

GENERAL DESCRIPTION

The ICS83940 is a low skew, 1-to-18 LVPECL-to-LVCMOS/ LVTTL Fanout Buffer. The ICS83940 has twoselectable clock inputs. The PCLK, nPCLK pair can accept LVPECL, CML, or SSTL input levels. The LVCMOS_CLK can accept LVCMOS or LVTTL input levels. The low impedance LVCMOS/LVTTL outputs are designed to drive 50Ω series or parallel terminated transmission lines.

The ICS83940 is characterized at full 3.3V, full 2.5V and mixed 3.3V input and 2.5V output operating supply modes. Guaranteed output and part-to-part skew characteristics make the ICS83940 ideal for those clock distribution applications demanding well defined performance and repeatability.

FEATURES

- Eighteen LVCMOS/LVTTL outputs, 16Ω typical output impedance
- Selectable LVCMOS_CLK or LVPECL clock inputs
- PCLK, nPCLK supports the following input types: LVPECL, CML, SSTL
- LVCMOS_CLK accepts the following input levels: LVCMOS or LVTTL
- Maximum output frequency: 250MHz
- Output skew: 150ps (maximum)
- Part to part skew: 750ps (maximum)
- Full 3.3V or 2.5V supply modes
- 0°C to 70°C ambient operating temperature
- Industrial temperature information available upon request
- · Lead-Free package fully RoHS compliant
- NOT RECOMMENDED FOR NEW DESIGNS For New Designs Use: ICS83940D

PIN ASSIGNMENT

32-Lead LQFP 7mm x 7mm x 1.4mm package body **Y Pacakge** Top View

BLOCK DIAGRAM

TABLE 1. PIN DESCRIPTIONS

Number	Name	Т	уре	Description
1, 2, 12, 17, 25	GND	Power		Power supply ground.
3	LVCMOS_CLK	Input	Pulldown	Clock input. LVCMOS / LVTTL interface levels.
4	CLK_SEL	Input	Pulldown	Clock select input. Selects LVCMOS / LVTTL clock input when HIGH. Selects PCLK, nPCLK inputs when LOW. LVCMOS / LVTTL interface levels.
5	PCLK	Input	Pulldown	Non-inverting differential LVPECL clock input.
6	nPCLK	Input	Pullup	Inverting differential LVPECL clock input.
7, 21	V _{DD}	Power		Core supply pins.
8, 16, 29	V _{DDO}	Power		Output supply pins.
9, 10, 11, 13, 14, 15, 18, 19, 20, 22, 23, 24, 26, 27, 28, 30, 31, 32	Q17, Q16, Q15, Q14, Q13, Q12, Q11, Q10, Q9, Q8, Q7, Q6, Q5, Q4, Q3, Q2, Q1, Q0	Output		Clock outputs. 16 Ω typical output impedance. LVCMOS / LVTTL interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C	Input Capacitance			4		pF
	Power Dissipation Capacitance	$V_{DD}, V_{DDO} = 3.47$		13		pF
C _{PD}	(per output)	$V_{DD}, V_{DDO} = 2.625$		11		pF
R _{PULLUP}	Input Pullup Resistor			51		KΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		KΩ
R _{OUT}	Output Impedance		11	16	21	Ω

TABLE 3A. CLOCK SELECT FUNCTION TABLE

Control Input	Clock		
CLK_SEL	PCLK, nPCLK	LVCMOS_CLK	
0	Selected	De-selected	
1	De-selected	Selected	

