LED ENGIN BRIGHT LIGHT. TINY PACKAGE.

940nm Infrared LED Emitter

LZ4-00R508

Key Features

- High Efficacy 940nm 5W Infrared LED
- Ultra-small foot print 7.0mm x 7.0mm
- Surface mount ceramic package with integrated glass lens
- Low Thermal Resistance (2.8°C/W)
- Individually addressable die
- Very high Radiant Flux density
- Autoclave compliant (JEDEC JESD22-A102-C)
- JEDEC Level 1 for Moisture Sensitivity Level
- Lead (Pb) free and RoHS compliant
- Reflow solderable (up to 6 cycles)
- Emitter available on Serially Connected MCPCB (optional)

Typical Applications

- Inspection
- Security lighting

Description

The LZ4-00R508 940nm Infrared LED emitter generates 1.9W nominal output at 5W power dissipation in an extremely small package. With a 7.0mm x 7.0mm ultra-small footprint, this package provides exceptional radiant flux density. The patented design has unparalleled thermal and optical performance. The high quality materials used in the package are chosen to optimize light output and minimize stresses which results in monumental reliability and lumen maintenance. The robust product design thrives in outdoor applications with high ambient temperatures and high humidity.

Part number options

Base part number

Part number	Description
LZ4-00R508-xxxx	LZ4 emitter
LZ4-40R508-xxxx	LZ4 emitter on 1 channel Standard Star MCPCB

Bin kit option codes

R5, Infrared (940nm)					
Kit number suffix	Min flux Bin	Color Bin Range	Description		
0000	N	F09	full distribution flux; full distribution wavelength		

Notes:

1. Default bin kit option is -0000

Radiant Flux Bins

Table 1:

Bin Code	Minimum Radiant Flux (Φ) @ I _F = 700mA ^[1,2] (W)	Maximum Radiant Flux (Φ) @ I _F = 700mA ^[1,2] (W)
N	1.25	1.60
Р	1.60	2.00
Q	2.00	2.40

Notes for Table 1

- 1. Radiant flux performance guaranteed within published operating conditions. LED Engin maintains a tolerance of ± 10% on flux measurements.
- 2. Future products will have even higher levels of radiant flux performance. Contact LED Engin Sales for updated information.

Peak Wavelength Bin

Table 2:

Bin Code	Minimum Peak Wavelength (λ _P) @ I _F = 700mA ^[1] (nm)	Maximum Peak Wavelength (λ _P) @ I _F = 700mA ^[1] (nm)	
F09	920	960	

Notes for Table 2:

Forward Voltage Bins

Table 3:

Bin Code	Minimum Forward Voltage (V _F) @ I _F = 700mA ^[1,2] (V)	Maximum Forward Voltage (V _F) @ I _F = 700mA ^[1,2] (V)	
0	6.8	10.8	

Notes for Table 3:

- 1. Forward Voltage is binned with all four LED dice connected in series.
- 2. LED Engin maintains a tolerance of \pm 0.16V for forward voltage measurements for the four LEDs.

^{1.} LED Engin maintains a tolerance of \pm 2.0nm on peak wavelength measurements.

Absolute Maximum Ratings

Table 4:

Parameter	Symbol	Value	Unit
DC Forward Current [1]	I _F	1000	mA
Peak Pulsed Forward Current ^[2]	I _{FP}	2000	mA
Reverse Voltage	V _R	See Note 3	V
Storage Temperature	T _{stg}	-40 ~ +125	°C
Junction Temperature	T _J	125	°C
Soldering Temperature [4]	T _{sol}	260	°C
Allowable Reflow Cycles	6		
Autoclave Conditions [5]	121°C at 2 ATM, 100% RH for 168 hours		
ESD Sensitivity ^[6]	> 8,000 V HBM Class 3B JESD22-A114-D		

Notes for Table 4:

- Maximum DC forward current (per die) is determined by the overall thermal resistance and ambient temperature.
 Follow the curves in Figure 11 for current derating.
- Pulse forward current conditions: Pulse Width ≤ 10msec and Duty Cycle ≤ 10%.
- 3. LEDs are not designed to be reverse biased.
- 4. Solder conditions per JEDEC 020D. See Reflow Soldering Profile Figure 3.
- 5. Autoclave Conditions per JEDEC JESD22-A102-C.
- LED Engin recommends taking reasonable precautions towards possible ESD damages and handling the LZ4-00R508 in an electrostatic protected area (EPA).
 An EPA may be adequately protected by ESD controls as outlined in ANSI/ESD S6.1.

