

NHD-C160100CZ-RN-FBW

COG (Chip-On-Glass) Liquid Crystal Display Module

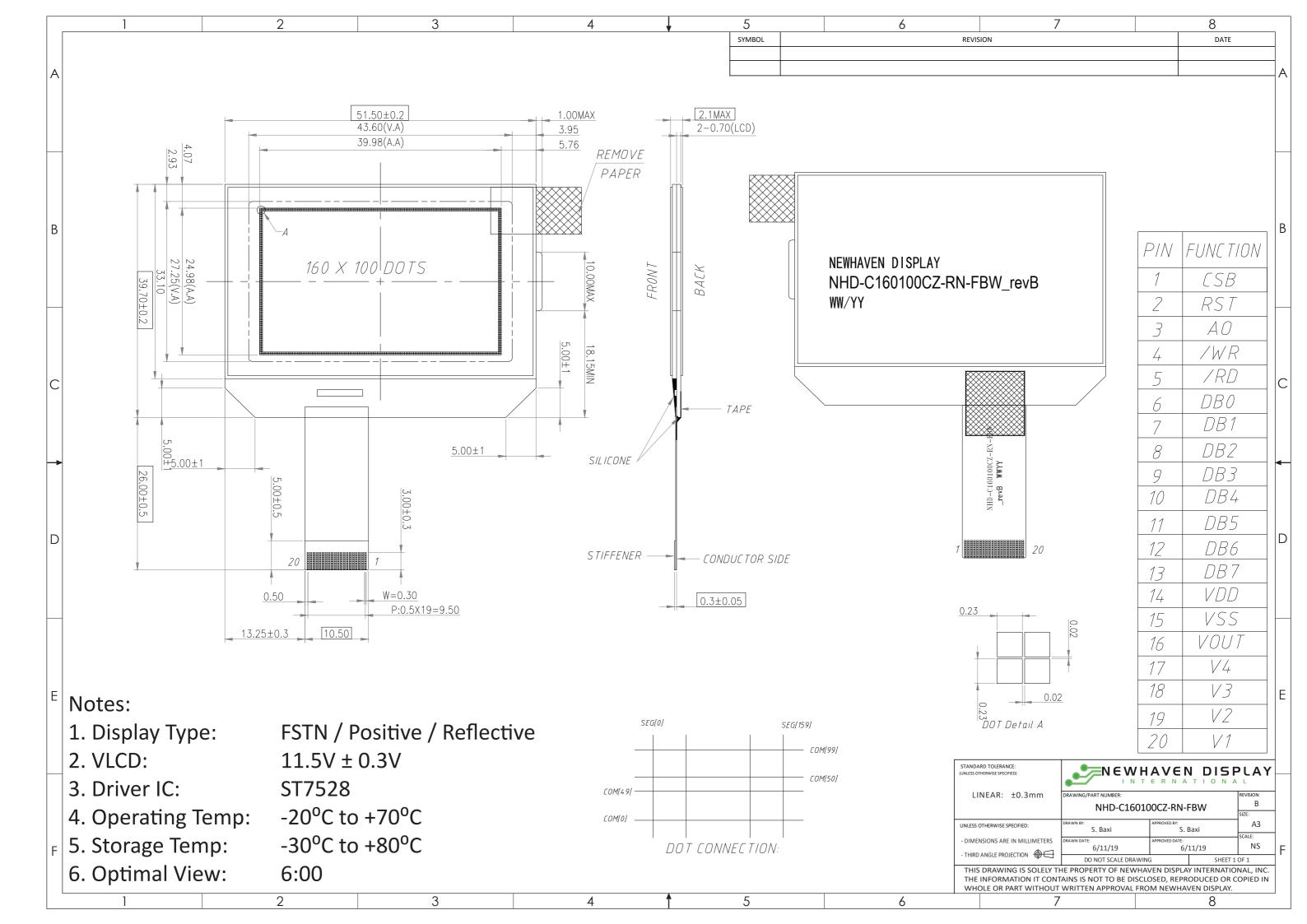
NHD- Newhaven Display C160100- 160 x 100 Pixels

CZ- Model
R- Reflective
N- No Backlight
F- FSTN Positive
B- 6:00 Optimal View
W- Wide Temperature

RoHS Compliant

Newhaven Display International, Inc.

