PRODUCT DISCONTINUATION NOTICE - LAST TIME BUY EXPIRES SEPTEMBER 7, 2016 DATA SHEET ## **General Description** The 5T93GL02 2.5V differential clock buffer is a user-selectable differential input to two LVDS outputs. The fanout from a differential input to two LVDS outputs reduces loading on the preceding driver and provides an efficient clock distribution network. The 5T93GL02 can act as a translator from a differential HSTL, eHSTL, LVEPECL (2.5V), LVPECL (3.3V), CML, or LVDS input to LVDS outputs. A single-ended 3.3V / 2.5V LVTTL input can also be used to translate to LVDS outputs. The redundant input capability allows for a glitchless change-over from a primary clock source to a secondary clock source up to 450MHz. Selectable inputs are controlled by SEL. During the switchover, the output will disable low for up to three clock cycles of the previously-selected input clock. The outputs will remain low for up to three clock cycles of the newly-selected clock, after which the outputs will start from the newly-selected input. A FSEL pin has been implemented to control the switchover in cases where a clock source is absent or is driven to DC levels below the minimum specifications. The 5T93GL02 outputs can be asynchronously enabled/disabled. When disabled, the outputs will drive to the value selected by the GL pin. Multiple power and grounds reduce noise. ## **Applications** Clock distribution #### **Features** - Guaranteed low skew: <50ps (maximum) - Very low duty cycle distortion: <100ps (maximum) - High speed propagation delay: <2.2ns (maximum) - Up to 450MHz operation - Selectable inputs - Hot insertable and over-voltage tolerant inputs - 3.3V/2.5V LVTTL, HSTL, eHSTL, LVEPECL (2.5V), LVPECL (3.3V), CML or LVDS input interface - Selectable differential inputs to two LVDS outputs - Power-down mode - At power-up, FSEL should be LOW - 2.5V V_{DD} 1 - -40°C to 85°C ambient operating temperature - Available in TSSOP package - Recommends IDT5T9302 if glitchless input selection is not required - Not Recommended for New Designs - For functional replacement use 8SLVP1102 ## **Pin Assignment** 20-Lead TSSOP 4.4mm x 6.5mm x 0.925mm package body G Package Top View # **Block Diagram** ## **Table 1. Pin Descriptions** | Name | T | уре | Description | |----------|--------|-------------------|--| | A[1:2] | Input | Adjustable (1, 4) | Clock input. A[1:2] is the "true" side of the differential clock input. | | Ā[1:2] | Input | Adjustable (1, 4) | Complementary clock inputs. $\overline{A[1:2]}$ is the complementary side of A[1:2]. For LVTTL single-ended operation, $\overline{A[1:2]}$ should be set to the desired toggle voltage for A[1:2]: 3.3V LVTTL VREF = 1650mV 2.5V LVTTL VREF = 1250mV | | G | Input | LVTTL | Gate control for differential outputs Q1 and $\overline{Q1}$ through Q2 and $\overline{Q2}$. When \overline{G} is LOW, the differential outputs are active. When \overline{G} is HIGH, the differential outputs are asynchronously driven to the level designated by $GL^{(2)}$. | | GL | Input | LVTTL | Specifies output disable level. If HIGH, "true" outputs disable HIGH and "complementary" outputs disable LOW. If LOW, "true" outputs disable LOW and "complementary" outputs disable HIGH. | | Q[1:2] | Output | LVDS | Clock outputs. | | Q[1:2] | Output | LVDS | Complementary clock outputs. | | SEL | Input | LVTTL | Reference clock select. When LOW, selects A2 and $\overline{\text{A2}}$. When HIGH, selects A1 and $\overline{\text{A1}}$. | | PD | Input | LVTTL | Power-down control. Shuts off entire chip. If LOW, the device goes into low power mode. Inputs and outputs are disabled. Both "true" and "complementary" outputs will pull to VDD. Set HIGH