Optical Characteristics @ T_C = 25°C

Table 5:

Parameter	Symbol	Typical	Unit	
Radiant Flux (@ I _F = 700mA) ^[1]	Φ	1.90	W	
Radiant Flux (@ $I_F = 1000$ mA) ^[1]	Ф	2.65	W	
Peak Wavelength ^[2]	λ_{P}	940	nm	
Viewing Angle ^[3]	2O _{1/2}	95	Degrees	
Total Included Angle [4]	Θ _{0.9}	110	Degrees	

Notes for Table 5:

- Radiant flux typical value is for all four LED dice operating concurrently at rated current.
- 2. This product emits non visible infrared light, which can be hazardous depending on total system configuration (including, but not limited to optics, drive current and temperature). Observe safety precaution given in IEC 62471 when operating this product.
- 3. Viewing Angle is the off axis angle from emitter centerline where the radiant power is ½ of the peak value.
- 4. Total Included Angle is the total angle that includes 90% of the total radiant flux.

Electrical Characteristics @ T_C = 25°C

Table 6:

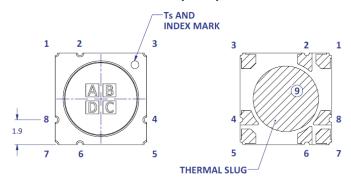
Parameter	Symbol	Typical	Unit	
Forward Voltage (@ I _F = 700mA) ^[1]	V _F	7.2	V	
Forward Voltage (@ $I_F = 1000 \text{mA}$) ^[1]	V_{F}	8.0	V	
Temperature Coefficient of Forward Voltage	$\Delta V_F/\Delta T_J$	-8.0	mV/°C	
Thermal Resistance (Junction to Case)	RΘ _{J-C}	2.8	°C/W	

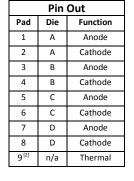
Notes for Table 6

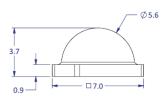
^{1.} Forward Voltage typical value is for all four LED dice connected in series.

IPC/JEDEC Moisture Sensitivity Level

Table 7 - IPC/JEDEC J-STD-20 MSL Classification:


	Soak Requirements					
	Flo	or Life	Stan	dard	Accel	erated
Level	Time	Conditions	Time (hrs)	Conditions	Time (hrs)	Conditions
1	1 Year	≤ 30°C/ 85% RH	168 +5/-0	85°C/ 85% RH	n/a	n/a


Notes for Table 7:


^{1.} The standard soak time is the sum of the default value of 24 hours for the semiconductor manufacturer's exposure time (MET) between bake and bag and the floor life of maximum time allowed out of the bag at the end user of distributor's facility.

Mechanical Dimensions (mm)

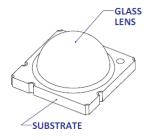
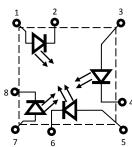



Figure 1: Package outline drawing.

Notes for Figure 1:

- 1. Unless otherwise noted, the tolerance = ± 0.20 mm.
- 2. Thermal contact, Pad 9, is electrically neutral.

Recommended Solder Pad Layout (mm)

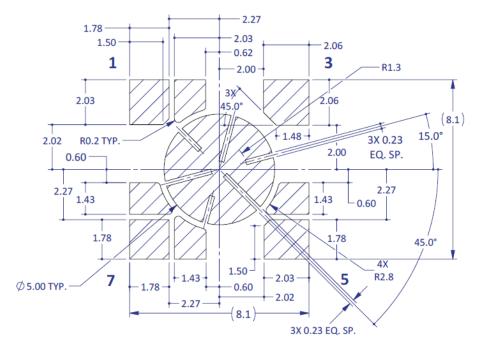


Figure 2a: Recommended solder pad layout for anode, cathode, and thermal pad.