TABLE 3B. CLOCK INPUT FUNCTION TABLE

	Inj	outs		Outputs	Input to Output Mode	Delerity
CLK_SEL	LVCMOS_CLK	PCLK	nPCLK	Q0:Q17	Input to Output Mode	Polarity
0	—	0	1	LOW	Differential to Single Ended	Non Inverting
0	—	1	0	HIGH	Differential to Single Ended	Non Inverting
0	_	0	Biased; NOTE 1	LOW	Single Ended to Single Ended	Non Inverting
0	—	1	Biased; NOTE 1	HIGH	Single Ended to Single Ended	Non Inverting
0	—	Biased; NOTE 1	0	HIGH	Single Ended to Single Ended	Inverting
0	—	Biased; NOTE 1	1	LOW	Single Ended to Single Ended	Inverting
1	0	—		LOW	Single Ended to Single Ended	Non Inverting
1	1	—		HIGH	Single Ended to Single Ended	Non Inverting
NOTE 1. DI	ance refer to the	Inclination Information	tion postion "	Wiring the Diffe	rential Input to Accort Single En	dod L ovolo"

NOTE 1: Please refer to the Application Information section. "Wiring the Differential Input to Accept Single Ended Levels".

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD}	4.6V
Inputs, V _I	-0.5V to $V_{_{\rm DD}}\!+0.5V$
Outputs, V _o	-0.5V to V_{DDO} + 0.5V
Package Thermal Impedance, $\boldsymbol{\theta}_{_{JA}}$	47.9°C/W (0 lfpm)
Storage Temperature, T _{STG}	-65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, TA = 0° to 70°

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDO}	Output Supply Voltage		3.135	3.3	3.465	V
I _{DD}	Power Supply Current				25	mA
I _{DDO}	Output Supply Current				25	mA

Table 4B. DC Characteristics, $V_{\text{dd}} = V_{\text{ddo}} = 3.3V \pm 5\%$, Ta = 0° to 70°

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage	LVCMOS_CLK		2.4		V _{DD}	V
V _{IL}	Input Low Voltage	LVCMOS_CLK				0.8	V
V _{PP}	Peak-to-Peak Input Voltage	PCLK, nPCLK		300			mV
V _{CMR}	Input Common Mode Voltage; NOTE 1, 2	PCLK, nPCLK		GND + 1.5		V _{DD}	V
I _{IN}	Input Current					±200	μA
V _{OH}	Output High Voltage		I _{он} = -20mА	2.4			V
V _{OL}	Output Low Voltage		I _{оL} = 20mA			0.5	V

NOTE 1: For single ended applications, the maximum input voltage for PCLK, nPCLK is V_{np} + 0.3V.

NOTE 2: Common mode voltage is defined as $V_{\mbox{\tiny IH}}.$

TABLE 5A. AC CHARACTERISTICS, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, TA = 0° to 70°

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency					250	MHz
	Propagation Delay;	PCLK, nPCLK; NOTE 1, 5	$f \leq 150 MHz$	2		3.4	ns
г_{рLH}	t _{pLH}	LVCMOS_CLK; NOTE 2, 5	$f \leq 150 MHz$	2.6		3.8	ns
+	Propagation Delay;	PCLK, nPCLK; NOTE 1, 5	f > 150MHz	2		3.7	ns
t _{pLH}	LVCMOS_CLK; NOTE 2, 5		f > 150MHz	2.6		4	ns
<i>t</i> sk(o)	Output Skew;	PCLK, nPCLK	Measured on rising edge			150	ps
<i>i</i> sk(0)	NOTE 3, 5	LVCMOS_CLK	@V _{DDO} /2			150	ps
tok(nn)	Part-to-Part Skew;	PCLK, nPCLK	f < 150MHz			1.4	ns
<i>t</i> sk(pp)	NOTE 6	LVCMOS_CLK	f < 150MHz			1.2	ns
t = 1 - ()	Part-to-Part Skew;	PCLK, nPCLK	f > 150MHz			1.7	ns
<i>t</i> sk(pp)	NOTE 6	LVCMOS_CLK	f > 150MHz			1.4	ns
tol (in in)	Part-to-Part Skew;	PCLK, nPCLK	Measured on rising edge			850	ps
<i>t</i> sk(pp)	NOTE 4, 5	LVCMOS_CLK	@V _{DDO} /2			750	ps
t _R	Output Rise Time		0.5 to 2.4V	0.3		1.2	ns
t _F	Output Fall Time		0.5 to 2.4V	0.3		1.2	ns
odc	Output Duty Cycle		f < 134MHz	45	50	55	%

All parameters measured at 200MHz unless noted otherwise.

