms = 20se	ec		

Bit definitions:

- > Bit 7-0:
 - 0: Never halt
 - 1-254: Halt timeout period in 500ms increments.
 - 255: Always halt

5.12.3 RDY timeout period

RDY timeout (0x83, offset 1)										
Bit Number	7	6	5	4	3	2	1	0		
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Name				RDY time	out period					
Default	0	0	0	0	0	1	0	0		
Delault			0:	x04 = D'4 * 0.0	64ms = 2.56m	าร				

Bit definitions:

- > Bit 7-0:
 - 0-255: RDY timeout period in 0.64ms increments.

5.13 **0x84 Report rates**

5.13.1 Normal mode period

	NM_PERIOD (0x84, offset 0)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name				Normal m	ode period						
Default	0	0	0	0	1	0	1	0			
Delault				0x0A = D'	10 = 10ms						

- > Bit 7-0:
 - 0-255: Normal mode sampling period in ms

5.13.2 Low power period

	LP_PERIOD (0x84, offset 1)								
Bit Number	7	6	5	4	3	2	1	0	
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Name				Low pow	er period				
Default	0	0	0	0	0	0	0	0	
Delault				0x00 = Ne	ever in LP				

Bit definitions:

- > Bit 7-0:
 - 0: No low power mode entry. Always in normal mode sampling.

Warning: Trackpad LTA's are only updated during low power.

• 1-255: Low power sampling period in 16ms increments

5.14 **0x85 – 0x88 Thresholds**

5.14.1 Prox threshold CH0

PROX_THR_CH0 (0x85, offset 0)									
Bit Number	7	6	5	4	3	2	1	0	
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Name				Prox thres	shold CH0				
Default	0	0	0	0	0	1	1	0	
Delault				0x06	= D'6				

Bit definitions:

- > Bit 7-0:
 - 0-255: CH0 prox threshold value in counts

5.14.2 Touch threshold CH0

TOUCH_THR_CH0 (0x85, offset 1)								
Bit Number	7	6	5	4	3	2	1	0
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Name				Touch thre	shold CH0			
Default	0	0	1	0	1	0	0	0
Delault				0x28 =	D'40 = x			

- > Bit 7-0:
 - 0-255: CH0 touch threshold = (x / 256) * LTA

5.14.3 Touch threshold CH1

			тоисн_тн	IR_CH1 (0x8	36, offset 0)			
Bit Number	7	6	5	4	3	2	1	0
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Name				Touch thre	shold CH1			
Default	0	0	1	0	1	0	0	0
Delault				0x28 =	= D'40			

Bit definitions:

- > Bit 7-0:
 - 0-255: CH1 touch threshold = (x / 256) * LTA

5.14.4 Touch threshold CH2

	TOUCH_THR_CH2 (0x86, offset 1)								
Bit Number	7	6	5	4	3	2	1	0	
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Name				Touch thre	shold CH2				
Default	0	0	1	0	1	0	0	0	
Delault				0x28 =	= D'40				

Bit definitions:

- > Bit 7-0:
 - 0-255: CH2 touch threshold = (x / 256) * LTA

5.14.5 Touch threshold CH3

TOUCH_THR_CH3 (0x87, offset 0)								
Bit Number	7	6	5	4	3	2	1	0
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Name				Touch thre	shold CH3			
Default	0	0	1	0	1	0	0	0
Delault				0x28 =	= D'40			

- > Bit 7-0:
 - 0-255: CH3 touch threshold = (x / 256) * LTA

5.14.6 Touch threshold CH4

	TOUCH_THR_CH4 (0x87, offset 1)								
Bit Number	7	6	5	4	3	2	1	0	
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Name				Touch thre	shold CH4				
Default	0	0	1	0	1	0	0	0	
Delault				0x28 =	= D'40				

Bit definitions:

- > Bit 7-0:
 - 0-255: CH4 touch threshold = (x / 256) * LTA

5.14.7 Touch threshold CH5

	TOUCH_THR_CH5 (0x88, offset 0)								
Bit Number	7	6	5	4	3	2	1	0	
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Name				Touch thre	shold CH5				
Default	0	0	1	0	1	0	0	0	
Delault				0x28 =	= D'40				