Note for Figure 2a:

- Unless otherwise noted, the tolerance = ± 0.20 mm.
- 2. This pad layout is "patent pending".

Recommended Solder Mask Layout (mm)

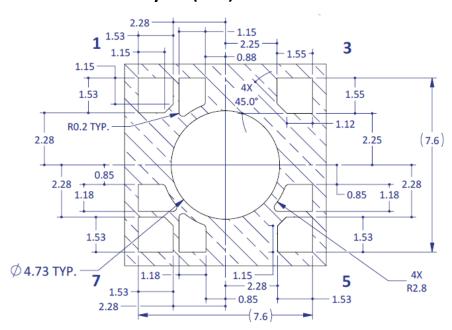


Figure 2b: Recommended solder mask opening for anode, cathode, and thermal pad

Note for Figure 2b:

1. Unless otherwise noted, the tolerance = \pm 0.20 mm.

Recommended 8 mil Stencil Apertures Layout (mm)

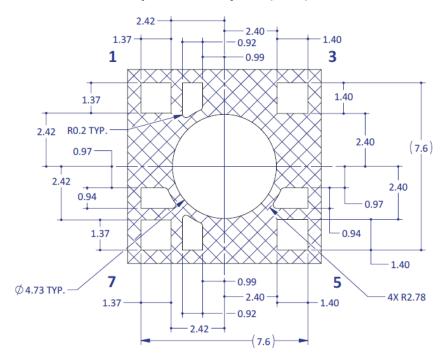


Figure 2c: Recommended 8mil stencil apertures layout for anode, cathode, and thermal pad

Note for Figure 2c:

1. Unless otherwise noted, the tolerance = \pm 0.20 mm.

Reflow Soldering Profile

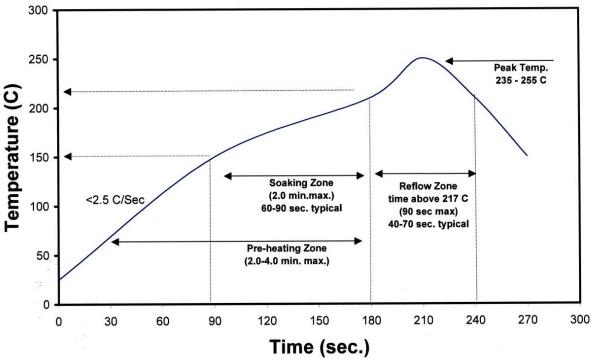


Figure 3: Reflow soldering profile for lead free soldering.

Typical Radiation Pattern

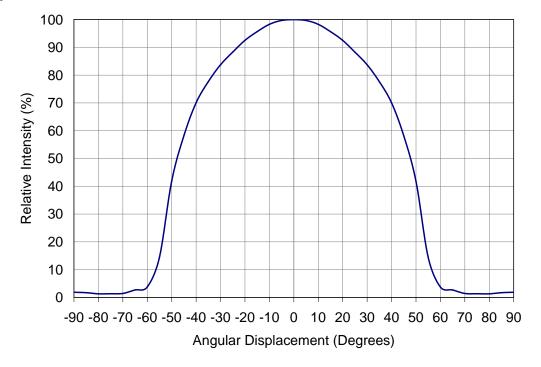


Figure 4: Typical representative spatial radiation pattern.

Typical Relative Spectral Power Distribution

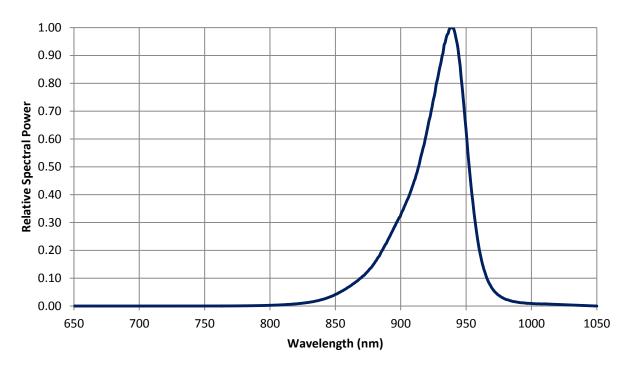


Figure 5: Relative spectral power vs. wavelength @ $T_C = 25$ °C.