NOTE 1: Measured from the differential input crossing point to the output $V_{ppo}/2$.

NOTE 2: Measured from $V_{DD}/2$ to $V_{DDO}/2$. NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{\text{DDO}}/2$.

NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages, same temperature, and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{DDO}/2$.

NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 6: Defined as skew between outputs on different devices, across temperature and voltage ranges, and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{DDO}/2$.

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V _{DDO}	Output Supply Voltage		2.375	2.5	2.625	V
I _{DD}	Power Supply Current				25	mA
I _{DDO}	Output Supply Current				25	mA

TABLE 4C. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 2.5V \pm 5\%$, TA = 0° to 70°

TABLE 4D. DC CHARACTERISTICS, $V_{DD} = V_{DDO} = 2.5V \pm 5\%$, TA = 0° to 70°

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V	Input High Voltage	LVCMOS_CLK		2		V _{DD}	V
V	Input Low Voltage	LVCMOS_CLK				0.8	V
V _{PP}	Peak-to-Peak Input Voltage	PCLK, nPCLK		300			mV
V _{CMR}	Input Common Mode Voltage; NOTE 1, 2	PCLK, nPCLK		GND + 1.5		V _{DD}	V
I _{IN}	Input Current					±200	μA
V _{OH}	Output High Voltage		I _{он} = -12mA	1.8			V
V _{OL}	Output Low Voltage		I _{oL} = 12mA			0.5	V

NOTE 1: For single ended applications, the maximum input voltage for PCLK, nPCLK is V_DD + 0.3V.

NOTE 2: Common mode voltage is defined as V_{III}.

Symbol Parameter **Test Conditions** Minimum Typical Maximum Units **Output Frequency** MHz 200 f_{MAX} PCLK, nPCLK; 2 $f \le 150 MHz$ 4.6 ns Propagation Delay; **NOTE 1, 5** t_{pLH} LVCMOS_CLK; $f \le 150 MHz$ 2.7 4.4 ns **NOTE 2, 5** PCLK, nPCLK; f > 150MHz 2.2 4.4 ns Propagation Delay; NOTE 1, 5 t_{pLH} LVCMOS CLK; f > 150MHz 2.7 4.4 ns **NOTE 2, 5** PCLK. nPCLK 200 Output Skew; ps Measured on rising edge tsk(o) **NOTE 3, 5** @V_{DDO}/2 LVCMOS_CLK 200 ps PCLK, nPCLK f < 150MHz 2.6 ns Part-to-Part Skew; tsk(pp) NOTE 6 LVCMOS_CLK f < 150MHz 1.7 ns PCLK, nPCLK f > 150MHz 2.2 ns Part-to-Part Skew; tsk(pp) NOTE 6 LVCMOS_CLK f > 150MHz 1.7 ns Part-to-Part Skew; PCLK, nPCLK 1.2 ns Measured on rising edge tsk(pp) **NOTE 4.5** LVCMOS_CLK @V_{DDO}/2 1.0 ns **Output Rise Time** 0.5 to 1.8V 0.3 1.2 t_R ns **Output Fall Time** 0.5 to 1.8V t_F 0.3 1.2 ns f < 134MHz Output Duty Cycle 45 55 % odc

TABLE 5B. AC CHARACTERISTICS, $V_{DD} = V_{DDO} = 2.5V \pm 5\%$, TA = 0° to 70°

All parameters measured at 200MHz unless noted otherwise.

NOTE 1: Measured from the differential input crossing point to the output V_{ppo}/2.

NOTE 2: Measured from $V_{DD}/2$ to $V_{DDO}/2$. NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDO}/2.

NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages, same temperature, and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at V_{DDO}/2.

NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 6: Defined as skew between outputs on different devices, across temperature and voltage ranges, and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at V_{DDO}/2.

PARAMETER MEASUREMENT INFORMATION

APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF = $V_{\mbox{\tiny DD}}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and V_{DD} = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.

FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT

LVPECL CLOCK INPUT INTERFACE

The PCLK /nPCLK accepts LVPECL, CML, SSTL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. Figures 2A to 2E show interface examples for the PCLK/nPCLK input driven by the most common driver types. The input interfaces suggested here

are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

FIGURE 2C. PCLK/NPCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER

FIGURE 2E. PCLK/NPCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER WITH AC COUPLE

FIGURE 2D. PCLK/NPCLK INPUT DRIVEN BY A 3.3V LVDS DRIVER

RELIABILITY INFORMATION

Table 6. $\boldsymbol{\theta}_{\text{JA}} \text{vs.}$ Air Flow Table for 32 Lead LQFP

	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	67.8°C/W	55.9°C/W	50.1°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	47.9°C/W	42.1°C/W	39.4°C/W

TRANSISTOR COUNT

The transistor count for ICS83940 is: 820

Α

A2

2 3

D1

-b

1

θ

SEATING

PLANE

- C -

С

TABLE	7.	PACKAGE	DIMENSIONS
IADEE		I AONAGE	BINEROIONO

t -A1

JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS						
SYMBOL	BBA					
	MINIMUM	NOMINAL	MAXIMUM			
N	32					
Α			1.60			
A1	0.05		0.15			
A2	1.35	1.40	1.45			
b	0.30	0.37	0.45			
с	0.09		0.20			
D	9.00 BASIC					
D1	7.00 BASIC					
D2	5.60 Ref.					
E	9.00 BASIC					
E1	7.00 BASIC					
E2	5.60 Ref.					
е	0.80 BASIC					
L	0.45	0.60	0.75			
θ	0°		7°			
ccc			0.10			

REFERENCE DOCUMENT: JEDEC PUBLICATION 95, MS-026

TABLE 8. ORDERING INFORMATION

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
83940BY	ICS83940BY	32 Lead LQFP	Tray	0°C to 70°C
83940BYT	ICS83940BY	32 Lead LQFP	1000 Tape & Reel	0°C to 70°C
83940BYLF	ICS83940BYLF	32 Lead "Lead-Free" LQFP	Tray	0°C to 70°C
83940BYLFT	ICS83940BYLF	32 Lead "Lead-Free" LQFP	1000 Tape & Reel	0°C to 70°C

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Inc. (IDT) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

REVISION HISTORY SHEET						
Rev	Table	Page	Description of Change			
Α	T2	2	CPD Value changed from 10pF to 13pF for 3.47V and added 11pF for 2.625V	4/25/02		
		1	In Features section, first bullet changed Output Impedance from 23Ω to 16Ω .			
A		2	T1 Pin Description, changed Q outputs description from 23Ω to 16Ω output impedanace.	5/23/02		
Α			Updated format.	12/12/02		
	T5A	4	3V AC Characteristics - corrected Part-to-Part Skew (f<150MHz) unit from ps to ns.	3/17/04		
A		7	Updated Single Ended Signal Driving Differential Input diagram.			
		8	Added LVPECL Input Interface section.			
А	Т8	1 11	Features Section - added Lead-Free bullet. Ordering Information Table - added Lead-Free part number.	12/14/04		
	Ŧo		Updated datasheet's header/footer with IDT from ICS.	444740		
A	Т8	11 13	Removed "ICS" prefix from Part/Order Number column. Added Contact Page.	11/17/10		
А		1	Not Recommended For New Designs For new designs use 83940D	5/21/13		

We've Got Your Timing Solution.

6024 Silver Creek Valley Road San Jose, CA 95138

Sales

800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT Tech Support netcom@idt.com +480-763-2056

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without notice or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright 2013. All rights reserved.