for normal operation. ⁽³⁾ | | FSEL | Input | LVTTL | At a rising edge, FSEL forces select to the input designated by SEL. Set LOW for normal operation. At power-up, FSEL should be LOW. | | V_{DD} | | Power | Power supply for the device core and inputs. | | GND | | Power | Ground. | #### NOTES: 1. Inputs are capable of translating the following interface standards: Single-ended 3.3V and 2.5V LVTTL levels Differential HSTL and eHSTL levels Differential LVEPECL (2.5V) and LVPECL (3.3V) levels Differential LVDS levels Differential CML levels - 2. Because the gate controls are asynchronous, runt pulses are possible. It is the user's responsibility to either time the gate control signals to minimize the possibility of runt pulses or be able to tolerate them in down stream circuitry. - 3. It is recommended that the outputs be disabled before entering power-down mode. It is also recommended that the outputs remain disabled until the device completes power-up after asserting PD. - 4. The user must take precautions with any differential input interface standard being used in order to prevent instability when there is no input signal. ## Table 2. Pin Characteristics (TA = +25°C, F = 1.0MHz) | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|-------------------|-----------------|---------|---------|---------|-------| | C _{IN} | Input Capacitance | | | | 3 | pF | NOTE: This parameter is measured at characterization but not tested. ## **Function Tables** ### **Table 3A. Gate Control Output Table** | Control Output | | Outputs | | | |----------------|---|----------|----------|--| | GL | G | Q[1:2] | Q[1:2] | | | 0 | 0 | Toggling | Toggling | | | 0 | 1 | LOW | HIGH | | | 1 | 0 | Toggling | Toggling | | | 1 | 1 | HIGH | LOW | | ### Table 3B. Input Selection Table | Selection SEL pin | Inputs | |-------------------|-------------------| | 0 | A2/ A2 | | 1 | A1/ A1 | # **Absolute Maximum Ratings** NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. | Item | Rating | |--|-------------------------------| | Power Supply Voltage, V _{DD} | -0.5V to +3.6V | | Input Voltage, V _I | -0.5V to +3.6V | | Output Voltage, V _O
Not to exceed 3.6V | -0.5 to V _{DD} +0.5V | | Storage Temperature, T _{STG} | -65°C to 150°C | | Junction Temperature, T _J | 150°C | # **Recommended Operating Range** | Symbol | Description | Minimum | Typical | Maximum | Units | |----------|-------------------------------|---------|---------|---------|-------| | TA | Ambient Operating Temperature | -40 | +25 | +85 | °C | | V_{DD} | Internal Power Supply Voltage | 2.3 | 2.5 | 2.7 | V | ## **DC Electrical Characteristics** Table 4A. LVDS Power Supply DC Characteristics⁽¹⁾, $T_A = -40$ °C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|---|--|---------|---------|---------|-------| | I _{DDQ} | Quiescent V _{DD}
Power Supply Current | V _{DD} = Max., All Input Clocks = LOW ⁽²⁾ ;
Outputs enabled | | | 240 | mA | | I _{TOT} | Total Power
V _{DD} Supply Current | V _{DD} = 2.7V;
F _{REFERENCE} Clock = 450MHz | | | 250 | mA | | I _{PD} | Total Power Down
Supply Current | PD = LOW | | | 5 | mA | NOTE 1: These power consumption characteristics are for all the valid input interfaces and cover the worst case conditions. NOTE 2: The true input is held LOW and the complementary input is held HIGH. Table 4B. LVTTL DC Characteristics $^{(1)}$, $T_A = -40^{\circ}C$ to $85^{\circ}C$ | Symbol | Parameter | Test Conditions | Minimum | Typical ⁽²⁾ | Maximum | Units | |------------------|-------------------------------------|---------------------------------|---------|------------------------|---------|-------| | I _{IH} | Input High Current | V _{DD} = 2.7V | | | ±5 | μΑ | | I _{IL} | Input