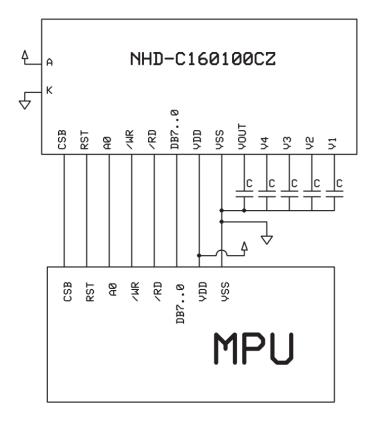
2661 Galvin Ct. Elgin IL, 60124


Ph: 847-844-8795 Fax: 847-844-8796

Document Revision History

Revision	Date	Description	Changed by
0	6/17/2007	Initial Release	-
1	9/11/2009	User guide reformat	BE
2	10/14/2009	Updated Electrical Characteristic	MC
3	12/08/2009	Updated Block Diagram, Pins 4 and 5, and Timing	MC
		Characteristics	
4	9/2/15	Mechanical drawing updated	AK
5	9/18/2015	Mechanical drawing updated	SB
6	8/9/16	LCD Glass supplier changed	AK
7	6/11/19	Pull Tab added to Drawing & Supply Current Updated	SB

Functions and Features


- 160 x 100 pixels
- Built-in ST7528 controller
- Parallel 8080 interface
- +3.0V power supply
- 1/100 duty cycle; 1/11 bias
- RoHS Compliant

Pin Description and Wiring Diagram

Pin No.	Symbol	External Connection	Function Description
1	CSB	MPU	Active LOW Chip Select signal
2	RST	MPU	Active LOW Reset signal
3	A0	MPU	Register Select signal. A0=1: Data, A0=0: Command
4	/WR	MPU	Active LOW Write signal
5	/RD	MPU	Active LOW Read signal
6-13	DB0-DB7	MPU	Bi-directional 8-bit data bus.
14	V_{DD}	Power Supply	Supply voltage for LCD and logic (+3.0V)
15	Vss	Power Supply	Ground
16	Vout	Power Supply	Connect to 1uF cap to V _{SS} or V _{DD}
17	V_4	Power Supply	1.0uF-2.2uF cap to V _{SS}
18	V ₃	Power Supply	1.0uF-2.2uF cap to Vss
19	V_2	Power Supply	1.0uF-2.2uF cap to V _{SS}
20	V ₁	Power Supply	1.0uF-2.2uF cap to V _{SS}

Recommended LCD connector: 0.5mm pitch pins. Molex p/n: 52746-2070

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	T _{OP}	Absolute Max	-20	1	+70	°C
Storage Temperature Range	T _{ST}	Absolute Max	-30	1	+80	°C
Supply Voltage	V_{DD}	-	2.7	3.0	3.3	V
Supply Current	I _{DD}	T _{OP} =25°C,	0.38	0.75	1.13	mA
Supply for LCD (contrast)	V_{LCD}	V_{DD} =3.0 V	11.2	11.5	11.8	V
"H" Level input	V _{IH}	-	0.7*V _{DD}	1	V_{DD}	V
"L" Level input	VIL	-	Vss	-	0.3*V _{DD}	V
"H" Level output	Voh	-	0.7*V _{DD}	-	V_{DD}	V
"L" Level output	V _{OL}	-	Vss	-	0.3*V _{DD}	V

