

Fair-Rite Product's Catalog Part Data Sheet, 8995202021 Printed: 2012-03-05

Part Number: 8995202021

Frequency Range: Dimensions

Description: 95 EFD CORE

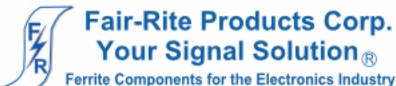
Application: Inductive Components

Where Used: Closed Magnetic Circuit

Part Type: EFD Cores

Genaric Name: EFD20

Mechanical Specifications


Weight: 7.000 (g)

Part Type Information

EFD10, EFD12, EFD15, EFD20, EFD25, EFD30

EFD (Economical Flat Design) cores have been designed to maximize volume in a low profile geometry. EFD cores allow maximum throughput power density with reasonably low mass for board level installation.

- -EFD cores can be supplied with the centerpost gapped to a mechanical dimension.
- -EFD cores can also be supplied to an AL value, these would be supplied in sets.

Fair-Rite Product's Catalog Part Data Sheet, 8995202021 Printed: 2012-03-05

Mechanical Specifications

Dim	mm	mm	nominal	inch
		tol	inch	misc.
Α	20.00	± 0.55	0.787	-
В	10.00	± 0.25	0.394	ı
С	6.65	± 0.2	0.262	ı
D	7.70	± 0.25	0.303	ı
Е	15.40	± 0.5	0.606	ı
F	8.90	± 0.3	0.350	ı
G	•	1	ı	ı
Н	•	1	ı	ı
J	-	-	-	
K	3.60	± 0.15	0.142	-

Electrical Specifications

Typical Impedance (Ω)				
Electrical Properties				
A _L (nH)	1400 ±25%			
Ae(cm ²)	0.31000			
Σ I/A(cm ⁻¹)	15.60			
I _e (cm)	4.74			
V _e (cm ³)	1.44000			
A _{min} (cm ²)	.290			

Land Patterns

V	W	Х	Υ	Z
-	-	-		-

Winding Information

Turns	Wire	1st Wire	2nd Wire
Tested	Size	Length	Length
-	-	-	-

Reel Information

Tape Width	Pitch	Parts 7 "	Parts 13 "	Parts 14 "
mm	mm	Reel	Reel	Reel
-	-	-	-	-

Package Size

Pkg Size
-
(-)

Connector Plate

# Holes	# Rows
-	-

Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A ½ turn is defined as a single pass through a hole.

∠I/A - Core Constant

A_e: Effective Cross-Sectional Area

 A_{l} - Inductance Factor $\left(\frac{L}{N^2}\right)$

I e: Effective Path Length

Ve: Effective Core Volume

NI - Value of dc Ampere-turns

N/AWG - Number of Turns/Wire Size for Test Coil

Fair-Rite Product's Catalog Part Data Sheet, 8995202021 Printed: 2012-03-05

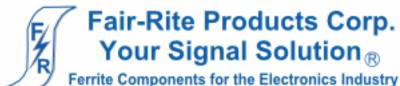
Ferrite Material Constants

Specific Heat 0.25 cal/g/°C

Thermal Conductivity 10x10⁻³ cal/sec/cm/°C

Coefficient of Linear Expansion 8 - 10x10⁻⁶/°C

Tensile Strength 4.9 kgf/mm²


Compressive Strength 42 kgf/mm²

Young's Modulus 15x10³ kgf/mm²

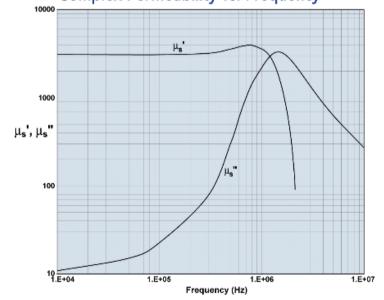
Specific Gravity $\approx 4.7 \text{ g/cm}^3$

The above quoted properties are typical for Fair-Rite MnZn and NiZn ferrites.

See next page for further material specifications.

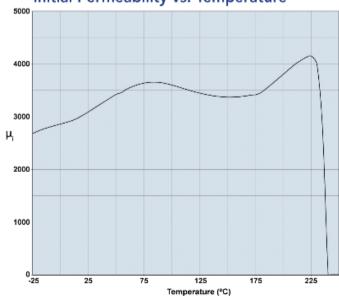
Fair-Rite Product's Catalog Part Data Sheet, 8995202021

Printed: 2012-03-05

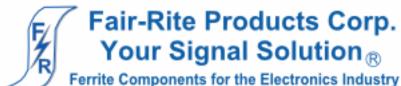

A low loss MnZn ferrite material for power applications up to 200kHz with low temperature variation. New type 95 Material is a low loss power material, which features less power loss variation over temperature (25-120°C) at moderate flux densities for operation below 200 kHz.

Shapes available in 95 material are Toroids, U cores, Pot Cores, RM, PQ, EFD, EP.

95 Material Characteristics


Property	Unit	Symbol	Value
Initial Permeability		μ_{i}	3000
@ B < 10gauss			
Flux Density	gauss	В	5000
@ Field Strength	oersted	Н	5
Residual Flux Density	gauss	B _r	800
Coercive Force	oersted	H _c	0.13
Loss Factor	10 ⁻⁶	tanδ/μ _i	3.0
@ Frequency	MHz		0.1
Temperature Factor of Initial Permeability (25 - 60°C)	10 ⁻⁶ / °C		2.5
Curie Temperature	°C	Tc	> 220
Resistivity	ohm-cm	ρ	200

Complex Permeability vs. Frequency

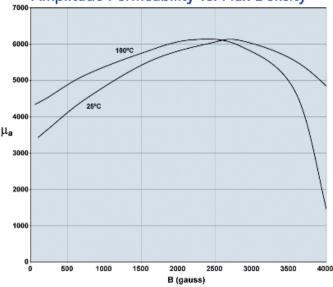


Measured on an 18/10/6mm toroid using HP 4284A and HP 4291A.

Initial Permeability vs. Temperature

Measured on an 18/10/6mm toroid at 10kHz.

Fair-Rite Product's Catalog Part Data Sheet, 8995202021 Printed: 2012-03-05

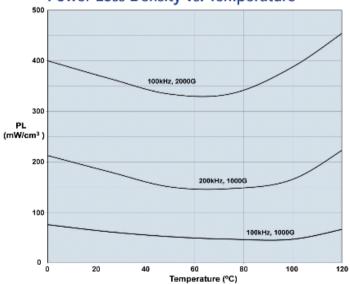


A low loss MnZn ferrite material for power applications up to 200kHz with low temperature variation.

10

Amplitude Permeability vs. Flux Density

100 (mW/cm³)


Power Loss Density vs. Flux Density

100 1000 B (gauss)

Measured on an 18/10/6mm toroid using the Clarke

Measured on an 18/10/6mm toroid at 10kHz.

Power Loss Density vs. Temperature

Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW at 100°C.

Hess 258 VAW at 100°C.

Measured on an 18/10/6mm toroid at 10kHz and H=5 oersted.