Single-Phase R4™ Digital Hybrid PWM Controller with Integrated Driver, PMBus/SMBus/I²C and PFM #### ISL68200 The <u>ISL68200</u> is a single-phase synchronous-buck PWM controller featuring Intersil's proprietary R4TM Technology. It supports a wide 4.5V to 24V input voltage range and a wide 0.5V to 5.5V output range. Integrated LDOs provide controller bias voltage, allowing for single supply operation. The ISL68200 includes a PMBus/SMBus/I²C interface for device configuration and telemetry (V_{IN} , V_{OUT} , I_{OUT} and temperature) and fault reporting. Intersil's proprietary R4™ control scheme has extremely fast transient performance, accurately regulated frequency control and all internal compensation. An efficiency enhancing PFM mode can be enabled to greatly improve light-load efficiency. The ISL68200's series bus allows for easy R4™ loop optimization, resulting in fast transient performance over a wide range of applications, including all ceramic output filters. Built-in MOSFET drivers minimize external components, significantly reducing design complexity and board space, while also lowering BOM cost. The 4A drive strength allows for faster switching time, improving regulator efficiency. An integrated high-side gate-to-source resistor helps avoid Miller coupling shoot-through and improve system reliability. The ISL68200 has four 8-bit configuration pins, which provide very flexible configuration options (frequency, $V_{OUT},\,R4^{TM}$ gain, etc.) without the need for built-in NVM memory. This results in a design flow that closely matches traditional analog controllers, while still offering the design flexibility and feature set of a digital PMBus/SMBus/I 2 C interface. The ISL68200 also features remote voltage sensing and completely eliminates any potential difference between remote and local grounds. This improves regulation and protection accuracy. A precision enable input is available to coordinate the start-up of the ISL68200 with other voltage rails, especially useful for power sequencing. ## **Applications** - · High efficiency and high density POL digital power - . FPGA, ASIC and memory supplies - · Datacenter: servers, storage systems - · Wired infrastructure: routers/switches/optical networking - · Wireless infrastructure: base station ### **Features** - Intersil's proprietary R4™ Technology - Linear control loop for optimal transient response - Variable frequency and duty cycle control during load transient for fastest possible response - Inherent voltage feed-forward for wide range input - Input voltage range: 4.5V to 24V - Output voltage range: 0.5V to 5.5V - ±0.5% DAC accuracy with remote sense - · Support all ceramic solutions - · Integrated LDOs for single input rail solution - SMBus/PMBus/I²C compatible, up to 1.25MHz - 256 boot-up voltage levels with a configuration pin - · Eight switching frequency options from 300kHz to 1.5MHz - PFM operation option for improved light-load efficiency - · Start-up into precharged load - Precision enable input to set higher input UVLO and power sequence as well as fault reset - · Power-good monitor for soft-start and fault detection - · Comprehensive fault protection for high system reliability - Over-temperature protection - Output overcurrent and short-circuit protection - Output overvoltage and undervoltage protection - Open remote sense protection - Integrated high-side gate-to-source resistor to prevent self turn-on due to high input bus dv/dt - Integrated power MOSFETs 4A drivers with adaptive shoot-through protection and bootstrap function - Compatible with Intersil's PowerNavigator™ software #### **Related Literature** UG067, "ISL68200DEM01Z Demonstration Board User Guide" #### TABLE 1. SINGLE-PHASE R4™ DIGITAL HYBRID PWM CONTROLLER OPTIONS | PART
NUMBER | INTEGRATED
DRIVER | PWM
OUTPUT | PMBus/SMBus/I ² C
INTERFACE | COMPATIBLE DEVICES | |----------------|----------------------|---------------|---|--| | ISL68200 | Yes | No | Yes | Discrete MOSFETs or Dual Channel MOSFETs | | ISL68201 | No | Yes | Yes | Intersil Power Stages: ISL99140
Intersil Drivers: ISL6596, ISL6609, ISL6627, ISL6622, ISL6208 | # **Table of Contents** | Typical Applications Circuits | . 3 | |---|--| | Block Diagram | . 4 | | Functional Pin Descriptions | . 5 | | Absolute Maximum Ratings | . 7 | | Thermal Information | . 7 | | Recommended Operating Conditions | . 7 | | Electrical Specifications | . 7 | | Operation | 10 | | IC Supplies Enable and Disable Resistor Reader (Patented) Soft-Start. Boot-Up Voltage Programming Current Sensing Thermal Monitoring and Compensation I _{OUT} Calibration Fault Protection PGOOD Monitor Adaptive Shoot-Through Protection. PFM Mode Operation. SMBus, PMBus and I ² C Operation. R4™ Modulator | 10
10
10
12
12
16
17
19
20
21
21
21
21 | | General Application Design Guide | 28 | | Output Filter Design. Input Capacitor Selection Design and Layout Considerations Voltage Regulator Design Materials | 28
29 | | Revision History | 31 | | About Intersil | 31 | | Package Outline Drawing | 32 | # **Typical Applications Circuits** FIGURE 1. WIDE RANGE INPUT AND OUTPUT APPLICATIONS FIGURE 2. 5V INPUT APPLICATION intersil # **Block Diagram** FIGURE 3. SIMPLIFIED FUNCTIONAL BLOCK DIAGRAM OF ISL68200 # **Pin Configuration** # **Functional Pin Descriptions** | PIN NUMBER | SYMBOL | DESCRIPTION | |------------|---|--| | 1 | EN | Precision Enable input. Pulling EN above the rising threshold voltage initiates the soft-start sequence, while pulling EN below the failing threshold voltage suspends the Voltage Regulator (VR) operation. | | 2 | VIN | Input voltage pin for R4™ loop and LDOs (5V and 7V). Place a high quality low ESR ceramic capacitor (1.0µF, X7R) in close proximity to the pin. External series resistor is not advised. | | 3 | 7VLDO | 7V LDO from VIN is used to bias current sensing amplifier. Place a high quality low ESR ceramic capacitor (1.0μF, X7R, 10V+) in close proximity to the pin. | | 4 | vcc | Logic bias supply that should be connected to PVCC rail externally. Place a high quality low ESR ceramic capacitor (1.0μF, X7R) from this pin to GND. | | 5 | SCL | Synchronous clock signal input of SMBus/PMBus/I ² C. | | 6 | SALERT | Output pin for transferring the active low signal driven asynchronously from the VR controller to SMBus/PMBus. | | 7 | SDA | I/O pin for transferring data signals between SMBus/PMBus/I ² C host and VR controller. | | 8 | PGOOD | Open-drain indicator output. | | 9 | RGND | This pin monitors the negative rail of regulator output. Connect to ground at point of regulation. | | 10 | VSEN | This pin monitors the positive rail of regulator output. Connect to point of regulation | | 11 | CSRTN | This pin monitors the negative flow of output current for overcurrent protection and telemetry. | | 12 | CSEN | This pin monitors the positive flow of output current with a series resistor and for overcurrent protection and telemetry. The series resistor sets the current gain and should be within 40Ω and $3.5k\Omega$. | | 13 | NTC Input pin for the temperature measurement. Connect this pin through an NTC thermistor ($10k\Omega$, $\beta \sim 3380$) and a deco capacitor ($\sim 0.1 \mu F$) to GND and a resistor ($1.54k\Omega$) to VCC of the controller. The voltage at this pin is inversely proportion the VR temperature. | | | 14 | IOUT | Output current monitor pin. An external resistor sets the gain and an external capacitor provides the averaging function; an external pull-up resistor to VCC is recommended to calibrate the no load offset. See "IOUT_Calibration" on page 19. | | 15 | PROG4 | Programming pin for Modulator (R4™) RR impedance and output slew rate during Soft-Start (SS) and Dynamic VID (DVID). It also sets AV gain multiplier to 1x or 2x and determines the AV gain on PROG3. | | 16 | PROG3 | Programming pin for ultrasonic PFM operation, fault behavior, switching frequency and R4™ (AV) control loop gain. | Submit Document Feedback 5 Intersil 5 FN8705.1 March 7, 2016 # Functional Pin Descriptions (Continued) | PIN NUMBER | SYMBOL | DESCRIPTION | |------------|---------|---| | 17 | PROG2 | Programming pin for PWM/PFM mode, temperature compensation and serial bus (SMBus/PMBus/I ² C) address. | | 18 | PROG1 | Programming pin for boot-up voltage. | | 19 | GND | Return current path for the LGATE MOSFET driver. Connect directly to system ground plane. | | 20 | LGATE | Low-side MOSFET gate driver output. Connect to the gate terminal of the low-side MOSFET of the converter. | | 21 | PHASE | Return path for the UGATE high-side MOSFET driver, and zero inductor current detector input for diode emulation. | | 22 | UGATE | High-side MOSFET gate driver output. Connect
to the gate terminal of the high-side MOSFET of the converter. | | 23 | воот | Positive input supply for the UGATE high-side MOSFET gate driver. Connect an MLCC (0.22µF, X7R) between BOOT and PHASE pins. | | 24 | PVCC | Output of the 5V LDO and input for the LGATE and UGATE MOSFET driver circuits. Place a high quality low ESR ceramic capacitor (4.7µF, X7R) in close proximity to the pin. | | 25 | GND PAD | Return of logic bias supply VCC. Connect directly to system ground plane with at least 5 vias. | # **Ordering Information** | PART NUMBER
(Notes 1, 2, 3) | PART
MARKING | TEMP RANGE
(°C) | PACKAGE
(RoHS Compliant) | PKG.
DWG. # | | |--------------------------------|--------------------------------|--------------------|-----------------------------|----------------|--| | ISL68200IRZ | ISL 68200I | -40 to +85 | 24 Ld 4x4 QFN | L24.4x4C | | | ISL68200DEM01Z | 20A Demonstration Board with o | n-board transient | | | | #### NOTES: - 1. Add "-T" suffix for 6k units, "-T7A" = suffix for 250 units and "-TK" for 1k units. Please refer to TB347 for details on reel specifications. - 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. - 3. For Moisture Sensitivity Level (MSL), please see product information page for <u>ISL68200</u>. For more information on MSL please see techbrief <u>TB363</u>. Submit Document Feedback 6 Intersil* FN8705.1 March 7, 2016 #### **Absolute Maximum Ratings** | VCC, PVCC, VSEN0.3V to +7.0V Input Voltage, VIN . +27V 7VLDO0.3V to GND, 7.75V BOOT Voltage (VBOOT-GND)0.3V to 33V BOOT to PHASE Voltage (VBOOT-PHASE)0.3V to 7V (DC) -0.3V to 9V (<10ns) PHASE Voltage | |---| | 7VLDO | | BOOT to PHASE Voltage (V _{BOOT-PHASE})0.3V to 7V (DC) -0.3V to 9V (<10ns) PHASE Voltage(GND - 0.3V) to 28V | | -0.3V to 9V (<10ns) PHASE Voltage (GND - 0.3V) to 28V | | PHASE Voltage(GND - 0.3V) to 28V | | | | (GND - 9V) (<20ns Pulse Width, 10μJ) | | | | UGATE Voltage (V _{PHASE} - 0.3V) (DC) to V _{BOOT} | | (V _{PHASE} - 5V) (<20ns Pulse Width, 10μJ) to V _{BOOT} | | LGATE Voltage (GND - 0.3V) (DC) to VCC + 0.3V | | (GND - 2.5V) (<20ns Pulse Width, $5\mu J$) to VCC + 0.3V | | All Other Pins0.3V to GND, VCC + 0.3V | | ESD Ratings | | Machine Model (Tested per JESD22-A115C) 200V | | Charged Device Model (Tested per JS-002-2014) 1kV | | Human Body Model (Tested per JS-001-2010)2.5kV | | Latch-Up (Tested per JESD78D, Class 2, Level A) ±100mA at +125 °C | #### **Thermal Information** | Thermal Resistance (Typical) | θ_{JA} (°C/W) | $\theta_{JC}(^{\circ}C/W)$ | |------------------------------|----------------------|----------------------------| | 24 Ld QFN (Notes 4, 5) | 39 | 2.5 | | Junction Temperature Range | 5 | 5°C to +150°C | | Storage Temperature | 6 | 5°C to +150°C | | Pb-Free Reflow Profile | | see <u>TB493</u> | #### **Recommended Operating Conditions** | Ambient Temperature Range | 40°C to +85°C | |--|----------------| | Wide Range Input Voltage, V _{IN} , Figure 1 | . 4.75V to 24V | | 5V Application Input Voltage, V _{IN} , Figure 2 | 4.5V to 5.5V | CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. #### NOTES: - θ_{JA} is measured in free air with the component mounted on a high effective thermal conductivity test board with "direct attach" features. See Tech Brief TB379. - 5. For $\theta_{\mbox{\scriptsize JC}},$ the "case temp" location is the center of the exposed metal pad on the package underside. # **Electrical Specifications** All typical specifications T_A = +25 °C, V_{CC} = 5V. **Boldface limits apply across the operating temperature range,** -40 °C to +85 °C, unless otherwise stated. | PARAMETER | SYMBOL | TEST CONDITIONS | MIN
(Note 6) | TYP | MAX
(<u>Note 6</u>) | UNIT | |---|--------------------|---|-----------------|------|--------------------------|------| | VCC AND PVCC | ' | | " | | | I. | | VCC Input Bias Current | I _{VCC} | EN = 5V, V _{CC} = 5V, f _{SW} = 500kHz, DAC = 1V | | 14 | 16.5 | mA | | | | EN = OV, V _{CC} = 5V | | 14 | 16.5 | mA | | PVCC Input Bias Current | I _{PVCC} | EN = 5V, V _{CC} = 5V, f _{SW} = 500kHz, DAC = 1V | | 2 | | mA | | | | EN = OV, V _{CC} = 5V | | | 1.0 | mA | | VCC AND VIN POR THRESHOLD | | | | | | | | VCC, PVCC Rising POR Threshold Voltage | | | | 4.20 | 4.35 | V | | VCC, PVCC Falling POR Threshold Voltage | | | 3.80 | 3.95 | 4.15 | V | | V _{IN} , 7VLDO Rising POR Threshold Voltage | | | | 4.20 | 4.35 | V | | V _{IN} , 7VLDO Falling O POR Threshold Voltage | | | 3.80 | 3.95 | 4.15 | ٧ | | ENABLE INPUT | " | | " | | I. | | | EN High Threshold Voltage | V _{ENTHR} | | 0.81 | 0.84 | 0.87 | V | | EN Low Threshold Voltage | V _{ENTHF} | | 0.71 | 0.76 | 0.81 | V | | DAC ACCURACY | | | | | | | | DAC Accuracy | | 2.5V < DAC ≤ 5.5V | -0.5 | | 0.5 | % | | $(T_A = 0 \degree C \text{ to } +85 \degree C)$ | | 1.6V < DAC ≤ 2.5V | -0.75 | | 0.75 | % | | | | 1.2V < DAC ≤ 1.6V | -10 | | 10 | m۷ | | | | 0.5V ≤ DAC ≤ 1.2V | -8 | | 8 | m۷ | | DAC Accuracy | | 2.5V < DAC ≤ 5.5V | -0.75 | | 0.75 | % | | $(T_A = -45 \degree C \text{ to } +85 \degree C)$ | | 1.6V < DAC ≤ 2.5V | -1.0 | | 1.0 | % | | | | 1.2V < DAC ≤ 1.6V | -11 | | 11 | mV | | | | 0.5V ≤ DAC ≤ 1.2V | -9 | | 9 | m۷ | Submit Document Feedback 7 intersil FN8705.1 March 7, 2016 **Electrical Specifications** All typical specifications $T_A = +25 \,^{\circ}$ C, $V_{CC} = 5$ V. Boldface limits apply across the operating temperature range, -40 $^{\circ}$ C to +85 $^{\circ}$ C, unless otherwise stated. (Continued) | PARAMETER | SYMBOL | TEST CONDITIONS | MIN
(Note 6) | ТҮР | MAX
