
Cat. No. Z918-E1-01
OPERATION MANUAL

NE01-CCPC1-@
NE Programmer Ver. 2.0

NE01-CCPC1-@
NE Programmer Ver. 2.0
Operation Manual
Produced August 2008

iv

Notice:
OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

!DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury. Additionally, there may be severe property damage.

!WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury. Additionally, there may be severe property damage.

!Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers to
an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PLC” means Programmable Controller. “PC” is used, however, in some Program-
ming Device displays to mean Programmable Controller.

Visual Aids
The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient opera-
tion of the product.

1,2,3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

Trademarks and Copyrights
ControlNet and EtherNet/IP are registered trademarks of ControlNet International.

DeviceNet is a registered trademark of the Open DeviceNet Vendors Association.

Microsoft, Windows, Windows NT, Windows 2000, Windows XP, and Windows Vista are registered
trademarks of the Microsoft Corporation.

Other product names and company names in this manual are trademarks or registered trademarks of
their respective companies.

 OMRON, 2008
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or
by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of
OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is con-
stantly striving to improve its high-quality products, the information contained in this manual is subject to change without
notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility
for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in
this publication.
v

Version Upgrade Guide
The following table lists the improvements made in the upgrade from NE Programmer version 1.7x ver-
sion 2.00.

Upgrade

Note All of the upgrades apply only to the CJ2 CPU Units.

NE Programmer
version 1.7x

NE Programmer
version 2.00

Support for CJ2 CPU Units
• Added CJ2 USB/Serial Port to interface selections.
• Enabled selecting CJ2 CPU Units: CJ2H-CPU64-EIP, CJ2H-CPU65-

EIP, CJ2H-CPU66-EIP, CJ2H-CPU67-EIP, and CJ2H-CPU68-EIP.

Not supported Supported

Support for 2-dimensional Array Variables
In a CJ2 CPU Unit project, 2-dimensional array variables can be used in
the following windows and lists.
• Variable Windows
• Watch Window
• Cross-reference Pop-up Window
• Variable Used List

Not supported Supported

Reduced Restrictions in Using Variables for Array Subscripts, Upgrade 1
Variables can be specified for array subscripts in multi-level data struc-
tures (including members).

Variables could
be specified only
for the last sub-
script in an array.

Variables can be
specified for any
subscript in an
array.

Reduced Restrictions in Using Variables for Array Subscripts, Upgrade 2
Data structure members can be specified for array subscripts.

Array variables
could not be
specified for ele-
ments.

Data structure
members can be
specified for array
subscripts.

Read Protection for Programs as One Logical POU Element
A password can be set for a program to prevent reading the program
without password verification.

Read protection
was possible only
for function
blocks.

Read protection is
also possible for
programs.

Support for Converting Physical Address Inputs to Variables
• If a physical address is input directly into the Ladder Editor, a variable

will be automatically created if a comment is also input.
• If a variable is input or selected in the Ladder Editor and the Enter Key is

pressed, a comment can be input in the same continuous operation.

Not supported Supported

Expanded Variable Attributes
• The Network Variable attribute for global variables was changed to a

Convert to Network Variable attribute and a Network I/O Variable
attribute.

• Items for the Convert to Network Variable attribute and a Network I/O
Variable attribute were added to the following: Option settings for vari-
ables, Variable Editors, and printer output.

Only a Network
Variable attribute

A Convert to Net-
work Variable
attribute and a
Network I/O Vari-
able attribute

Variables Used List, Improvement 1
Comments were added to the Variables Used List and Cross-reference
Report.

No comments Comments were
added.

Variables Used List, Improvement 2
The Variables Used List was changed to a window so that it can be
resized.

Resizing was not
possible.

Resizing is possi-
ble.

Program Upload Protection
A password can be set for uploading the configuration (all programming).
Verification is necessary to upload the configuration from the CPU Unit.

Not supported Supported

In the New Watch Item Dialog Box, external variables can be specified for
automatic completion.