Typical Peak Wavelength Shift over Current

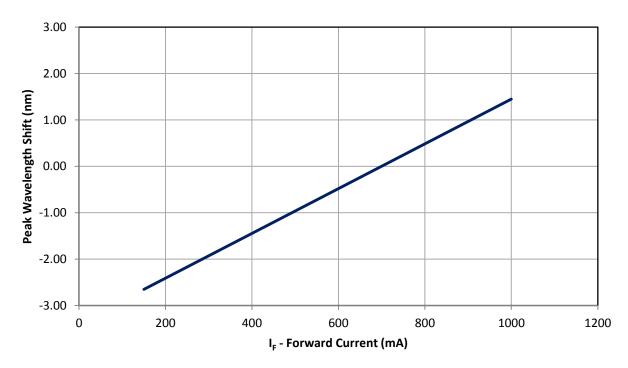


Figure 6: Typical peak wavelength shift vs. forward current @ $Tc = 25^{\circ}C$

Typical Peak Wavelength Shift over Temperature

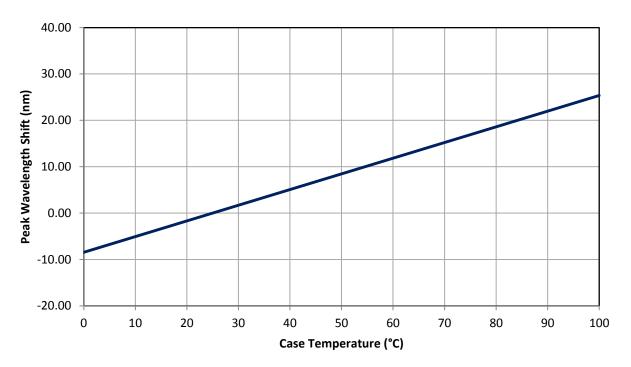


Figure 7: Typical peak wavelength shift vs. case temperature

Typical Normalized Radiant Flux over Current

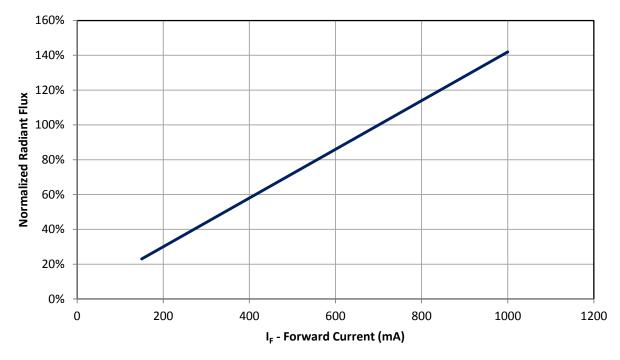


Figure 8: Typical normalized radiant flux vs. forward current @ $T_C = 25$ °C

Typical Normalized Radiant Flux over Temperature

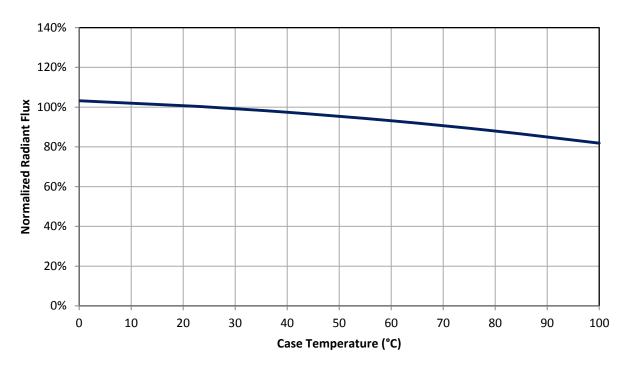


Figure 9: Typical normalized radiant flux vs. case temperature.