(<u>Note 6</u>) | UNIT | |------------------------------------|----------------------|---|-----------------|-------|--------------------------|--------------------| | CHANNEL FREQUENCY | | | | | | | | 300kHz Configuration | | PWM mode | 260 | 300 | 335 | kHz | | 400kHz Configuration | | PWM mode | 345 | 400 | 450 | kHz | | 500kHz Configuration | | PWM mode | 435 | 500 | 562 | kHz | | 600kHz Configuration | | PWM mode | 510 | 600 | 670 | kHz | | 700kHz Configuration | | PWM mode | 610 | 700 | 790 | kHz | | 850kHz Configuration | | PWM mode | 730 | 850 | 950 | kHz | | 1000kHz Configuration | | PWM mode | 865 | 1000 | 1120 | kHz | | 1500kHz Configuration | | PWM mode | 1320 | 1500 | 1660 | kHz | | SOFT-START AND DYNAMIC VID | | | | | | | | Soft-Start and DVID Slew Rate | | | 0.0616 | 0.078 | 0.096 | mV/μs | | | | | 0.13 | 0.157 | 0.18 | mV/μs | | | | | 0.25 | 0.315 | 0.37 | mV/μs | | | | | 0.53 | 0.625 | 0.70 | mV/μs | | | | | 1.05 | 1.25 | 1.40 | mV/μs | | | | | 2.10 | 2.50 | 2.80 | mV/μs | | | | | 4.20 | 5.00 | 5.60 | mV/μs | | | | | 8.60 | 10.0 | 10.9 | mV/μs | | Soft-Start Delay from Enable High | | Excluding 5.5ms POR timeout, See Figures 22 and 23 on page 22 | 140 | 200 | 260 | μs | | REMOTE SENSE | | | l . | | | | | Bias Current of VSEN and RGND Pins | | | | | 250 | μΑ | | Maximum Differential Input Voltage | | | 6.0 | | | V | | POWER-GOOD | 1 | | I. | | | | | PGOOD Pull-Down Impedance | R _{PG} | PGOOD = 5mA sink | | 10 | 50 | Ω | | PGOOD Leakage Current | I _{PG} | PG00D = 5V | | | 1.0 | μΑ | | LDOs | 1 | | I. | | | | | 5V LDO Regulation | | V _{IN} = 12V, load = 50mA | 4.85 | 5.00 | 5.15 | V | | 5V LDO Regulation | | V _{IN} = 4.75V, load = 50mA | 4.45 | | | V | | 5V LDO Current Capability | | | 125 | | | mA | | 7V LDO Regulation | | 250μA load | 7.2 | 7.4 | 7.5 | ٧ | | 7V Dropout | | V _{IN} = 4.75V, 250μA load | 4.50 | | | ٧ | | 7V LDO Current Capability | | Not recommended for external use | 2 | | | mA | | CURRENT SENSE | | | • | | | | | Average OCP Trip Level | I _{OC_TRIP} | | 82 | 100 | 123 | μA | | Short-Circuit Protection Threshold | | | | 130 | | % I _{OCP} | | Sensed Current Tolerance | | | 74 | 78 | 83 | μA | | Sensed Current Tolerance | | | 35 | 38 | 42 | μA | | Maximum Common-Mode Input Voltage | | 7VLDO = 7.4V | 5.7 | | | ٧ | | | | VCC = PVCC = 7VLDO = 4.5V | 2.8 | | | V | Submit Document Feedback 8 intersil FN8705.1 March 7, 2016 **Electrical Specifications** All typical specifications $T_A = +25 \,^{\circ}$ C, $V_{CC} = 5$ V. Boldface limits apply across the operating temperature range, -40 $^{\circ}$ C to +85 $^{\circ}$ C, unless otherwise stated. (Continued) | PARAMETER | SYMBOL | TEST CONDITIONS | MIN
(<u>Note 6</u>) | TYP | MAX
(<u>Note 6</u>) | UNIT | |--|--------------------|--|---------------------------------------|-------|--------------------------|-------| | FAULT PROTECTION | | | , , , , , , , , , , , , , , , , , , , | | | | | UVP Threshold Voltage | | Latch | 68 | 74 | 80 | % DAC | | Start-Up OVP Threshold Voltage | | 0V ≤ V _{BOOT} ≤ 1.08V | 1.10 | 1.15 | 1.25 | ٧ | | | | 1.08V < V _{BOOT} ≤ 1.55V | 1.58 | 1.65 | 1.75 | ٧ | | | | 1.55V < V _{BOOT} ≤ 1.85V | 1.88 | 1.95 | 2.05 | ٧ | | | | 1.85V < V _{BOOT} ≤ 2.08V | 2.09 | 2.15 | 2.25 | ٧ | | | | 2.08V < V _{BOOT} ≤ 2.53V | 2.56 | 2.65 | 2.75 | ٧ | | | | 2.53V < V _{BOOT} ≤ 3.33V | 3.36 | 3.45 | 3.6 | ٧ | | | | 3.33V < V _{BOOT} ≤ 5.5V | 5.52 | 5.65 | 5.85 | ٧ | | Start-Up OVP
Hysteresis | | | | 100 | | m۷ | | OVP Rising Threshold Voltage | V _{OVRTH} | 0.5 ≤ DAC ≤ 5.5 | 114 | 120 | 127 | % DAC | | OVP Falling Threshold Voltage | V _{OVFTH} | 0.5 ≤ DAC ≤ 5.5 | 96 | 100 | 108 | % DAC | | Over-Temperature Shutdown Threshold | | READ_TEMP = 72h | 20 | 22.31 | 26 | % VCC | | Over-Temperature Shutdown Reset Threshold | | READ_TEMP = 8Eh | 25 | 27.79 | 30 | % VCC | | SMBus/PMBus/I ² C | | 1 | | | | 1 | | Signal Input Low Voltage | | | | | 1 | V | | Signal Input High Voltage | | | 1.6 | | | ٧ | | Signal Output Low Voltage | | 4mA pull-up current | | | 0.4 | V | | DATE, ALERT # Pull-Down Impedance | | | | 11 | 50 | Ω | | CLOCK Maximum Speed | | | 1.25 | | | MHz | | CLOCK Minimum Speed | | | | | 0.05 | MHz | | Telemetry Update Rate | | | | 108 | | μs | | Timeout | | | 25 | 30 | 35 | ms | | PMBus Accessible Timeout from All Rails' POR | | See Figure 22 on page 22 | | 5.5 | 6.5 | ms | | GATE DRIVER | | · | | | | | | UGATE Pull-Up Resistance | R _{UGPU} | 200mA source current | | 1.0 | | Ω | | UGATE Source Current | lugsrc | UGATE - PHASE = 2.5V | | 2.0 | | Α | | UGATE Sink Resistance | R _{UGPD} | 250mA sink current | | 1.0 | | Ω | | UGATE Sink Current | I _{UGSNK} | UGATE - PHASE = 2.5V | | 2.0 | | Α | | LGATE Pull-Up Resistance | R _{LGPU} | 250mA source current | | 1.0 | | Ω | | LGATE Source Current | I _{LGSRC} | LGATE - GND = 2.5V | | 2.0 | | Α | | LGATE Sink Resistance | R _{LGPD} | 250mA sink current | | 0.5 | | Ω | | LGATE Sink Current | I _{LGSNK} | LGATE - GND = 2.5V | | 4.0 | | Α | | UGATE to LGATE Dead Time | tugflgr | UGATE falling to LGATE rising, no load | | 10 | | ns | | LGATE to UGATE Dead Time | tLGFUGR | LGATE falling to UGATE rising, no load | | 18 | | ns | | BOOTSTRAP DIODE | | 1 | | 1 | | | | ON-Resistance | R _F | | | 16 | 30 | Ω | NOTE: ^{6.} Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design. ### **Operation** The following sections will provide a detailed description of the ISL68200 operation. #### **IC Supplies** The ISL68200 has 4 bias pins: VIN, 7VLDO, PVCC and VCC. The PVCC and 7VLDO voltage rails are 5V LDO and 7.4V LDO supplied by VIN, respectively, while the VCC pin needs to connect to PVCC rail externally to be biased. For 5V input applications, all these pins should be tied together and biased by a 5V supply. Since the VIN pin voltage information is used by the R4™ Modulator loop, the user CANNOT bias VIN with a series resistor. In addition, the VIN pin CANNOT be biased independently from other rails. #### **Enable and Disable** The IC is disabled until the 7VLDO, PVCC, VCC, VIN and EN pins increase above their respective rising threshold voltages and the typical 5.5ms timeout (worst case = 6.5ms) expires, as shown in Figures 22 and 23 on page 22. The controller will become disabled when the 7VLDO, PVCC, VCC, VIN or EN pins drop below their respective falling POR threshold voltages. The precision threshold EN pin allows the user to set a precision input UVLO level with an external resistor divider, as shown in Figure 4. For 5V input applications or wide range input applications, the EN pin can directly connect to VCC, as shown in Figure 5. If an external enable control signal is available and is an open-drain signal, a pull-up impedance (100k or higher) can be used. **FIGURE 4. INPUT UVP CONFIGURATION** $R_{\mbox{\footnotesize EN}}$ is ONLY needed when the user wants to control the IC with an external enable signal FIGURE 5. 5V INPUT OR WIDE RANGE INPUT CONFIGURATION In addition, based upon ON_OFF_CONFIG [02h] setting, the IC be enabled or disabled by series bus command "OPERATION [01h]" and/or EN pin. See <u>Table 11 on page 25</u> for more details. #### **Resistor Reader (Patented)** The ISL68200 offers four programming pins to customize their regulator specifications. The details of these pins are summarized in <u>Table 2</u>, followed by the detailed description of resistor reader operation. **TABLE 2. DEFINITION OF PROG PINS** | PIN | BIT | NAME | DESCRIPTION | |-------|-------|-----------------------------|--| | PROG1 | [7:0] | BOOT-UP
VOLTAGE | Set output boot-up voltage, 256 different options: 0, 0.5V to 5.5V (see <u>Table 7</u>) | | PROG2 | [7:7] | PWM/PFM | Enables PFM mode or forced PWM. | | | [6:5] | Temperature
Compensation | Adjust NTC temperature compensation: OFF, +5, +15, +30°C. | | | [4:0] | ADDR | Set serial bus 32 different addresses (see <u>Table 10</u>). | | PROG3 | [7:7] | uSPFM | Ultrasonic (25kHz clamp) PFM enable | | | [6:6] | Fault Behavior | OCP fault behavior:
Latch, Infinite 9ms retry | | | [5:3] | FSW | Set switching frequency (f _{SW}). | | | [2:0] | R4™ Gain | Set error amplifier gain (AV). | | PROG4 | [7:5] | RAMP_RATE | Set soft-start and DVID ramp rate. | | | [4:3] | RR | Select RR impedance for R4™ loop. | | | [2:2] | AVMLTI | Select AV Gain Multiplier (1x or 2x) | | | [1:0] | Not Used | | Intersil has developed a high resolution ADC using a patented technique with a simple 1%, 100ppm/K or better temperature coefficient resistor divider. The same type of resistors are preferred so that it has similar change over-temperature. In addition, the divider is compared to the internal divider off V_{CC} and GND nodes and therefore must refer to V_{CC} and GND pins, not through any RC decoupling network. FIGURE 6. SIMPLIFIED RESISTOR DIVIDER ADC Tables 3 through 6 show the R_{UP} and R_{DW} values of each pin for a specific system design with some tie-high and tie-low options, which are for easy programming with reduced resistors and can be used to validate the regulator operation during In-Circuit Test (ICT) for 0V boot-up voltage option. Additional options are available using Intersil's PowerNavigator™ or Resistor Reader calculator, please contact Intersil Application support at www.intersil.com/en/support. DATA for corresponding registers can be read out via series bus command (DC to DF). Note that more options are in PowerNavigator™ GUI or Resistor Reader calculator and the case of 10kΩ tie-high or tie-low is equivalent 0Ω tie-high or tie-low. #### TABLE 3. PROG 1 RESISTOR READER EXAMPLE | | | 1 | | |------------|-------------------------|-------------------------|-------------| | PROG1 (DC) | R _{UP}
(kΩ) | R _{DW}
(kΩ) | VOUT
(V) | | 00h | Open | 0 | 0.797 | | 20h | Open | 20 | 0.852 | | 40h | Open | 34.8 | 0.898 | | 60h | Open | 52.3 | 0.953 | | 80h | Open | 75 | 1.000 | | A0h | Open | 105 | 1.047 | | COh | Open | 147 | 1.102 | | EOh | Open | 499 | 1.203 | | 1Fh | 0 | Open | 1.352 | | 3Fh | 20 | Open | 1.500 | | 5Fh | 34.8 | Open | 1.797 | | 7Fh | 52.3 | Open | 2.500 | | 9Fh | 75 | Open | 3.000 | | BFh | 105 | Open | 3.297 | | DFh | 147 | Open | 5.000 | | FFh | 499 | Open | 0.000 | #### TABLE 4. PROG 2 RESISTOR READER EXAMPLE | PROG2
(DD) | R _{UP}
(kΩ) | R _{DW}
(kΩ) | PWM/PFM | TEMP
COMP | PM_ADDR
(7-BIT) | |---------------|-------------------------|-------------------------|----------|--------------|--------------------| | 00h | Open | 0 | Enabled | 30 | 60h | | 20h | Open | 20 | Enabled | 15 | 60h | | 40h | Open | 34.8 | Enabled | 5 | 60h | | 60h | Open | 52.3 | Enabled | OFF | 60h | | 80h | Open | 75 | Disabled | 30 | 60h | | A0h | Open | 105 | Disabled | 15 | 60h | | C0h | Open | 147 | Disabled | 5 | 60h | | E0h | Open | 499 | Disabled | OFF | 60h | | 1Fh | 0 | Open | Enabled | 30 | 7F | | 3Fh | 20 | Open | Enabled | 15 | 7F | | 5Fh | 34.8 | Open | Enabled | 5 | 7F | | 7Fh | 52.3 | Open | Enabled | OFF | 7F | | 9Fh | 75 | Open | Disabled | 30 | 7F | | BFh | 105 | Open | Disabled | 15 | 7F | | DFh | 147 | Open | Disabled | 5 | 7F | | FFh | 499 | Open | Disabled | OFF | 7F | #### **TABLE 5. PROG 3 RESISTOR READER EXAMPLE** | | | 1 | | | | | | | |-------|-------|------|-----------------|------------|-------|-----|------|-----| | PROG3 | 3 Rup | Rup | R _{DW} | ULTRASONIC | FAULT | fsw | R4 6 | AIN | | (DE) | (kΩ) | (kΩ) | PFM | BEHAVIOR | (kHz) | 1x | 2x | | | 00h | Open | 0 | Disabled | Retry | 300 | 42 | 84 | | | 20h | Open | 21.5 | Disabled | Retry | 700 | 42 | 84 | | | 40h | Open | 34.8 | Disabled | Latch | 300 | 42 | 84 | | | 60h | Open | 52.3 | Disabled | Latch | 700 | 42 | 84 | | | 80h | Open | 75 | Enabled | Retry | 300 | 42 | 84 | | | A0h | Open | 105 | Enabled | Retry | 700 | 42 | 84 | | | COh | Open | 147 | Enabled | Latch | 300 | 42 | 84 | | | E0h | Open | 499 | Enabled | Latch | 700 | 42 | 84 | | | 1Fh | 0 | Open | Disabled | Retry | 600 | 1 | 2 | | | 3Fh | 21.5 | Open | Disabled | Retry | 1500 | 1 | 2 | | | 5Fh | 34.8 | Open | Disabled | Latch | 600 | 1 | 2 | | | 7Fh | 52.3 | Open | Disabled | Latch | 1500 | 1 | 2 | | | 9Fh | 75 | Open | Enabled | Retry | 600 | 1 | 2 | | | BFh | 105 | Open | Enabled | Retry | 1500 | 1 | 2 | | | DFh | 147 | Open | Enabled | Latch | 600 | 1 | 2 | | | FFh | 499 | Open | Enabled | Latch | 1500 | 1 | 2 | | #### **TABLE 6. PROG 4 RESISTOR READER EXAMPLE** | PROG4
(DF | R _{UP}
(kΩ) | R _{DW}
(kΩ) | SS RATE
(mV/µs) | RR
(kΩ) | AVMLTI | | | | |--------------|-------------------------|-------------------------|--------------------|------------|--------|--|--|--| | 00h | Open | 0 | 1.25 | 200 | 1 | | | | | 20h | Open | 20 | 2.5 | 200 | 1 | | | | | 40h | Open | 34.8 | 5 | 200 | 1 | | | | | 60h | Open | 52.3 | 10 | 200 | 1 | | | | | 80h | Open | 75 | 0.078 | 200 | 1 | | | | | A0h | Open | 105 | 0.157 | 200 | 1 | | | | | COh | Open | 147 | 0.315 | 200 | 1 | | | | | E0h | Open | 499 | 0.625 | 200 | 1 | | | | | 1Fh | 0 | Open | 1.25 | 800 | 2 | | | | | 3Fh | 20 | Open | 2.5 | 800 | 2 | | | | | 5Fh | 34.8 | Open | 5 | 800 | 2 | | | | | 7Fh | 52.3 | Open | 10 | 800 | 2 | | | | | 9Fh | 75 | Open | 0.078 | 800 | 2 | | | | | BFh | 105 | Open | 0.157 | 800 | 2 | | | | | DFh | 147 | Open | 0.315 | 800 | 2 | | | | | FFh | 499 | Open | 0.625 | 800 | 2 | | | | #### **Soft-Start** The ISL68200
