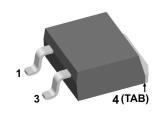
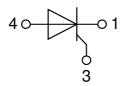
Thyristor


CMA30E1600PZ

V_{RRM}	=	1600 V
I _{tav}	=	30 A
Vτ	=	1.42 V


Single Thyristor

Part number

CMA30E1600PZ

Backside: anode

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability

Applications:

- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: TO-263 (D2Pak-HV)

- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- High creepage distance between terminals

Terms Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact the sales office, which is responsible for you. Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you. Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend

to perform joint risk and quality assessments;
the conclusion of quality agreements;

- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747and per semiconductor unless otherwise specified

© 2015 IXYS all rights reserved

20150827b

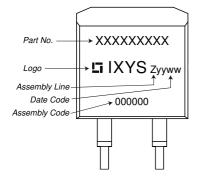
LIXYS

CMA30E1600PZ

Sumbol	r Dofinition	Conditiono		min	Ratings		Uni
Symbol	Definition	Conditions	$T_{vJ} = 25^{\circ}C$	min.	typ.	max. 1700	Uni
V _{RSM/DSM}	max. non-repetitive reverse/forwa		$T_{VJ} = 25 \text{ C}$ $T_{VJ} = 25^{\circ}\text{C}$				\ \
V _{RRM/DRM}	max. repetitive reverse/forward b					1600	
I _{R/D}	reverse current, drain current	$V_{R/D} = 1600 V$	$T_{VJ} = 25^{\circ}C$			10	μ <i>/</i>
		V _{R/D} = 1600 V	$T_{VJ} = 125^{\circ}C$			2	m/
V _T	forward voltage drop	$I_{T} = 30 \text{ A}$	$T_{vJ} = 25^{\circ}C$			1.42	١
		$I_{T} = 60 \text{ A}$				1.80	١
		$I_{T} = 30 \text{ A}$	$T_{vJ} = 125 ^{\circ}C$			1.42	١
		$I_{T} = 60 \text{ A}$				1.92	١
I _{tav}	average forward current	$T_c = 115^{\circ}C$	$T_{vJ} = 150$ °C			30	ļ
I _{T(RMS)}	RMS forward current	180° sine				47	ļ
V _{T0}	threshold voltage	oss calculation only	$T_{vJ} = 150^{\circ}C$			0.90	١
r _T	slope resistance f Tor power in	oss calculation only				17	mΩ
R _{thJC}	thermal resistance junction to cas	se				0.5	K/W
R _{thCH}	thermal resistance case to heatsi	nk			0.25		K/W
Ptot	total power dissipation		$T_c = 25^{\circ}C$			250	W
I _{TSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{v,l} = 45^{\circ}C$			260	A
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			280	A
		t = 10 ms; (50 Hz), sine	T _{v.i} = 150°C			220	A
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			240	A
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{\rm VJ} = 45^{\circ}\rm C$			340	A ² s
		t = 8,3 ms; (60 Hz), sine	$V_{\rm R} = 0 V$			325	A²s
		t = 0,0 ms; (50 Hz), sine	$T_{\rm r} = 0.0$ $T_{\rm v,i} = 150^{\circ}$ C			240	A ² s
		t = 8,3 ms; (60 Hz), sine	$V_{\rm N} = 0$ V			240	A ² s
C	junction capacitance	$V_{\rm B} = 400 \text{V}$ f = 1 MHz	$T_{\rm VJ} = 25^{\circ}\rm C$		13	240	pF
P _{GM}		$t_{\rm P} = 30 \mu {\rm s}$	$T_{v_{J}} = 23 \text{ G}$ $T_{c} = 150 \text{ °C}$		10	10	рі W
FGM	max. gate power dissipation	$t_{\rm P} = 300 \mu{\rm s}$ $t_{\rm P} = 300 \mu{\rm s}$	$1_{\rm C} = 150$ C			5	N
D		$l_{\rm P} = 300\mu{\rm s}$				-	
P _{GAV}	average gate power dissipation	T 40500 (50 H				0.5	N A (
(di/dt) _{cr}	critical rate of rise of current	$T_{vJ} = 125 ^{\circ}C; f = 50 \text{Hz}$ re	•			150	A/µs
		$t_{P} = 200 \mu s; di_{G}/dt = 0.2 A/\mu s; -$					
			on-repet., $I_{T} = 30 \text{ A}$				A/με
(dv/dt) _{cr}	critical rate of rise of voltage	$V = \frac{2}{3} V_{DRM}$	$T_{vJ} = 125^{\circ}C$			500	V/µs
		$R_{GK} = \infty$; method 1 (linear volta					
V _{GT}	gate trigger voltage	$V_{D} = 6 V$	$T_{vJ} = 25^{\circ}C$			1.3	١
			$T_{vJ} = -40^{\circ}C$			1.6	١
I _{GT}	gate trigger current	$V_{D} = 6 V$	$T_{VJ} = 25^{\circ}C$			28	mA
			$T_{vJ} = -40 ^{\circ}C$			50	mA
V _{gd}	gate non-trigger voltage	$V_{D} = \frac{2}{3} V_{DRM}$	$T_{vJ} = 150^{\circ}C$			0.2	١
I _{gd}	gate non-trigger current					1	mA
I.	latching current	t _p = 10 μs	$T_{vJ} = 25 ^{\circ}C$			90	mA
		$I_{\rm G} = 0.2 {\rm A}; {\rm di}_{\rm G}/{\rm dt} = 0.2 {\rm A}/{\rm \mu s}$					
I _H	holding current	$V_{\rm D} = 6 V R_{\rm GK} = \infty$	$T_{vJ} = 25 ^{\circ}C$			60	mA
t _{gd}	gate controlled delay time	$V_{\rm D} = \frac{1}{2} V_{\rm DRM}$	$T_{\rm VJ} = 25^{\circ}{\rm C}$			2	μ
yu	- ,	$I_{\rm G} = 0.5 \text{A}; \text{di}_{\rm G}/\text{dt} = 0.5 \text{A}/\mu\text{s}$				-	۳
+	turn-off time	$V_{\rm R} = 100 \text{ V}; \ I_{\rm T} = 30 \text{ A}; \ V = ^{2}$			150		μ
t _q		$v_{\rm R} = 100 v$, $i_{\rm T} = 30 A$, $v = 7$	$/\mu s t_p = 200 \ \mu s$		100		μ