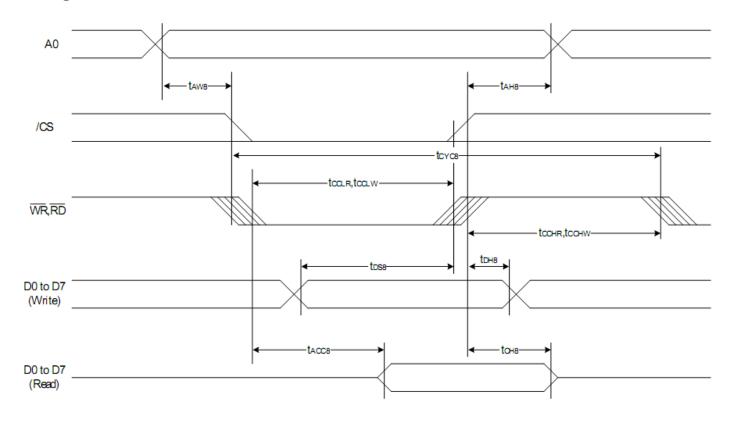
Optical Characteristics

Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit
Optimal Viewing Angles	Тор	φΥ+		ı	20	ı	0
	Bottom	φΥ-	CD>2	-	40	-	0
	Left	θХ-	CR≥2	-	45	-	0
	Right	θХ+		-	45	-	0
Contrast Ratio		CR	-	2	4	-	-
Dosponso Timo	Rise	T _R	T - 25°C	-	70	104	ms
Response Time	Fall	T _F	$T_{OP} = 25^{\circ}C$	-	140	215	ms

Controller Information

Built-in ST7528 controller.

Please download specification at http://www.newhavendisplay.com/app_notes/ST7528.pdf


Table of Commands

Instruction	A 0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
EXT=0 or 1											
	0	0	0	0	1	1	1	0	0	0	2-byte instruction to set
Mode Set	0	0	FR3	FR2	FR1	FR0	0	BE	x'	EXT	FR(Frame frequency control) BE(Booster efficiency control)
EXT=0											
Read display data	1	1				Read	data				Read data into DDRAM
Write display data	1	0				Write	data				Write data into DDRAM
Read status	0	1	BUSY	ON	RES	MF2	MF1	MF0	DS1	DS0	Read the internal status
ICON control register ON/OFF	0	0	1	0	1	0	0	0	1	ICON	ICON=0: ICON disable(default) ICON=1: ICON enable & set the page address to 16
Set page address	0	0	1	0	1	1	P3	P2	P1	P0	Set page address
Set column address MSB	0	0	0	0	0	1	Y9	Y8	Y7	Y6	Set column address MSB
Set column address LSB	0	0	0	0	0	0	Y5	Y4	Y3	Y2	Set column address LSB
Set modify-read	0	0	1	1	1	0	0	0	0	0	Set modify-read mode
Reset modify-read	0	0	1	1	1	0	1	1	1	0	release modify-read mode
Display ON/OFF	0	0	1	0	1	0	1	1	1	D	D=0: Display OFF D=1: Display ON
Set initial display line register	0	0	0	1	0	0	0	0	x'	x'	2-byte instruction to specify the initial display line to realize
, , , , , , ,	0	0	x'	S6	S5	S4	S3	S2	S1	S0	vertical scrolling
Set initial COM0 register	0	0	0	1	0	0	0	1	x'	x'	2-byte instruction to specify the initial COM0 to realize
octimizati domo registor	0	0	x'	C6	C5	C4	C3	C2	C1	C0	window scrolling
Set portiol display duty ration	0	0	0	1	0	0	1	0	x'	x'	2-byte instruction to set partial
Set partial display duty ration	0	0	D7	D6	D5	D4	D3	D2	D1	D0	display duty ratio
	0	0	0	1	0	0	1	1	x'	x'	2-byte instruction to set N-line
Set N-line inversion	0	0	x'	x'	x'	N4	N3	N2	N1	N0	inversion register
Release N-line inversion	0	0	1	1	1	0	0	1	0	0	Release N-line inversion mode
Reverse display ON/OFF	0	0	1	0	1	0	0	1	1	REV	REV=0: normal display REV=1: reverse display
Entire display ON/OFF	0	0	1	0	1	0	0	1	0	EON	EON=0: normal display EON=1: entire display ON