Not supported External vari-
ables can be
specified for auto-
matic completion.
vi

TABLE OF CONTENTS
PRECAUTIONS . xv
1 Intended Audience . xvi

2 General Precautions . xvi

3 Safety Precautions . xvi

4 Application Precautions. xvii

SECTION 1
Introduction. 1

1-1 NE Programmer Introduction . 2

1-2 Specifications. 4

1-3 Basic Operating Procedure . 5

1-4 Differences and Restrictions between NE1S-series CPU Units and CJ2 CPU Units 6

SECTION 2
Program Structure . 9

2-1 Outline of the NE Programmer . 10

2-2 Variables . 16

2-3 Function Blocks . 31

SECTION 3
Installation . 51

3-1 Installation Preparations . 52

3-2 Installing the NE Programmer . 52

3-3 Installing the USB Driver . 55

SECTION 4
Outline of Operations and Functions of the NE Programmer 59

4-1 Starting the NE Programmer . 60

4-2 Main Window . 61

4-3 Project Window . 62

4-4 Menu Item Lists. 63

4-5 Shortcut Keys. 70

4-6 Option Settings . 73

SECTION 5
Programming . 87

5-1 Overview . 89

5-2 Creating Projects and Logical POUs . 90

5-3 Programming Methods . 94

5-4 Creating Function Blocks and Pasting Them into Programs. 120

5-5 Read Protection for Logical POUs . 127
vii

TABLE OF CONTENTS

5-6 Creating Configurations and Assigning Programs to Tasks . 129

5-7 Editing Comments . 136

5-8 Search/Replace Function . 138

5-9 Cross Reference Function . 142

5-10 Using the Library. 142

5-11 Outline Window. 150

5-12 Building and Compiling Programs . 150

5-13 Importing and Exporting . 153

5-14 Printing . 156

SECTION 6
PLC System Configuration . 157

6-1 Overview . 158

6-2 PLC Setup (PLC Setup Area Tab Page) . 159

6-3 Ethernet Setup (Ethernet Tab Page). 159

6-4 Build Settings (Build Tab Page) . 160

6-5 I/O Table Settings (I/O Table Tab Page) . 161

SECTION 7
Online Operation . 165

7-1 Connecting via Serial Communications (USB/RS-232C). 167

7-2 Connecting Online via Ethernet. 170

7-3 Automatic Upload Function . 175

7-4 Changing the CPU Unit That Is Connected. 177

7-5 Online Operations for I/O Tables . 181

7-6 Uploading, Downloading, and Comparing Programs and Other Data 182

7-7 Changing the Operating Mode. 189

7-8 Monitoring . 189

7-9 Saving and Restoring Variable PVs. 194

7-10 Forcing Bits ON and OFF (Force-set and Force-reset) . 195

7-11 Changing the PVs of Variables . 197

7-12 Changing Timer/Counter Set Values . 198

7-13 Differential Monitor. 198

7-14 Online Editing . 199

7-15 Clearing Errors. 203

7-16 Clearing Memory. 204

7-17 Restarting Services . 204

7-18 Displaying Errors and the Error Log . 205

7-19 Change Log . 209

7-20 Displaying the Cycle Time . 211

7-21 Data Tracing . 211

7-22 Variable Reference List . 216
viii

TABLE OF CONTENTS

7-23 Setting the CPU Unit Clock. 219

7-24 Forcibly Releasing the Access Right . 219

Appendices
A Variable Applications Guidelines . 221

B Structured Text Keywords . 223

C External Variables . 227

D CIP Message Communications . 229

E PLC Setup for CJ2 CPU Units . 273

F Ethernet Settings for CJ2 CPU Units . 281

Index. 285

Revision History . 291
ix

x

About this Manual:

This manual provides information required to use the NE Programmer Control and Network Support
Software. The NE Programmer is an integrated programming environment used to program NE1S-
series PLCs and CJ2 CPU Units.

Please read this manual and all related manuals listed in the following table and be sure you under-
stand the information provided before attempting to use the NE Programmer.

This manual contains the following sections.

Precautions provide general precautions for using the NE Programmer and related devices.

Section 1 introduces the NE Programmer, provides NE Programmer specifications, and provides the
basic operating procedure. It also outlines the differences between the NE1S and the CJ2 CPU Units.

Section 2 describes the structure of the programs.

Section 3 describes software installation.

Section 4 provides an outline of the operations and functions of the NE Programmer.

Section 5 provides details on programming.

Section 6 describes the configuration of the PLC system.

Section 7 provides the procedures for online operation.

The Appendices describe variable applications guidelines, structured text keywords, external vari-
ables, CIP message communications, the PLC Setup for CJ2 CPU Units, and Ethernet Settings.

