### DATA SHEET

### ICS83947I

LOW SKEW, 1-TO-9 LVCMOS

### **GENERAL DESCRIPTION**



**FANOUT BUFFER** 

The ICS83947I is a low skew, 1-to-9 LVCMOS Fanout Buffer and a member of the HiPerClockS™ family of High Performance Clock Solutions from ICS. The low impedance LVCMOS/LVTTL outputs are designed to drive 50Ω series or parallel

terminated transmission lines. The effective fanout can be increased from 9 to 18 by utilizing the ability of the outputs to drive two series terminated lines.

Guaranteed output and part-to-part skew characteristics make the ICS83947I ideal for high performance, single ended applications that also require a limited output voltage.

### FEATURES

- 9 LVCMOS/LVTTL outputs
- Selectable CLK0 and CLK1 can accept the following input levels: LVCMOS and LVTTL
- Maximum output frequency: 110MHz
- Output skew: 500ps (maximum)
- · Part-to-part skew: 2ns (maximum)
- 3.3V operating supply
- -40°C to 85°C ambient operating temperature
- Lead-Free package available
- Pin compatible with the MPC947

# BLOCK DIAGRAM



### **PIN ASSIGNMENT**



32-Lead LQFP 7mm x 7mm x 1.4mm package body Y Package Top View

#### IDT™/ ICS™ LOW SKEW, 1-TO-9 LVCMOS FANOUT BUFFER

### TABLE 1. PIN DESCRIPTIONS

| Number                                     | Name                                  | Ту     | ре     | Description                                                                                           |
|--------------------------------------------|---------------------------------------|--------|--------|-------------------------------------------------------------------------------------------------------|
| 1, 8, 9, 12, 16, 17,<br>20, 24, 25, 29, 32 | GND                                   | Power  |        | Power supply ground.                                                                                  |
| 2                                          | CLK_SEL                               | Input  | Pullup | Clock select input. When HIGH, selects CLK1. When LOW, selects CLK0. LVCMOS / LVTTL interface levels. |
| 3, 4                                       | CLK0, CLK1                            | Input  | Pullup | Reference clock inputs. LVCMOS / LVTTL interface levels.                                              |
| 5                                          | CLK_EN                                | Input  | Pullup | Clock enable. LVCMOS / LVTTL interface levels.                                                        |
| 6                                          | OE                                    | Input  | Pullup | Output enable. LVCMOS / LVTTL interface levels.                                                       |
| 7                                          | V <sub>DD</sub>                       | Power  |        | Coree supply pin.                                                                                     |
| 10, 14, 18, 22, 27, 31                     | V <sub>DDO</sub>                      | Power  |        | Output supply pins.                                                                                   |
| 11, 13, 15, 19, 21,<br>23, 26, 28, 30      | Q8, Q7, Q6, Q5,<br>Q4, Q3, Q2, Q1, Q0 | Output |        | Q0 thru Q8 clock outputs.<br>LVCMOS / LVTTL interface levels.                                         |

NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

### TABLE 2. PIN CHARACTERISTICS

| Symbol                | Parameter                                  | Test Conditions | Minimum | Typical | Maximum | Units |
|-----------------------|--------------------------------------------|-----------------|---------|---------|---------|-------|
| C                     | Input Capacitance                          |                 |         | 4       |         | pF    |
| C <sub>PD</sub>       | Power Dissipation Capacitance (per output) |                 |         | 25      |         | pF    |
| R <sub>PULLUP</sub>   | Input Pullup Resistor                      |                 |         | 51      |         | KΩ    |
| R <sub>PULLDOWN</sub> | Input Pulldown Resistor                    |                 |         | 51      |         | KΩ    |
| R <sub>OUT</sub>      | Output Impedance                           |                 | 5       | 7       | 12      | Ω     |

### TABLE 3. OUTPUT ENABLE AND CLOCK ENABLE FUNCTION TABLE

| Contro | l Inputs | Output            |
|--------|----------|-------------------|
| OE     | CLK_EN   | Q0:Q8             |
| 0      | Х        | Hi-Z              |
| 1      | 0        | LOW               |
| 1      | 1        | Follows CLK input |

TSD

### Absolute Maximum Ratings

| Supply Voltage, $V_{\text{DD}}$                          | 4.6V                             |
|----------------------------------------------------------|----------------------------------|
| Inputs, V <sub>I</sub>                                   | -0.5V to $V_{_{DD}}$ + 0.5 V     |
| Outputs, V <sub>o</sub>                                  | -0.5V to $V_{\text{DDO}}$ + 0.5V |
| Package Thermal Impedance, $\boldsymbol{\theta}_{_{JA}}$ | 47.9°C/W (0 lfpm)                |
| Storage Temperature, $T_{STG}$                           | -65°C to 150°C                   |