Instruction	Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
Ext=0											
Power control	0	0	0	0	1	0	1	VC	VR	VF	Control power circuit operation
Select DC-DC step-up	0	0	0	1	1	0	0	1	DC1	DC0	Select the step-up of internal voltage converter
Select regulator register	0	0	0	0	1	0	0	R2	R1	R0	Select the internal resistance ratio of the regulator resistor
Select electronic volumn	0	0	1	0	0	0	0	0	0	1	2-byte instruction to specify
register	0	0	x'	x'	EV5	EV4	EV3	EV2	EV1	EV0	the reference voltage
Select LCD bias	0	0	0	1	0	1	0	B2	B1	В0	Select LCD bias
Set Bias Power Save Mode	0	0	1	1	1	1	0	0	1	1	Bias Power save
Set bias Fower Save Mode	0	0	0	0	0	0	0	0	0	0	current consumption
Release Bias Power Save	0	0	1	1	1	1	0	0	1	1	Bias Power save release
Mode	0	0	0	0	0	0	0	1	0	0	set the Bias power to normal
SHL select	0	0	1	1	0	0	SHL	x'	x'	x'	COM bi-directional selection SHL=0: normal direction SHL=1: reverse direction
ADC select	0	0	1	0	1	0	0	0	0	ADC	SEG bi-direction selection ADC=0: normal direction ADC=1: reverse direction
Oscillator on start	0	0	1	0	1	0	1	0	1	1	Start the built-in oscillator
Set power save mode	0	0	1	0	1	0	1	0	0	Р	P=0: normal mode P=1: sleep mode
Release power save mode	0	0	1	1	1	0	0	0	0	1	release power save mode
Reset	0	0	1	1	1	0	0	0	1	0	initial the internal function
Set data direction &	x'	x'	1	1	1	0	1	0	0	0	2-byte instruction to specify
display data length(DDL)	x'	x'	D7	D6	D5	D4	D3	D2	D1	D0	the number of data bytes. (SPI mode)
Select FRC and PWM mode	0	0	1	0	0	1	0	FRC	PWM1	PWM0	FRC(1:3FRC, 0:4FRC) PWM1 PWM0 0 0 45PWM 0 1 45 PWM 1 0 60PWM 1 1
NOP	0	0	1	1	1	0	0	0	1	1	No operation
Test Instruction	0	0	1	1	1	1	x'	x'	x'	x'	Don't use this instruction

Instruction	A0	RW	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 [Description					
EXT=1											
Set white mode and 1st frame,	0	0	1	0	0	0	0	0	0	0	Set white mode and 1st frame
set pulse width	0	0	X'	X'	GA05	GA04	GA03	GA02	GA01	GA00	Set white mode and 1st frame
Set white mode and 2 nd frame,	0	0	1	0	0	0	0	0	0	1	Set white mode and 2nd
set pulse width	0	0	X'	X'	GA05	GA04	GA03	GA02	GA01	GA00	frame
Set white mode and 3 rd frame,	0	0	1	0	0	0	0	0	1	0	Set white mode and 3rd
set pulse width	0	0	X'	X'	GA05	GA04	GA03	GA02	GA01	GA00	frame
Set white mode and 4th frame,	0	0	1	0	0	0	0	0	1	1	Set white mode and 4th
set pulse width	0	0	X'	X'	GA05	GA04	GA03	GA02	GA01	GA00	frame
Set gray level 1 mode	0	0			84	H~87⊦	H (4 b	ytes)			Set gray level1
Set gray level 2 mode	0	0			88	H∼8BI	H (4 b	ytes)			Set gray level2
Set gray level 3 mode	0	0			80	CH~8F	H (4b	ytes)			Set gray level3
Set gray level 4 mode	0	0		90H~93H (4bytes)							Set gray level4
Set gray level 5 mode	0	0			94	4H~97l	H (4b)	ytes)			Set gray level5
Set gray level 6 mode	0	0			98	BH∼9BI	H (4 b	ytes)			Set gray level6
Set gray level 7 mode	0	0			90	H~9FI	H (4 b	ytes)			Set gray level7
Set gray level 8 mode	0	0			AC	H~A3I	H (4 b	ytes)			Set gray level8
Set gray level 9 mode	0	0			A4	IH~A7I	H (4 b	ytes)			Set gray level9
Set gray level 10 mode	0	0			A8	BH~AB∣	H (4 b	ytes)			Set gray level10
Set gray level 11mode	0	0			AC	H~AF	H (4 b	ytes)			Set gray level11
Set gray level 12 mode	0	0			В)H~B3I	H (4 b	ytes)			Set gray level12
Set gray level 13 mode	0	0			B4	IH∼B7I	H (4 b	ytes)			Set gray level13
Set gray level 14 mode	0	0			B8	H~BB	H (4 b	ytes)			Set gray level14
Set Dark mode and 1st frame,	0	0	1	0	1	1	1	1	0	0	Set Dark mode and 1st
set pulse width	0	0	X'	X'	GAF5	GAF4	GAF3	GAF2	GAF1	GAF0	frame, set pulse width
Set Dark mode and 2nd frame,	0	0	1	0	1	1	1	1	0	1	Set Dark mode and 2nd
set pulse width	0	0	X'	X'	GAF5	GAF4	GAF3	GAF2	GAF1	GAF0	frame, set pulse width
Set Dark mode and 3rd frame,	0	0	1	0	1	1	1	1	1	0	Set Dark mode and 3rd
set pulse width	0	0	X'	X'	GAF5	GAF4	GAF3	GAF2	GAF1	GAF0	frame, set pulse width
Set Dark mode and 4th frame,	0	0	1	0	1	1	1	1	1	1	Set Dark mode and 4th
set pulse width	0	0	X'	X'	GAF5	GAF4	GAF3	GAF2	GAF1	GAF0	frame, set pulse width