Bit definitions:

- > Bit 7-0:
 - 0-255: CH5 touch threshold = (x / 256) * LTA

5.14.8 Touch threshold CH6

TOUCH_THR_CH6 (0x88, offset 1)									
Bit Number	7	6	5	4	3	2	1	0	
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Name				Touch thre	shold CH6				
Default	0	0	1	0	1	0	0	0	
Delault				0x28 =	= D'40				

- > Bit 7-0:
 - 0-255: CH6 touch threshold = (x/256)* LTA

5.15 0x89 - 0x8A Channel settings

5.15.1 **ATI target CH1-6**

	ATI_TARGET_CH1-6 (0x89, offset 0)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Name				ATI t	arget							
Default	0	0	1	0	0	0	0	0				
Delault			0)x20 = D'32 * 8	8 = 256 count	s						

Bit definitions:

- > Bit 7-0:
 - 0-255: ATI target (0 2040) = (ATI target value) * 8 counts

5.15.2 **ATI target CH0**

ATI_TARGET_CH0 (0x89, offset 1)										
Bit Number	7	6	5	4	3	2	1	0		
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Name				ATI tarç	get CH0					
Default	0	0	1	0	0	0	0	0		
Delault			0	x20 = D'32 *	8 = 256 count	S				

Bit definitions:

- > Bit 7-0:
 - 0-255: ATI target CH0 (0 2040) = (ATI target CH0 value) * 8 counts

5.15.3 Base value

BASE_VALUE_BYTE_CH1-6_CH0 (0x8A, offset 0)										
Bit Number	7	6	5	4	3	2	1	0		
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Name		Base valu	ie Ch1 - 6		Base value Ch0					
	0	1	0	0	0	0	1	0		
Default				0x	42					
		D'4 = 13	8 counts			D'2 = 10	6 counts			

Bit definitions:

- > Bit 7-4: Base value Ch1 6
 - b'0000 = 0: Base = 74
 - b'0001 = 1: Base = 90
 - b'0010 = 2: Base = 106

- b'0011 = 3: Base = 122
- b'0100 = 4: Base = 138
- b'0101 = 5: Base = 154

b'0110 = 6: Base = 17		h'n1	110 =	: 6· Rase	170 = ב
---	--	------	-------	-----------	---------

• b'0111 = 7: Base = 186

• b'1000 = 8: Base = 202

b'1001 = 9: Base = 218

b'1010 = 10: Base = 234

> Bit 3-0: Base value Ch0

b'0000 = 0: Base = 74

• b'0001 = 1: Base = 90

• b'0010 = 2: Base = 106

• b'0011 = 3: Base = 122

• b'0100 = 4: Base = 138

• b'0101 = 5: Base = 154

b'0110 = 6: Base = 170

• b'0111 = 7: Base = 186

• b'1011 = 11: Base = 250

b'1100 = 12: Base = 266

• b'1101 = 13: Base = 282

b'1110 = 14: Base = 298

• b'1111 = 15: Base = 314

b'1000 = 8: Base = 202

• b'1001 = 9: Base = 218

b'1010 = 10: Base = 234

• b'1011 = 11: Base = 250

• b'1100 = 12: Base = 266

• b'1101 = 13: Base = 282

• b'1110 = 14: Base = 298

• b'1111 = 15: Base = 314

5.15.4 Active channels

	ACTIVE_CHANNELS (0x8A, offset 1)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	-	R/W	R/W	R/W	R/W	R/W	R/W	-				
Name	-	CH6	CH5	CH4	CH3	CH2	CH1	CH0				
Default	-	1	1	1	1	1	1	1				
Delault				0x	7F							

Bit definitions:

> Bit 6: Channel 6

0: Channel inactive

> Bit 5: Channel 5

0: Channel inactive

Bit 4: Channel 4

• 0: Channel inactive

> Bit 3: Channel 3

0: Channel inactive

> Bit 2: Channel 2

0: Channel inactive

> Bit 1: Channel 1

0: Channel inactive

1: Channel active

Please note:

Channel 0 will always be forced active to handle zoom and wake-up from sleep

5.16 **0x8B Tap gesture settings**

5.16.1 Tap timer limit

TAP_TIMER_LIMIT (0x8B, offset 0)											
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name				Tap tim	er limit						
Defeult	0	1	0	0	1	0	1	1			
Default			()x4B = D'75 *	2ms = 150ms	3					

Bit definitions:

- > Bit 7-0:
 - 0-255: Tap timer limit in 2ms increments.