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

### TABLE 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 0.3V$ , TA = -40°C to 85°C

| Symbol           | Parameter             | Test Conditions | Minimum | Typical | Maximum | Units |
|------------------|-----------------------|-----------------|---------|---------|---------|-------|
| V <sub>DD</sub>  | Coret Supply Voltage  |                 | 3.0     | 3.3     | 3.6     | V     |
| V <sub>DDO</sub> | Output Supply Voltage |                 | 3.0     | 3.3     | 3.6     | V     |
| I <sub>DD</sub>  | Input Supply Current  |                 |         | 33      | 50      | mA    |

### TABLE 4B. LVCMOS/LVTTL DC CHARACTERISTICS, $V_{DD} = V_{DDO} = 3.3V \pm 0.3V$ , TA = -40°C to 85°C

| Symbol          | Parameter           |                                    | Test Conditions         | Minimum | Typical | Maximum | Units |
|-----------------|---------------------|------------------------------------|-------------------------|---------|---------|---------|-------|
| V <sub>IH</sub> | Input High Volta    | ge                                 |                         | 2       |         | 3.6     | V     |
| V <sub>IL</sub> | Input Low Voltage   |                                    |                         |         |         | 0.8     | V     |
| I <sub>IN</sub> | Input Current       | CLK0, CLK1, CLK_SEL,<br>OE, CLK_EN |                         | -100    |         |         | μA    |
| V <sub>OH</sub> | Output High Voltage |                                    | I <sub>он</sub> = -20mA | 2.5     |         |         | V     |
| V <sub>ol</sub> | Output Low Volt     | age                                | I <sub>оL</sub> = 20mA  |         |         | 0.4     | V     |

| Symbol                            | Parameter                       | Test Conditions                                 | Minimum         | Typical | Maximum         | Units |
|-----------------------------------|---------------------------------|-------------------------------------------------|-----------------|---------|-----------------|-------|
| f <sub>MAX</sub>                  | Output Frequency                |                                                 | 110             |         |                 | MHz   |
| t <sub>PD</sub>                   | Propagation Delay, NOTE 1       | CLK to Q                                        | 1.8             |         | 4.5             | ns    |
| <i>t</i> sk(o)                    | Output Skew; NOTE 2, 5          | Measured on<br>rising edge @V <sub>DDO</sub> /2 |                 |         | 500             | ps    |
| <i>t</i> sk(pp)                   | Part-to-Part Skew; NOTE 3, 5    | Measured on<br>rising edge @V <sub>DDO</sub> /2 |                 |         | 2               | ns    |
| t <sub>PW</sub>                   | Output Pulse Width              |                                                 | tPeriod/2 - 800 |         | tPeriod/2 + 800 | ps    |
| t <sub>s</sub>                    | Clock Enable Setup Time; NOTE 6 | CLK_EN to CLK                                   | 0               |         |                 | ns    |
| t <sub>H</sub>                    | Clock Enable Hold Time; NOTE 6  | CLK_EN to CLK                                   | 1               |         |                 | ns    |
| $t_{_{ZL}}, t_{_{ZH}}$            | Output Enable Time; NOTE 4      |                                                 |                 |         | 11              | ns    |
| t <sub>LZ</sub> , t <sub>HZ</sub> | Output Disable Time; NOTE 4     |                                                 |                 |         | 11              | ns    |
| t <sub>R</sub>                    | Output Rise Time                | 0.8V to 2.0V                                    | 0.2             |         | 1               | ns    |
| t <sub>F</sub>                    | Output Fall Time                | 0.8V to 2.0V                                    | 0.2             |         | 1               | ns    |

### Table 5. AC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 0.3V$ , Ta = -40°C to 85°C

All parameters measured at  $f_{MAX}$  unless noted otherwise. NOTE 1: Measured from  $V_{DD}/2$  of the input to  $V_{DDO}/2$  of the output. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.

Measured at V<sub>DDO</sub>/2.

NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with

equal load conditions. Using the same type of inputs on each device, the outputs are measured at  $V_{_{DDO}}/2$ .

NOTE 4: These parameters are guaranteed by characterization. Not tested in production.

NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 6: Setup and Hold times are relative to the rising edge of the input clock.