Typical Forward Current Characteristics

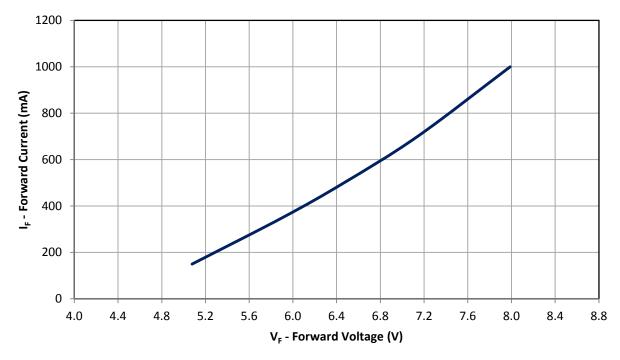
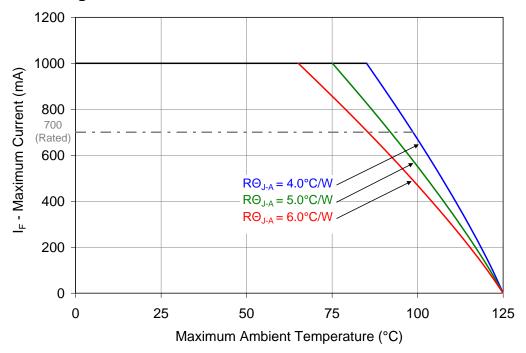
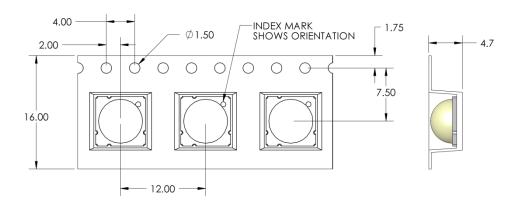


Figure 10: Typical forward current vs. forward voltage @ T_C = 25°C

Current De-rating




Figure 11: Maximum forward current vs. ambient temperature based on $T_{J(MAX)} = 125$ °C.

Notes for Figure 11:

- 1. Maximum current assumes that all four LED dice are operating concurrently at the same current.
- 2. RO_{J-C} [Junction to Case Thermal Resistance] for the LZ4-00R508 is typically 2.8°C/W.
- 3. $R\Theta_{J-A}$ [Junction to Ambient Thermal Resistance] = $R\Theta_{J-C}$ + $R\Theta_{C-A}$ [Case to Ambient Thermal Resistance].

Emitter Tape and Reel Specifications (mm)

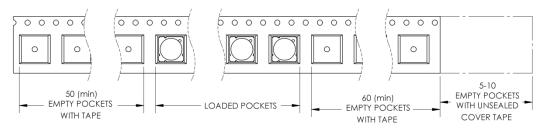


Figure 12: Emitter carrier tape specifications (mm).

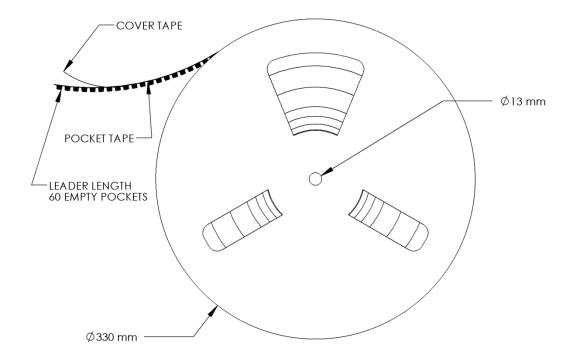


Figure 13: Emitter Reel specifications (mm).