A touch and release within the tap threshold must occur in this maximum time limit to be a valid tap gesture

5.16.2 Tap threshold

TAP_THRESHOLD (0x8B, offset 1)											
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name				Tap thr	eshold						
Default	0	0	0	1	1	1	1	0			
Delault	0x1E = D'30										

Bit definitions:

- > Bit 7-0:
 - 0-255: Tap threshold.

The threshold specifies the maximum length of a square area on the trackpad coordinate output data (0x03) in which the tap must occur. Exceeding this maximum square area will not recognise a valid tap gesture.

5.17 **0x8C Swipe gesture settings**

5.17.1 Swipe timer limit

	SWIPE_TIMER_LIMIT (0x8C, offset 0)										
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name				Swipe ti	mer limit						
Default	1	0	0	1	0	1	1	0			
Delault			0	x96 = D'150 '	2ms = 300m	S					

Bit definitions:

- > Bit 7-0:
 - 0-255: Swipe timer limit in 2ms increments.

A touch, continuous swipe and a release exceeding the swipe threshold must occur in this maximum time limit to be a valid swipe gesture.

5.17.2 Swipe threshold

Swipe threshold (0x8C, offset 1)											
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name				Swipe th	nreshold						
Default	0	0	1	1	0	0	0	0			
Delault	fault 0x30 = D'48										

Bit definitions:

- > Bit 7-0:
 - 0-255: Swipe threshold.

This threshold specifies the minimum length of a continuous swipe on the trackpad coordinate output data (0x03). Any swipe shorter than this threshold in X and Y directions separately will not be recognised as a valid swipe gesture.

5.18 0x8D - 0x93 Multipliers and compensation: CH0 - CH6

5.18.1 CH0 Multipliers

Multipliers (0x8D, offset 0)											
Bit Number	7	6	5	4	3	2	1	0			
Data Access	-	-	R/W	R/W	R/W	R/W	R/W	R/W			
Name	-	-	Sens Comp								
			Compensa	ation (0x8D,	offset 1)						
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name	Compensation										

5.18.2 CH1 Multipliers

Multipliers (0x8E, offset 0)											
Bit Number	7	6	5	4	3	2	1	0			
Data Access	-	-	R/W	R/W	R/W	R/W	R/W	R/W			
Name	-	- Sens Comp									
			Compensa	ation (0x8E,	offset 1)						
Bit Number	7	6	5	4	3	2	1	0			
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Name	Compensation										

5.18.3 CH2 Multipliers

	Multipliers (0x8F, offset 0)											
Bit Number	7	6	5	4	3	2	1	0				
Data Access	-	-	R/W	R/W	R/W	R/W	R/W	R/W				
Name	-	-	Se	Sens Comp								
			Compens	ation (0x8F,	offset 1)							
Bit Number	7	6	5	4	3	2	1	0				
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Name	Compensation											

5.18.4 CH3 Multipliers

Multipliers (0x90, offset 0)								
Bit Number	7	6	5	4	3	2	1	0
Data Access	-	-	R/W	R/W	R/W	R/W	R/W	R/W
Name	-	-	Se	ens		Со	mp	
			Compens	ation (0x90,	offset 1)			
Bit Number	7	6	5	4	3	2	1	0
Data Access	R/W R/W R/W R/W R/W R/W R/W							
Name				Compe	nsation			

5.18.5 CH4 Multipliers

Multipliers (0x91, offset 0)								
Bit Number	7	6	5	4	3	2	1	0
Data Access	-	-	R/W	R/W	R/W	R/W	R/W	R/W
Name	Name Sens Comp							
			Compens	ation (0x91,	offset 1)			
Bit Number	7	6	5	4	3	2	1	0
Data Access	R/W R/W R/W R/W R/W R/W R/W							
Name	Name Compensation							