Timing Characteristics

(VDD = 3.3V , Ta =25°C)

lto	O'mmal	Complete	Condition	Rat	ing	Unito
Item	Signal	Symbol	Condition	Min.	Max. — — — — — — — 70	Units
Address hold time		tAH8		0	_	
Address setup time	A0	tAW8		0	_	
System cycle time		tCYC8		240	_	
Enable L pulse width (WRITE)	WR	tCCLW		80	_	
Enable H pulse width (WRITE)	VVIX	tCCHW		80	_	
Enable L pulse width (READ)	RD	tCCLR		140	_	ns
Enable H pulse width (READ)	, KD	tCCHR		80		
WRITE Data setup time		tDS8		40	_	
WRITE Data hold time	D0 to D7	tDH8		10	_	
READ access time	00 10 07	tACC8	CL = 100 pF	_	70	
READ Output disable time		tOH8	CL = 100 pF	5	50	

Example Initialization Program

```
void write_command(unsigned char datum)
A0=0;
                                                                            /*Instruction register*/
                                                                            /*Read inactive*/
E=1;
P1 = datum;
                                                                            /*put data on port 1*/
                                                                            /*Chip select active*/
CS1=0;
                                                                            /*Write active*/
RW=0;
                                                                            /*Write inactive; latch in data*/
RW=1;
CS1=1;
                                                                            /*Chip select inactive*/
//-----
void write_data(unsigned char datum)
{
A0=1;
                                                                            /*DDRAM data register*/
E=1;
P1=datum;
CS1=0;
RW=0;
RW=1;
CS1=1;
//-----
void lcd init(void){
   write command(0xA2);
                           //ICON OFF;
   write command(0xAE);
                           //Display OFF
   write_command(0x48);
                           //Set Duty ratio
   write command(0x80);
                           //No operation
   write command(0xa1);
                           //Set scan direction //changed from 0 to 1
    write command(0xc8);
                           //SHL select
   write command(0x40);
                           //Set START LINE
    write command(0x00);
                           //OSC on
   write_command(0xab);
   write command(0x64);
                           //3x
    delay(2000);
    write command(0x65);
                           //4x
   delay(2000);
   write_command(0x66);
                           //5x
   delay(2000);
    write command(0x67);
                           //6x
    delay(2000);
   write command(Ra Rb);
                            //RESISTER SET
   write_command(0x81);
                           //Set electronic volume register
   write command(vopcode); //n=0~3f
   write command(0x57);
                           //1/12bias
   write command(0x92);
                           //FRC and pwm
   write_command(0x2C);
    delay(20000);//200ms
```

```
write command(0x2E);
delay(20000);//200ms
write command(0x2F);
delay(20000);//200ms
write command(0x92);
                        //frc and pwm
write command(0x38);
                        //external mode
write command(0x75);
    //start settings for 16-level grayscale
write_command(0x97);
                        //3frc,45pwm
write_command(0x80);
write command(0x00);
write command(0x81);
write_command(0x00);
write_command(0x82);
write_command(0x00);
write_command(0x83);
write_command(0x00);
write command(0x84);
write_command(0x06);
write_command(0x85);
write_command(0x06);
write command(0x86);
write command(0x06);
write command(0x87);
write_command(0x06);
write_command(0x88);
write command(0x0b);
write command(0x89);
write command(0x0b);
write command(0x8a);
write_command(0x0b);
write_command(0x8b);
write command(0x0b);
write command(0x8c);
write command(0x10);
write_command(0x8d);
write_command(0x10);
write command(0x8e);
write command(0x10);
write command(0x8f);
write_command(0x10);
write_command(0x90);
write command(0x15);
write command(0x91);
write command(0x15);
write_command(0x92);
write_command(0x15);
write command(0x93);
write_command(0x15);
write command(0x94);
write command(0x1a);
write_command(0x95);
write command(0x1a);
write_command(0x96);
```

