

 $\underline{\mathsf{Home}} > \underline{\mathsf{Support}} > \underline{\mathsf{Datasheets}} > \underline{\mathsf{Accessories}} > \mathsf{LJTick\text{-}InBuff}$

LJTick-InBuff Datasheet

LJTick-InBuff Stock: In Stock Price: \$47.00

Click here to order!

Log in or register to post comments

The <u>LJTick-InBuff</u> (LJTIB) is an input buffer tick that allows LabJack devices to directly measure pH sensors and other kinds of weak signals. Our main LabJack DAQ products (U3, U6, UE9, and T7) require somewhere on the order of 10 to 100pA of bias current. This accessory can really help users trying to measure signals with >10M Ω of source impedance. The LJTick-InBuff accomplishes this by adding a Texas Instruments OPA2140 high-precision, low-noise Op Amp in between a devices analog input channel and the sensor. Simply connect the LJTick-InBuff to a screw terminal with analog inputs and connect a sensor to the INA or INB screw terminal of the LJTick-InBuff.

- 1pA bias current
- ±10V input & output range
- · Has pads to optionally install gain resistors & input filter.

Common Applications

· Measuring PH sensors.

Figure 1: LJTick-InBuff

Figure 2: LJTick-InBuff with U3-

Screw Terminal Descriptions

VS: This is the same 5 volt output as the VS terminals on the LabJack itself. This is an output terminal, not an input. It can be used to provide 5 volt (nominal) power as needed.

GND: Same as LabJack ground (GND).

INA/INB: These input lines go through the Op Amps to have their signals amplified before being sent to a LabJack device.

LJTick-InBuff Hardware Block Diagram

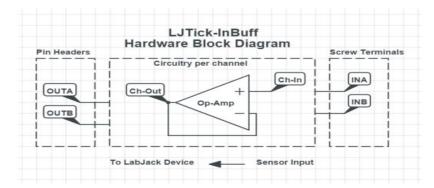
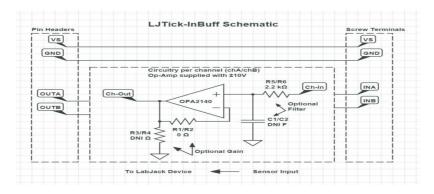



Figure 3: LJTick-InBuff Schematic

LJTick-InBuff Schematic

Usage with the T4 or U3-HV

The T4 and U3-HV have a mix of high voltage analog inputs (± 10 volt range) and low voltage analog inputs ($\pm 2.5/2.4$ volt range). Most input ticks are best used with the low voltage analog inputs, but the LJTick-InBuff is unique in that it has a ± 10 volt output range and thus either type of analog input might be best depending on the range of the input signal.

Specifications:

Parameter	Conditions	Min	Typical	Max	Units
General					
Input Voltage		-10		10	Volts
Range					
Temperature		-40		85	°C
Range		70		00	O
Supply Voltage		4		5.25	Volts
Supply Current			28		mA
Input Bias			±0.5	±10	pА
Current			_0.0		ρ, ι
Input			10^13		Ω
Impedance					
Input			10		рF
Capacitance			. •		μ.
Gain Accuracy					
Offset				±100	иV
Accuracy				_100	۳۰
Cutoff	0-5V Input Sine		4.3		MHz
Frequency	Wave				.711 12
	±10V Input	120	120		kHz
	Sine Wave		0		

For more specifications about the Op Amp used in the LJTick-InBuff refer to the Texas Instruments OPA2140 datasheet.

File Attachment:

Texas-Instruments-OPA2140-Datasheet.pdf