based regulator has 4 periods during soft-start, as shown in Figure 7 on page 12. After a 5.5ms timeout (worst case = 6.5ms) of bias supplies, as shown in Figures 22 and 23 on page 22, once the EN pin reaches above its enable threshold, the controller begins the first soft-start ramp after a fixed soft-start delay period of t_{D1} . The output voltage reaches the boot-up voltage (v_{BOOT}) at a fixed slew rate in period v_{D2} . Then, the controller will regulate the output voltage at v_{BOOT} for another period v_{D3} until the SMBus/PMBus/ v_{D1} command. If the v_{O1} command is valid, the ISL68200 will initiate the ramp until the voltage reaches the new v_{O1} command voltage in period v_{D4} . The soft-start time is the sum of the 4 periods, as shown in Equation 1. $$t_{SS} = t_{D1} + t_{D2} + t_{D3} + t_{D4}$$ (EQ. 1) t_{D1} is a fixed delay with the typical value as $200\mu s.\ t_{D3}$ is determined by the time to obtain a new valid V_{OUT} command voltage from the SMBus/PMBus/I 2C bus. If the V_{OUT} command is valid before the output reaches the boot-up voltage, the output will turn around to respond to the new V_{OUT} command code. FIGURE 7. SOFT-START WAVEFORMS During t_{D2} and t_{D4} , ISL68200 digitally controls the DAC voltage change. The ramp time t_{D2} and t_{D4} can be calculated based on Equations 2 and 3, once the slew rate is set by the PROG4 pin. $$t_{D2} = \frac{V_{BOOT}}{RAMP_RATE}(\mu s)$$ (EQ. 2) $$t_{D4} = \frac{V_{OUT} - V_{BOOT}}{RAMP_RATE}(\mu s)$$ (EQ. 3) The ISL68200 supports precharged start-up, it initiates the first PWM pulse until the internal reference (DAC) reaches the pre-charged level at RAMP_RATE, programmed by PROG4 or D5[2:0]. When the precharged level is below V_{BOOT} , the output walks up to the V_{BOOT} at RAMP_RATE and releases PGOOD at $t_{D1} + t_{D2}$, when the precharged output is above V_{BOOT} but below OVP, it walks down to V_{BOOT} at RAMP_RATE and then releases PGOOD at $t_{D1} + t_{D2}$, in which t_{D2} is defined in Equation 4 and longer than a normal start-up. $$t_{D2} = \frac{V_{PRECHARGED}}{RAMP_RATE} + \frac{V_{PRECHARGED} - V_{BOOT}}{RAMP_RATE} (\mu s)$$ (EQ. 4) ISL68200 supports precharged load start-up up to the maximum V_{OUT} of 5.5V with sufficient boot capacitor charge. For an extended precharged load, the boot capacitor will be discharged to "PVCC - V_{OUT} - V_D " by high-side drive circuits' standby current. For instance, an extended 4V precharged load, the boot capacitor will reduce to a less than 1V boot capacitor voltage, which is insufficient to power-up the VR. In this case, it is recommended to let the output drop below 2.5V with an external bleed resistor before issuing another soft-start command. #### **Boot-Up Voltage Programming** An 8-bit pin PROG1 is dedicated for the boot-up voltage programmability, which offers 256 options OV and 0.5V to 5.5V, as in <u>Table 7</u>. The most popular boot-up voltage levels are placed on the tie-low spots (0h, 20h, 40h, 60h, 80h, A0h, C0h, E0h) and the tie-high spots (1Fh, 3Fh, 5Fh, 7Fh, 9Fh, BFh, DFh, FFh) for easy programming, as summarized in <u>Table 3</u>. OV boot-up voltage is considered as "OFF," the driver will be in tri-state and the internal DAC will set to OV. In addition, if the VOUT_COMMAND (21h) is executed successfully 5.5ms (typically, worst 6.5ms) after VCC POR and prior to Enable, it will override the boot-up voltage set by the PROG1 pin. TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE) | BINARY
CODE | HEX CODE | V _{BOOT} (V) | VOUT
COMMAND
CODE (HEX) | DELTA FROM
PREVIOUS
CODE (mV) | |----------------|----------|-----------------------|-------------------------------|-------------------------------------| | 00000000 | 0 | 0.7969 | 66 | | | 0000001 | 1 | 0.5000 | 40 | | | 00000010 | 2 | 0.5078 | 41 | 7.8125 | | 00000011 | 3 | 0.5156 | 42 | 7.8125 | | 00000100 | 4 | 0.5234 | 43 | 7.8125 | | 00000101 | 5 | 0.5313 | 44 | 7.8125 | | 00000110 | 6 | 0.5391 | 45 | 7.8125 | | 00000111 | 7 | 0.5469 | 46 | 7.8125 | | 00001000 | 8 | 0.5547 | 47 | 7.8125 | | 00001001 | 9 | 0.5625 | 48 | 7.8125 | | 00001010 | Α | 0.5703 | 49 | 7.8125 | | 00001011 | В | 0.5781 | 4A | 7.8125 | | 00001100 | С | 0.5859 | 4B | 7.8125 | | 00001101 | D | 0.5938 | 4C | 7.8125 | | 00001110 | E | 0.6016 | 4D | 7.8125 | | 00001111 | F | 0.6094 | 4E | 7.8125 | | 00010000 | 10 | 0.6172 | 4F | 7.8125 | | 00010001 | 11 | 0.6250 | 50 | 7.8125 | | 00010010 | 12 | 0.6328 | 51 | 7.8125 | | 00010011 | 13 | 0.6406 | 52 | 7.8125 | | 00010100 | 14 | 0.6484 | 53 | 7.8125 | | 00010101 | 15 | 0.6563 | 54 | 7.8125 | TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE) (Continued) ued) TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE) (Continued) | BINARY CODE HEX CODE (V) VOUT COMMAND CODE (HEX) DELTA FROM CODE (MEX) 00010110 16 0.6641 55 7.8125 00011001 17 0.6719 56 7.8125 00011001 19 0.6875 58 7.8125 00011010 1A 0.6953 59 7.8125 00011010 1B 0.7031 5A 7.8125 00011101 1B 0.7019 5B 7.8125 00011101 1D 0.7188 5C 7.8125 00011110 1E 0.7266 5D 7.8125 00011111 1F 1.3516 AD 7.8125 00011111 1F 1.3516 AD 7.8125 00100000 20 0.8516 6D 7.8125 00100001 21 0.7344 5E 7.8125 00100010 22 0.7422 5F 7.8125 0010010 24 0.7578 61 7.8125 0010 | | | (| -OF VOLINGE) (COI | - | |--|----------|----------|--------|-------------------|----------| | 00010111 17 0.6719 56 7.8125 00011000 18 0.6797 57 7.8125 00011001 19 0.6875 58 7.8125 00011010 1A 0.6953 59 7.8125 00011010 1C 0.7109 5B 7.8125 00011101 1D 0.7188 5C 7.8125 00011110 1E 0.7266 5D 7.8125 00011111 1F 1.3516 AD 7.8125 001010000 20 0.8516 6D 7.8125 00100001 21 0.7344 5E 7.8125 00100010 22 0.7422 5F 7.8125 00100011 23 0.7500 60 7.8125 00100100 24 0.7578 61 7.8125 00100101 25 0.7656 62 7.8125 00101010 26 0.7734 63 7.8125 00101010 2 | | HEX CODE | | COMMAND | PREVIOUS | | 00011000 18 0.6797 57 7.8125 00011001 19 0.6875 58 7.8125 00011010 1A 0.6953 59 7.8125 00011011 1B 0.7031 5A 7.8125 00011100 1C 0.7109 5B 7.8125 00011101 1D 0.7188 5C 7.8125 00011110 1E 0.7266 5D 7.8125 00011111 1F 1.3516 AD 7.8125 00100000 20 0.8516 6D 7.8125 00100001 21 0.7344 5E 7.8125 00100010 22 0.7422 5F 7.8125 00100011 23 0.7500 60 7.8125 00100100 24 0.7578 61 7.8125 00100101 25 0.7656 62 7.8125 00100110 26 0.7734 63 7.8125 00101010 28 | 00010110 | 16 | 0.6641 | 55 | 7.8125 | | 00011001 19 0.6875 58 7.8125 00011010 1A 0.6953 59 7.8125 00011011 1B 0.7031 5A 7.8125 00011100 1C 0.7109 5B 7.8125 00011110 1D 0.7188 5C 7.8125 00011110 1E 0.7266 5D 7.8125 00011111 1F 1.3516 AD 7.8125 00100000 20 0.8516 6D 6D 00100001 21 0.7344 5E 7.8125 00100010 22 0.7422 5F 7.8125 00100101 23 0.7500 60 7.8125 00100101 25 0.7656 62 7.8125 00100101 26 0.7734 63 7.8125 00101010 28 0.7891 65 7.8125 00101001 29 0.7969 66 7.8125 00101011 2B <td>00010111</td> <td>17</td> <td>0.6719</td> <td>56</td> <td>7.8125</td> | 00010111 | 17 | 0.6719 | 56 | 7.8125 | | 00011010 1A 0.6953 59 7.8125 00011011 1B 0.7031 5A 7.8125 00011100 1C 0.7109 5B 7.8125 00011101 1D 0.7188 5C 7.8125 00011110 1E 0.7266 5D 7.8125 00011111 1F 1.3516 AD AD 00100000 20 0.8516 6D AD 00100001 21 0.7344 5E 7.8125 00100010 22 0.7422 5F 7.8125 00100101 23 0.7500 60 7.8125 00100100 24 0.7578 61 7.8125 00100101 25 0.7656 62 7.8125 00100101 26 0.7734 63 7.8125 00101001 28 0.7891 65 7.8125 00101001 29 0.7969 66 7.8125 00101010 2A | 00011000 | 18 | 0.6797 | 57 | 7.8125 | | 00011011 1B 0.7031 5A 7.8125 00011100 1C 0.7109 5B 7.8125 00011101 1D 0.7188 5C 7.8125 00011110 1E 0.7266 5D 7.8125 00011111 1F 1.3516 AD AD 00100000 20 0.8516 6D AD 00100001 21 0.7344 5E 7.8125 00100010 22 0.7422 5F 7.8125 00100011 23 0.7500 60 7.8125 00100100 24 0.7578 61 7.8125 00100101 25 0.7656 62 7.8125 00100101 26 0.7734 63 7.8125 00101001 28 0.7891 65 7.8125 00101001 29 0.7969 66 7.8125 00101011 2B 0.8125 68 7.8125 00101010 2C | 00011001 | 19 | 0.6875 | 58 | 7.8125 | | 00011100 1C 0.7109 5B 7.8125 00011101 1D 0.7188 5C 7.8125 00011110 1E 0.7266 5D 7.8125 00011111 1F 1.3516 AD 00100000 20 0.8516 6D 00100001 21 0.7344 5E 7.8125 00100010 22 0.7422 5F 7.8125 00100011 23 0.7500 60 7.8125 00100100 24 0.7578 61 7.8125 00100101 25 0.7656 62 7.8125 00100101 26 0.7734 63 7.8125 00100101 27 0.7813 64 7.8125 00101000 28 0.7891 65 7.8125 00101001 29 0.7969 66 7.8125 00101010 2A 0.8047 67 7.8125 00101101 2B 0.8281 6A <td>00011010</td> <td>1A</td> <td>0.6953</td> <td>59</td> <td>7.8125</td> | 00011010 | 1A | 0.6953 | 59 | 7.8125 | | 00011101 1D 0.7188 5C 7.8125 00011110 1E 0.7266 5D 7.8125 00011111 1F 1.3516 AD 00100000 20 0.8516 6D 00100001 21 0.7344 5E 7.8125 00100010 22 0.7422 5F 7.8125 00100101 23 0.7500 60 7.8125 00100100 24 0.7578 61 7.8125 00100101 25 0.7656 62 7.8125 00100101 26 0.7734 63 7.8125 00100101 27 0.7813 64 7.8125 00101000 28 0.7891 65 7.8125 00101001 29 0.7969 66 7.8125 00101010 2A 0.8047 67 7.8125 00101101 2B 0.8125 68 7.8125 00101101 2D 0.8281 6A
<td>00011011</td> <td>1B</td> <td>0.7031</td> <td>5A</td> <td>7.8125</td> | 00011011 | 1B | 0.7031 | 5A | 7.8125 | | 00011110 1E 0.7266 5D 7.8125 00011111 1F 1.3516 AD 00100000 20 0.8516 6D 00100010 21 0.7344 5E 7.8125 00100011 23 0.7500 60 7.8125 00100100 24 0.7578 61 7.8125 00100101 25 0.7656 62 7.8125 00100110 26 0.7734 63 7.8125 00100111 27 0.7813 64 7.8125 00101000 28 0.7891 65 7.8125 00101001 29 0.7969 66 7.8125 00101010 2A 0.8047 67 7.8125 00101101 2B 0.8125 68 7.8125 00101101 2D 0.8281 6A 7.8125 00101101 2D 0.8359 6B 7.8125 00110000 30 0.8516 6D <td>00011100</td> <td>1C</td> <td>0.7109</td> <td>5B</td> <td>7.8125</td> | 00011100 | 1C | 0.7109 | 5B | 7.8125 | | 00011111 1F 1.3516 AD 00100000 20 0.8516 6D 00100001 21 0.7344 5E 7.8125 00100010 22 0.7422 5F 7.8125 00100101 23 0.7500 60 7.8125 00100100 24 0.7578 61 7.8125 00100101 25 0.7656 62 7.8125 00100110 26 0.7734 63 7.8125 00100101 27 0.7813 64 7.8125 00101000 28 0.7891 65 7.8125 00101001 29 0.7969 66 7.8125 00101010 2A 0.8047 67 7.8125 00101101 2B 0.8125 68 7.8125 00101101 2D 0.8281 6A 7.8125 00101101 2D 0.8281 6A 7.8125 00110001 31 0.8594 6E <td>00011101</td> <td>1D</td> <td>0.7188</td> <td>5C</td> <td>7.8125</td> | 00011101 | 1D | 0.7188 | 5C | 7.8125 | | 00100000 20 0.8516 6D 00100001 21 0.7344 5E 7.8125 00100010 22 0.7422 5F 7.8125 00100101 23 0.7500 60 7.8125 00100100 24 0.7578 61 7.8125 00100101 25 0.7656 62 7.8125 00100110 26 0.7734 63 7.8125 00100111 27 0.7813 64 7.8125 00101000 28 0.7891 65 7.8125 00101001 29 0.7969 66 7.8125 00101001 2A 0.8047 67 7.8125 00101101 2B 0.8125 68 7.8125 00101101 2B 0.8281 6A 7.8125 00101101 2D 0.8281 6A 7.8125 00101111 2F 0.8438 6C 7.8125 00110001 31 0.8594 | 00011110 | 1E | 0.7266 | 5D | 7.8125 | | 00100001 21 0.7344 5E 7.8125 00100010 22 0.7422 5F 7.8125 00100010 24 0.7578 61 7.8125 00100100 24 0.7578 61 7.8125 00100101 25 0.7656 62 7.8125 00100110 26 0.7734 63 7.8125 00100111 27 0.7813 64 7.8125 00101000 28 0.7891 65 7.8125 00101001 29 0.7969 66 7.8125 00101010 2A 0.8047 67 7.8125 00101101 2B 0.8125 68 7.8125 00101100 2C 0.8203 69 7.8125 00101101 2D 0.8281 6A 7.8125 00101110 2E 0.8359 6B 7.8125 00110000 30 0.8516 6D 7.8125 00110001 31 | 00011111 | 1F | 1.3516 | AD | | | 00100010 22 0.7422 5F 7.8125 00100011 23 0.7500 60 7.8125 00100100 24 0.7578 61 7.8125 00100101 25 0.7656 62 7.8125 00100110 26 0.7734 63 7.8125 00100111 27 0.7813 64 7.8125 00101000 28 0.7891 65 7.8125 00101001 29 0.7969 66 7.8125 00101010 2A 0.8047 67 7.8125 00101010 2A 0.8203 69 7.8125 00101100 2C 0.8203 69 7.8125 00101101 2D 0.8281 6A 7.8125 00101101 2E 0.8359 6B 7.8125 00110100 3C 0.8438 6C 7.8125 00110000 3O 0.8516 6D 7.8125 00110010 32 | 00100000 | 20 | 0.8516 | 6D | | | 00100011 23 0.7500 60 7.8125 00100100 24 0.7578 61 7.8125 00100101 25 0.7656 62 7.8125 00100110 26 0.7734 63 7.8125 00100111 27 0.7813 64 7.8125 00101000 28 0.7891 65 7.8125 00101001 29 0.7969 66 7.8125 00101010 2A 0.8047 67 7.8125 00101010 2A 0.8047 67 7.8125 00101100 2C 0.8203 69 7.8125 00101101 2D 0.8281 6A 7.8125 00101110 2E 0.8359 6B 7.8125 00110100 30 0.8516 6D 7.8125 00110000 30 0.8516 6D 7.8125 00110010 32 0.8672 6F 7.8125 00110010 34 | 00100001 | 21 | 0.7344 | 5E | 7.8125 | | 00100100 24 0.7578 61 7.8125 00100101 25 0.7656 62 7.8125 00100110 26 0.7734 63 7.8125 00100111 27 0.7813 64 7.8125 00101000 28 0.7891 65 7.8125 00101001 29 0.7969 66 7.8125 00101010 2A 0.8047 67 7.8125 00101011 2B 0.8125 68 7.8125 00101100 2C 0.8203 69 7.8125 00101101 2D 0.8281 6A 7.8125 00101110 2E 0.8359 6B 7.8125 00101111 2F 0.8438 6C 7.8125 00110000 30 0.8516 6D 7.8125 00110010 32 0.8672 6F 7.8125 00110011 33 0.8750 70 7.8125 00110101 36 | 00100010 | 22 | 0.7422 | 5F | 7.8125 | | 00100101 25 0.7656 62 7.8125 00100110 26 0.7734 63 7.8125 00100111 27 0.7813 64 7.8125 00101000 28 0.7891 65 7.8125 00101001 29 0.7969 66 7.8125 00101010 2A 0.8047 67 7.8125 00101011 2B 0.8125 68 7.8125 00101100 2C 0.8203 69 7.8125 00101101 2D 0.8281 6A 7.8125 00101110 2E 0.8359 6B 7.8125 00101111 2F 0.8438 6C 7.8125 00110000 30 0.8516 6D 7.8125 00110001 31 0.8594 6E 7.8125 00110010 32 0.8672 6F 7.8125 00110101 35 0.8906 72 7.8125 00110100 34 | 00100011 | 23 | 0.7500 | 60 | 7.8125 | | 00100110 26 0.7734 63 7.8125 00100111 27 0.7813 64 7.8125 00101000 28 0.7891 65 7.8125 00101001 29 0.7969 66 7.8125 00101010 2A 0.8047 67 7.8125 00101011 2B 0.8125 68 7.8125 00101100 2C 0.8203 69 7.8125 00101101 2D 0.8281 6A 7.8125 00101110 2E 0.8359 6B 7.8125 00101111 2F 0.8438 6C 7.8125 00110000 30 0.8516 6D 7.8125 00110001 31 0.8594 6E 7.8125 00110010 32 0.8672 6F 7.8125 00110101 35 0.8906 72 7.8125 00110101 35 0.8906 72 7.8125 0011011 37< | 00100100 | 24 | 0.7578 | 61 | 7.8125 | | 00100111 27 0.7813 64 7.8125 00101000 28 0.7891 65 7.8125 00101001 29 0.7969 66 7.8125 00101010 2A 0.8047 67 7.8125 00101011 2B 0.8125 68 7.8125 00101100 2C 0.8203 69 7.8125 00101101 2D 0.8281 6A 7.8125 00101110 2E 0.8359 6B 7.8125 00101111 2F 0.8438 6C 7.8125 00110000 30 0.8516 6D 7.8125 00110001 31 0.8594 6E 7.8125 00110010 32 0.8672 6F 7.8125 00110011 33 0.8750 70 7.8125 00110101 35 0.8906 72 7.8125 00110110 36 0.8984 73 7.8125 0011001 39< | 00100101 | 25 | 0.7656 | 62 | 7.8125 | | 00101000 28 0.7891 65 7.8125 00101001 29 0.7969 66 7.8125 00101010 2A 0.8047 67 7.8125 00101011 2B 0.8125 68 7.8125 00101100 2C 0.8203 69 7.8125 00101101 2D 0.8281 6A 7.8125 00101110 2E 0.8359 6B 7.8125 00101111 2F 0.8438 6C 7.8125 00110000 30 0.8516 6D 7.8125 00110001 31 0.8594 6E 7.8125 00110010 32 0.8672 6F 7.8125 00110011 33 0.8750 70 7.8125 00110100 34 0.8828 71 7.8125 00110101 35 0.8906 72 7.8125 00110111 37 0.9063 74 7.8125 00111001 39 | 00100110 | 26 | 0.7734 | 63 | 7.8125 | | 00101001 29 0.7969 66 7.8125 00101010 2A 0.8047 67 7.8125 00101011 2B 0.8125 68 7.8125 00101100 2C 0.8203 69 7.8125 00101101 2D 0.8281 6A 7.8125 00101110 2E 0.8359 6B 7.8125 00101111 2F 0.8438 6C 7.8125 00110000 30 0.8516 6D 7.8125 00110001 31 0.8594 6E 7.8125 00110010 32 0.8672 6F 7.8125 00110011 33 0.8750 70 7.8125 00110100 34 0.8828 71 7.8125 00110101 35 0.8906 72 7.8125 00110110 36 0.8984 73 7.8125 00110011 37 0.9063 74 7.8125 00111001 38 | 00100111 | 27 | 0.7813 | 64 | 7.8125 | | 00101010 2A 0.8047 67 7.8125 00101011 2B 0.8125 68 7.8125 00101100 2C 0.8203 69 7.8125 00101101 2D 0.8281 6A 7.8125 00101110 2E 0.8359 6B 7.8125 00101111 2F 0.8438 6C 7.8125 00110000 30 0.8516 6D 7.8125 00110001 31 0.8594 6E 7.8125 00110010 32 0.8672 6F 7.8125 00110011 33 0.8750 70 7.8125 00110100 34 0.8828 71 7.8125 00110101 35 0.8906 72 7.8125 00110110 36 0.8984 73 7.8125 00110101 37 0.9063 74 7.8125 00111000 38 0.9141 75 7.8125 00111001 39 | 00101000 | 28 | 0.7891 | 65 | 7.8125 | | 00101011 2B 0.8125 68 7.8125 00101100 2C 0.8203 69 7.8125 00101101 2D 0.8281 6A 7.8125 00101110 2E 0.8359 6B 7.8125 00101111 2F 0.8438 6C 7.8125 00110000 30 0.8516 6D 7.8125 00110001 31 0.8594 6E 7.8125 00110010 32 0.8672 6F 7.8125 00110011 33 0.8750 70 7.8125 00110100 34 0.8828 71 7.8125 00110101 35 0.8906 72 7.8125 00110110 36 