
12/19/06

APPLICATIONS

- ➤ PC-to-Peripheral Data Links
- ➤ Motor Controller Triggering
- ➤ Ethernet LANs
- ➤ Medical Instruments
- ➤ Automotive Electronics
- ➤ Digitized Video and HDTV
- ➤ Sonet/SDH Transmitters
- ➤ Robotics Communications
- ➤ Isolation from Lightning and Voltage Transients

DESCRIPTION

The IF-E99 is a very high-speed red LED housed in a "connector-less" style plastic fiber optic package. The output spectrum of the IF-E99 is produced by a GaAIAs die that peaks at a wavelength of 650 nm, one of the optimal transmission windows of PMMA plastic optical fiber. The device package features an internal micro-lens, and a precision-molded PBT housing ensures efficient optical coupling with standard 1000 µm core plastic fiber cable.

Application Highlights

The fast transition times of the IF-E99 make it suitable for high-speed digital data links. Link distances in excess of 75 meters at data rates of 155 Mbps are possible using standard 1000 μ m core plastic fiber and an IF-D98 photologic detector. The wide analog bandwidth permits direct modulation at RF frequencies exceeding 100 MHz. Drive circuit design for the IF-E99 requires good RF and digital design techniques, but is much simpler than required for laser diodes, making it a good low-cost solution in a variety of high frequency POF analog and digital applications.

FEATURES

- ◆ No Optical Design Required
- ♦ Mates with Standard 1000 µm Core Jacketed Plastic Fiber Cable
- ◆ Internal Micro-lens for Efficient Coupling
- ◆ Inexpensive Plastic Connector Housing
- ◆ Connector-Less Fiber Termination and Connection
- ◆ Interference-Free Transmission from Light-Tight Housing
- ◆ Excellent Linearity
- ◆ Visible Light Output
- ◆ RoHS compliant

MAXIMUM RATINGS

t≤10 µsec.....100 mA

Characteristics $(T_A=25^{\circ}C)$

Parameter	Symbol	Min.	Тур.	Max.	Unit
Peak Wavelength	$\lambda_{ ext{PEAK}}$	640	650	660	nm
Spectral Bandwidth (50% of I_{MAX})	Δλ	-	10	-	nm
Output Power Coupled into Plastic Fiber	Φ	875	950	1050	μW
(1 mm core diameter). Lens to Fiber distance \le .1 mm, 1 m SH4001 fiber, IF=20 mA		58	2	.21	dBm
Switching Times (10% to 90% and 90% to 10%) ($R_L\!\!=\!\!47\Omega,I_F\!\!=\!\!10$ mA)	t _r , t _f	-	-	3	ns
Capacitance (V _F =0, F=1 MHz)	C ₀	-	10	-	pF
Forward Voltage (I _F =30 mA)	V _f	-	2.05	2.3	V
Cut off frequency	f _C	-	100	-	MHz

Notes

1. A bypass capacitor $(0.1 \mu F)$ is connected to the lead at a position within 2 mm from the lead end, and a $4.7 \mu F$ capacitor is also connected nearby the power supply line.

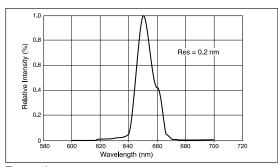
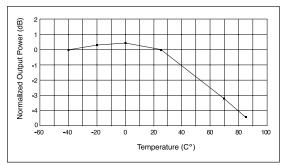



FIGURE 1. Relative intensity versus wavelength.

FIGURE 2. Optical Power output versus temperature (I_F=20mA)

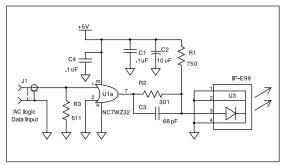


FIGURE 3. Typical interface circuit.

FIBER TERMINATION INSTRUCTIONS

- 1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90-degree angle (square).
- 2. Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens.
- 3. Screw the connector locking nut down to a snug fit, locking the fiber in place.

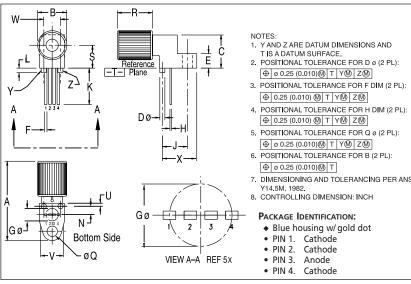


FIGURE 4. Case outline.

62

	MILLIM	ETERS	INCHES		
DIN	/ MIN	MAX	MIN	MAX	
Α	23.24	25.27	.915	.995	
В	8.64	9.14	.340	.360	
С	9.91	10.41	.390	.410	
D	1.52	1.63	.060	.064	
Е	4.19	4.70	.165	.185	
F	0.35	0.51	.014	.020	
G	3.81	3.81 BSC		.150 BSC	
Н	0.18	0.33	.007	.013	
J	7.62	7.62 BSC		.300 BSC	
K	2.04	2.84	.080	.112	
L	1.14	1.65	.045	.065	
Ν	2.54	2.54 BSC		.100 BSC	
Q	3.05	3.30	.120	.130	
R	10.48	10.99	.413	.433	
S	6.98	6.98 BSC		.275 BSC	
U	0.83	1.06	.032	.042	
٧	7.49	7.75	.295	.305	
W	5.08	5.08 BSC		0 BSC	
Х	10.10	10.68	.397	.427	

INDUSTRIAL	FIBER OPTICE	s, Inc. •	www.i-fiberoptics.com

T IS A DATUM SURFACE.

⊕ ø 0.25 (0.010)M T YM ZM

⊕ 0.25 (0.010) M T YM ZM

⊕ 0.25 (0.010) M T YM ZM

⊕ ø 0.25 (0.010)M T YM ZM

⊕ ø 0.25 (0.010)M T

PACKAGE IDENTIFICATION: ◆ Blue housing w/ gold dot

• PIN 1. Cathode • PIN 2. Cathode

• PIN 3. Anode PIN 4. Cathode

Y14.5M, 1982.