

GENERAL DESCRIPTION

The ICS8343-01 is a low skew, 1-to-16 LVCMOS/ LVTTL Fanout Buffer and a member of the HiPerClockSTM family of High Performance Clock Solutions from ICS. The ICS8343-01 single ended clock input accepts LVCMOS or LVTTL input levels.

The ICS8343-01 operates at 3.3V, 2.5V and mixed 3.3V input and 2.5V supply modes over the commercial temperature range. Guaranteed output and part-to-part skew characteristics make the ICS8343-01 ideal for those clock distribution applications demanding well defined performance and repeatability.

FEATURES

- 16 LVCMOS/LVTTL outputs
- 1 LVCMOS/LVTTL clock input
- · CLK can accept the following input levels: LVCMOS, LVTTL
- Maximum output frequency: 200MHz
- Dual output enable inputs facilitates 1-to-16 or 1-to-8 input to output modes
- All inputs are 5V tolerant
- Output skew: 250ps (maximum)
- Part-to-part skew: 700ps (maximum)
- Full 3.3V and 2.5V or mixed 3.3V core/2.5V operating supply
- 0°C to 70°C ambient operating temperature
- Lead-Free package available
- · Industrial temperature information available upon request

BLOCK DIAGRAM

PIN ASSIGNMENT

TABLE 1. PIN DESCRIPTIONS

Number	Name	Ту	ре	Description
1, 2, 3	V _{DD1}	Power		Q0 thru Q7 output supply pins.
4, 5	Q3, Q4	Output		LVCMOS/LVTTL clock outputs. 7Ω typical output impedance.
6, 7, 8, 17, 18, 19	GND	Power		Power supply ground.
9, 10, 11	Q5, Q6, Q7	Output		LVCMOS/LVTTL clock outputs. 7Ω typical output impedance.
12	CLK	Input	Pulldown	LVCMOS/LVTTL clock input / 5V tolerant.
13	V _{DD}	Power		Core supply pin.
14, 15, 16	Q8, Q9, Q10	Output		LVCMOS/LVTTL clock outputs. 7Ω typical output impedance.
20, 21	Q11, Q12	Output		LVCMOS/LVTTL clock outputs. 7Ω typical output impedance.
22, 23, 24	V _{DD2}	Power		Q8 thru Q15 output supply pins.
25, 26, 27	Q13, Q14, Q15	Output		LVCMOS/LVTTL clock outputs. 7Ω typical output impedance.
28	OE2	Input	Pullup	Output enable. When low forces outputs Q8 thru Q15 to HiZ state. 5V tolerant. LVCMOS/LVTTL interface levels.
29	OE1	Input	Pullup	Output enable. When low forces outputs Q0 thru Q7 to HiZ state. 5V tolerant. LVCMOS/LVTTL interface levels.
30, 31, 32	Q0, Q1, Q2	Output		LVCMOS/LVTTL clock outputs. 7Ω typical output impedance.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
	Power Dissipation Capacitance	$V_{DD}, V_{DD1}, V_{DD2} = 3.465V$		11		pF
	(per output)	$V_{DD1}, V_{DD2} = 2.63V$		9		pF
R _{PULLUP}	Input Pullup Resistor			51		KΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		KΩ
R _{OUT}	Output Impedance	$V_{DD}, V_{DD1}, V_{DD2} = 3.3V$	5	7	12	Ω

TABLE 3. FUNCTION TABLE

Inp	outs	Outputs		
OE1 OE2		Q0:Q7	Q8:Q15	
0	0	HiZ	HiZ	
1	0	Active	HiZ	
0	1	HiZ	Active	
1	1	Active	Active	

NOTE: OE1 and OE2 are 5V tolerant.

ICS8343-01 LOW SKEW, 1-TO-16 LVCMOS / LVTTL FANOUT BUFFER

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD}	4.6V
Inputs, V _I	-0.5V to $V_{_{\rm DD}}$ + 0.5 V
Outputs, V _o	-0.5V to V_{DDx} + 0.5V
Package Thermal Impedance, $\boldsymbol{\theta}_{_{JA}}$	47.9°C/W (0 lfpm)
Storage Temperature, T _{STG}	-65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

TABLE 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DD1} = V_{DD2} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, Ta = 0° to 70°C to 7

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDx}	Output Supply Voltage; NOTE 1		3.135	3.3	3.465	V
			2.375	2.5	2.625	V
I _{DD}	Power Supply Current				35	mA
I _{DDx}	Output Supply Current; NOTE 2				14	mA

NOTE 1: V_{DDx} denotes V_{DD1} and V_{DD2} . NOTE 2: I_{DDx} denotes the sum of I_{DD1} and I_{DD2} .