0.8984 73 7.8125 00110111 37 0.9063 74 7.8125 00111000 38 0.9141 75 7.8125 00111001 39 0.9219 76 7.8125 00111001 3A | 00101001 | 29 | 0.7969 | 66 | 7.8125 | | 00101100 2C 0.8203 69 7.8125 00101101 2D 0.8281 6A 7.8125 00101110 2E 0.8359 6B 7.8125 00101111 2F 0.8438 6C 7.8125 00110000 30 0.8516 6D 7.8125 00110001 31 0.8594 6E 7.8125 00110010 32 0.8672 6F 7.8125 00110011 33 0.8750 70 7.8125 00110100 34 0.8828 71 7.8125 00110101 35 0.8906 72 7.8125 00110110 36 0.8984 73 7.8125 00110111 37 0.9063 74 7.8125 00111000 38 0.9141 75 7.8125 00111001 39 0.9219 76 7.8125 00111001 3A 0.9297 77 7.8125 00111011 3B | 00101010 | 2A | 0.8047 | 67 | 7.8125 | | 00101101 2D 0.8281 6A 7.8125 00101110 2E 0.8359 6B 7.8125 00101111 2F 0.8438 6C 7.8125 00110000 30 0.8516 6D 7.8125 00110001 31 0.8594 6E 7.8125 00110010 32 0.8672 6F 7.8125 00110011 33 0.8750 70 7.8125 00110100 34 0.8828 71 7.8125 00110101 35 0.8906 72 7.8125 00110110 36 0.8984 73 7.8125 00110111 37 0.9063 74 7.8125 00111000 38 0.9141 75 7.8125 00111001 39 0.9219 76 7.8125 00111010 3A 0.9297 77 7.8125 00111011 3B 0.9375 78 7.8125 | 00101011 | 2B | 0.8125 | 68 | 7.8125 | | 00101110 2E 0.8359 6B 7.8125 00101111 2F 0.8438 6C 7.8125 00110000 30 0.8516 6D 7.8125 00110001 31 0.8594 6E 7.8125 00110010 32 0.8672 6F 7.8125 00110011 33 0.8750 70 7.8125 00110100 34 0.8828 71 7.8125 00110101 35 0.8906 72 7.8125 00110110 36 0.8984 73 7.8125 00110111 37 0.9063 74 7.8125 00111000 38 0.9141 75 7.8125 00111001 39 0.9219 76 7.8125 00111010 3A 0.9297 77 7.8125 00111011 3B 0.9375 78 7.8125 | 00101100 | 2C | 0.8203 | 69 | 7.8125 | | 00101111 2F 0.8438 6C 7.8125 00110000 30 0.8516 6D 7.8125 00110001 31 0.8594 6E 7.8125 00110010 32 0.8672 6F 7.8125 00110011 33 0.8750 70 7.8125 00110100 34 0.8828 71 7.8125 00110101 35 0.8906 72 7.8125 00110110 36 0.8984 73 7.8125 00110111 37 0.9063 74 7.8125 00111000 38 0.9141 75 7.8125 00111001 39 0.9219 76 7.8125 00111010 3A 0.9297 77 7.8125 00111011 3B 0.9375 78 7.8125 | 00101101 | 2D | 0.8281 | 6A | 7.8125 | | 00110000 30 0.8516 6D 7.8125 00110001 31 0.8594 6E 7.8125 00110010 32 0.8672 6F 7.8125 00110011 33 0.8750 70 7.8125 00110100 34 0.8828 71 7.8125 00110101 35 0.8906 72 7.8125 00110110 36 0.8984 73 7.8125 00110111 37 0.9063 74 7.8125 00111000 38 0.9141 75 7.8125 00111001 39 0.9219 76 7.8125 00111010 3A 0.9297 77 7.8125 00111011 3B 0.9375 78 7.8125 | 00101110 | 2E | 0.8359 | 6B | 7.8125 | | 00110001 31 0.8594 6E 7.8125 00110010 32 0.8672 6F 7.8125 00110011 33 0.8750 70 7.8125 00110100 34 0.8828 71 7.8125 00110101 35 0.8906 72 7.8125 00110110 36 0.8984 73 7.8125 00110111 37 0.9063 74 7.8125 00111000 38 0.9141 75 7.8125 00111001 39 0.9219 76 7.8125 00111010 3A 0.9297 77 7.8125 00111011 3B 0.9375 78 7.8125 | 00101111 | 2F | 0.8438 | 6C | 7.8125 | | 00110010 32 0.8672 6F 7.8125 00110011 33 0.8750 70 7.8125 00110100 34 0.8828 71 7.8125 00110101 35 0.8906 72 7.8125 00110110 36 0.8984 73 7.8125 00110111 37 0.9063 74 7.8125 00111000 38 0.9141 75 7.8125 00111001 39 0.9219 76 7.8125 00111010 3A 0.9297 77 7.8125 00111011 3B 0.9375 78 7.8125 | 00110000 | 30
 0.8516 | 6D | 7.8125 | | 00110011 33 0.8750 70 7.8125 00110100 34 0.8828 71 7.8125 00110101 35 0.8906 72 7.8125 00110110 36 0.8984 73 7.8125 00110111 37 0.9063 74 7.8125 00111000 38 0.9141 75 7.8125 00111001 39 0.9219 76 7.8125 00111010 3A 0.9297 77 7.8125 00111011 3B 0.9375 78 7.8125 | 00110001 | 31 | 0.8594 | 6E | 7.8125 | | 00110100 34 0.8828 71 7.8125 00110101 35 0.8906 72 7.8125 00110110 36 0.8984 73 7.8125 00110111 37 0.9063 74 7.8125 00111000 38 0.9141 75 7.8125 00111001 39 0.9219 76 7.8125 00111010 3A 0.9297 77 7.8125 00111011 3B 0.9375 78 7.8125 | 00110010 | 32 | 0.8672 | 6F | 7.8125 | | 00110101 35 0.8906 72 7.8125 00110110 36 0.8984 73 7.8125 00110111 37 0.9063 74 7.8125 00111000 38 0.9141 75 7.8125 00111001 39 0.9219 76 7.8125 00111010 3A 0.9297 77 7.8125 00111011 3B 0.9375 78 7.8125 | 00110011 | 33 | 0.8750 | 70 | 7.8125 | | 00110110 36 0.8984 73 7.8125 00110111 37 0.9063 74 7.8125 00111000 38 0.9141 75 7.8125 00111001 39 0.9219 76 7.8125 00111010 3A 0.9297 77 7.8125 00111011 3B 0.9375 78 7.8125 | 00110100 | 34 | 0.8828 | 71 | 7.8125 | | 00110111 37 0.9063 74 7.8125 00111000 38 0.9141 75 7.8125 00111001 39 0.9219 76 7.8125 00111010 3A 0.9297 77 7.8125 00111011 3B 0.9375 78 7.8125 | 00110101 | 35 | 0.8906 | 72 | 7.8125 | | 00111000 38 0.9141 75 7.8125 00111001 39 0.9219 76 7.8125 00111010 3A 0.9297 77 7.8125 00111011 3B 0.9375 78 7.8125 | 00110110 | 36 | 0.8984 | 73 | 7.8125 | | 00111001 39 0.9219 76 7.8125 00111010 3A 0.9297 77 7.8125 00111011 3B 0.9375 78 7.8125 | 00110111 | 37 | 0.9063 | 74 | 7.8125 | | 00111010 3A 0.9297 77 7.8125 00111011 3B 0.9375 78 7.8125 | 00111000 | 38 | 0.9141 | 75 | 7.8125 | | 00111011 3B 0.9375 78 7.8125 | 00111001 | 39 | 0.9219 | 76 | 7.8125 | | | 00111010 | ЗА | 0.9297 | 77 | 7.8125 | | 00111100 3C 0.9453 79 7.8125 | 00111011 | 3B | 0.9375 | 78 | 7.8125 | | | 00111100 | 3C | 0.9453 | 79 | 7.8125 | | CODE HEX COD 00111101 3D 00111111 3E 00111111 3F 01000000 40 01000001 41 01000010 42 01000101 43 01000101 45 01000101 46 01001010 48 01001001 49 0100101 4B 0100101 4B 01001101 4D 01001101 4E 01001111 4F 01010000 50 01010001 52 01010001 54 01010101 55 01010111 56 01010111 57 01011000 58 01011001 59 | 0.9531 0.9609 1.5000 0.8984 0.9688 0.9766 0.9844 0.9922 1.0000 1.0078 1.0156 1.0234 1.0313 1.0391 1.0469 1.0547 1.0625 1.0703 1.0781 1.0859 1.0938 | 7A 7B C0 73 7C 7D 7E 7F 80 81 82 83 84 85 86 87 88 89 8A | 7.8125 | |--|--|--|---| | 00111110 3E 00111111 3F 01000000 40 01000001 41 01000010 42 01000101 43 01000101 45 01000110 46 01001011 47 01001000 48 01001010 4A 01001011 4B 01001101 4D 01001101 4E 01001111 4F 01010000 50 01010001 51 01010001 52 01010010 54 01010101 56 01010111 57 01011000 58 | 0.9609 1.5000 0.8984 0.9688 0.9766 0.9844 0.9922 1.0000 1.0078 1.0156 1.0234 1.0313 1.0391 1.0469 1.0547 1.0625 1.0703 1.0781 1.0859 1.0938 | 7B C0 73 7C 7D 7E 7F 80 81 82 83 84 85 86 87 88 89 | 7.8125 | | 00111111 3F 01000000 40 01000001 41 01000011 43 01000100 44 01000101 45 01000110 46 01000111 47 01001000 48 01001001 49 01001010 4A 01001011 4B 01001101 4D 01001110 4E 01001111 4F 01010000 50 01010001 52 01010001 52 01010010 54 01010101 55 01010111 56 01010111 57 01011000 58 | 1.5000 0.8984 0.9688 0.9766 0.9844 0.9922 1.0000 1.0078 1.0156 1.0234 1.0313 1.0391 1.0469 1.0547 1.0625 1.0703 1.0781 1.0859 1.0938 | CO 73 7C 7D 7E 7F 80 81 82 83 84 85 86 87 88 | 7.8125 | | 01000000 40 01000001 41 01000010 42 01000101 43 01000101 45 01000110 46 01000111 47 01001000 48 01001001 49 01001010 4A 01001011 4B 01001101 4D 01001111 4F 01001111 4F 01010000 50 01010001 51 01010001 52 01010010 54 01010101 55 01010111 56 01010111 57 01011000 58 | 0.8984 0.9688 0.9766 0.9844 0.9922 1.0000 1.0078 1.0156 1.0234 1.0313 1.0391 1.0469 1.0547 1.0625 1.0703 1.0781 1.0859 1.0938 | 73 7C 7D 7E 7F 80 81 82 83 84 85 86 87 88 | 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 | | 01000001 41 01000010 42 01000011 43 01000100 44 01000110 46 01000111 47 01001000 48 01001001 49 01001010 4A 01001011 4B 01001100 4C 01001101 4F 01001111 4F 01010000 50 01010001 51 01010010 52 01010011 53 01010100 54 01010101 55 01010111 57 010110100 58 | 0.9688 0.9766 0.9844 0.9922 1.0000 1.0078 1.0156 1.0234 1.0313 1.0391 1.0469 1.0547 1.0625 1.0703 1.0781 1.0859 1.0938 | 7C 7D 7E 7F 80 81 82 83 84 85 86 87 88 | 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 | | 01000010 42 01000011 43 01000100 44 01000110 45 01000111 47 01001000 48 01001010 4A 01001010 4A 01001011 4B 01001101 4D 01001101 4F 01001111 4F 01010000 50 01010001 51 01010010 52 01010011 53 01010010 54 01010101 55 01010111 57 01011000 58 | 0.9766 0.9844 0.9922 1.0000 1.0078 1.0156 1.0234 1.0313 1.0391 1.0469 1.0547 1.0625 1.0703 1.0781 1.0859 1.0938 | 7D 7E 7F 80 81 82 83 84 85 86 87 88 | 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 | | 01000011 43 01000100 44 01000110 45 01000111 47 01001000 48 01001001 49 01001010 4A 01001011 4B 01001100 4C 01001101 4D 01001110 4E 01001111 4F 01010000 50 01010001 51 01010001 52 01010010 54 01010101 55 01010111 56 01010111 57 01011000 58 | 0.9844
0.9922
1.0000
1.0078
1.0156
1.0234
1.0313
1.0391
1.0469
1.0547
1.0625
1.0703
1.0781
1.0859
1.0938 | 7E 7F 80 81 82 83 84 85 86 87 88 | 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 | | 01000100 44 01000101 45 01000110 46 01000111 47 01001000 48 01001010 4A 01001011 4B 01001100 4C 01001101 4D 01001110 4E 01001111 4F 01010000 50 01010001 51 01010010 52 01010011 53 01010101 55 01010101 56 01010111 57 01011000 58 | 0.9922 1.0000 1.0078 1.0156 1.0234 1.0313 1.0391 1.0469 1.0547 1.0625 1.0703 1.0781 1.0859 1.0938 | 7F 80 81 82 83 84 85 86 87 88 89 | 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 | | 01000101 45 01000110 46 01000111 47 01001000 48 01001001 49 01001010 4A 01001011 4B 01001100 4C 01001101 4D 01001110 4E 01001111 4F 01010000 50 01010001 51 01010010 52 01010011 53 01010100 54 01010101 56 01010111 57 01011000 58 | 1.0000 1.0078 1.0156 1.0234 1.0313 1.0391 1.0469 1.0547 1.0625 1.0703 1.0781 1.0859 1.0938 | 80
81
82
83
84
85
86
87
88
89 | 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 | | 01000110 46 01000111 47 01001000 48 01001001 49 01001010 4A 01001011 4B 01001100 4C 01001101 4D 01001110 4E 01001111 4F 01010000 50 01010001 51 01010001 52 01010010 54 01010101 55 01010111 57 01011000 58 | 1.0078 1.0156 1.0234 1.0313 1.0391 1.0469 1.0547 1.0625 1.0703 1.0781 1.0859 1.0938 | 81
82
83
84
85
86
87
88
89 | 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 | | 01000111 47 01001000 48 01001001 49 01001010 4A 01001011 4B 01001100 4C 01001101 4D 01001110 4E 01001111 4F 01010000 50 01010001 51 01010010 52 01010011 53 01010100 54 01010101 55 01010111 57 01011000 58 | 1.0156 1.0234 1.0313 1.0391 1.0469 1.0547 1.0625 1.0703 1.0781 1.0859 1.0938 | 82
83
84
85
86
87
88
89 | 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 | | 01001000 48 01001001 49 01001010 4A 01001011 4B 01001100 4C 01001101 4D 01001110 4E 01001111 4F 01010000 50 01010001 51 01010010 52 01010011 53 01010100 54 01010101 55 01010111 57 01011000 58 | 1.0234
1.0313
1.0391
1.0469
1.0547
1.0625
1.0703
1.0781
1.0859
1.0938 | 83
84
85
86
87
88
89 | 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 7.8125 | | 01001001 49 01001010 4A 01001011 4B 01001100 4C 01001101 4D 01001110 4E 01001111 4F 01010000 50 01010001 51 01010010 52 01010011 53 01010100 54 01010101 55 01010111 56 01010111 57 01011000 58 | 1.0313
1.0391
1.0469
1.0547
1.0625
1.0703
1.0781
1.0859
1.0938 | 84
85
86
87
88
89 | 7.8125
7.8125
7.8125
7.8125
7.8125
7.8125
7.8125 | | 01001010 4A 01001011 4B 01001100 4C 01001101 4D 01001110 4E 01001111 4F 01010000 50 01010001 51 01010010 52 01010011 53 01010100 54 01010101 55 0101011 56 01010111 57 01011000 58 | 1.0391
1.0469
1.0547
1.0625
1.0703
1.0781
1.0859
1.0938 | 85
86
87
88
89
8A |
7.8125
7.8125
7.8125
7.8125
7.8125
7.8125 | | 01001011 4B 01001100 4C 01001101 4D 01001110 4E 01001111 4F 01010000 50 01010001 51 01010010 52 01010011 53 01010100 54 01010101 55 01010110 56 01010111 57 01011000 58 | 1.0469
1.0547
1.0625
1.0703
1.0781
1.0859
1.0938 | 86
87
88
89
8A | 7.8125
7.8125
7.8125
7.8125
7.8125 | | 01001100 4C 01001101 4D 01001110 4E 01001111 4F 01010000 50 01010001 51 01010010 52 01010011 53 01010100 54 01010101 55 01010111 57 01011000 58 | 1.0547
1.0625
1.0703
1.0781
1.0859
1.0938 | 87
88
89
8A | 7.8125
7.8125
7.8125
7.8125 | | 01001101 4D 01001110 4E 01001111 4F 01010000 50 01010001 51 01010010 52 01010011 53 01010100 54 01010101 55 01010110 56 01010111 57 01011000 58 | 1.0625
1.0703
1.0781
1.0859
1.0938 | 88
89
8A | 7.8125
7.8125
7.8125 | | 01001110 4E 01001111 4F 01010000 50 01010001 51 01010010 52 01010011 53 01010100 54 01010101 55 01010111 57 01011000 58 | 1.0703
1.0781
1.0859
1.0938 | 89
8A | 7.8125
7.8125 | | 01001111 4F 01010000 50 01010001 51 01010010 52 01010011 53 01010100 54 01010101 55 01010110 56 01010111 57 01011000 58 | 1.0781
1.0859
1.0938 | 8A | 7.8125 | | 01010000 50 01010001 51 01010010 52 01010011 53 01010100 54 01010101 55 01010110 56 01010111 57 01011000 58 | 1.0859 | | | | 01010001 51 01010010 52 01010011 53 01010100 54 01010101 55 01010110 56 01010111 57 01011000 58 | 1.0938 | 8B | 7.8125 | | 01010010 52 01010011 53 01010100 54 01010101 55 01010110 56 01010111 57 01011000 58 | | | | | 01010011 53 01010100 54 01010101 55 01010110 56 01010111 57 01011000 58 | | 8C | 7.8125 | | 01010100 54 01010101 55 01010110 56 01010111 57 01011000 58 | 1.1016 | 8D | 7.8125 | | 01010101 55 01010110 56 01010111 57 01011000 58 | 1.1094 | 8E | 7.8125 | | 01010110 56 01010111 57 01011000 58 | 1.1172 | 8F | 7.8125 | | 01010111 57
01011000 58 | 1.1250 | 90 | 7.8125 | | 01011000 58 | 1.1328 | 91 | 7.8125 | | | 1.1406 | 92 | 7.8125 | | 01011001 59 | 1.1484 | 93 | 7.8125 | | | 1.1563 | 94 | 7.8125 | | 01011010 5A | 1.1641 | 95 | 7.8125 | | 01011011 5B | 1.1719 | 96 | 7.8125 | | 01011100 5C | 1.1797 | 97 | 7.8125 | | 01011101 5D | 1.1875 | 98 | 7.8125 | | 01011110 5E | 1.1953 | 99 | 7.8125 | | 01011111 5F | 1.7969 | E6 | | | 01100000 60 | 0.9531 | 7A | | | 01100001 61 | - | 9A | 7.8125 | | 01100010 62 | 1.2031 | | 7.8125 | | 01100011 63 | 1.2031 | 9B | | TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE) (Continued) | | | • | VOUT | DELTA FROM | |----------------|----------|--------------------------|-----------------------|-----------------------| | BINARY
CODE | HEX CODE | V _{BOOT}
(V) | COMMAND
CODE (HEX) | PREVIOUS
CODE (mV) | | 01100100 | 64 | 1.2266 | 9D | 7.8125 | | 01100101 | 65 | 1.2344 | 9E | 7.8125 | | 01100110 | 66 | 1.2422 | 9F | 7.8125 | | 01100111 | 67 | 1.2500 | A0 | 7.8125 | | 01101000 | 68 | 1.2578 | A1 | 7.8125 | | 01101001 | 69 | 1.2656 | A2 | 7.8125 | | 01101010 | 6A | 1.2734 | А3 | 7.8125 | | 01101011 | 6B | 1.2813 | A4 | 7.8125 | | 01101100 | 6C | 1.2891 | A 5 | 7.8125 | | 01101101 | 6D | 1.2969 | A6 | 7.8125 | | 01101110 | 6E | 1.3047 | A7 | 7.8125 | | 01101111 | 6F | 1.3125 | A8 | 7.8125 | | 01110000 | 70 | 1.3203 | А9 | 7.8125 | | 01110001 | 71 | 1.3281 | AA | 7.8125 | | 01110010 | 72 | 1.3359 | AB | 7.8125 | | 01110011 | 73 | 1.3438 | AC | 7.8125 | | 01110100 | 74 | 1.3516 | AD | 7.8125 | | 01110101 | 75 | 1.3594 | AE | 7.8125 | | 01110110 | 76 | 1.3672 | AF | 7.8125 | | 01110111 | 77 | 1.3750 | В0 | 7.8125 | | 01111000 | 78 | 1.3828 | B1 | 7.8125 | | 01111001 | 79 | 1.3906 | B2 | 7.8125 | | 01111010 | 7A | 1.3984 | В3 | 7.8125 | | 01111011 | 7B | 1.4063 | В4 | 7.8125 | | 01111100 | 7C | 1.4141 | B5 | 7.8125 | | 01111101 | 7D | 1.4219 | В6 | 7.8125 | | 01111110 | 7E | 1.4297 | В7 | 7.8125 | | 01111111 | 7F | 2.5000 | 140 | | | 10000000 | 80 | 1.0000 | 80 | | | 10000001 | 81 | 1.4375 | B8 | 7.8125 | | 10000010 | 82 | 1.4453 | В9 | 7.8125 | | 10000011 | 83 | 1.4531 | ВА | 7.8125 | | 10000100 | 84 | 1.4609 | ВВ | 7.8125 | | 10000101 | 85 | 1.4688 | ВС | 7.8125 | | 10000110 | 86 | 1.4766 | BD | 7.8125 | | 10000111 | 87 | 1.4844 | BE | 7.8125 | | 10001000 | 88 | 1.4922 | BF | 7.8125 | | 10001001 | 89 | 1.5000 | со | 7.8125 | | 10001010 | 8A | 1.5078 | C1 | 7.8125 | TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE) (Continued) | 171521 | ······································· | (500) | -OF VOLIAGE) (COI | | |----------------|---|-----------------------|-------------------------------|-------------------------------------| | BINARY