Name Cat. No. Contents

NE Programmer
Operation Manual (this manual)

Z918 Describes the operating procedures of the NE Programmer. Also
describes programming and program elements, as well as differ-
ences and restrictions depending on the operating environment.

SYSMAC NE1S Series
NE1S-CPU01
Programmable Controller
Operation Manual

Z901 Provides an outlines of and describes the design, installation,
maintenance, and other basic operations for the NE1S-series
PLC. Also provides information on how to use the NE Program-
mer.

NE1S-CNS21U
ControlNet Unit
Operation Manual

Z902 Describes the use of the NE1S-series ControlNet Unit.

NE1S-DRM21U
DeviceNet Unit
Operation Manual

Z903 Describes the use of the NE1S-series DeviceNet Unit.

CS1W-EIP21/CJ1W-EIP21
CJ2H-CPU@@-EIP

EtherNet/IP Unit

Operation Manual

Z909 Describes the use of CS/CJ/NE1S-series EtherNet/IP Units.

CJ2 CPU Unit Hardware
User’s Manual

W472 Provides hardware information for the CJ2 CPU Units.

CJ2 CPU Unit Software
User’s Manual

W473 Provides software information for the CJ2 CPU Units.

!WARNING Failure to read and understand the information provided in this manual may result in per-
sonal injury or death, damage to the product, or product failure. Please read each section
in its entirety and be sure you understand the information provided in the section and
related sections before attempting any of the procedures or operations given.
xi

xii

Read and Understand this Manual
Please read and understand this manual before using the product. Please consult your OMRON
representative if you have any questions or comments.

Warranty and Limitations of Liability

Application Considerations

WARRANTY

1. The warranty period for the Software is one year from either the date of purchase or the date on which the
Software is delivered to the specified location.

2. If the User discovers a defect in the Software (i.e., substantial non-conformity with the manual), and returns
it to OMRON within the above warranty period, OMRON will replace the Software without charge by offer-
ing media or downloading services from the Internet. And if the User discovers a defect in the media which
is attributable to OMRON and returns the Software to OMRON within the above warranty period, OMRON
will replace the defective media without charge. If OMRON is unable to replace the defective media or cor-
rect the Software, the liability of OMRON and the User's remedy shall be limited to a refund of the license
fee paid to OMRON for the Software.

LIMITATIONS OF LIABILITY

1. THE ABOVE WARRANTY SHALL CONSTITUTE THE USER'S SOLE AND EXCLUSIVE REMEDIES
AGAINST OMRON AND THERE ARE NO OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO, WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. IN NO EVENT WILL OMRON BE LIABLE FOR ANY LOST PROFITS OR OTHER INDIRECT,
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF USE OF THE SOFT-
WARE.

2. OMRON SHALL ASSUME NO LIABILITY FOR DEFECTS IN THE SOFTWARE BASED ON MODIFICA-
TION OR ALTERATION OF THE SOFTWARE BY THE USER OR ANY THIRD PARTY.

3. OMRON SHALL ASSUME NO LIABILITY FOR SOFTWARE DEVELOPED BY THE USER OR ANY
THIRD PARTY BASED ON THE SOFTWARE OR ANY CONSEQUENCE THEREOF.

SUITABILITY FOR USE

THE USER SHALL NOT USE THE SOFTWARE FOR A PURPOSE THAT IS NOT DESCRIBED IN THE
ATTACHED USER MANUAL.
xiii

Disclaimers

CHANGE IN SPECIFICATIONS

The software specifications and accessories may be changed at any time based on improvements or for
other reasons.

EXTENT OF SERVICE

The license fee of the Software does not include service costs, such as dispatching technical staff.

ERRORS AND OMISSIONS

The information in this manual has been carefully checked and is believed to be accurate; however, no
responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.
xiv

xv

PRECAUTIONS

This section provides general precautions for using the NE Programmer and related devices.

The information contained in this section is important for the safe and reliable application of the NE Programmer.
You must read this section and understand the information contained before attempting to use the NE Programmer.

1 Intended Audience . xvi
2 General Precautions . xvi
3 Safety Precautions. xvi
4 Application Precautions . xvii

Intended Audience 1
1 Intended Audience
This manual is intended for the following personnel, who must also have
knowledge of electrical systems (an electrical engineer or the equivalent).