write command(0x1a);

```
write command(0x97);
write_command(0x1a);
write command(0x98);
write_command(0x1e);
write_command(0x99);
write command(0x1e);
write command(0x9a);
write command(0x1e);
write command(0x9b);
write_command(0x1e);
write_command(0x9c);
write command(0x23);
write command(0x9d);
write_command(0x23);
write_command(0x9e);
write_command(0x23);
write_command(0x9f);
write_command(0x23);
write command(0xa0);
write_command(0x27);
write_command(0xa1);
write_command(0x27);
write command(0xa2);
write command(0x27);
write_command(0xa3);
write_command(0x27);
write_command(0xa4);
write command(0x2b);
write command(0xa5);
write command(0x2b);
write command(0xa6);
write_command(0x2b);
write_command(0xa7);
write command(0x2b);
write command(0xa8);
write command(0x2f);
write_command(0xa9);
write_command(0x2f);
write command(0xaa);
write command(0x2f);
write command(0xab);
write_command(0x2f);
write_command(0xac);
write command(0x32);
write command(0xad);
write command(0x32);
write_command(0xae);
write_command(0x32);
write_command(0xaf);
write_command(0x32);
write command(0xb0);
write command(0x35);
write_command(0xb1);
write_command(0x35);
write_command(0xb2);
write command(0x35);
```

```
write command(0xb3);
   write_command(0x35);
   write_command(0xb4);
   write_command(0x38);
   write_command(0xb5);
   write command(0x38);
   write_command(0xb6);
   write_command(0x38);
   write_command(0xb7);
   write_command(0x38);
   write_command(0xb8);
   write_command(0x3a);
   write_command(0xb9);
   write_command(0x3a);
   write_command(0xba);
   write_command(0x3a);
   write_command(0xbb);
   write_command(0x3a);
   write_command(0xbc);
   write_command(0x3c);
   write_command(0xbd);
   write_command(0x3c);
   write_command(0xbe);
   write command(0x3c);
   write_command(0xbf);
   write_command(0x3c);
        //end settings for 16-level grayscale
   write_command(0x38);
   write command(0x74);
   write_command(0xaf); //Display ON
//-----
```

}

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage	+80°C , 48hrs	2
	temperature for a long time.		
Low Temperature storage	Endurance test applying the low storage	-30°C , 48hrs	1,2
	temperature for a long time.		
High Temperature	Endurance test applying the electric stress	+70°C 48hrs	2
Operation	(voltage & current) and the high thermal		
	stress for a long time.		
Low Temperature	Endurance test applying the electric stress	-20°C , 48hrs	1,2
Operation	(voltage & current) and the low thermal		
	stress for a long time.		
High Temperature /	Endurance test applying the electric stress	+40°C, 90% RH, 48hrs	1,2
Humidity Operation	(voltage & current) and the high thermal		
	with high humidity stress for a long time.		
Thermal Shock resistance	Endurance test applying the electric stress	-0°C,30min -> 25°C,5min ->	
	(voltage & current) during a cycle of low	50°C,30min = 1 cycle	
	and high thermal stress.	10 cycles	
Vibration test	Endurance test applying vibration to	10-55Hz , 15mm amplitude.	3
	simulate transportation and use.	60 sec in each of 3 directions	
		X,Y,Z	
		For 15 minutes	
Static electricity test	Endurance test applying electric static	VS=800V, RS=1.5kΩ, CS=100pF	
	discharge.	One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main_page=terms