Low Current | V _{DD} = 2.7V | | | ±5 | μΑ | | V _{IK} | Clamp Diode Voltage | $V_{DD} = 2.3V, I_{IN} = -18mA$ | | -0.7 | -1.2 | V | | V _{IN} | DC Input Voltage | | -0.3 | | 3.6 | V | | V_{IH} | DC Input High Voltage | | 1.7 | | | V | | V _{IL} | DC Input Low Voltage | | | | 0.7 | V | | V_{THI} | DC Input Threshold Crossing Voltage | | | V _{DD} /2 | | V | | V | Single-Ended Reference Voltage (3) | 3.3V LVTTL | | 1.65 | | V | | V _{REF} | Single-Ended Helefelice Voltage | 2.5V LVTTL | | 1.25 | | V | NOTE 1: See Recommended Operating Range table. NOTE 2: Typical values are at $V_{DD} = 2.5V$, +25°C ambient. NOTE 3: For A[1:2] single-ended operation, \overline{A} [1:2] is tied to a DC reference voltage. **Table 4C. Differential DC Characteristics**⁽¹⁾, $T_A = -40$ °C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical ⁽⁴⁾ | Maximum | Units | |-----------------|---|---------------------------------|---------|------------------------|----------|-------| | I _{IH} | Input High Current | V _{DD} = = 2.7V | | | ±5 | μΑ | | I _{IL} | Input Low Current | V _{DD} = = 2.7V | | | ±5 | μΑ | | V _{IK} | Clamp Diode Voltage | $V_{DD} = 2.3V, I_{IN} = -18mA$ | | -0.7 | -1.2 | V | | V _{IN} | DC Input Voltage | | -0.3 | | 3.6 | V | | V_{DIF} | DC Differential Voltage ⁽²⁾ | | 0.1 | | | V | | V _{CM} | DC Common Mode Input Voltage ⁽³⁾ | | 0.05 | | V_{DD} | V | NOTE 1: See Recommended Operating Range table. NOTE 2: VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state. NOTE 3: VCM specifies the maximum allowable range of (VTR + VCP) /2. NOTE 4: Typical values are at V_{DD} = 2.5V, +25°C ambient. Table 4D. LVDS DC Characteristics⁽¹⁾, $T_A = -40$ °C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical ⁽²⁾ | Maximum | Units | |--------------------|--|---------------------------------------|---------|------------------------|---------|-------| | V _{OT(+)} | Differential Output Voltage for the True Binary State | | 247 | | 454 | mV | | V _{OT(-)} | Differential Output Voltage for the False Binary State | | 247 | | 454 | mV | | ΔV _{OT} | Change in V _{OT} Between
Complementary Output States | | | | 50 | mV | | V _{OS} | Output Common Mode Voltage
(Offset Voltage) | | 1.125 | 1.2 | 1.375 | V | | ΔV _{OS} | Change in V _{OS} Between
Complementary Output States | | | | 50 | mV | | I _{OS} | Outputs Short Circuit Current | $V_{OUT+ and} V_{OUT-} = 0V$ | | 12 | 24 | mA | | I _{OSD} | Differential Outputs Short Circuit Current | V _{OUT+} = V _{OUT-} | | 6 | 12 | mA | NOTE 1: See Recommended Operating Range table. NOTE 2: Typical values are at $V_{DD} = 2.5V$, +25°C ambient. ### **AC Electrical Characteristics** Table 5A. HSTL Differential Input AC Characteristics, $T_A = -40$ °C to 85°C | Symbol | Parameter | Value | Units | |---------------------------------|---|----------------|-------| | V _{DIF} | Input Signal Swing ⁽¹⁾ | 1 | V | | V _X | Differential Input Signal Crossing Point ⁽²⁾ | 750 | mV | | D _H | Duty Cycle | 50 | % | | V _{THI} | Input Timing Measurement Reference Level ⁽³⁾ | Crossing Point | V | | t _R / t _F | Input Signal Edge Rate ⁽⁴⁾ | 2 | V/ns | NOTE 1.The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions. NOTE 2.A 750mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions. NOTE 3.In all cases, input waveform timing is marked at the differential cross-point of the input signals. NOTE 4. The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform. Table 5B. eHSTL AC Differential Input Characteristics, $T_A = -40$ °C to 85 °C | Symbol | Parameter | Value | Units | |---------------------------------|---|----------------|-------| | V_{DIF} | Input Signal Swing ⁽¹⁾ | 1 | V | | V _X | Differential Input Signal