• Personnel in charge of installing FA systems.

• Personnel in charge of designing FA systems.

• Personnel in charge of managing FA systems and facilities.

2 General Precautions
The user must operate the product according to the performance specifica-
tions described in the operation manuals.

Before using the product under conditions which are not described in the
manual or applying the product to nuclear control systems, railroad systems,
aviation systems, vehicles, combustion systems, medical equipment, amuse-
ment machines, safety equipment, and other systems, machines, and equip-
ment that may have a serious influence on lives and property if used
improperly, consult your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide
the systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the Unit. Be
sure to read this manual before attempting to use the Unit and keep this man-
ual close at hand for reference during operation.

!WARNING It is extremely important that a PLC and all PLC Units be used for the speci-
fied purpose and under the specified conditions, especially in applications that
can directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PLC System to the above-mentioned appli-
cations.

3 Safety Precautions

!WARNING Provide safety measures in external circuits (i.e., not in the Programmable
Controller), including the following items, to ensure safety in the system if an
abnormality occurs due to malfunction of the PLC or another external factor
affecting the PLC operation. Not doing so may result in serious accidents.

• Emergency stop circuits, interlock circuits, limit circuits, and similar safety
measures must be provided in external control circuits.

• The PLC will turn OFF all outputs when its self-diagnosis function detects
any error or when a severe failure alarm (FALS) instruction is executed.
As a countermeasure for such errors, external safety measures must be
provided to ensure safety in the system.

• The PLC outputs may remain ON or OFF due to deposition or burning of
the output relays or destruction of the output transistors. As a counter-
measure for such problems, external safety measures must be provided
to ensure safety in the system.

• When the 24-V DC output (service power supply to the PLC) is over-
loaded or short-circuited, the voltage may drop and result in the outputs
being turned OFF. As a countermeasure for such problems, external
safety measures must be provided to ensure safety in the system.
xvi

Application Precautions 4
!WARNING Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal lines,
momentary power interruptions, or other causes. Serious accidents may
result from abnormal operation if proper measures are not provided.

!Caution Execute online edit only after confirming that no adverse effects will be
caused by extending the cycle time. Otherwise, the input signals may not be
readable.

!Caution Confirm safety at the destination node before editing or transferring a pro-
gram, PLC Setup, I/O tables, I/O memory data, or parameter data to another
node. Doing either of these without confirming safety may result in unex-
pected operation and injury.

4 Application Precautions
Observe the following precautions when using the NE Programmer.

• Do not turn OFF the power supply to the PLC or disconnect the cable
when the NE Programmer is connected online to the PLC.

• Do not turn OFF the power supply to a Unit while data is being trans-
ferred. Particularly 1) never turn OFF the power to a PLC when the Mem-
ory Card is being accessed and 2) never remove the Memory Card while
it is being accessed. To remove the Memory Card, first press the Memory
Card power supply switch and wait for the BUSY indicator to turn OFF
before removing the Memory Card. In the worst-case scenario, the Mem-
ory Card may become unusable if the power is turned OFF while the
Memory Card is being accessed or the Memory Card is removed while it
is being accessed.

• Confirm that no adverse effect will occur in the system before attempting
any of the following. Not doing so may result in an unexpected operation.

• Changing the operating mode of the PLC (including changing the Star-
tup Mode setting).

• Force-setting/force-resetting any bit in memory.

• Changing the present value of any word or any set value in memory.

• Restoring the values of variables.

• Always clear the memory of a CJ2 CPU Unit before downloading pro-
grams, the PLC Setup, or the I/O tables from the NE Programmer. If the
memory is not cleared before downloading the data, unexpected opera-
tion may occur in the controlled system.

• Check that the DIP switches and data memory (DM) are properly set
before starting operation.

• Before actual operation, check the parameter settings and user program
(such as the ladder program) for proper execution in trial operation.
Always check the program before transferring it.

• Resume operation only after transferring to the new CPU Unit the con-
tents of the DM and HR Areas required for resuming operation. Not doing
so may result in an unexpected operation.

• Confirm that a Compact Flash Card containing the correct contents is
inserted before starting operation.

• Be sure to set the network connection settings and network parameters
correctly.
xvii

Application Precautions 4
• The BKUP indicator lights when data is being written to flash memory. Do
not turn OFF the power supply to the CPU Unit when the BKUP indicator
is lit. The data may not be written correctly.