CODE | HEX CODE | V _{BOOT} (V) | VOUT
COMMAND
CODE (HEX) | DELTA FROM
PREVIOUS
CODE (mV) | | 10001011 | 8B | 1.5156 | C2 | 7.8125 | | 10001100 | 8C | 1.5234 | С3 | 7.8125 | | 10001101 | 8D | 1.5313 | C4 | 7.8125 | | 10001110 | 8E | 1.5391 | C5 | 7.8125 | | 10001111 | 8F | 1.5469 | C6 | 7.8125 | | 10010000 | 90 | 1.5547 | C7 | 7.8125 | | 10010001 | 91 | 1.5625 | C8 | 7.8125 | | 10010010 | 92 | 1.5703 | С9 | 7.8125 | | 10010011 | 93 | 1.5781 | CA | 7.8125 | | 10010100 | 94 | 1.5859 | СВ | 7.8125 | | 10010101 | 95 | 1.5938 | CC | 7.8125 | | 10010110 | 96 | 1.6016 | CD | 7.8125 | | 10010111 | 97 | 1.6094 | CE | 7.8125 | | 10011000 | 98 | 1.6172 | CF | 7.8125 | | 10011001 | 99 | 1.6250 | D0 | 7.8125 | | 10011010 | 9A | 1.6328 | D1 | 7.8125 | | 10011011 | 9B | 1.6406 | D2 | 7.8125 | | 10011100 | 9C | 1.6484 | D3 | 7.8125 | | 10011101 | 9D | 1.6563 | D4 | 7.8125 | | 10011110 | 9E | 1.6641 | D5 | 7.8125 | | 10011111 | 9F | 3.0000 | 180 | | | 10100000 | A0 | 1.0469 | 86 | | | 10100001 | A1 | 1.6719 | D6 | 7.8125 | | 10100010 | A2 | 1.6797 | D7 | 7.8125 | | 10100011 | А3 | 1.6875 | D8 | 7.8125 | | 10100100 | A4 | 1.6953 | D9 | 7.8125 | | 10100101 | A5 | 1.7031 | DA | 7.8125 | | 10100110 | A6 | 1.7109 | DB | 7.8125 | | 10100111 | A7 | 1.7188 | DC | 7.8125 | | 10101000 | A8 | 1.7266 | DD | 7.8125 | | 10101001 | A9 | 1.7344 | DE | 7.8125 | | 10101010 | AA | 1.7422 | DF | 7.8125 | | 10101011 | АВ | 1.7500 | EO | 7.8125 | | 10101100 | AC | 1.7578 | E1 | 7.8125 | | 10101101 | AD | 1.7656 | E2 | 7.8125 | | 10101110 | AE | 1.7734 | E3 | 7.8125 | | 10101111 | AF | 1.7813 | E4 | 7.8125 | | 10110000 | В0 | 1.7891 | E 5 | 7.8125 | | 10110001 | B1 | 1.7969 | E6 | 7.8125 | | | 1 | | i | I | intersil FN8705.1 March 7, 2016 14 TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE) (Continued) TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE) (Continued) | BINARY
CODE | HEX CODE | V _{BOOT} (V) | VOUT
COMMAND
CODE (HEX) | DELTA FROM
PREVIOUS
CODE (mV) | |----------------|----------|-----------------------|-------------------------------|-------------------------------------| | 10110010 | B2 | 1.8047 | E7 | 7.8125 | | 10110011 | В3 | 1.8125 | E8 | 7.8125 | | 10110100 | B4 | 1.8203 | E9 | 7.8125 | | 10110101 | B5 | 1.8281 | EA | 7.8125 | | 10110110 | В6 | 1.8359 | EB | 7.8125 | | 10110111 | В7 | 1.9141 | F5 | 78.125 | | 10111000 | B8 | 1.9922 | FF | 78.125 | | 10111001 | В9 | 2.0703 | 109 | 78.125 | | 10111010 | ВА | 2.1484 | 113 | 78.125 | | 10111011 | ВВ | 2.2266 | 11D | 78.125 | | 10111100 | вс | 2.3047 | 127 | 78.125 | | 10111101 | BD | 2.3828 | 131 | 78.125 | | 10111110 | BE | 2.4609 | 13B | 78.125 | | 10111111 | BF | 3.2969 | 1A6 | | | 11000000 | СО | 1.1016 | 8D | | | 11000001 | C1 | 2.4688 | 13C | 7.8125 | | 11000010 | C2 | 2.4766 | 13D | 7.8125 | | 11000011 | С3 | 2.4844 | 13E | 7.8125 | | 11000100 | C4 | 2.4922 | 13F | 7.8125 | | 11000101 | C5 | 2.5000 | 140 | 7.8125 | | 11000110 | C6 | 2.5078 | 141 | 7.8125 | | 11000111 | C7 | 2.5156 | 142 | 7.8125 | | 11001000 | C8 | 2.5234 | 143 | 7.8125 | | 11001001 | C9 | 2.6016 | 14D | 78.125 | | 11001010 | CA | 2.6797 | 157 | 78.125 | | 11001011 | СВ | 2.7578 | 161 | 78.125 | | 11001100 | СС | 2.8359 | 16B | 78.125 | | 11001101 | CD | 2.9141 | 175 | 78.125 | | 11001110 | CE | 2.9922 | 17F | 78.125 | | 11001111 | CF | 3.0703 | 189 | 78.125 | | 11010000 | D0 | 3.1484 | 193 | 78.125 | | 11010001 | D1 | 3.2266 | 19D | 78.125 | | 11010010 | D2 | 3.2813 | 1A4 | 54.6875 | | 11010011 | D3 | 3.2891 | 1A5 | 7.8125 | | 11010100 | D4 | 3.2969 | 1 A6 | 7.8125 | | 11010101 | D5 | 3.3047 | 1A7 | 7.8125 | | 11010110 | D6 | 3.3125 | 1A8 | 7.8125 | | 11010111 | D7 | 3.3203 | 1A9 | 7.8125 | | 11011000 | D8 | 3.3281 | 1AA | 7.8125 | | | | • | VOUT | DELTA FROM | |----------------|----------|--------------------------|-----------------------|-----------------------| | BINARY
CODE | HEX CODE | V _{BOOT}
(V) | COMMAND
CODE (HEX) | PREVIOUS
CODE (mV) | | 11011001 | D9 | 3.4063 | 1 B4 | 78.125 | | 11011010 | DA | 3.4844 | 1BE | 78.125 | | 11011011 | DB | 3.5625 | 108 | 78.125 | | 11011100 | DC | 3.6406 | 1D2 | 78.125 | | 11011101 | DD | 3.7188 | 1DC | 78.125 | | 11011110 | DE | 3.7969 | 1E6 | 78.125 | | 11011111 | DF | 5.0000 | 280 | | | 11100000 | EO | 1.2031 | 9A | | | 11100001 | E1 | 3.8750 | 1 F0 | 78.125 | | 11100010 | E2 | 3.9531 | 1FA | 78.125 | | 11100011 | E3 | 4.0313 | 204 | 78.125 | | 11100100 | E4 | 4.1094 | 20E | 78.125 | | 11100101 | E5 | 4.1875 | 218 | 78.125 | | 11100110 | E6 | 4.2656 | 222 | 78.125 | | 11100111 | E7 | 4.3438 | 22C | 78.125 | | 11101000 | E8 | 4.4219 | 236 | 78.125 | | 11101001 | E9 | 4.5000 | 240 | 78.125 | | 11101010 | EA | 4.5781 | 24A | 78.125 | | 11101011 | EB | 4.6563 | 254 | 78.125 | | 11101100 | EC | 4.7344 | 25E | 78.125 | | 11101101 | ED | 4.8125 | 268 | 78.125 | | 11101110 | EE | 4.8906 | 272 | 78.125 | | 11101111 | EF | 4.9688 | 27C | 78.125 | | 11110000 | FO | 4.9766 | 27D | 7.8125 | | 11110001 | F1 | 4.9844 | 27E | 7.8125 | | 11110010 | F2 | 4.9922 | 27F | 7.8125 | | 11110011 | F3 | 5.0000 | 280 | 7.8125 | | 11110100 | F4 | 5.0078 | 281 | 7.8125 | | 11110101 | F5 | 5.0156 | 282 | 7.8125 | | 11110110 | F6 | 5.0234 | 283 | 7.8125 | | 11110111 | F7 | 5.0313 | 284 | 7.8125 | | 11111000 | F8 | 5.1094 | 28E | 78.125 | | 11111001 | F9 | 5.1875 | 298 | 78.125 | | 11111010 | FA | 5.2656 |
2A2 | 78.125 | | 11111011 | FB | 5.3438 | 2AC | 78.125 | | 11111100 | FC | 5.4219 | 2B6 | 78.125 | | 11111101 | FD | 5.4922 | 2BF | 70.3125 | | 11111110 | FE | 5.5000 | 200 | 7.8125 | | 11111111 | FF | 0 | 0 | | 15 As shown in Table 7, 1 step is $2^{-7} = 7.8125$ mV; some selections are higher than 1 step from adjacent codes. However, the resolution is ±7.8125mV around the popular voltage regulation points, as in Table 3 on page 11, for fine tune purpose. For finer than 7.8125mV tuning, a large ratio resistor divider can be placed on the VSEN pin between the output (VOLIT) and RGND for positive offset or V_{CC} for negative offset, as in Figure 8. FIGURE 8. EXTERNAL PROGRAMMABLE REGULATION #### **Current Sensing** The ISL68200 supports inductor DCR sensing, or resistive sensing techniques, and senses current continuously for fast response. The current sense amplifier uses the CSEN and CSRTN inputs to reproduce a signal proportional to the inductor current, IL. The sense current, ISEN, is proportional to the inductor current and is used for current reporting and overcurrent protection. The input bias current of the current sensing amplifier is typically 10s of nA; less than $15k\Omega$ input impedance connected to CSEN pin is preferred to minimize the offset error, i.e., use a larger C value (select 0.22µF to 1µF instead of 0.1µF when needed). In addition, the current sensing gain resistor connected to CSRTN pin should be within 40Ω to $3.5k\Omega$. #### INDUCTOR DCR SENSING An inductor's winding is characteristic of a distributed resistance, as measured by the DCR (Direct Current Resistance) parameter. A simple R-C network across the inductor extracts the DCR voltage, as shown in Figure 9. The voltage on the capacitor $V_{\mathbb{C}}$, can be shown to be proportional to the inductor current I_{L} as in Equation 5. $$V_{C}(s) = \frac{\left(s \cdot \frac{L}{DCR} + 1\right) \cdot (DCR \cdot I_{L})}{(s \cdot RC + 1)}$$ (EQ. 5) If the R-C network components are selected such that the RC time constant (= R * C) matches the inductor time constant (= L/DCR), the voltage across the capacitor V_C is equal to the voltage drop across the DCR. With the internal low-offset current amplifier, the capacitor voltage V_C is replicated across the sense resistor R_{ISEN}. Therefore, the current out of the CSRTN pin, I_{SEN}, is proportional to the inductor current. Equation 6 shows that the ratio of the inductor current to the sensed current, I_{SEN}, is driven by the value of the sense resistor and the DCR of the inductor. $$I_{SEN} = I_L \cdot \frac{DCR}{R_{ISEN}}$$ (EQ. 6) The inductor DCR value will increase as the temperature increases. Therefore, the sensed current will increase as the temperature of the current sense element increases. In order to compensate the temperature effect on the sensed current signal, the integrated temperature compensation function of ISL68200 should be utilized. The integrated temperature compensation function is described in "Thermal Monitoring and Compensation" on page 17. FIGURE 9. DCR SENSING CONFIGURATION #### **RESISTIVE SENSING** For accurate current sense, a dedicated current-sense resistor RSENSE, in series with each output inductor can serve as the current sense element (see Figure 10). This technique, however, reduces overall converter efficiency due to the additional power loss on the current sense element RSFNSF. FIGURE 10. SENSE RESISTOR IN SERIES WITH INDUCTORS A current sensing resistor has a distributed parasitic inductance, known as ESL (equivalent series inductance, typically less than 1nH) parameter. A simple R-C network across the current sense resistor extracts the R_{SEN} voltage, as shown in Figure 10 on page 16. The voltage on the capacitor V_C, can be shown to be proportional to the inductor current I_L , see Equation 7. $$V_{C}(s) = \frac{\left(s \cdot \frac{ESL}{R_{SEN}} + 1\right) \cdot (R_{SEN} \cdot I_{L})}{(s \cdot RC + 1)}$$ (EQ. 7) If the R-C network components are selected such that the RC time constant matches the ESL-R_{SEN} time constant (R * C = ESL/ R_{SEN}), the voltage across the capacitor V_C is equal to the voltage drop across the $\ensuremath{\text{R}_{\text{SEN}}}\xspace$, i.e., proportional to the inductor current. As an example, a typical $1m\Omega$ sense resistor can use R = 348 and C = 820pF for the matching. Figures 11 and 12 show the sensed waveforms without and with matching RC when using resistive sense. FIGURE 11. VOLTAGE ACROSS R WITHOUT RC FIGURE 12. VOLTAGE ACROSS C WITH MATCHING RC Equation 8 shows that the ratio of the inductor current to the sensed current, I_{SEN}, is driven by the value of the sense resistor and the RISEN. $$I_{SEN} = I_L \cdot \frac{R_{SEN}}{R_{ISEN}}$$ (EQ. 8) #### L/DCR OR ESL/R_{SEN} MATCHING Figure 13 shows the expected load transient response waveforms if L/DCR or ESL/R_{SEN} is matching the R-C time constant. When the load current has a square change, the IOUT pin voltage (VIOUT) without a decoupling capacitor also has a square response. However, there is always some PCB contact impedance of current sensing components between the two current sensing points; it hardly accounts into the L/DCR or ESL/ R_{SEN} matching calculation. Fine tuning the matching is necessarily done at the board level to improve overall transient performance and system reliability. If the R-C timing constant is too large or too small, V_C(s) will not accurately represent real-time output current and will worsen the overcurrent fault response. Figure 14 shows the IOUT pin transient voltage response when the R-C timing constant is too small. V_{IOLIT} will sag excessively upon load insertion and may create a system failure or early overcurrent trip. Figure 15 shows the transient response when the R-C timing constant is too large. V_{IOUT} is sluggish in reaching its final value. The excessive delay on current sensing will not provide a fast OCP response and hurt system reliability. FIGURE 13. DESIRED LOAD TRANSIENT RESPONSE WAVEFORMS FIGURE 14. LOAD TRANSIENT RESPONSE WHEN R-C TIME **CONSTANT IS TOO SMALL** FIGURE 15. LOAD TRANSIENT RESPONSE WHEN R-C TIME **CONSTANT IS TOO LARGE** Note that the integrated thermal compensation applies to the DC current, but not the AC current; therefore, the peak current seen by the controller will increase as the temperature decreases and can potentially trigger an OCP event. To overcome this issue, the RC should be over-matching L/DCR at room temperature by $(-40 \,^{\circ}\text{C} + 25 \,^{\circ}\text{C}) \,^{*} \, 0.385\%/^{\circ}\text{C} = +25\% \text{ for } -40 \,^{\circ}\text{C} \text{ operation.}$ #### **Thermal Monitoring and Compensation** The block diagram of thermal monitoring function is shown in Figure 16 on page 18. One NTC resistor should be placed close to the respective power stage of the voltage regulator VR to sense the operational temperature and pull-up resistors are needed to form the voltage dividers for the NTC pin. As the temperature of the power stage increases, the resistance of the NTC will reduce, resulting in the reduced voltage at the NTC pin. Figure 18 on page 18 shows the TM voltage over the temperature for a typical design with a recommended 10kΩ NTC (P/N: NCP15XH103J03RC from Murata, β = 3380) and 1.54k Ω resistor R_{TM}. It is recommended to use those resistors for the accurate temperature compensation since the internal thermal digital code is developed based upon these two components. If a different value is used, the temperature coefficient must be close to 3380 and R_{TM} must be scaled accordingly. For instance, say NTC = $20k\Omega$ (β = 3380), then R_{TM} should be Submit Document Feedback FN8705 1 17 intersil March 7, 2016 $20k\Omega/10k\Omega*1.54k\Omega=3.08k\Omega$. FIGURE 16. BLOCK DIAGRAM OF THERMAL MONITORING AND **PROTECTION** The ISL68200 supports inductor DCR sensing, or resistive sensing techniques. The inductor DCR has a positive temperature coefficient, which is about +0.385%/ $^{\circ}$ C. Since the voltage across the inductor is sensed for the output current information, the sensed current has the same positive temperature coefficient as the inductor DCR. In order to obtain the correct current information, the ISL68200 utilizes the voltage at the NTC pin and "TCOMP" register to compensate the temperature impact on the sensed current. The block diagram of this function is shown in Figure 17. FIGURE 17. BLOCK DIAGRAM OF INTEGRATED TEMPERATURE COMPENSATION When the NTC is placed close to the current sense component (inductor), the temperature of the NTC will track the temperature of the current sense component. Therefore, the NTC pin voltage can be utilized to obtain the temperature of the current sense component. Since the NTC could pick up noise from the phase node, a 0.1µF ceramic decoupling capacitor is recommended on the NTC pin in close proximity to the controller. Based on the VCC voltage, the ISL68200 converts the NTC pin voltage to a digital signal for temperature compensation. With the nonlinear A/D converter of the ISL68200, the NTC digital signal is linearly proportional to the NTC temperature. For accurate temperature compensation, the ratio of the NTC voltage to the NTC temperature of the practical design should be similar to that in Figure 18. FIGURE 18. THE RATIO OF TM VOLTAGE TO NTC TEMPERATURE WITH RECOMMENDED PART Since the NTC attaches to the PCB, but not directly to the current sensing component, it inherits high thermal impedance between the NTC and the current sensing element. The "TCOMP" register values can be utilized to correct the temperature difference between NTC and the current sense component. As shown in Figure 19, the NTC should be placed in proximity to the output rail; DON'T place it close to the MOSFET side, which generates much more heat. FIGURE 19. RECOMMENDED PLACEMENT OF NTC The ISL68200 multiplexes the "TCOMP" value with the NTC digital signal to obtain the