Crossing Point ⁽²⁾ | 900 | mV | | D _H | Duty Cycle | 50 | % | | V _{THI} | Input Timing Measurement Reference Level ⁽³⁾ | Crossing Point | V | | t _R / t _F | Input Signal Edge Rate ⁽⁴⁾ | 2 | V/ns | NOTE 1.The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions. NOTE 2.A 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions. NOTE 3.In all cases, input waveform timing is marked at the differential cross-point of the input signals. NOTE 4.The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform. Table 5C. LVEPECL (2.5V) and LVPECL (3.3V) Differential Input AC Characteristics, $T_A = -40^{\circ}\text{C}$ to 85°C | Symbol | Parameter | | Maximum | Units | |--|---|----------------------|----------------|-------| | V_{DIF} | Input Signal Swing ⁽¹⁾ | Swing ⁽¹⁾ | | mV | | V | Differential Input Cross Point Voltage ⁽²⁾ | LVEPECL | 1082 | mV | | V _X Differential Input Cross Point Voltage ⁽²⁾ | | LVPECL | 1880 | mV | | D _H | Duty Cycle | , | 50 | % | | V_{THI} | Input Timing Measurement Reference Level ⁽³⁾ | | Crossing Point | ٧ | | t_R / t_F | Input Signal Edge Rate ⁽⁴⁾ | | 2 | V/ns | NOTE 1.The 732mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions. NOTE 2.A 1082mV LVEPECL (2.5V) and 1880mV LVPECL (3.3V) crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions. NOTE 3.In all cases, input waveform timing is marked at the differential cross-point of the input signals. NOTE 4. The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform. Table 5D. LVDS Differential Input AC Characteristics, $T_A = -40$ °C to 85°C | Symbol | Parameter | Maximum | Units | |---------------------------------|---|----------------|-------| | V_{DIF} | Input Signal Swing ⁽¹⁾ | 400 | mV | | V _X | Differential Input Cross Point Voltage ⁽²⁾ | 1.2 | V | | D _H | Duty Cycle | 50 | % | | V _{THI} | Input Timing Measurement Reference Level ⁽³⁾ | Crossing Point | V | | t _R / t _F | Input Signal Edge Rate ⁽⁴⁾ | 2 | V/ns | NOTE 1.The 400mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions. NOTE 2.A 1.2V crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions. NOTE 3.In all cases, input waveform timing is marked at the differential cross-point of the input signals. NOTE 4. The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform. Table 5E. AC Differential Input Characteristics⁽¹⁾, $T_A = -40$ °C to 85°C | Symbol | Parameter | Minimum | Typical | Maximum | Units | |------------------|--|---------|---------|----------|-------| | V _{DIF} | AC Differential Voltage ⁽²⁾ | 0.1 | | 3.6 | V | | V _X | Differential Input Cross Point Voltage | 0.05 | | V_{DD} | V | | V _{CM} | Common Mode Input Voltage Range ⁽³⁾ | 0.05 | | V_{DD} | V | | V _{IN} | Input Voltage | -0.3 | | 3.6 | V | NOTE 1. The output will not change state until the inputs have crossed and the minimum differential voltage range defined by V_{DIF} has been met or exceeded. NOTE 2.V_{DIF} specifies the minimum input voltage ($V_{TR} - V_{CP}$) required for switching where V_{TR} is the "true" input level and V_{CP} is the "complement" input level. The AC differential voltage must be achieved to guarantee switching to a new state. NOTE 3.V_{CM} specifies the maximum allowable range of $(V_{TR} + V_{CP})/2$. Table 5F. AC Characteristics $^{(1,5)}$, $T_A = -40^{\circ}C$ to $85^{\circ}C$ | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |--------------------|---|-----------------------|---------|---------|---------|-------| | tsk(o) | Same Device Output