 $\ensuremath{\mathsf{IXYS}}$ reserves the right to change limits, conditions and dimensions.

20150827b


© 2015 IXYS all rights reserved

CMA30E1600PZ

Package TO-263 (D2Pak-HV)			F	Ratings			
Symbol	Definition Co	onditions		min.	typ.	max.	Unit
IRMS	RMS current per	terminal				35	A
T _{vJ}	virtual junction temperature			-40		150	°C
T _{op}	operation temperature			-40		125	°C
T _{stg}	storage temperature			-40		150	°C
Weight					1.5		g
F _c	mounting force with clip			20		60	Ν
d _{Spp/App}	araanaaa diatanaa an aurfaaa Latriking diatana	a through air	terminal to terminal	4.2			mm
d _{Spb/Apb}	creepage distance on surface striking distance throug		terminal to backside	4.7			mm

Product Marking

Part description

- C = Thyristor (SCR)M = Thyristor
- A = (up to 1800V) 30 = Current Rating [A]
- E = Single Thyristor
- 1600 = Reverse Voltage [V] PZ = TO-263AB (D2Pak) (2HV)

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	CMA30E1600PZ	CMA30E1600PZ	Tape & Reel	800	513695

Similar Part	Package	Voltage class
CMA30E1600PB	TO-220AB (3)	1600
CMA30E1600PN	TO-220ABFP (3)	1600
CLA30E1200PC	TO-263AB (D2Pak) (2)	1200
CLA30E1200PB	TO-220AB (3)	1200
CS22-12io1M	TO-220ABFP (3)	1200
CLA30E1200HB	TO-247AD (3)	1200
CS22-08io1M	TO-220ABFP (3)	800

Equiva	lent Circuits for	Simulation	* on die level	$T_{VJ} = 150 \ ^{\circ}C$
)[R]-	Thyristor		
V _{0 max}	threshold voltage	0.9		V
$\mathbf{R}_{0 \max}$	slope resistance *	14		mΩ

IXYS reserves the right to change limits, conditions and dimensions.