adjustment gain to compensate the temperature impact on the sensed channel current. The compensated current signal is used for $I_{\mbox{\scriptsize OUT}}$ and overcurrent protection functions. The TCOMP "OFF" code is to disable thermal compensation when the current sensing element is the resistor or smart power stage (internally thermal compensated) that has little thermal drifting. **TABLE 8. "TCOMP" VALUES** | D1h | TCOMP (°C) | D1h | TCOMP (°C) | |------------|------------|-----|------------| | 0h | 30 | 2h | 5 | | 1 h | 15 | 3h | OFF | Submit Document Feedback FN8705 1 18 intersil Thermal compensation design procedure for inductor current sensing is summarized as follows: - Properly choose the voltage divider for the NTC pin to match the NTC voltage vs temperature curve with the recommended curve in <u>Figure 18 on page 18</u>. - Run the actual board under the full load and the desired airflow condition. - After the board reaches the thermal steady state (often takes 15 minutes), record the temperature (T_{CSC}) of the current sense component (inductor) and the voltage at NTC and VCC pins. - 4. Use Equation 9 to calculate the resistance of the NTC, and find out the corresponding NTC temperature T_{NTC} from the NTC datasheet or using Equation 10, where β is equal to 3380 for recommended NTC. $$R_{NTC}(@T_{NTC}) = \frac{V_{TM}xR_{TM}}{V_{CC}-V_{TM}}$$ (EQ. 9) $$T_{NTC} = \frac{\beta}{\ln\left(\frac{R_{NTC}(@25^{0}C)}{R_{NTC}(@T_{NTC})}\right) + \frac{\beta}{298.15}} - 273.15$$ (EQ. 10) Choose a number close to the result as in <u>Equation 11</u> for the "TCOMP" register. $$T_{COMP} = T_{CSC} - T_{NTC}$$ (EQ. 11) - 6. Run the actual board under full load again. - Record the IOUT pin voltage as V1 immediately after the output voltage is stable with the full load. Record the IOUT pin voltage as V2 after the VR reaches the thermal steady state. - 8. If the IOUT pin voltage increases over 10mV as the temperature increases, i.e., V2 V1 > 10mV, reduce "TCOMP" value. If the IOUT pin voltage decreases over 10mV as the temperature increases, i.e., V1 V2 > 10mV, increase "TCOMP" value. "TCOMP" value can be adjusted via the series bus for easy thermal compensation optimization. #### **IOUT** Calibration The current flowing out of the IOUT pin is equal to the sensed average current inside ISL68200. A resistor is placed from the IOUT pin to GND to generate a voltage, which is proportional to the load current and the resistor value, as shown in Equation 12: $$\begin{split} R_{IOUT} &= \frac{2.5 \text{VxR}_{ISEN}}{63.875 \text{AxR}_{x}} = \frac{2.5 \text{Vx} \left(\frac{R_{x} \text{x} I_{OCP}}{100 \, \mu \text{A}} \right)}{63.875 \text{AxR}_{x}} \\ &= \frac{2.5 \text{VxI}_{OCP}}{63.875 \text{Ax} 100 \, \mu \text{A}} = \frac{25 \text{VxI}_{OCP}}{63.875 \text{A}} \ \text{k}\Omega \end{split}$$ (EQ. 12) Where V_{IOUT} is the voltage at the IOUT pin, R_{IOUT} is the resistor between the IOUT pin and GND, I_{LOAD} is the total output current of the converter, R_{ISEN} is the sense resistor connected to the CSRTN pin and R_X is the DC resistance of the current sense element, either the DCR of the inductor or R_{SENSE} depending on the sensing method. The R_{IOUT} resistor should be scaled to ensure that the voltage at the IOUT pin is typically 2.5V at 63.875A load current. The IOUT voltage is linearly digitized every 108µs and stored in the READ_IOUT register (8Ch). FIGURE 20. IOUT NO LOAD OFFSET CALIBRATION A small capacitor can be placed between IOUT and GND to reduce the noise impact and provide averaging, > $200\mu s$ (typically). To deal with layout and design variation of different platforms, ISL68200 is intentionally trimmed to negative at no load, thus, an offset can easily be added to calibrate the digitized IOUT reading (8Ch). Hence, the analog vs digitized current slope is set by the equivalent impedance of $R_{IOUT_UP}//R_{IOUT_DW} = R_{IOUT}$ (as in Figure 20); the slope of the ideal curve should set to 1 A/A with 0A offset. For a precision digital I_{OUT}, follow the fine-tune procedure below step-by-step; steps 1 to 5 must be completed before step 6. - 1. Properly tune L/DCR or ESL/R_{SEN} matching as shown on page 17 over the range of temperature operation. +25% overmatching L/DCR at room temperature is needed for -40 $^{\circ}$ C operation. - 2. Properly complete thermal compensation as shown on <u>"Thermal Monitoring and Compensation" on page 17.</u> - 3. Finalize R_{ISEN} resistor to set OCP for overall operating conditions and board variations as shown in "Overcurrent and Short-Circuit Protection" on page 20. - Collect no load I_{OUT} current with sufficient prototypes and determine the mean of no load I_{OUT} current. - 5. The pull-up impedance on IOUT pin should be "VCC/IOUT_NO_LOAD"; for instance, a mean of -2.5 μ A I_{OUT} at OA load, it will need R_{IOUT_UP} = 2M Ω . - Start with the value below and then fine tune the R_{IOUT_DW} value until the average slope of various boards equals 1A/A. $$R_{IOUT_DW} = \frac{R_{IOUT_UP} x R_{IOUT}}{R_{IOUT_UP} - R_{IOUT}}$$ (EQ. 13) Submit Document Feedback 19 intersil FN8705.1 #### **Fault Protection** The ISL68200 provides high system reliability with many fault protections, as summarized in Table 9. **TABLE 9. FAULT PROTECTION SUMMARY** | FAULT | DESCRIPTION | FAULT ACTION | |-----------------------------|--|---| | Input UVLO | VIN pin UVLO; or set by EN pin with
an external divider for higher
level. See Figures 4 and 5. | Shutdown and recover when VIN > UVLO | | Bias UVLO | VCC, PVCC, 7VLDO UVLO | Shutdown and recover when Bias > UVLO | | Start-Up
OVP | Higher than V _{BOOT} . See Electrical Specifications on page 7. | Latch OFF, reset by VCC or toggling Enable | | Output OVP | Rising = 116%; Falling = 100% | (including EN pin and/
or OPERATION | | Output UVP | 74% of V _{OUT} , Latch OFF | command based upon ON_OFF_CONFIG setting) | | Output OCP | Average OCP = 100µA with 128µs blanking time. | Latch OFF (reset by VCC or toggling enable | | Short-Circuit
Protection | Peak OCP = 130% of Average
OCP with 50ns filter. | including EN pin and/
or OPERATION
command based upon
ON_OFF_CONFIG
setting), or retry every
9ms; option is
programmable by
PROG3 or D3[0] | | ОТР | Rising = 22.31%VCC (~+136°C);
Falling =27.79%VCC (~+122°C). | Shut down above
+136°C and recover
when temperature
drops below +122°C | Input UVLO and OTP faults will respond to the current state with hysteresis, while output OVP and output UVP faults are latch events, while output OCP and output short-circuit faults can be latch or retry events depending upon PROG3 or D3[0] setting. All fault latch events can be reset by VCC cycling, toggling the Enable pin and/or series bus OPERATION command based upon ON_OFF_CONFIG setting, while the OCP retry event has a hiccup time of 9ms and the regulator can be recovered when the fault is removed. #### **OVERVOLTAGE PROTECTION** The OVP fault detection circuit triggers after the voltage between VSEN+ and VSEN- is above the rising overvoltage threshold. When an OVP fault is declared, the controller will be latched off and the PGOOD pin will be asserted low. The fault will remain latched and can be reset by VCC cycling or toggling EN pin and/or series bus OPERATION command based upon ON_OFF_CONFIG setting. Although the controller has latched-off in response to an OVP fault, the LGATE gate-driver output will retain the ability to toggle the low-side MOSFET on and off, in response to the output voltage transversing the OVP rising and falling thresholds. The LGATE gate-driver will turn on the low-side MOSFET to discharge the output voltage, protecting the load. The LGATE gate driver will turn off the low-side MOSFET once the sensed output voltage is lower than the falling overvoltage threshold (typically 100%). If the output voltage rises again, the LGATE driver will again turn on the low-side MOSFET when the output voltage is above the rising overvoltage threshold (typically 120%). By doing so, the IC protects the load when there is a consistent overvoltage condition. In addition to normal operation OVP, 5.5ms (typically, worst 6.5ms) after all rails (VCC, PVCC, 7VLDO, VIN) POR and prior to the end of soft-start, the start-up OVP circuits are enabled to protect against OVP event, while the OVP level is set higher than V_{BOOT} . See Electrical Specifications on page 7. #### **UNDERVOLTAGE PROTECTION** The UVP fault detection circuit triggers after the output voltage is below the undervoltage threshold (typically 74% of DAC). When an UVP fault is declared, the controller will be latched off, forcing the LGATE and UGATE gate-driver outputs low, and the PGOOD pin will be asserted low. The fault will remain latched and can be reset by VCC cycling or toggling EN pin and/or series bus OPERATION command based upon ON_OFF_CONFIG setting. #### **OVERCURRENT AND SHORT-CIRCUIT PROTECTION** The average Overcurrent Protection (OCP) is triggered when the internal current out of the IOUT pin goes above the fault threshold (typically $100\mu A)$ with $128\mu s$ blanking time. It also has a fast (50ns filter) secondary overcurrent protection whose threshold is +30% above average OCP; this protects inductor saturation from a short-circuit event and provides a more robust power train and system protection. When an OCP or short-circuit fault is declared, the controller will be latched off, forcing the LGATE and UGATE gate-driver outputs low, or retry with a hiccup time of 9ms; the fault response is programmable by PROG3 or D3[0]. The latched off event however can be reset by VCC cycling or toggling EN pin and/or series bus OPERATION command
based upon ON_OFF_CONFIG setting Equation 14 provides a starting point to set a preliminary OCP trip point, where I_{OCP} is the targeted OCP trip point and ΔI (as in Equation 15 on page 28) is the peak-to-peak inductor ripple current. $$R_{ISEN1} = \frac{R_{x} x I_{OCP}}{100 \mu A}$$ $$R_{ISEN2} = \frac{R_{x} x \left(\frac{\Delta I}{2} + I_{OCP}\right)}{100 \mu A x (100\% + 30\%)}$$ (EQ. 14) To deal with layout and PCB contact impedance variation, follow the fine tune procedure below step-by-step for a more precision OCP; steps 1 to 3 must be completed before step 4. $R_{ISEN} = MAX(R_{ISEN1, R_{ISEN2}})$ - Properly tune L/DCR or ESL/R_{SEN} matching as shown on page 17 over the range of temperature operation. +25% over-matching L/DCR at room temperature is needed for -40°C operation. - 2. Properly complete thermal compensation as shown on "Thermal Monitoring and Compensation" on page 17. - Collect OCP trip points (IOCP_MEASURED) with sufficient prototypes and determine the means for overall operating conditions and board variations. - Change R_{ISEN} by IOCP_TARGETED/IOCP_MEASURED percentage to meet the targeted OCP. Submit Document Feedback 20 intersil FN8705.1 Note that if the inductor peak-to-peak current is higher or closer to 30%, the +30% threshold could be triggered instead of the average OCP threshold. However, the fine tune procedure still can be used. #### **OVER-TEMPERATURE PROTECTION** As shown in Figure 16, there is a comparator with hysteresis to compare the NTC pin voltage to the threshold set. When the NTC pin voltage is lower than 22.31% of VCC voltage (typically $+136\,^{\circ}$ C), it triggers Over-Temperature Protection (OTP) and shuts down ISL68200 operation, when the NTC pin voltage is above 27.79% of VCC voltage (typically $+122.4\,^{\circ}$ C), it will resume normal operation. When an OTP fault is declared, the controller will force the LGATE and UGATE gate-driver outputs low. #### **PGOOD Monitor** The PGOOD pin indicates when the converter is capable of supplying regulated voltage. If there is a fault condition of a rail's (VCC, PVCC, 7VLDO, or VIN) UVLO, output Overcurrent (OCP), Overvoltage (OVP), Undervoltage (UVP), or Over-Temperature (OTP), PGOOD is asserted low. Note that the PGOOD pin is an undefined impedance with insufficient V_{CC} (typically <2.5V). #### **Adaptive Shoot-Through Protection** The LGATE and UGATE pins are MOSFET driver outputs. The LGATE pin drives the low-side MOSFET of the converter while the UGATE pin drives the high-side MOSFET of the converter. Adaptive shoot-through protection prevents a gate-driver output from turning on until the opposite gate-driver output has fallen below approximately 1V. The dead time shown in Figure 21 is extended by the additional period that the falling gate voltage remains above the 1V threshold. The high-side gate-driver output voltage is measured across the UGATE and PHASE pins while the low-side gate-driver