Pin-to-Pin Skew ⁽²⁾ | | | | 50 | ps | | tsk(p) | Pulse Skew ⁽³⁾ | | | | 100 | ps | | tsk(pp) | Part-to-Part Skew ⁽⁴⁾ | | | | 300 | ps | | tp _{LH} | Propagation Delay, Low-to-High | A Crosspoint to Qn/Qn | | 1.5 | 2.2 | ns | | tp _{HL} | Propagation Delay, High-to-Low | Crosspoint | | 1.5 | 2.2 | ns | | fo | Frequency Range ⁽⁶⁾ | | | | 450 | MHz | | t _{PGE} | Output Gate Enable Crossing VTHI-to-Qn/Qn Crosspoint | | | | 3.5 | ns | | t _{PGD} | Output Gate Enable Crossing VTHI-to-Qn/Qn Crosspoint Driven to GL Designated Level | | | | 3.5 | ns | | t _{PWRDN} | $\frac{\overline{PD}}{\overline{Qn}} \text{ Crossing V}_{THI}\text{-to-Qn} = V_{DD},$ | | | | 100 | μS | | t _{PWRUP} | Output Gate Disable Crossing V _{THI} to Qn/Qn Driven to Designated Level | | | | 100 | μS | | t_R / t_F | Output Rise/Fall Time ⁽⁶⁾ | 20% to 80% | 100 | | 500 | ps | NOTE: Characterized at 300MHz, unless otherwise noted. NOTE 1. AC propagation measurements should not be taken within the first 100 cycles of startup. NOTE 2. Skew measured between crosspoints of all differential output pairs under identical input and output interfaces, transitions and load conditions on any one device. NOTE 3. Skew measured is the difference between propagation delay times tp_{HL} and tp_{LH} of any differential output pair under identical input and output interfaces, transitions and load conditions on any one device. NOTE 4. Skew measured is the magnitude of the difference in propagation times between any single differential output pair of two devices, given identical transitions and load conditions at identical VDD levels and temperature. NOTE 5. All parameters are tested with a 50% input duty cycle. NOTE 6. Guaranteed by design but not production tested. # **Differential AC Timing Waveforms** ### **Output Propagation and Skew Waveforms** NOTE 1: Pulse skew is calculated using the following expression: $tsk(p) = |tp_{HL} - tp_{LH}|$ Note that the tp_{HL} and tp_{LH} shown above are not valid measurements for this calculation because they are not taken from the same pulse. NOTE 2: AC propagation measurements should not be taken within the first 100 cycles of startup. #### Differential Gate Disabled/Endable Showing Runt Pulse Generation NOTE 1: As shown, it is possible to generate runt pulses on gate disable and enable of the outputs. It is the user's responsibility to time the G signal to avoid this problem. 9 Glitchless Output Operation with Switching Input Clock Selection - 1. When SEL changes, the output clock goes LOW on the falling edge of the output clock up to three cycles later. The output then stays LOW for up to three clock cycles of the new input clock. After this, the output starts with the rising edge of the new input clock. - 2. AC propagation measurements should not be taken within the first 100 cycles of startup. ### **FSEL Operation for When Current Clock Dies** - 1. When the differential on the selected clock goes below the minimum DC differential, the outputs clock goes to an unknown state. When this happens, the SEL pin should be toggled and FSEL asserted in order to force selection of the new input clock. The output clock will start up after a number of cycles of the newly-selected input clock. - 2. The FSEL pin should stay asserted until the problem with the dead clock can be fixed in the system. - 3. It is recommended that the FSEL be tied HIGH for systems that use only one input. If this is not possible, the user must guarantee that the unused input have a differential greater than or equal to the minimum DC differential specified in the datasheet. ### **FSEL Operation for When Opposite Clock Dies** - 1. When the differential on the non-selected clock goes below the minimum DC differential, the outputs clock goes to an unknown state. When this happens, the FSEL pin should be asserted in order to force selection of the new input clock. The output clock will start up