5.18.6 CH5 Multipliers

0.10.0 ette mataphore								
Multipliers (0x92, offset 0)								
Bit Number	7	6	5	4	3	2	1	0
Data Access	-	-	R/W	R/W	R/W	R/W	R/W	R/W
Name	Name Sens Comp							
			Compens	ation (0x92,	offset 1)			
Bit Number	7	6	5	4	3	2	1	0
Data Access	R/W R/W R/W R/W R/W R/W							
Name Compensation								

5.18.7 CH6 Multipliers

Multipliers (0x93, offset 0)								
Bit Number	7	6	5	4	3	2	1	0
Data Access	-	-	R/W	R/W	R/W	R/W	R/W	R/W
Name	-	-	Se	ens		Со	mp	
			Compens	ation (0x93,	offset 1)			
Bit Number	7	6	5	4	3	2	1	0
Data Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Name Compensation								

Bit definitions:

- > Offset 0, Bit 5-4: Sensitivity multipliers:
 - 1 4: Sens = Sens value +1
- > Offset 1, Bit 7-0: Compensation
 - 0-255: Compensation = Compensation value
- Bit3-0: Compensation multiplier:
- 1-16: Comp = Comp value + 1

6 Electrical characteristics

6.1 Absolute Maximum Specifications

The following absolute maximum parameters are specified for the device:

Exceeding these maximum specifications may cause damage to the device.

Table 6.1 Absolute maximum specification

Parameter	Absolute maximum
Operating temperature	-20°C to 85°C
Supply Voltage (VDDHI – GND)	3.6V
Maximum pin voltage	VDDHI + 0.5V (may not exceed VDDHI max)
Maximum continuous current (for specific Pins)	10mA
Minimum pin voltage	GND - 0.5V
Minimum power-on slope	100V/s
ESD protection	±8kV (Human body model)

Table 6.2 IQS266 General Operating Conditions

DESCRIPTION	Conditions	PARAMETER	MIN	TYP	MAX	UNIT
Supply voltage		V _{DDHI}	1.8	3.3V	3.6	V
Internal regulator output	1.8 ≤ V _{DDHI} ≤ 3.6	V _{REG}	1.63	1.66	1.69	V
Default Operating Current	3.3V	I _{IQS266NP}	-	263.81	TBC	μΑ
Low Power Setting 1	3.3V, LP=128	IQS266LP128	-	3.91	TBC	μΑ
Low Power Setting 2	3.3V, LP=160	IQS266LP160	-	3.40	TBC	μA
Low Power Setting 3	3.3V, LP=320	I _Q S266LP320	-	2.59	TBC	μA

Table 6.3 Electrode specifications – Self capacitance

DESCRIPTION	Conditions	PARAMETER	MAX	UNIT
Parasitic Capacitance CX to GND		СР	120	pF
Series resistor	$C_P = 80pF$	Rs	10	kΩ

Table 6.4 Electrode specifications – Projected capacitance

DESCRIPTION	Conditions	PARAMETER	MIN	MAX	UNIT
Parasitic Capacitance Tx to GND		Ст		100	pF
Parasitic Capacitance Rx to GND		C _R		100	pF
Mutual capacitance		C_M	0.1	10	pF
Series resistor		R _{TX}		10	kΩ
Series resistor	C _M = 1pF	R _{RX}		1	kΩ

6.2 Power On-reset/Brown out

Table 6.5 Power on-reset and brown out detection specifications

DESCRIPTION	Conditions	PARAMETER	MIN	MAX	UNIT
Power On Reset	V _{DDHI} Slope ≥ 100V/s @25°C	POR _{VDDHI}	0.3	1.6	V
VDDHI Brown Out Detect	V _{DDHI} Slope ≥ 100V/s @25°C	BOD _{VDDHI}	N/A	1.7	V
VREG Brown Out Detect	V _{DDHI} Slope ≥ 100V/s @25°C	BOD _{VREG}	N/A	1.58	V

6.3 Digital input/output trigger levels

Table 6.6 Digital input/output trigger level specifications

DESCRIPTION	Conditions	Voltage	PARAMETER	MIN	MAX	UNIT
Input low lovel voltage		1.8	Vistow	-	25	
Input low level voltage	400kHz I ² C clock frequency	3.3	V _{in_LOW}	-	30	% of VDDHI
Input high lovel veltage	requeriey	1.8	V	75	-	% OF VDDHI
Input high level voltage		3.3	V _{in_HIGH}	70	-	