Downloaded from Elcodis.com electronic components distributor



## **PARAMETER MEASUREMENT INFORMATION**

## **R**ELIABILITY INFORMATION

### TABLE 6. $\boldsymbol{\theta}_{JA} \text{vs.}$ Air Flow Table for 32 Lead LQFP

### $\boldsymbol{\theta}_{_{JA}}$ by Velocity (Linear Feet per Minute)

|                                              | 0        | 200      | 500      |
|----------------------------------------------|----------|----------|----------|
| Single-Layer PCB, JEDEC Standard Test Boards | 67.8°C/W | 55.9°C/W | 50.1°C/W |
| Multi-Layer PCB, JEDEC Standard Test Boards  | 47.9°C/W | 42.1°C/W | 39.4°C/W |

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

### TRANSISTOR COUNT

The transistor count for ICS83947I is: 1040

PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP



| TABLE | 7. | PACKAGE | DIMENSIONS |
|-------|----|---------|------------|
|-------|----|---------|------------|

| JEDEC VARIATION<br>ALL DIMENSIONS IN MILLIMETERS |         |            |         |  |  |
|--------------------------------------------------|---------|------------|---------|--|--|
| 0////2.01                                        | BBA     |            |         |  |  |
| SYMBOL                                           | MINIMUM | NOMINAL    | MAXIMUM |  |  |
| Ν                                                |         | 32         |         |  |  |
| Α                                                |         |            | 1.60    |  |  |
| A1                                               | 0.05    |            | 0.15    |  |  |
| A2                                               | 1.35    | 1.40       | 1.45    |  |  |
| b                                                | 0.30    | 0.37       | 0.45    |  |  |
| с                                                | 0.09    |            | 0.20    |  |  |
| D                                                |         | 9.00 BASIC |         |  |  |
| D1                                               |         | 7.00 BASIC |         |  |  |
| D2                                               |         | 5.60 Ref.  |         |  |  |
| E                                                |         | 9.00 BASIC |         |  |  |
| E1                                               |         | 7.00 BASIC |         |  |  |
| E2                                               |         | 5.60 Ref.  |         |  |  |
| е                                                |         | 0.80 BASIC |         |  |  |
| L                                                | 0.45    | 0.60       | 0.75    |  |  |
| θ                                                | 0°      |            | 7°      |  |  |
| ccc                                              |         |            | 0.10    |  |  |

Reference Document: JEDEC Publication 95, MS-026

IDT™/ ICS™ LOW SKEW, 1-TO-9 LVCMOS FANOUT BUFFER

TSD

#### TABLE 8. ORDERING INFORMATION

| Part/Order Number | Marking     | Package                                               | Count        | Temperature   |
|-------------------|-------------|-------------------------------------------------------|--------------|---------------|
| 83947AYI          | ICS83947AYI | 32 Lead LQFP                                          | 250 per tray | -40°C to 85°C |
| 83947AYIT         | ICS83947AYI | 32 Lead LQFP on Tape and Reel                         | 1000         | -40°C to 85°C |
| 83947AYILN        | ICS3947AYIN | 32 Lead "Lead-Free/Annealed"<br>LQFP                  | 250 per tray | -40°C to 85°C |
| 83947AYILNT       | ICS3947AYIN | 32 Lead "Lead-Free/Annealed"<br>LQFP on Tape and Reel | 1000         | -40°C to 85°C |

The aforementioned trademark, HiPerClockS<sup>™</sup> is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries. While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.

#### IDT™/ICS™ LOW SKEW, 1-TO-9 LVCMOS FANOUT BUFFER

TSD

Downloaded from Elcodis.com electronic components distributor

|     | REVISION HISTORY SHEET |   |                                                                                                                               |          |  |  |  |
|-----|------------------------|---|-------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|
| Rev |                        |   |                                                                                                                               |          |  |  |  |
| Α   | Т5                     | 4 | AC Characterisitics Table, $\rm t_s$ and $\rm t_H$ rows- revised Test Conditions to read CLK_EN to CLK.                       | 6/21/02  |  |  |  |
|     |                        | 1 | Added Lead Free bullet in Features section.                                                                                   |          |  |  |  |
| В   | T2                     | 2 | Pin Characteristics Table - changed $C_{IN}$ from 4pF max. to 4pF min.<br>$R_{OUT}$ added 5 $\Omega$ min and 12 $\Omega$ max. | 10/11/04 |  |  |  |
|     | Т8                     | 8 | Ordering Information Table - add Lead-Free part.<br>Updated format throughout data sheet.                                     |          |  |  |  |
|     |                        |   |                                                                                                                               |          |  |  |  |

### Innovate with IDT and accelerate your future networks. Contact:

# www.IDT.com

#### For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

Corporate Headquarters Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

#### Asia Pacific and Japan

For Tech Support

clockhelp@idt.com

408-284-8200

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

#### Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339



© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA