DATASHEET

GENERAL DESCRIPTION

The 8521 is a low skew, 1-to-9 Differential-to-HSTL Fanout Buffer. The 8521 has two selectable clock inputs. The CLK, nCLK pair can accept most standard differential input levels. The PCLK, nPCLK pair can accept LVPECL, CML, or SSTL input levels. The clock enable is internally synchronized to eliminate runt pulses on the outputs during asynchronous assertion/deassertion of the clock enable pin.

Guaranteed output skew, part-to-part skew and crossover voltage characteristics make the 8521 ideal for today's most advanced applications, such as IA64 and static RAMs.

FEATURES

- 9 HSTL outputs
- Selectable differential CLK, nCLK or LVPECL clock inputs
- CLK, nCLK pair can accept the following differential input levels: LVPECL, LVDS, HSTL, SSTL, HCSL
- PCLK, nPCLK supports the following input types: LVPECL, CML, SSTL
- Maximum output frequency: 500MHz
- Output skew: 50ps (maximum)
- Part-to-part skew: 250ps (maximum)
- Propagation delay: 1.8ns (maximum)
- V_{OH} = 1.4V (maximum)
- 3.3V core, 1.8V output operating supply voltages
- 0°C to 70°C ambient operating temperature
- Available in lead-free (RoHs 6) package
- · Industrial temperature information available upon request
- For replacement part use 8523

PIN ASSIGNMENT

Ŋ

S

32-Lead LQFP 7mm x 7mm x 1.4mm Package Body **Y Package** Top View

S

BIOCK DIAGRAM

TABLE 1. PIN DESCRIPTIONS

Number	Name	Ту	/pe	Description
1	V _{DD}	Power		Core supply pin.
2	CLK	Input	Pulldown	Non-inverting differential clock input.
3	nCLK	Input	Pullup	Inverting differential clock input.
4	CLK_SEL	Input	Pulldown	Clock select input. When HIGH, selects PCLK, nPCLK inputs. When LOW, selects CLK, nCLK. LVTTL / LVCMOS interface levels.
5	PCLK	Input	Pulldown	Non-inverting differential LVPECL clock input.
6	nPCLK	Input	Pullup	Inverting differential LVPECL clock input.
7	GND	Power		Power supply ground.
8	CLK_EN	Input	Pullup	Synchronizing clock enable. When HIGH, clock outputs follow clock input. When LOW, Q outputs are forced low, nQ outputs are forced high. LVCMOS /LVTTL interface levels.
9, 16, 17, 24, 25, 32	V _{DDO}	Power		Output supply pins.
10, 11	nQ8, Q8	Output		Differential output pair. HSTL interface level.
12, 13	nQ7, Q7	Output		Differential output pair. HSTL interface level.
14, 15	nQ6, Q6	Output		Differential output pair. HSTL interface level.
18, 19	nQ5, Q5	Output		Differential output pair. HSTL interface level.
20, 21	nQ4, Q4	Output		Differential output pair. HSTL interface level.
22, 23	nQ3 Q3	Output		Differential output pair. HSTL interface level.
26, 27	nQ2, Q2	Output		Differential output pair. HSTL interface level.
28, 29	nQ1, Q1	Output		Differential output pair. HSTL interface level.
30, 31	nQ0, Q0	Output		Differential output pair. HSTL interface level.

NOTE: *Pullup* and *Pulldown* refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		KΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		KΩ

TABLE 3A. CONTROL INPUT FUNCTION TABLE

Inputs			Outputs		
CLK_EN	CLK_SEL	Selected Sourced	Q0:Q8	nQ0:nQ8	
0	0	CLK, nCLK	Disabled; LOW	Disabled; HIGH	
0	1	PCLK, nPCLK	Disabled; LOW	Disabled; HIGH	
1	0	CLK, nCLK	Enabled	Enabled	
1	1	PCLK, nPCLK	Enabled	Enabled	

After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as shown in Figure 1.

In the active mode, the state of the outputs are a function of the CLK, nCLK and PCLK, nPCLK inputs as described in Table 3B.

FIGURE 1. CLK_EN TIMING DIAGRAM

Inputs		Out	puts	Input to Output Mode	Polarity
CLK or PCLK	nCLK or nPCLK	Q0:Q8	nQ0:nQ8		Foldinty
0	1	LOW	HIGH	Differential to Differential	Non Inverting
1	0	HIGH	LOW	Differential to Differential	Non Inverting
0	Biased; NOTE 1	LOW	HIGH	Single Ended to Differential	Non Inverting
1	Biased; NOTE 1	HIGH	LOW	Single Ended to Differential	Non Inverting
Biased; NOTE 1	0	HIGH	LOW	Single Ended to Differential	Inverting
Biased; NOTE 1	1	LOW	HIGH	Single Ended to Differential	Inverting

NOTE 1: Please refer to the Application Information "Wiring the Differential Input to Accept Single Ended Levels".

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V _{DD}	4.6V
Inputs, V _I	-0.5V to V_{DD} + 0.5V
Outputs, I _o Continuous Current Surge Current	50mA 100mA
Package Thermal Impedance, θ_{IA}	47.9°C/W (0 lfpm)
Storage Temperature, T _{STG}	-65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

TABLE 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, TA = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDO}	Output Supply Voltage		1.6	1.8	2.0	V
I _{DD}	Power Supply Current			60	80	mA

TABLE 4B. LVCMOS/LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, TA = 0°C to 70°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	CLK_EN, CLK_SEL			2		V _{DD} + 0.3	V
V _{IL}	CLK_EN, CLK_SEL			-0.3		0.8	V
	Input High Current	CLK_EN	$V_{IN} = V_{DD} = 3.465V$			5	μA
' н	input nigh Current	CLK_SEL	$V_{IN} = V_{DD} = 3.465V$		V _{DD} + 0.3 3 0.8 5 150	μA	
	Input Low Current	CLK_EN	$V_{IN} = 0V, V_{DD} = 3.465V$	-150			μA
'IL	Input Low Current	CLK_SEL	$V_{_{\rm IN}} = 0$ V, $V_{_{\rm DD}} = 3.465$ V	-5			μA

Table 4C. Differential DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, Ta = 0°C to 70°C to

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
		CLK	$V_{IN} = V_{DD} = 3.465V$			150	μA
I'IH	Input High Current	nCLK	$V_{IN} = V_{DD} = 3.465V$			5	μA
	Input Low Current	CLK	$V_{IN} = 0V, V_{DD} = 3.465V$	-5			μA
'IL		nCLK	$V_{IN} = 0V, V_{DD} = 3.465V$	-150		150	μA
V _{PP}	Peak-to-Peak Input Voltage			0.15		1.3	V
V _{CMR}	Common Mode Input Voltage; NOTE 1, 2			0.5		V _{DD} - 0.85	V

NOTE 1: For single ended applications, the maximum input voltage for CLK and nCLK is V_{DD} + 0.3V. NOTE 2: Common mode voltage is defined as V_{IH} .

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
		PCLK	$V_{DD} = V_{IN} = 3.465V$			150	μA
'н	Input High Current	nPCLK	$V_{DD} = V_{IN} = 3.465V$			5	μA
I _{IL}	Input Low Current	PCLK	V _{DD} = 3.465V, V _{IN} = 0V	-5			μA
		nPCLK	V _{DD} = 3.465V, V _{IN} = 0V	-150			μA
V _{PP}	Peak-to-Peak Input Voltage			0.3		1	V
V _{CMR}	Common Mode Input Voltage; NOTE 1, 2			1.5		V _{DD}	V

TABLE 4D. LVPECL DC CHARACTERISTICS,	$V_{DD} = 3.3V \pm 5\%, V_{DDO}$	= 1.8V±0.2V, TA = 0°С то 70°С
--------------------------------------	----------------------------------	-------------------------------

NOTE 1: Common mode voltage is defined as V_{μ} .

NOTE 2: For single ended applications, the maximum input voltage for PCLK and nPCLK is V_{DD} + 0.3V.

Table 4E. HSTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, Ta = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		1.0		1.4	V
V _{ol}	Output Low Voltage; NOTE 1		0		0.4	V
V _{ox}	Output Crossover Voltage		40% x (V _{OH} - V _{OL}) + V _{OL}		60% х (V _{он} - V _{оL}) + V _{оL}	V
V_{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.1	V

NOTE 1: Outputs terminated with 50Ω to ground.

TABLE 5. AC CHARACTERISTICS, V	$I_{\rm DD} = 3.3 \text{V} \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = 0^{\circ}C$ to $70^{\circ}C$
--------------------------------	-------------------------------------	---

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				500	MHz
t _{PD}	Propagation Delay; NOTE 1	$f \le 250 \text{MHz}$	1		1.8	ns
tsk(o)	Output Skew; NOTE 2, 4				50	ps
tsk(pp)	Part-to-Part Skew; NOTE 3, 4				250	ps
t _R	Output Rise Time	20% to 80% @ 50MHz	300		700	ps
t _F	Output Fall Time	20% to 80% @ 50MHz	300		700	ps
odc	Output Duty Cycle		48		52	%

All parameters measured at 250MHz unless noted otherwise.

NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

Measured from $V_{DD}/2$ to the output differential crossing point for single ended input levels.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points.

NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

PARAMETER MEASUREMENT INFORMATION

APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 2 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF = $V_{\text{DD}}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio

of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and V_{DD} = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.

FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT

DIFFERENTIAL CLOCK INPUT INTERFACE

The CLK /nCLK accepts LVDS, LVPECL, HSTL, SSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. Figures 3A to 3E show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in *Figure 3A*, the input termination applies for HSTL drivers. If you are using an HSTL driver from another vendor, use their termination recommendation.

FIGURE 3A. CLK/NCLK INPUT DRIVEN BY HSTL DRIVER

FIGURE 3C. CLK/NCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER

FIGURE 3E. CLK/NCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER WITH AC COUPLE

FIGURE 3B. CLK/NCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER

FIGURE 3D. CLK/NCLK INPUT DRIVEN BY 3.3V LVDS DRIVER

LVPECL CLOCK INPUT INTERFACE

The PCLK /nPCLK accepts LVPECL, CML, SSTL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. *Figures 4A to 4F* show interface examples for the PCLK/nPCLK input driven by the most common driver types. The input interfaces suggested

FIGURE 4A. PCLK/nPCLK INPUT DRIVEN BY AN OPEN COLLECTOR CML DRIVER

FIGURE 4C. PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER

FIGURE 4E. PCLK/nPCLK INPUT DRIVEN BY AN SSTL DRIVER

here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

FIGURE 4B. PCLK/nPCLK INPUT DRIVEN BY A BUILT-IN PULLUP CML DRIVER

FIGURE 4D. PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER WITH AC COUPLE

FIGURE 4F. PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVDS DRIVER

Power Considerations

This section provides information on power dissipation and junction temperature for the 8521. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 8521 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results. **NOTE:** Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{DD MAX} * I_{DD MAX} = 3.465V * 80mA = 277.2mW
- Power (outputs)_{MAX} = 32.8mW/Loaded Output pair
 If all outputs are loaded, the total power is 9 * 32.8mW = 295.2mW

Total Power $_{MAX}$ (3.465V, with all outputs switching) = 277.2mW + 295.2mW = 572.4mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for the devices is 125°C.

The equation for Tj is as follows: $Tj = \theta_{JA} * Pd_{total} + T_A$

Tj = Junction Temperature

 θ_{JA} = junction-to-ambient thermal resistance

Pd_total = Total device power dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 6 below. Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:

 $70^{\circ}C + 0.572W * 42.1^{\circ}C/W = 94.1^{\circ}C$. This is well below the limit of $125^{\circ}C$.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

Table 6. Thermal Resistance θ_{JA} for 32-pin LQFP, Forced Convection

θ_{JA} by Velocity (Linear Feet per Minute)			
Single-Layer PCB, JEDEC Standard Test Boards	0 67.8°C/W	200 55.9°C/W	500 50.1°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	47.9°C/W	42.1°C/W	39.4°C/W

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

HSTL output driver circuit and termination are shown in Figure 5.

FIGURE 5. HSTL DRIVER CIRCUIT AND TERMINATION

To calculate worst case power dissipation due to the load, use the following equations which assume a 50Ω load.

Pd_H is power dissipation when the output drives high. Pd_L is the power dissipation when the output drives low.

 $Pd_H = (V_{OH_MAX}/R_L) * (V_{DDO_MAX} - V_{OH_MAX})$ $Pd_L = (V_{OL_MAX}/R_L) * (V_{DDO_MAX} - V_{OL_MAX})$

Total Power Dissipation per output pair = Pd_H + Pd_L = **32.8mW**

RELIABILITY INFORMATION

TABLE 6. $\theta_{JA} \text{vs.}$ Air Flow Table for 32 Lead LQFP

θJA by Velocity (Linear Feet per Minute)				
Single-Layer PCB, JEDEC Standard Test Boards	0 67.8°C/W	200 55.9°C/W	500 50.1°C/W	
Multi-Layer PCB, JEDEC Standard Test Boards	47.9°C/W	42.1°C/W	39.4°C/W	
NOTE: Most modern PCB designs use multi-layered b	poards. The data in	the second row pe	ertains to most designs.	

TRANSISTOR COUNT

The transistor count for 8521 is: 944

PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP

JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS					
SYMBOL	BBA				
SYMBOL	MINIMUM	NOMINAL	MAXIMUM		
Ν	32				
Α	1.60				
A1	0.05		0.15		
A2	1.35 1.40 1.45				
b	0.30	0.37	0.45		
с	0.09 0.20				
D		9.00 BASIC			
D1	7.00 BASIC				
D2		5.60 Ref.			
E	9.00 BASIC				
E1	7.00 BASIC				
E2	5.60 Ref.				
е	0.80 BASIC				
L	0.45 0.60 0.75				
θ	0° 7°				
ccc	0.10				

Reference Document: JEDEC Publication 95, MS-026

TABLE 7. ORDERING INFORMATION

Part/Order Num- ber	Marking	Package	Shipping Packaging	Temperature
8521BYLF	ICS8521BYLF	32 Lead, Lead-Free LQFP	Tray	0°C to 70°C
8521BYLFT	ICS8521BYLF	32 Lead, Lead-Free LQFP	Tape and Reel	0°C to 70°C
8521BYLN	ICS8521BYLN	32 Lead Lead-Free/Annealed	Tray	0°C to 70°C
8521BYLNT	ICS8521BYLN	32 Lead Lead-Free/Annealed	Tape and Reel	0°C to 70°C

REVISION HISTORY SHEET				
Rev	Table	Page	Description of Change	Date
В		3	Updated Figure 1 - CLK_EN Timing Diagram.	10/16/01
В		3	Updated Figure 1 - CLK_EN Timing Diagram.	11/1/01
С	T4E	5	LVHSTL table - changed V _{OH} maximum from 1.2V to 1.4V.	01/02/03
			Changed LVHSTL to HSTL throughout data sheet to conform with JEDEC termi- nology.	
Л	T2	2	Pin Characteristics table - changed CIN 4pF max. to 4pF typical.	7/16/03
	T4B	4	LVCMOS table - changed VIH from 3.765V max. to VDD + 0.3V max.	7/10/03
		8	Added Differential Input Interface section.	
		9	Added LVPECL Input Interface section.	
D	Τ7	4 9 14	Absolute Maximum Ratings - updated Output rating. Updated LVPECL Clock Input Interface section.	7/7/04
E	Τ7	14 14 16	Ordering Information - added "Lead-Free/Annealed" part number. Updated datasheet's header/footer with IDT from ICS. Removed ICS prefix from Part/Order Number column. Added Contact Page.	7/25/10
E	Τ7	14	Ordering Information Table - deleted non-lead free marking, added lead-free marking. Updated datasheet's header/footer.	8/24/12
E			Updated datasheet format.	6/12/15
E			Product Discontinuaton Notice - Last time buy expires May 6, 2017. PDN CQ-16-01	6/21/16

Corporate Headquarters 6024 Silver Creek Valley Road San Jose, California 95138

Sales 800-345-7015 or +408-284-8200 Fax: 408-284-2775 www.IDT.com

Technical Support email: clocks@idt.com

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.