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V _{DDx}	Output Supply Voltage; NOTE 1		2.375	2.5	2.625	V
I _{DD}	Power Supply Current				34	mA
	Output Supply Current; NOTE 2				13	mA

Table 4B. Power Supply DC Characteristics, $V_{DD} = V_{DD1} = V_{DD2} = 2.5V\pm5\%$, Ta = 0° to 70°C

NOTE 1: V_{DDx} denotes V_{DD1} and V_{DD2} . NOTE 2: I_{DDx} denotes the sum of I_{DD1} and I_{DD2} .

ICS8343-01 LOW SKEW, 1-TO-16 LVCMOS / LVTTL FANOUT BUFFER

TABLE 4C. LVCMOS / LVTTL DC Characteristics, $V_{DD} = V_{DD1} = V_{DD2} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$; $V_{DD} = 3.3V \pm 5\%$, $V_{DD1} = V_{DD2} = 2.5V \pm 5\%$, TA = 0° to 70°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V	Input High Voltage	OE1, OE2		2		V _{DD} + 0.3	V
V _{IH}	Input High Voltage	CLK		2		V _{DD} + 0.3	V
N/		OE1, OE2		-0.3		0.8	V
V _{IL}	Input Low Voltage	CLK		-0.3		1.3	V
1	Input High Current	OE1, OE2	$V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$			5	μA
IIH		CLK	$V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$			150	μA
1		OE1, OE2	$V_{_{ m DD}} = 3.465 V \text{ or } 2.625 V,$ $V_{_{ m IN}} = 0 V$	-150			μA
I _{IL}	L Input Low Current	CLK	$V_{_{ m DD}} = 3.465 V \text{ or } 2.625 V,$ $V_{_{ m IN}} = 0 V$	-5			μA
V	Output Lligh Valtage		$V_{DD1} = V_{DD2} = 3.465V$	2.6			V
V _{OH}	Output High Voltage	, NOTE T	$V_{DD1} = V_{DD2} = 2.625V$	1.8			V
V _{OL}	Output Low Voltage;	NOTE 1	$V_{DD1} = V_{DD2} = 3.465V \text{ or } 2.625V$			0.5	V
I _{OZL}	Output Tristate Curr	ent Low				5	μA
I _{OZH}	Output Tristate Curr	ent High				5	μA

NOTE 1: Outputs terminated with 50 Ω to V_{DDx}/2. See Parameter Measurement Information, "Output Load Test Circuit Diagrams".

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				200	MHz
t _{pLH}	Propagation Delay; NOTE 1	<i>f</i> ≤200MHz	2.0		4.0	ns
<i>t</i> sk(o)	Output Skew; NOTE 2, 4	Measured on rising edge @V _{DDx} /2			250	ps
<i>t</i> sk(pp)	Part-to-Part Skew; NOTE 3, 4	Measured on rising edge $@V_{DDx}/2$			700	ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	0.4		1.5	ns
odc	Output Duty Cycle	<i>f</i> ≤ 133MHz	45		55	%
t _{PW}	Output Pulse Width	<i>f</i> > 133MHz	t _{PERIOD} /2 - 0.25	$t_{PERIOD}/2$	$t_{PERIOD}/2 + 0.25$	ns

TABLE 5A. AC CHARACTERISTICS, $V_{DD} = V_{DD1} = V_{DD2} = 3.3V \pm 5\%$, TA = 0° to 70°C

All parameters measured at f_{MAX} unless noted otherwise. NOTE 1: Measured from $V_{DD}/2$ of the input to $V_{DDX}/2$ of the output. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{DDX}/2$. NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at V_{DDV}/2.

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

TABLE 5B. AC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DD1} = V_{DD2} = 2.5V \pm 5\%$, TA = 0° to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				200	MHz
t _{pLH}	Propagation Delay; NOTE 1	<i>f</i> ≤ 200MHz	2.0		4.5	ns
<i>t</i> sk(o)	Output Skew; NOTE 2, 4	Measured on rising edge @V _{DDx} /2			250	ps
<i>t</i> sk(pp)	Part-to-Part Skew; NOTE 3, 4	Measured on rising edge @V _{DDx} /2			700	ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	0.4		1.0	ns
odc	Output Duty Cycle	<i>f</i> ≤ 133MHz	40		60	%

All parameters measured at f_{MAX} unless noted otherwise. NOTE 1: Measured from $V_{DD}/2$ of the input to $V_{DDx}/2$ of the output.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DD}/2. NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{nn}/2$.