output voltage is measured across the LGATE and GND pins. FIGURE 21. GATE DRIVE ADAPTIVE SHOOT-THROUGH PROTECTION #### **PFM Mode Operation** In PFM mode, programmable by PROG2 or series bus D0[0:0], the switching frequency is dramatically reduced to minimize the switching loss and significantly improve light-load efficiency. The ISL68200 can enter and exit PFM mode seamlessly as load changes. For high V_{OUT} applications implemented with high Qg MOSFETs, the LGATE might not turn on long enough to charge the boot capacitor in PFM mode with OA load. It is recommended to enable ISL68200's ultrasonic PFM feature (by PROG3 or series bus D2[0:0]), which maintains LGATE switching frequency above 20kHz and keeps the boot capacitor charged for immediate load apply event. Alternatively, an external Schottky diode or maintaining a minimum load can enhance the boot capacitor charge. ### SMBus, PMBus and I²C Operation The ISL68200 features SMBus, PMBus and I 2 C with 32 programmable addresses via PROG2 pin, while SMBus/PMBus includes an Alert# line (SALERT) and Packet Error Check (PEC) to ensure data properly transmitted. The telemetry update rate is 108µs (Typically). The supported SMBus/PMBus/I 2 C addresses are summarized in Table 10. The 7-bit format address does not include the last bit (write and read): 40-47h, 60-67h and 70-7Fh. SMBus/PMBus/I²C allows to program the registers as in Table 11, except for SMBus/PMBus/I²C addresses, 5.5ms (typically, worst 6.6ms) after all rails (VCC, PVCC, 7VLDO and VIN) above POR. Figures 22 and 23 on page 22 show the initialization timing diagram for the series bus with different state of EN (enable) pin. For proper operation, users should follow the SMBus, PMBus and I^2C protocol, as shown Figure 24 on page 23. Note that STOP (P) bit is NOT allowed before the repeated START condition when "reading" contents of register. When the device's series bus is not used, simply ground the device's SCL, SDA and SALERT pins and do not connect them to the bus. TABLE 10. SMBus/PMBus/I²C 7-BIT FORMAT ADDRESS (HEX) | 7-BIT ADDRESS | 7-BIT ADDRESS | 7-BIT ADDRESS | |---------------|---------------|---------------| | 40 | 63 | 76 | | 41 | 64 | 77 | | 42 | 65 | 78 | | 43 | 66 | 79 | | 44 | 67 | 7A | | 45 | 70 | 7B | | 46 | 71 | 7C | | 47 | 72 | 7D | | 60 | 73 | 7E | | 61 | 74 | 7F | | 62 | 75 | | FIGURE 22. SIMPLIFIED SMBus/PMBus/1²C INITIALIZATION TIMING DIAGRAM WITH ENABLE LOW FIGURE 23. SIMPLIFIED SMBus/PMBus/ I^2 C INITIALIZATION TIMING DIAGRAM WITH ENABLE HIGH #### 1. Send Byte Protocol **Example command: 03h Clear Faults** (This will clear all of the bits in Status Byte for the selected Rail) S: Start Condition A: Acknowledge ("0") N: Not Acknowledge ("1") W: Write ("0") **RS: Repeated Start Condition** R: Read ("1") **PEC: Packet Error Checking** NOT used in I²C P: Stop Condition Acknowledge or DATA from Slave, ISL68200 Example command: D0h ENABLE_PFM (one word, High Data Byte and ACK are not used) #### 3. Read Byte/Word Protocol Example command: 8B READ_VOUT (Two words, read voltage of the selected rail). NOTE: That all Writable commands are read with one byte word protocol. STOP (P) bit is NOT allowed before the repeated START condition when "reading" contents of a register. #### 4. Block Write Protocol Example command: ADh IC_DEVICE_ID (2 Data Byte) FIGURE 24. SMBus/PMBus/I²C COMMAND PROTOCOL Submit Document Feedback 23 FN8705.1 intersil March 7, 2016 #### 5. Block Read Protocol Example command: 8B READ_VOUT (Two words, read voltage of the selected rail). NOTE: That all Writable commands are read with one byte word protocol. STOP (P) bit is NOT allowed before the repeated START condition when "reading" contents of a register. #### 6. Group Command Protocol - No more than one command can be sent to the same Address FIGURE 25. SMBus/PMBus/I²C COMMAND PROTOCOL 24 intersil* #### TABLE 11. SMBus, PMBus, AND I²C SUPPORTED COMMANDS | COMMAND CODE | ACCESS | WORD
LENGTH
(BYTE) | DEFAULT
VALUE | COMMAND NAME | DESCRIPTION | |--------------|-----------|--------------------------|------------------|------------------|--| | 01h[7:0] | R/W | ONE | 80h | OPERATION | VR Enable (depending upon ON_OFF_CONFIG configuration): Bit[7]: 0 = OFF (0-F); 1 = ON (80-8Fh) Bit[6:4] = 0 Bit[3:0] = Don't care | | 02h[7:0] | R/W | ONE | 1Fh | ON_OFF_CONFIG | Configure VR Enabled by OPERATION and/or EN pin: Bit[7:5] = 0 Bit[4] = 1 Bit[3] = OPERATION command Enable Oh = OPERATION command has no control on VR 1h = OPERATION command can turn ON/OFF VR Bit[2] = CONTROL pin Enable Oh = EN Pin has no control on VR 1h = EN pin can turn ON/OFF VR Bit[1] = 1 Bit[0] = 1 Bit[3:2] = O0b = 13h (ALWAYS ON) Bit[3:2] = 01b = 17h (EN controls VR) Bit[3:2] = 10b = 18h (OPERATION control VR) Bit[3:2] = 11b = 1Fh (EN and OPERATION control VR) | | 03h | SEND BYTE | N/A | | CLEAR_FAULTS | Clear faults in status registers | | 20h[7:0] | R | ONE | 1 9h | VOUT_MODE | Set host format of VOUT command. Always Linear Format: N = -7 | | 21h[2:0] | R/W | TWO | PROG1[7:0] | VOUT_COMMAND | Set output voltage HEX Code = DEC2HEX [ROUND(V _{OUT} /2 ⁻⁷)] | | 24h[15:0] | R/W | TWO | VBOOT+500mV | VOUT_MAX | Set maximum output voltage that VR can command (DAC ≤ VOUT_MAX). Linear Format. N = -7 HEX Code = DEC2HEX(ROUNDUP(VOUT_MAX/ 2 ⁻⁷) | | 33h[15:0] | R/W | TWO | PROG3[5:3] | FREQUENCY_SWITCH | Set VR Switching Frequency (In Linear Format) Support 8 options (N = 0): 12Ch = 300kHz; 190h = 400kHz; 1F4h = 500kHz 258h = 600kHz; 2BCh = 700kHz; 352h = 850kHz 3E8h = 1MHz; 5DCh = 1.5MHz* * Very high frequency is not recommended for very high duty cycle applications as the boot capacitor will not has enough time to be charged due to low LGATE ON time. | | 78h[8:0] | R | ONE | | STATUS_BYTE | Fault Reporting: Bit7 = Busy Bit6 = OFF (Reflect current state of operation and ON_OFF_CONFIG registers as well as VR Operation) Bit5 = OVP Bit4 = OCP Bit3 = 0 Bit2 = OTP Bit1 = Bus communication error Bit0 = NONE OF ABOVE (OUTPUT UVP, VOUT_COMAND > VOUT_MAX, or VOUT OPEN SENSE) | | 88h[15:0] | R | TWO | | READ_VIN | Input Voltage (N = - 4, Max = 31.9375V)
VIN (V) = HEX2DEC(88 hex data - E000h) * 0.0625V | | 8Bh[15:0] | R | TWO | | READ_VOUT | VR Output Voltage, Resolution = 7.8125mV = 2 ⁻⁷
VOUT (V) = HEX2DEC(8B hex data) * 2 ⁻⁷ | | 8Ch[15:0] | R | TWO | | READ_IOUT | VR Output Current (N = -3, IMAX = 63.875A) IOUT (A) = HEX2DEC(8C hex data-E800) * 0.125A when IOUT pin voltage = 2.5V at 63.875A load. | Submit Document Feedback 25 intersil FN8705.1 March 7, 2016 TABLE 11. SMBus, PMBus,
AND I²C SUPPORTED COMMANDS (Continued) | COMMAND CODE | ACCESS | WORD
LENGTH
(BYTE) | DEFAULT
VALUE | COMMAND NAME | DESCRIPTION | |--------------|---------|--------------------------|------------------|--------------------|---| | 8Dh[15:0] | R | TWO | | READ_TEMP | VR Temperature
TEMP (°C) = $1/\{ln[Rup*HEX2DEC(8D hex data)/(511 - HEX2DEC(8D hex data)/RNTC(at +25°C)]/Beta + 1/298.15\} -273.15$ | | 98h[7:0] | R | ONE | 02h | PMBUS_REVISION | Indicates PMBus Revision 1.2 | | AD[15:0] | BLOCK R | TWO | 8200h | IC_DEVICE_ID | ISL68200 Device ID | | AE[15:0] | BLOCK R | TWO | 0003h | IC_DEVICE_REVISION | ISL68200 Device Revision | | D0[0:0] | R/W | ONE | PROG2[7:7] | ENABLE_PFM | PFM OPERATION Oh = PFM Enabled (DCM at light load) 1h = PFM Disabled (always CCM mode) | | D1[1:0] | R/W | ONE | PROG2[6:5] | TEMP_COMP | Thermal Compensation: 0h = 30°C; 01h = 15°C; 02h = 5°C; 03h = 0FF | | D2[0:0] | R/W | ONE | PROG3[7:7] | ENABLE_ULTRASONIC | Ultrasonic PFM Enable Oh = 25kHz Clamp Disabled 1h = 25kHz Clamp Enabled | | D3[0:0] | R/W | ONE | PROG3[6:6] | OCP_BEHAVIOR | Set latch or infinite retry for OCP fault: Oh = Retry every 9ms; O1 = Latch-OFF | | D4[2:0] | R/W | ONE | PROG3[2:0] | AV_GAIN | R4 AV GAIN (PROG4, AV Gain Multiplier = 2x) 0h = 84; 1h = 73; 2h = 61; 3h = 49 4h = 38; 5h = 26; 6h = 14; 7h = 2 R4 AV GAIN (PROG4, AV Gain Multiplier = 1x) 0h = 42; 1h = 36.5; 2h = 30.5; 3h = 29.5 4h = 19; 5h = 13; 6h = 7; 7h = 1 | | D5{2:0] | R/W | ONE | PROG4[7:5] | RAMP_RATE | Soft-Start and Margining DVID Rate (mV/μs)
0h = 1.25; 1h = 2.5; 2h = 5; 3h = 10; 4h = 0.078; 5h = 0.157
6h = 0.315; 7h = 0.625; | | D6[1:0] | R/W | ONE | PROG4[4:3] | SET_RR | <u>Set RR</u>
0h = 200k; 01h = 400k; 02h = 600k; 03h = 800k | | DC[7:0] | R | ONE | | READ_PROG1 | Read PROG1 | | DD{7:0] | R | ONE | | READ_PROG2 | Read PROG2 | | DE[7:0] | R | ONE | | READ_PROG3 | Read PROG3 | | DF[7:0] | R | ONE | | READ_PROG4 | Read PROG4 | NOTE: Series bus communication is valid 5.5m (typically, worst 6.5ms) after VCC, VIN, 7VLDO and PVCC above POR. The telemetry update rate is 108µs. #### R4™ Modulator The R4™ modulator is an evolutionary step in R3™ technology. Like R3™, the R4™ modulator is a linear control loop and variable frequency control during load transients to eliminate beat frequency oscillation at the switching frequency and maintains the benefits of current-mode hysteretic controllers. However, in addition, the R4™ modulator reduces regulator output impedance and uses accurate referencing to eliminate the need for a high-gain voltage amplifier in the compensation loop. The result is a topology that can be tuned to voltage-mode hysteretic transient speed while maintaining a linear control model and removes the need for any compensation. This greatly simplifies the regulator design for customers and reduces external component cost. #### **STABILITY** The removal of compensation derives from the R4™ modulator's lack of need for high DC gain. In traditional architectures, high DC gain is achieved with an integrator in the voltage loop. The integrator introduces a pole in the open-loop transfer function at low frequencies. That, combined with the double-pole from the output L/C filter, creates a three pole system that must be compensated to maintain stability. Classic control theory requires a single-pole transition through unity gain to ensure a stable system. Current-mode architectures (includes peak, peak-valley, current-mode hysteric, R3™ and R4™) generate a zero at or near the L/C resonant point, effectively canceling one of the system's poles. The system still contains two poles, one of which must be canceled with a zero before unity gain crossover to achieve stability. FIGURE 26. CLASSICAL INTEGRATOR ERROR-AMPLIFIER CONFIGURATION Figure 26 illustrates the classic integrator configuration for a voltage loop error amplifier. While the integrator provides the high DC gain required for accurate regulation in traditional technologies, it also introduces a low-frequency pole into the control loop. Figure 27 shows the open-loop response that results from the addition of an integrating capacitor in the voltage loop. The compensation components found in Figure 26 are necessary to achieve stability. Because R4™ does not require a high-gain voltage loop, the integrator can be removed, reducing the number of inherent poles in the loop to two. The current-mode zero continues to cancel one of the poles, ensuring a single-pole crossover for a wide range of output filter choices. The result is a stable system with no need for compensation components or complex equations to properly tune the stability. FIGURE 27. UNCOMPENSATED INTEGRATOR OPEN-LOOP RESPONSE FIGURE 28. NON-INTEGRATED R4™ ERROR-AMPLIFIER CONFIGURATION <u>Figure 28</u> shows the R4[™] error-amplifier that does not require an integrator for high DC gain to achieve accurate regulation. The result to the open-loop response can be seen in <u>Figure 29</u>. FIGURE 29. UNCOMPENSATED R4™ OPEN-LOOP RESPONSE #### TRANSIENT RESPONSE In addition to requiring a compensation zero, the integrator in traditional architectures also slows system response to transient conditions. The change in COMP voltage is slow in response to a rapid change in output voltage. If the integrating capacitor is removed, COMP moves as quickly as VOUT, and the modulator immediately increases or decreases switching frequency to recover the output voltage. FIGURE 30. $R3^{\text{TM}}$ vs $R4^{\text{TM}}$ IDEALIZED TRANSIENT RESPONSE The dotted red and blue lines in Figure 30 represent the time delayed behavior of V_{OUT} and V_{COMP} in response to a load transient when an integrator is used. The solid red and blue lines illustrate the increased response of $R4^{TM}$ in the absence of the integrator capacitor. To optimize transient response and improve phase margin for very wide range applications, ISL68200 integrates a couple of selectable AV and RR options that move DC gain and z1 point, as shown in Figure 27. The defaulted AV gain of 42 and RR of $200 k\Omega$ however, can cover many cases and provides sufficient gain and phase margin. For some extreme cases, lower AV gain and bigger RR values are needed to provide a better phase margin and improve transient ringback. The optimal choice AV and RR can be obtained, by simple monitoring transient response when playing with AV and RR values via the series bus. # **General Application Design Guide** This design guide is intended to provide a high-level explanation of the steps necessary to design a single-phase buck converter. It is assumed that the reader is familiar with many of the basic skills and techniques referenced in the following. In addition to this guide, Intersil provides complete reference designs that include schematics, bills of materials and example board layouts. #### **Output Filter Design** The output inductors and the output capacitor bank together to form a low-pass filter responsible for smoothing the pulsating voltage at the phase nodes. The output filter also must provide the transient energy until the regulator can respond. Because it has a low bandwidth compared to the switching frequency, the output filter necessarily limits the system transient response. The output capacitor must supply or sink load current while the current in the output inductors increases or decreases to meet the demand. In high-speed converters, the output capacitor bank is usually the most costly (and often the largest) part of the circuit. Output filter design begins with minimizing the cost of this part of the circuit. The critical load parameters in choosing the output capacitors are the maximum size of the load step, Δl ; the load current slew rate, di/dt; and the maximum allowable output voltage deviation under transient loading, ΔV_{MAX} . Capacitors are characterized according to their capacitance, ESR and ESL (equivalent series inductance). At the beginning of the load transient, the output capacitors supply all of the transient current. The output voltage will initially deviate by an amount approximated by the voltage drop across the ESL. As the load current increases, the voltage drop across the ESR increases linearly until the load current reaches its final value. The capacitors selected must have sufficiently low ESL and ESR so that the total output voltage deviation is less than the allowable maximum. Neglecting the contribution of inductor current and regulator response, the output voltage initially deviates by an amount, as shown in Equation 15: $$\Delta V \approx \Delta I \bullet ESR + \frac{ESL}{L_{OUT}} \bullet V_{IN} + \frac{1}{C_{OUT}} \bullet \frac{\Delta I}{8 \bullet N \bullet f_{SW}}$$ (EQ. 15) $$\Delta I = \frac{V_{OUT} \bullet (1 - D)}{L_{OUT} \bullet f_{SW}}$$ The filter capacitor must have sufficiently low ESL and ESR so that $\Delta V < \Delta V_{MAX}$. Most capacitor solutions rely on a mixture of high-frequency capacitors with relatively low capacitance in combination with bulk capacitors having high capacitance but limited high-frequency performance. Minimizing the ESL of the high-frequency capacitors allows them to support the output voltage as the current increases. Minimizing the ESR of the bulk capacitors allows them to supply the increased current with less output voltage deviation. The ESR of the bulk capacitors also creates the majority of the output voltage ripple. As the bulk capacitors sink and source the inductor AC ripple current, a voltage develops across the bulk-capacitor ESR equal to $I_{\text{C(P-P)}}$ (ESR). Thus, once the output capacitors are selected, the maximum allowable ripple voltage, $V_{P-P(MAX)}$, determines the lower limit on the inductance, as shown in