• Set the startup mode only after confirming that the controlled facilities will
not be adversely affected.

• Do not turn OFF the power supply to the CPU Unit while a Memory Card
is being accessed.

• Do not remove a Memory Card while it is being accessed. Press the
Memory Card power button and confirm that the BUSY indicator goes out
before removing the Memory Card.

• The user program is stored in nonvolatile memory, and operation is possi-
ble even if the Battery voltage has dropped or a Battery is not installed.
(Operation will not be stopped for a memory error.) Data in the DM and
EM Areas, however, will not be stable without a Battery that is fully
charged. If data from the DM or EM Areas is used to control outputs from
the program, used the Battery Error Flag to control outputs or perform
other measures to ensure safety.
xviii

SECTION 1
Introduction

This section introduces the NE Programmer, provides NE Programmer specifications, and provides the basic operating
procedure. It also outlines the differences between the NE1S and the CJ2 CPU Units.

1-1 NE Programmer Introduction . 2

1-1-1 What Is the NE Programmer?. 2

1-1-2 NE Programmer Features . 2

1-2 Specifications . 4

1-2-1 NE Programmer Specifications . 4

1-3 Basic Operating Procedure . 5

1-4 Differences and Restrictions between NE1S-series CPU Units and CJ2 CPU Units 6

1-4-1 Improvements in CJ2 CPU Units Compared with NE1S-series CPU Units 6

1-4-2 Restrictions for CJ2 CPU Units Compared with NE1S-series CPU Units 8
1

NE Programmer Introduction Section 1-1
1-1 NE Programmer Introduction

1-1-1 What Is the NE Programmer?
The NE Programmer is a programming tool that provides an integrated devel-
opment environment for PLCs (i.e., Programmable Controllers) built with
NE1S-series CPU Units and CJ2 CPU Units.

The NE Programmer can be used for the following CPU Units:

• NE1S-series CPU Units: NE1S-CPU01

• CJ2 CPU Units: CJ2H-CPU@@-EIP

The functions that can be used depend on the CPU Unit that is connected.
For details, refer to 1-4 Differences and Restrictions between NE1S-series
CPU Units and CJ2 CPU Units.

1-1-2 NE Programmer Features

Flexible Connection Environment
You can connect the NE Programmer to an NE1S-series CPU Unit by using
any of the following interfaces: USB, RS-232C, EtherNet/IP, ControlNet, or
DeviceNet. (CIP communications is used for all these interfaces.)

You can also connect the NE Programmer to a CJ2 CPU Unit by using any of
the following interfaces: USB, RS-232C, or EtherNet/IP. (CIP communications
is used for all these interfaces.)

Integrated Development Environment
Each Programming Device can be started centrally from a window displaying
the NE1S-series CPU Units connected through serial communications (USB
and RS-232C), EtherNet/IP, ControlNet, and DeviceNet.

Note It is not possible to display three different network levels simultaneously on in
the actual window.

C
P

U
 U

ni
t

EtherNet/IP

C
P

U
 U

ni
t

ControlNet

D
ev

ic
eN

et

C
P

U
 U

ni
t

DeviceNet

SlaveSlave

NE Programmer

Network Configurator

Network Configurator

Integrated
development
environment

Integrated Window

C
on

tr
ol

N
et

C
on

tr
ol

N
et

Launch

Launch

Launch
2

NE Programmer Introduction Section 1-1
Remote Programming/Monitoring from NE Programmer (Serial Connection)
The networks share the common CIP communications protocol, so that
another NE1S-series CPU Unit in an EtherNet/IP, ControlNet, or DeviceNet
network or a CJ2 CPU Unit on an EtherNet/IP network can be remotely pro-
grammed or monitored from NE Programmer Programming Software con-
nected through a serial connection (USB or RS-232C).

Remote Programming/Monitoring from NE Programmer (EtherNet/IP or ControlNet
Connection)

A computer running the NE Programmer Programming Software can also be
connected directly to an EtherNet/IP or ControlNet network. In this case,
another NE1S-series CPU Unit in an EtherNet/IP, ControlNet, or DeviceNet
network can be remotely programmed or monitored from NE Programmer
Programming Software connected through ControlNet

Directly Inputting Mnemonics in a Ladder Window
Instructions with text mnemonics such as LD, AND, and MOV can be entered
directly by moving the cursor to the desired insertion point in the Ladder Pro-
gramming Window and entering the mnemonic. Inputs and outputs can also
be entered by selecting the input or output icon from the toolbar and
advanced instructions can be entered by dragging and dropping the instruc-
tion from the instruction list.

Automatic Allocation of I/O Memory to Variables
Variables can be broadly divided into two categories: global variables that are
shared within a PLC and local variables that are unique to a program or func-
tion block.

Physical memory addresses can be allocated to both global variables and
local variables automatically with NE Programmer. The automatic allocation of
I/O memory allows variables to be used in programming without dealing
directly with the variables' addresses.

While it isn't necessary to deal with the variables' addresses, the user can
manually specify the physical addresses of global variables if necessary.

Link from the Network Configurator
The NE Programmer can be started from the Network Configurator and data
can be transferred between the two. Also, network variables registered with
the NE Programmer can be shared with the Network Configurator. It is easy to
make network settings using variable names in the Network Configurator by
importing and exporting variables in the variable tables.
3

Specifications Section 1-2
1-2 Specifications

1-2-1 NE Programmer Specifications

*1 System requirements for Windows Vista: CPU: Pentium, 1 GHz min.;
Memory: 1 GB

Item Specifications

System
requirements

Hardware Computer: IBM PC/AT or compatible
CPU: Pentium, 300 MHz minimum (Pentium, 1 GHz minimum recommended)

Memory: 512 bytes minimum
Hard disk: 200 Mbytes minimum free space
Monitor: SVGA (800 x 600 pixels) or better

CD-ROM drive: 1 minimum

OS Windows 2000, XP, or Vista *1

Supported languages Japanese and English

Method of connection to network Board or card 3G8F7-DRM21: PCI Board

3G8F5-DRM21: ISA Board
3G8E2-DRM21: PCMCIA Card

Serial connection
(using gateway func-
tion from CIP to
DeviceNet network)

Connection is made to a USB or RS-232C port on the
CPU Unit of the PLC to which the DeviceNet Unit is
mounted.

Note
(1) The Network Configurator can also be connected to a

ControlNet or Ethernet network.
(2) The NE1S-series USB driver does not support Win-

dows Vista.

Connecting the
NE Program-
mer using a
Board or Card

Relation to network The NE Programmer is allocated 1 node address.

Number of NE Pro-
grammer nodes con-
nected to network

1 per network

PLCs supported by NE Programmer NE1S-series CPU Units: NE1S-CPU01

CJ-series CJ2 CPU Units: CJ2H-CPU@@-EIP

Main functions Creating logical POUs Instructions and function blocks Languages: Ladder diagrams or structured text
(ST) as required

Creating configura-
tions

Tasks and global variables

PLC system configu-
ration

PLC Setup, Ethernet settings, build settings, I/O table settings

Online operation Automatic uploading (when using a serial connection), changing the connection
target, creating I/O tables, uploading/downloading/comparing programs and
other data, changing the operating mode, monitoring the program, force-setting
and force-resetting bits, online editing, displaying errors, displaying the cycle
time, tracing data, etc.
4

Basic Operating Procedure Section 1-3
1-3 Basic Operating Procedure
This section describes the basic operating procedure and the relationship to
the NE Programmer and the CPU Unit. The relationship and order is given for
each step and setting.

1,2,3... 1. Installation

Set the DIP switches on the front of each Unit as required.
Mount the CPU Unit, Power Supply Unit, and other Units to the Backplane.
Install the Memory Card if required.

Note Refer to the operation manual for each Unit.

2. Wiring

Connect the power supply wiring, I/O wiring, and Programming Device (NE
Programmer). Connect communications wiring as required.

Note Refer to the operation manual for each Unit for information on pow-
er supply wiring, I/O wiring, and the NE Programmer connection.

3. Initial Settings (Hardware)

Set the DIP switches an Rotary switches on the front of the CPU Unit and
other Units.

Note Refer to the operation manual for each Unit.

4. Checking Initial Operation

Turn the power on after checking the power supply wiring and voltage.
Check the Power Supply Unit’s POWER indicator.