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

TABLE 5C. AC CHARACTERISTICS	$V_{DD} = V_{DD}$	₂ = 3.3V±5%, V _{DD}	₁ = 2.5V±5%, Та = 0° то 70°С
------------------------------	-------------------	---	---

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				200	MHz
<i>t</i> sk(o)	Output Skew; NOTE 1	Measured on rising edge @V _{DDx} /2			250	ps

All parameters measured at f_{MAX} unless noted otherwise.

NOTE 1: Defined as skew across outputs at the same supply voltages within a bank, and with equal load conditions.

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				133	MHz
t _{pLH}	Propagation Delay; NOTE 1	<i>f</i> ≤ 200MHz	2.0		4.0	ns
<i>t</i> sk(o)	Output Skew; NOTE 2, 4	Measured on rising edge $@V_{DDx}/2$			250	ps
<i>t</i> sk(pp)	Part-to-Part Skew; NOTE 3, 4	Measured on rising edge @V _{DDx} /2			1	ns
t _R / t _F	Output Rise/Fall Time	20% to 80%	0.4		1.0	ns
odc	Output Duty Cycle	<i>f</i> ≤ 133MHz	40		60	%

TABLE 5D. AC CHARACTERISTICS, $V_{DD} = V_{DD1} = V_{DD2} = 2.5V\pm5\%$, TA = 0° TO 70°C

All parameters measured at $\mathbf{f}_{_{\rm MAX}}$ unless noted otherwise.

NOTE 1: Measured from $V_{DD}/2$ of the input to $V_{DDx}/2$ of the output.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDV}/2. NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{\text{DDx}}/2$.

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

PARAMETER MEASUREMENT INFORMATION

RELIABILITY INFORMATION

TABLE 6. $\boldsymbol{\theta}_{JA} \text{vs.}$ Air Flow Table for 32 Lead LQFP

θ _{JA} by Velocity (Line	ear Feet per Min	ute)	
	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	67.8°C/W	55.9°C/W	50.1°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	47.9°C/W	42.1°C/W	39.4°C/W
NOTE: Most modern PCB designs use multi-layered boa	ards. The data in the s	econd row perta	ins to most designs.

TRANSISTOR COUNT

The transistor count for ICS8343-01 is: 985

PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP

TABLE 7. PACKAGE DIMENSIONS

JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS				
0/4/201	BBA			
SYMBOL	MINIMUM	NOMINAL	MAXIMUM	
Ν		32		
Α			1.60	
A1	0.05		0.15	
A2	1.35	1.40	1.45	
b	0.30	0.37	0.45	
с	0.09		0.20	
D	9.00 BASIC			
D1	7.00 BASIC			
D2	5.60 Ref.			
E	9.00 BASIC			
E1	7.00 BASIC			
E2	5.60 Ref.			
е	0.80 BASIC			
L	0.45	0.60	0.75	
θ	0°		7°	
ccc			0.10	

8343AY-01

www.icst.com/products/hiperclocks.html

ICS8343-01 Low Skew, 1-to-16 LVCMOS / LVTTL FANOUT BUFFER

TABLE 8. ORDERING INFORMATION

Part/Order Number	Marking	Package	Count	Temperature
ICS8343AY-01	ICS8343AY-01	32 Lead LQFP	250 per tray	0°C to 70°C
ICS8343AY-01T	ICS8343AY-01	32 Lead LQFP on Tape and Reel	1000	0°C to 70°C
ICS8343AY-01LF	ICS8343AY01L	32 Lead "Lead-Free" LQFP	250 per tray	0°C to 70°C
ICS8343AY-01LFT	ICS8343AY01L	32 Lead "Lead-Free" LQFP on Tape and Reel	1000	0°C to 70°C

The aforementioned trademark, HiPerClockSTM and FEMTOCLOCKSTM is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries. While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.

Integrated Circuit Systems, Inc.

ICS8343-01 Low Skew, 1-to-16 LVCMOS / LVTTL FANOUT BUFFER

REVISION HISTORY SHEET					
Rev	Table Page Description of Change		Date		
A	T2	2	Pin Characteristics Table - changed C _{IN} 4pF max to 4pF typical. Added to R _{OUT} , 5Ω min. and 12Ω max.	9/18/03	
	Т8	11	Ordering Information correct package column from 48 Lead to 32 Lead.		
В	T5C	5	Added Mixed AC Characteristics Table. Updated format.	8/13/04	
В	Т8	9	Added Lead-Free marking to Ordering Information Table.	9/16/04	