20150827b

© 2015 IXYS all rights reserved

CMA30E1600PZ

Inches

typ. 0.004

0.095

0.315 0.350

0.091

0,100 BSC

0.169

max

0.190

0.039

0.055

0.029

0.055

0.370

0.410

0.335

0.625

0.110

0.066

0.002

20150827b

min

0.160

0.020

0.045

0.016

0.045

0.330

0.380

0.245

0.575

0.070

0.040

typ.

8000.0

Millimeter

typ. 0.10

2.41

2.3

2.54 BSC

4.28

max

4.83

0.99

1.40

0.74

1.40

9.40

8.89

10.41

8.50

15.88

2.79

1.68

0.040

All dimensions conform with

and/or within JEDEC standard.

min

4.06

0.51

1.14

0.40

1.14

8.38

8.00

9.65

6.22

14.61

1.78

1.02

typ.

0.02

Dim

А

A1

A2

b

b2

С

c2

D

D1

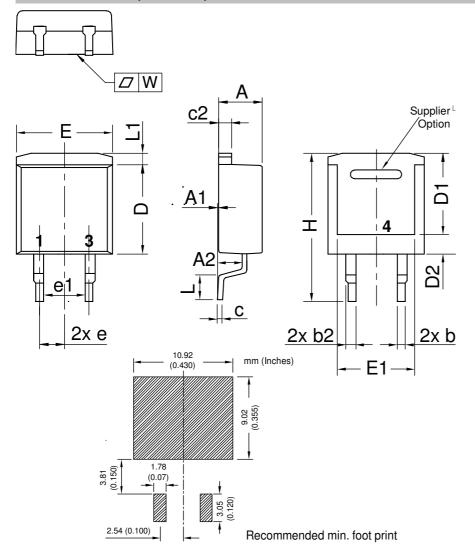
D2

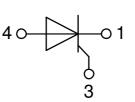
Ε

E1

е

e1


Н


L

L1

W

Outlines TO-263 (D2Pak-HV)

IXYS reserves the right to change limits, conditions and dimensions.

© 2015 IXYS all rights reserved

CMA30E1600PZ

125°C

4 5 6 7 8 10

 $\frac{1000}{V_{R} = 0 V}$

l²t

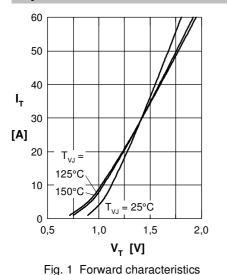
[A²s]

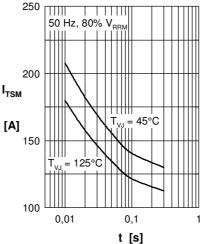
100

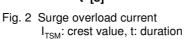
10

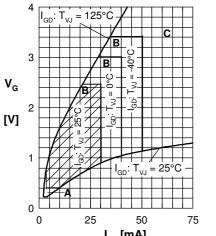
1

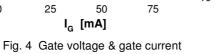
 $T_{VJ} = 45^{\circ}C$

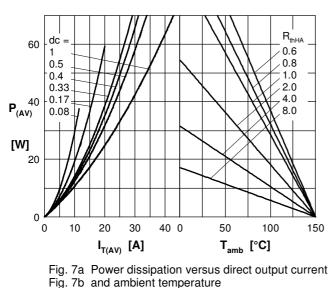

2

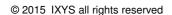

3


Fig. 3 I²t versus time (1-10 s)


t [ms]


Thyristor





Triggering: A = no; B = possible; C = safe

IXYS reserves the right to change limits, conditions and dimensions.

20150827b

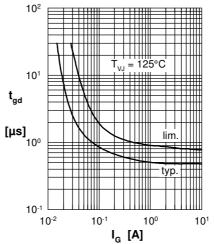
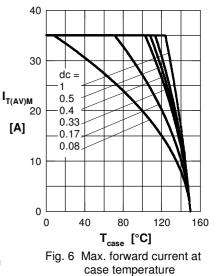
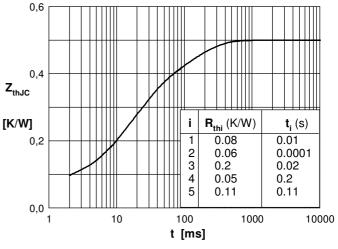
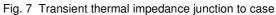





Fig. 5 Gate controlled delay time t_{ad}