after a number of cycles of the newly-selected input clock. - 2. The FSEL pin should stay asserted until the problem with the dead clock can be fixed in the system. - 3. It is recommended that the FSEL be tied HIGH for systems that use only one input. If this is not possible, the user must guarantee that the unused input have a differential greater than or equal to the minimum DC differential specified in the datasheet. #### Selection of Input While Protecting Against When Opposite Clock Dies - 1. If the user holds FSEL HIGH, the output will not be affected by the deselected input clock. - 2. The output will immediately be driven to LOW once FSEL is asserted. This may cause glitching on the output. The output will restart with the input clock selected by the SEL pin. - 3. If the user decides to switch input clocks, the user must de-assert FSEL, then assert FSEL after toggling the SEL input pin. The output will be driven LOW and will restart with the input clock selected by the SEL pin. **Power Down Timing** NOTE 1: It is recommended that outputs be disabled before entering power-down mode. It is also recommended that the outputs remain disabled until the device completes power-up after asserting \overline{PD} . NOTE 2: The Power Down Timing diagram assumes that GL is HIGH. NOTE 3: It should be noted that during power-down mode, the outputs are both pulled to V_{DD} . In the *Power Down Timing* diagram this is shown when Qn/Qn goes to $V_{DIF} = 0$. ## **Test Circuits and Conditions** ## **Test Circuit for Differential Input** **Table 6A. Differential Input Test Conditions** | Symbol | $V_{DD} = 2.5V \pm 0.2V$ | Unit | |------------------|----------------------------------|------| | V _{THI} | Crossing of A and \overline{A} | V | **Test Circuit for DC Outputs and Power Down Tests** Test Circuit for Propagation, Skew, and Gate Enable/Disable Timing **Table 6B. Differential Input Test Conditions** | Symbol | $V_{DD} = 2.5V \pm 0.2V$ | Unit | |--------|--------------------------|------| | C. | 0 ⁽¹⁾ | pF | | oL | 8 ^(1,2) | pF | | R_L | 50 | Ω | NOTE 1: Specifications only apply to "Normal Operations" test condition. The T_{IA}/E_{IA} specification load is for reference only. NOTE 2: The scope inputs are assumed to have a 2pF load to ground. T_{IA}/E_{IA} – 644 specifies 5pF between the output pair. With C_L = 8pF, this gives the test circuit appropriate 5pF equivalent load. # **Ordering Information** ## **Table 7. Ordering Information** # **Revision History Sheet** | Rev | Table | Page | Description of Change | Date | |-----|-------|--------|---|---------| | | T3A | 4 | Added Gate Control Output Table. | | | В | ТЗВ | 4 | Added Input Selection Table. Converted datasheet format. | 8/17/09 | | В | T5F | 8
1 | Added NOTE: Characterized at 300MHz, unless otherwise noted. NRND - Not Recommended for New designs | 1/18/13 | | В | Т7 | 15 | Ordering Information - removed leaded device, PDN N-13-11 Updated data sheet format | 3/11/15 | | В | | 1 | Product Discontinuation Notice - last time buy expires September 7, 2016. PDN N-16-02 | 3/10/16 | **Corporate Headquarters** 6024 Silver Creek Valley Road San Jose, CA 95138 USA Sales 1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com **Tech Support** email: clocks@idt.com DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties. IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT. While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments. Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Product specification subject to change without notice. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners. Copyright ©2015 Integrated Device Technology, Inc.. All rights reserved.