5. Registering the I/O Table

Check the Units to verify that they are installed in the right slots. With the
PLC in PROGRAM mode, register the I/O table from the Programming De-
vice (NE Programmer). (Another method is to create the I/O table in NE
Programmer and transfer it to the CPU Unit.)

Note Refer to 7-5 Online Operations for I/O Tables.

6. PLC Setup Settings

With the PLC in PROGRAM mode, change the settings in the PLC Setup
as necessary from the Programming Device (NE Programmer). (Another
method is to change the PLC Setup in NE Programmer and transfer it to
the CPU Unit.)

Note Refer to the operation manual for each Unit.

7. DM Area Settings for CPU Bus Units and Special I/O Units

a) Use a Programming Device (NE Programmer) to make any necessary
settings in the parts of the DM Area that are allocated to Special I/O
Units and CPU Bus Units.

b) Reset the power (ON → OFF → ON) or toggle the Restart Bit for each
Unit.

Note Refer to the operation manual for each CPU Bus Unit or Special I/O
Unit.

8. Writing the Program

Write the program with the NE Programmer.

9. Transferring the Program (NE Programmer Only)

With the PLC in PROGRAM mode, transfer the program from NE Program-
mer to the CPU Unit.
5

Differences and Restrictions between NE1S-series CPU Units and CJ2 CPU Units Section 1-4
10. Testing Operation

a) Checking I/O Wiring

b) Auxiliary Area Settings (As Required)
Check operation of special Auxiliary Area Settings such as the follow-
ing:

c) Trial Operation
Test PLC operation by switching the PLC to MONITOR mode.

d) Monitoring and Debugging
Monitor operation from the Programming Device. Use functions such
as force-setting/force-resetting bits, tracing, and online editing to de-
bug the program.

Note Refer to SECTION 7 Online Operation.

11. Saving and Printing the Program

12. Running the Program

Switch the PLC to RUN mode to run the program.

1-4 Differences and Restrictions between NE1S-series CPU
Units and CJ2 CPU Units

1-4-1 Improvements in CJ2 CPU Units Compared with NE1S-series CPU
Units

There are differences between using the NE Programmer for a CJ2 CPU Unit
in comparison to using it for an NE1S-series CPU Unit.

The following points are the main differences.

Support for Japanese
Identifiers

Names in Japanese can be given to all types of identifiers in projects for the
CJ2 CPU Unit. The term “identifier” refers to the following items.

• Data type names (structure names and structure member names)

Output wiring With the PLC in PROGRAM mode, force-set output bits
and check the status of the corresponding outputs.

Input wiring Activate sensors and switches and either check the status
of the indicators on the Input Unit or check the status of the
corresponding input bits with the Programming Device’s
Bit/Word Monitor operation.

Output OFF
Bit

When necessary, turn ON the Output OFF Bit (A50015)
from the program and test operation with the outputs
forced OFF.

Hot Start Set-
tings

When you want to start operation (switch to RUN mode)
without changing the contents of I/O memory, turn ON the
IOM Hold Bit (A50012).

NE1S-series
CPU Unit

CJ2 CPU Unit

NE Programmer

T
he

re
 a

re
 d

iff
er

en
ce

s
be

tw
ee

n
th

es
e.

6

Differences and Restrictions between NE1S-series CPU Units and CJ2 CPU Units Section 1-4
• Variable names (including FBIO group names)

• Function block and instance names

• POU names (program names and configuration block names)

• Configuration names

Support for Two-
dimensional Arrays

It is possible to input and display two-dimensional array variables. The Vari-
able Editor, Edit Variables Dialog Box, and Watch Window all support two-
dimensional variables.

Reduced Restrictions The maximum number function block (FB) definitions and number of
instances have been increased.

The maximum size of each variable (including array and structure) has been
increased from 128 to 32,000 words.

The maximum number of array elements has been increased from 256 to
32,000 elements.

The restriction on specifying variables as array subscripts has been removed.

Read Protection With the CJ2, it is possible to set read protection for program POUs.

Note With the NE1S it is possible to set protection only for function
blocks.

Upload Protection Password protection can be used for program uploading from the CPU Unit.

Item Using the
NE1S

Using the CJ2

CPU64-
EIP

CPU65-
EIP

CPU66-
EIP

CPU67-
EIP

CPU68-
EIP

Maximum number of
FBs instances

1,024 256 512 1,024 2,048 2,048

Area size for automatic
variable allocation

8 banks 1 bank 4 banks 8 banks

Item Using the NE1S Using the CJ2

Size per variable
(including structure)

128 words
(256 bytes max.)