Notes for Figure 13:

1. Reel quantity minimum: 100 emitters. Reel quantity maximum: 1200 emitters.

LZ4 MCPCB Family

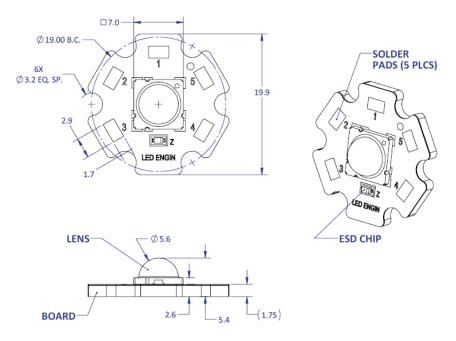
Part number	Type of MCPCB	Diameter (mm)	Emitter + MCPCB Thermal Resistance (°C/W)	Typical V _f (V)	Typical I _f (mA)
LZ4-4xxxxx	1-channel	19.9	2.8 + 1.1 = 3.9	7.2	700

Mechanical Mounting of MCPCB

- Mechanical stress on the emitter that could be caused by bending the MCPCB should be avoided. The stress can cause the substrate to crack and as a result might lead to cracks in the dies.
- Therefore special attention needs to be paid to the flatness of the heat sink surface and the torque on the screws. Maximum torque should not exceed 1 Nm (8.9 lbf/in).
- Care must be taken when securing the board to the heatsink to eliminate bending of the MCPCB. This
 can be done by tightening the three M3 screws (or #4-40) in steps and not all at once. This is
 analogous to tightening a wheel of an automobile
- It is recommended to always use plastic washers in combination with three screws. Two screws could more easily lead to bending of the board.
- o If non taped holes are used with self-tapping screws it is advised to back out the screws slightly after tighten (with controlled torque) and retighten the screws again.

Thermal interface material

- O To properly transfer the heat from the LED to the heatsink a thermally conductive material is required when mounting the MCPCB to the heatsink
- There are several materials which can be used as thermal interface material, such as thermal paste, thermal pads, phase change materials and thermal epoxies. Each has pro's and con's depending on the application. For our emitter it is critical to verify that the thermal resistance is sufficient for the selected emitter and its environment.
- To properly transfer the heat from the MCPCB to the heatsink also special attention should be paid to the flatness of the heatsink.


Wire soldering

For easy soldering of wires to the MCPCB it is advised to preheat the MCPCB on a hot plate to a
maximum of 150°. Subsequently apply the solder and additional heat from the solder iron to initiate a
good solder reflow. It is recommended to use a solder iron of more than 60W. We advise to use lead
free, no-clean solder. For example SN-96.5 AG-3.0 CU 0.5 #58/275 from Kester (pn: 24-7068-7601)

LZ4-4xxxxx

1 channel, Standard Star MCPCB (1x4) Dimensions (mm)

Notes:

- Unless otherwise noted, the tolerance = \pm 0.2 mm.
- Slots in MCPCB are for M3 or #4-40 mounting screws.
- LED Engin recommends plastic washers to electrically insulate screws from solder pads and electrical traces.
- Electrical connection pads on MCPCB are labeled "+" for Anode and "-" for Cathode
- LED Engin recommends thermal interface material when attaching the MCPCB to a heatsink
- The thermal resistance of the MCPCB is: ROC-B 1.1°C/W

Components used

MCPCB: HT04503 (Bergquist)

ESD chips: BZX585-C30 (NXP, for 4 LED dies in series)

Pad layout					
Ch.	MCPCB Pad	String/die	Function		
1	1,2,3	1/4000	Cathode -		
1	4,5	1/ABCD	Anode +		

Company Information

LED Engin, Inc., based in California's Silicon Valley, specializes in ultra-bright, ultra compact solid state lighting solutions allowing lighting designers & engineers the freedom to create uncompromised yet energy efficient lighting experiences. The LuxiGen™ Platform — an emitter and lens combination or integrated module solution, delivers superior flexibility in light output, ranging from 3W to 90W, a wide spectrum of available colors, including whites, multi-color and UV, and the ability to deliver upwards of 5,000 high quality lumens to a target. The small size combined with powerful output allows for a previously unobtainable freedom of design wherever high-flux density, directional light is required. LED Engin's packaging technologies lead the industry with products that feature lowest thermal resistance, highest flux density and consummate reliability, enabling compact and efficient solid state lighting solutions.

LED Engin is committed to providing products that conserve natural resources and reduce greenhouse emissions.

LED Engin reserves the right to make changes to improve performance without notice.

Please contact sales@ledengin.com or (408) 922-7200 for more information.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

LED Engin:

LZ4-00R508-0000 LZ4-40R508-0000