Equation 16. $$L_{OUT} \ge ESR \bullet \frac{V_{OUT} \bullet (V_{IN} - V_{OUT})}{f_{SW} \bullet V_{IN} \bullet V_{P-P(MAX)}}$$ (EQ. 16) Since the capacitors are supplying a decreasing portion of the load current while the regulator recovers from the transient, the capacitor voltage becomes slightly depleted. The output inductors must be capable of assuming the entire load current before the output voltage decreases more than $\Delta V_{\mbox{\scriptsize MAX}}.$ This places an upper limit on inductance. Equation 17 gives the upper limit on L for cases when the trailing edge of the current transient causes a greater output-to-voltage deviation than the leading edge. Equation 18 addresses the leading edge. Normally, the trailing edge dictates the selection of L because duty cycles are usually less than 50%. Nevertheless, both inequalities should be evaluated, and L should be selected based on the lower of the two results. In each equation, L is the per-channel inductance. C is the total output capacitance. $$L_{OUT} \le \frac{2 \cdot C \cdot V_{OUT}}{(\Delta I)^2} \left[\Delta V_{MAX} - \Delta I \cdot ESR \right]$$ (EQ. 17) $$L_{OUT} \le \frac{1.25 \bullet C}{(\Delta I)^2} \left[\Delta V_{MAX} - \Delta I \bullet ESR \right] \left(V_{IN} - V_{OUT} \right) \tag{EQ. 18}$$ #### **Input Capacitor Selection** The input capacitors are responsible for sourcing the AC component of the input current flowing into the upper MOSFETs. Their RMS current capacity must be sufficient to handle the AC component of the current drawn by the upper MOSFETs, which is related to duty cycle and the number of active phases. The input RMS current can be calculated with Equation 19. $$I_{IN, RMS} = \sqrt{(D - D^2) \cdot Io^2 + \frac{D}{12} \cdot (\Delta I)^2}$$ (EQ. 19) Use Figure 31 to determine the input capacitor RMS current requirement given the duty cycle, maximum sustained output current (I_0), and the ratio of the per-phase peak-to-peak inductor current ($I_{L(P-P)}$ to I_0 . Select a bulk capacitor with a ripple current rating, which will minimize the total number of input capacitors required to support the RMS current calculated. The voltage rating of the capacitors should also be at least 1.25x greater than the maximum input voltage. Low capacitance, high-frequency ceramic capacitors are needed in addition to the bulk capacitors to suppress leading and falling edge voltage spikes. The result from the high current slew rates produced by the upper MOSFETs turn on and off. Select low ESL ceramic capacitors and place one as close as possible to each upper MOSFET drain to minimize board parasitic impedances and maximize noise suppression. Submit Document Feedback 28 intersil FN8705.1 FIGURE 31. NORMALIZED INPUT-CAPACITOR RMS CURRENT vs DUTY CYCLE FOR SINGLE-PHASE CONVERTER #### **Design and Layout Considerations** To ensure a first pass design, the schematics design must be done right and the board must be carefully laid out. As a general rule, power layers should be close together, either on the top or bottom of the board, with the weak analog or logic signal layers on the opposite side of the board or internal layers. The ground-plane layer should be in between power layers and the signal layers to provide shielding, often the layer below the top and the layer above the bottom should be the ground layers. There are two sets of components in a DC/DC converter, the power components and the small signal components. The power components are the most critical because they switch large amount of energy. The small signal components connect to sensitive nodes or supply critical bypassing current and signal coupling. The power components should be placed first and these include MOSFETs, input and output capacitors and the inductor. Keeping the distance between the power train and the control IC short helps keep the gate drive traces short. These drive signals include the LGATE, UGATE, GND, PHASE and BOOT. When placing MOSFETs, try to keep the source of the upper MOSFETs and the drain of the lower MOSFETs as close as thermally possible. Input high frequency capacitors should be placed close to the drain of the upper MOSFETs and the source of the lower MOSFETs. Place the output inductor and output capacitors between the MOSFETs and the load. High frequency output decoupling capacitors (ceramic) should be placed as close as possible to the decoupling target, making use of the shortest connection paths to any internal planes. Place the components in such a way that the area under the IC has less noise traces with high dV/dt and di/dt, such as gate signals, phase node signals and VIN plane. <u>Tables 12</u> and <u>13</u> provide design and layout checklists that designer must pay attention to. **TABLE 12. DESIGN AND LAYOUT CHECKLIST** | PIN
NAME | NOISE
SENSITIVITY | DESCRIPTION | |---------------|----------------------|---| | EN | Yes | There is an internal 1µs filter. Decoupling the capacitor is NOT needed, but if needed, use a low time constant one to avoid too large a shutdown delay. | | VIN | Yes | Place 16V+ X7R $1\mu F$ in close proximity to VIN pin and the system ground plane. | | 7VLDO | Yes | Place 10V+ X7R 1µF in close proximity to 7VLDO pin and the system ground plane. | | vcc | Yes | Place X7R $1\mu F$ in close proximity to VCC pin and the system ground plane. | | SCL, SDA | Yes | 50kHz to 1.25MHz signal when the SMBus, PMBus, or I ² C is sending commands. Pairing up with SALERT and routing carefully back to SMBus, PMBus or I ² C master. 20 mils spacing within SDA, SALERT, and SCL; and more than 30 mils to all other signals. Refer to the SMBus, PMBus or I ² C design guidelines and place proper terminated (pull-up) resistance for impedance matching. Tie them to GND when not used. | | SALERT | No | Open drain and high dv/dt pin during transitions. Route it in the middle of SDA and SCL. Tie it to GND when not used. | | PGOOD | No | Open-drain pin. Tie it to ground when not used. | | RGND,
VSEN | Yes | Differential pair routed to the remote sensing points with sufficient decoupling ceramics capacitors and not across or go above/under any switching nodes (BOOT, PHASE, UGATE, LGATE) or planes (VIN, PHASE, VOUT) even though they are not in the same layer. At least 20 mils spacing from other traces. DO NOT share the same trace with CSRTN. | | CSRTN | Yes | Connect to the output rail side of the output inductor or current sensing resistor pin with a series resistor in close proximity to the pin. The series resistor sets the current gain and should be within 40Ω and $3.5k\Omega$. Decoupling ($\sim 0.1 \mu F/X7R$) on the output end (not the pin) is optional and might be required for long sense trace and a poor layout (see Figures 9 and $\underline{10}$ on page 16). | | CSEN | Yes | Connect to the phase node side of the output inductor or current sensing resistor pin with L/DCR or ESL/R _{SEN} matching network in close proximity to CSEN and CSRTN pins. Differentially routing back to the controller with at least 20 mils spacing from other traces. Should NOT cross or go above/under the switching nodes [BOOT, PHASE, UGATE, LGATE] and power planes (VIN, PHASE, VOUT) even though they are not in the same layer. | TABLE 12. DESIGN AND LAYOUT CHECKLIST (Continued) | PIN
NAME | NOISE
SENSITIVITY | DESCRIPTION | |----------------|----------------------|---| | NTC | Yes | Place NTC 10k (Murata, NCP15XH103J03RC, β = 3380) in close proximity to the output inductor's output rail, not close to MOSFET side (see Figure 19); the return trace should be 20 mils away from other traces. Place 1.54k Ω pull-up and decoupling capacitor (typically 0.1μF) in close proximity to the controller. The pull-up resistor should be exactly tied to the same point as VCC pin, not through an RC filter. If not used, connect this pin to VCC. | | IOUT | Yes | Scale R such that IOUT pin voltage is 2.5V at 63.875A load. Place R and C in general proximity to the controller. The time constant of RC should be sufficient as an averaging function for the digital I _{OUT} . An external pull-up resistor to VCC is recommended cancel I _{OUT} offset at 0A load. See "I _{OUT} Calibration" on page 19 | | PROG1-4 | No | Resistor divider must be referenced to VCC pin and the system ground; they can be placed anywhere. DO NOT use decoupling capacitors on these pins. | | GND | Yes | Directly connect to low noise area of the system ground. The GND PAD should use at least 4 vias. Separate analog ground and power ground with a 0Ω resistor is highly NOT recommended. | | LGATE | No | Low-side driver output and short and wide trace in between this pin and MOSFET gate pin as possible. High dV/dt signals should not be close to any sensitive signals. | | UGATE | No | High-side driver output and short and wide trace in between this pin and MOSFET gate pin as possible. High dV/dt signals should not be close to any sensitive signals. | | BOOT,
PHASE | Yes | Place X7R 0.1µF or 0.22µF in proximity to BOOT and PHASE pins. High dV/dt signals should not be close to any sensitive
signals. | | PVCC | Yes | Place X7R 4.7µF in proximity to PVCC pin and the system ground plane. | **TABLE 13. TOP LAYOUT TIPS** | # | DESCRIPTION | |---|---| | 1 | The layer next to controller (top or bottom) should be a ground layer. Separate analog ground and power ground with a 0Ω resistor is highly NOT recommended. Directly connect GND PAD to low noise area of the system ground with at least 4 vias. | | 2 | Never place controller and its external components above or under VIN plane or any switching nodes. | | 3 | Never share CSRTN and VSEN on the same trace. | | 4 | Place the input rail decoupling ceramic capacitors close to the high-side FET on the same layer as possible. Never use only one via and a trace to connect the input rail decoupling ceramics capacitors; must connect to VIN and GND planes. | | 5 | Place all decoupling capacitors in close proximity to the controller and the system ground plane. | | 6 | Connect remote sense (VSEN and RGND) to the load and ceramic decoupling capacitors nodes; never run this pair below or above switching noise plane. | | 7 | Always double check critical component pinout and their respective footprints. | #### **Voltage Regulator Design Materials** To support VR design and layout, Intersil also developed a set of tools and evaluation boards, as listed in <u>Tables 14</u> and <u>15</u>, respectively. Contact Intersil's local office or field support at www.intersil.com/ask for the latest available information. TABLE 14. AVAILABLE DESIGN ASSISTANCE MATERIALS | ITEM | DESCRIPTION | |------|--| | 1 | SMBus/PMBus/I ² C communication tool with PowerNavigator GUI | | 2 | Evaluation board schematics in OrCAD format and layout in allegro format. See <u>Table 15</u> for details. | #### **TABLE 15. AVAILABLE DEMO BOARDS** | DEMO BOARD | DESCRIPTION | |----------------------|--| | ISL68200DEM01Z | 17x17mm ² 1-phase, 20A solution,
400kHz, with Dual FET | | ISL68201_99140DEM01Z | 17x17mm ² 1-phase, 35A solution,
400kHz, with ISL99140 | Submit Document Feedback 30 Intersil FN8705.1 March 7, 2016 **Revision History** The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision. | DATE | REVISION | CHANGE | |---------------|----------|---| | March 7, 2016 | FN8705.1 | Removed unreleased parts from Tables 1 and 15 | | March 2, 2016 | FN8705.0 | Initial Release | #### **About Intersil** Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets. For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at www.intersil.com. You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask. Reliability reports are also available from our website at www.intersil.com/support. For additional products, see www.intersil.com/en/products.html Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com Submit Document Feedback FN8705.1 31 intersil # **Package Outline Drawing** #### L24.4x4C 24 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE Rev 2, 10/06 SEE DETAIL "X" 0.10 C ○ 0.08 C TYPICAL RECOMMENDED LAND PATTERN #### NOTES: - Dimensions are in millimeters. Dimensions in () for Reference Only. - 2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994. - Unless otherwise specified, tolerance : Decimal ± 0.05 - 4. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. - 5. Tiebar shown (if present) is a non-functional feature. - The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 indentifier may be either a mold or mark feature. Submit Document Feedback 32 intersil FN8705.1 March 7, 2016