6.4 Current consumption

6.4.1 Capacitive sensing

Table 6.7 Capacitive sensing current consumption

Power mode	Conditions	Report rate	TYPICAL AVG	MAX AVG ¹	UNIT
NP mode	VDD = 1.8V	10ms	257	373	μΑ
NP mode	VDD = 3.3V	10ms	258	375	μΑ
LP mode	VDD = 1.8V	128ms	3.2	5	μΑ
LP mode	VDD = 3.3V	128ms	3.9	6	μΑ
LP mode	VDD = 1.8V	160ms	2.8	4	μΑ
LP mode	VDD = 3.3V	160ms	3.4	5	μΑ
LP mode	VDD = 1.8V	320ms	1.9	3	μΑ
LP mode	VDD = 3.3V	320ms	2.5	4	μA
Off mode	VDD = 1.8V	None	0.75	0.78	μΑ
Off mode	VDD = 3.3V	None	1.42	1.61	μΑ
Halt Charge	VDD = 1.8V	320ms	1.36	TBC	uA
Halt Charge	VDD = 3.3V	320ms	1.92	TBC	uA

CH0 ATI Target = 392; CH1-6 ATI Target = 328; Event Mode; NP Segment rate = 64; Bias Current = 5 uA

1- Average measured over a number of cycles

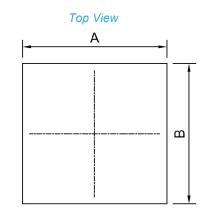
Note: Average measurements are subject to change

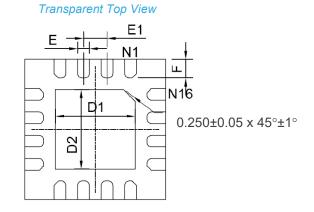
6.5 **Device timing descriptions**

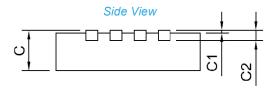
6.5.1 I²C communication timeout

The IQS266 employs a watch dog timer to ensure that the device may recover from any undefined state that might occur due to a loss of communications or external influences (such as an ESD strike). The following table specifies the timings related to a watch dog timeout.

Table 6.8 Watch dog timeouts


Parameter	Minimum	Maximum
Terminated communication during an active communication window (streaming or event mode)	62ms	-





7 Package information

7.1 Package specifications

Dimension	[mm]	Dimension	[mm]
А	3.0±0.1	D1	1.7±0.05
В	3.0±0.1	D2	1.7±0.05
С	0.75±0.05	Е	0.25±0.05
C1	0.025±0.025	E1	0.5±0.05
C2	0.203±0.05	F	0.4±0.05

Figure 7.1 *QFN(3x3)–16 Package Dimensions*

7.2 Recommended PCB footprint

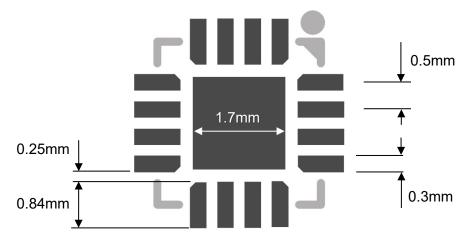
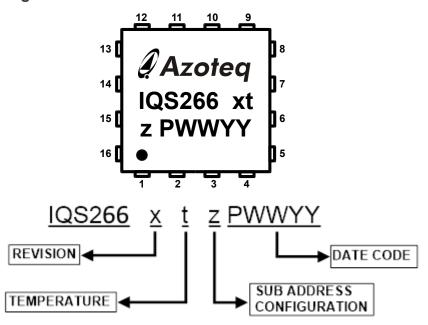
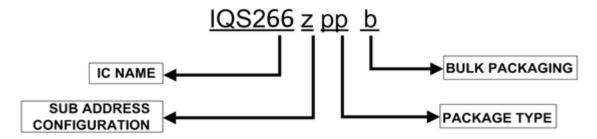



Figure 7.2 IQS266 Recommended PCB footprint



7.3 **Device marking**

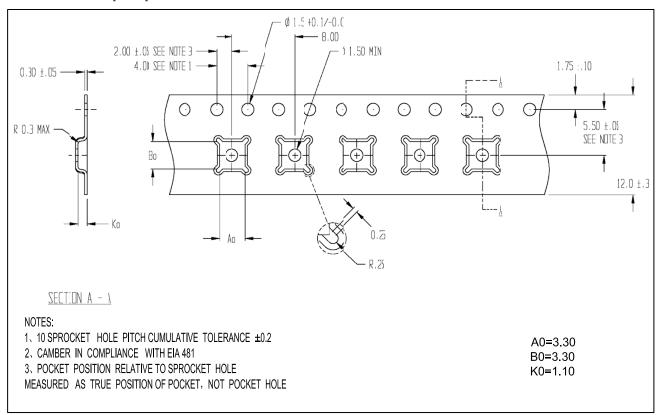
REVISION	X		IC Revision Number
TEMPERATURE RANGE	t	i	-20°C to 85°C (Industrial)
		С	0°C to 70°C (Commercial)
IC CONFIGURATION	Z	0	44H
Sub Address		1	45H
		2	46H
		3	47H
DATE CODE		Р	Package House
		WW	Week
		YY	Year

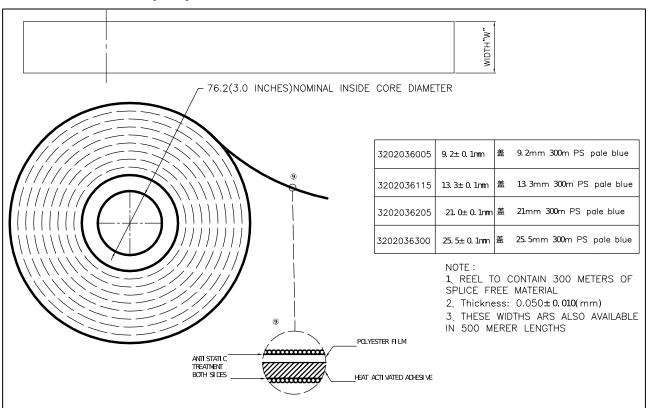
Order quantities will be subject to multiples of a full reel. Contact the official distributor for sample quantities. A list of the distributors can be found under the "Distributors" section of www.azoteq.com.

IC NAME IQSxxx = IQS266

CONFIGURATION z = Sub Address Configuration (hexadecimal)

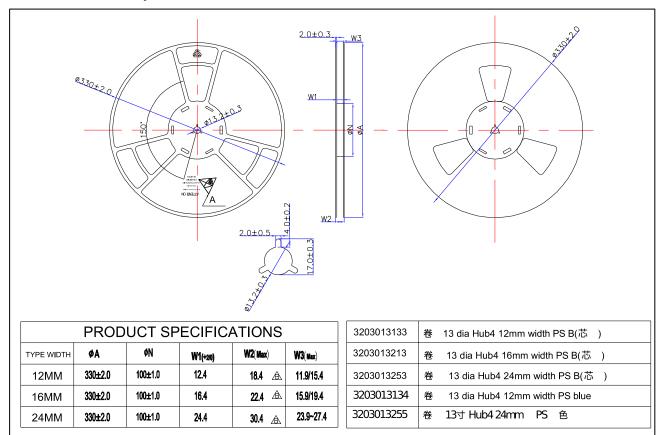
PACKAGE TYPE QN = QFN(3x3)-16


BULK PACKAGING R = Reel (3000pcs/reel)



7.4 Tape and reel specification

7.4.1 Tape specification


7.4.2 Cover tape specification

7.4.3 Reel specification

7.5 MSL Level

Moisture Sensitivity Level (MSL) relates to the packaging and handling precautions for some semiconductors. The MSL is an electronic standard for the period in which a moisture sensitive device can be exposed to ambient room conditions (approximately 30°C/85%RH see J-STD033C for more info) before reflow occur.

Package	Level (duration)
QFN(3x3)-16	MSL 1 (Unlimited at ≤30°C / 85% RH) Reflow profile peak temperature < 260°C for < 25 seconds Number of reflows < 3

8 Datasheet revisions

8.1 Revision history

Version	Action	Description	
V1.00	Added	Current consumption	
V1.01	Updated	Ready Timeout	
V1.01	Updated	Current consumption	
		Product Number Register	
V1.02	Updated	Reference Schematic	
		Minor Updates	
V1.03	Updated	Current Measurements	
V1.04	Updated	Off Mode operation	
	Added	Off-mode Current Consumption	
V1.05	Updated	Halt Charge operation	
		Reference schematic	
	Added	Halt Charge current	
		Digital input/output trigger levels	
V1.06	Updated	Package Information	
		MSL 1	
V1.07	Updated	Table 1.1	
		Description of Clear TP Flags (2.3.2)	
		Description of Halt Charge (2.4.5)	
		Description of Zoom Timeout (2.6)	
		Register description 0x05-0x12 (5.6-5.7)	
		I2C Specifications (6.3)	
		POR/BOD Specification (6.2)	
	Added	Section 3: ProxSense Module	
V1.08	Updated	Minor Changes	
V1.09	Updated	Minor Changes	
		Template	
	Added	Gesture Settings	

8.2 Errata

	USA	Asia	South Africa
Physical Address	6507 Jester Blvd Bldg 5, suite 510G Austin TX 78750 USA	Rm 2125, Glittery City Shennan Rd Futian District Shenzhen, 518033 China	1 Bergsig Avenue Paarl 7646 South Africa
Postal Address	6507 Jester Blvd Bldg 5, suite 510G Austin TX 78750 USA	Rm2125, Glittery City Shennan Rd Futian District Shenzhen, 518033 China	PO Box 3534 Paarl 7620 South Africa
Tel	+1 512 538 1995	+86 755 8303 5294 ext 808	+27 21 863 0033
Fax	+1 512 672 8442	CAL GOO	+27 21 863 1512
Email	info@azoteq.com	info@azoteq.com	info@azoteq.com

Visit www.azoteq.com

for a list of distributors and worldwide representation.

The following patents relate to the device or usage of the device: US 6,249,089; US 6,952,084; US 6,984,900; US 7,084,526; US 7,084,531; US 8,395,395; US 8,531,120; US 8,659,306; US 8,823,273; US 9,209,803; US 9,360,510; US 9,496,793; US 9,709,614; EP 2,351,220; EP 2,559,164; EP 2,748,927; EP 2,846,465; HK 1,157,080; SA 2001/2151; SA 2006/05363; SA 2014/01541; SA 2015/023634; SA 2017/02224;

AirButton®, Azoteq®, Crystal Driver®, IQ Switch®, ProxSense®, ProxFusion®, LightSense™, SwipeSwitch™, and the Q logo are trademarks of Azoteq.

The information in this Datasheet is believed to be accurate at the time of publication. Azoteq uses reasonable effort to maintain the information up-to-date and accurate, but does not warrant the accuracy, completeness or reliability of the information contained herein. All content and information are provided on an "as is" basis only, without any representations or warranties, express or implied, of any kind, including representations about the suitability of these products or information for any purpose. Azoteq disclaims all warranties and conditions with regard to these products and information, including but not limited to all implied warranties and conditions of merchantability, fitness for a particular purpose, title and non-infringement of any third party intellectual property rights. Azoteq assumes no liability for any damages or injury arising from any use of the information or the product or caused by, without limitation, failure of performance, error, omission, interruption, defect, delay in operation or transmission, even if Azoteq has been advised of the possibility of such damages. The applications mentioned herein are used solely for the purpose of illustration and Azoteq makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Azoteg products are not authorized for use as critical components in life support devices or systems. No licenses to patents are granted, implicitly, express or implied, by estoppel or otherwise, under any intellectual property rights. In the event that any of the abovementioned limitations or exclusions does not apply, it is agreed that Azoteq's total liability for all losses, damages and causes of action (in contract, tort (including without limitation, negligence) or otherwise) will not exceed the amount already paid by the customer for the products. Azoteq reserves the right to alter its products, to make corrections, deletions, modifications, enhancements, improvements and other changes to the content and information, its products, programs and services at any time or to move or discontinue any contents, products, programs or services without prior notification. For the most up-to-date information and binding Terms and Conditions please refer to www.azoteq.com.