32,000 words
(64 Kbytes max.)

Item Using the NE1S Using the CJ2

Elements 1 to 255 elements 1 to 32,000 elements

Item Using the NE1S Using the CJ2

Specifying variables
for array subscripts
in multilevel arrays
(including members)

A variable can be specified
only for the rightmost array
subscript.

Variables can be specified for
array subscripts regardless of
the position.

Example:
aaa[index0].bbb[index1].ccc[i
ndex2]

Specifying structure
members for array
subscripts

Array variables cannot be
specified for elements.

Structure members can be
specified for array subscripts.

Example: aaa[str.member]
7

Differences and Restrictions between NE1S-series CPU Units and CJ2 CPU Units Section 1-4
1-4-2 Restrictions for CJ2 CPU Units Compared with NE1S-series CPU
Units

The following restrictions apply to CJ2 CPU Units in comparison to the NE1S-
series CPU Units.

Item Using the NE1S Using the CJ2

Initial values for variables Supported Not supported

Change log Supported Not supported

SEND MAIL instruction
(MLSND)

Supported Not supported
8

SECTION 2
Program Structure

This section describes the structure of the programs.

2-1 Outline of the NE Programmer . 10

2-1-1 Project Structure . 10

2-1-2 Logical POU (Program Organization Unit) 11

2-1-3 Variables . 13

2-1-4 Programming Languages . 15

2-1-5 Libraries . 16

2-2 Variables . 16

2-2-1 Naming Variables . 16

2-2-2 Types of Variable . 17

2-2-3 Variable Properties . 18

2-2-4 Data Type . 19

2-2-5 Array Elements (Array Specification) . 20

2-2-6 Initial Value (NE1S-series CPU Units Only) (See note.) 24

2-2-7 Address (Direct Allocation of a Physical Address) 25

2-2-8 Retain/Nonretain. 25

2-2-9 Local Variable Properties and Types of Local Variables 26

2-2-10 Details on Local Variables . 26

2-2-11 Creating Variables in NE Programmer . 29

2-2-12 Grouping Variables . 30

2-2-13 Importing and Exporting Variables. 30

2-3 Function Blocks . 31

2-3-1 Function Block Features and Operation . 31

2-3-2 Restrictions in Variables in Function Blocks 36

2-3-3 Function Block Specifications . 37

2-3-4 Instance Specifications . 39

2-3-5 Restrictions on Function Blocks. 47
9

Outline of the NE Programmer Section 2-1
2-1 Outline of the NE Programmer

2-1-1 Project Structure
The NE Programmer is an integrated development environment for next-gen-
eration PLCs. It supports the programming specified in the IEC 61131-3 stan-
dard.

All of the data is created in a single file, known as a project file, from an inte-
grated development environment. A project is composed of logical POUs
(Program Organization Units) and the configuration. The logical POUs
become executable when they are allocated in the configuration (PLC sys-
tem).

Program Organization Units (Logical POUs)
Program organization units (logical POUs) include the following elements.

1,2,3... 1. Programs

2. Function Blocks (FB)

All kinds of POUs are programmed entirely with variables. Variables are auto-
matically used in a specified area in I/O memory and are allocated in the
specified area.

Configuration (PLC System)
The configuration (PLC system) is made up of resources (a task group of exe-
cutable units) and global variables (variables that apply to all resources).

FB

Local
variables

Local variables

FB

FB

Project file

Logical POU (Program
Organization Unit)

Program

Program

Local variables

Local variables

Program

Local
variables

Allocate

FB

Local
variables

Allocat-
ed for
execu-
tion

Configuration

Resources

Task

Task

Task

Local
variables

Global variables

Library file (LIB)

Rung groupsFBs

Local variables
Local
variables

Programs

Local variables
10

Outline of the NE Programmer Section 2-1
Libraries A program, function block, or rung group (one rung or multiple rungs, includ-
ing local variables) can be saved as a library function and reused. (Each unit
is saved as a separate file, i.e., 1 program = 1 file, 1 function block = 1 file, or
1 rung group = 1 file.)

Note NE Programmer projects have the following directory-tree structure.

2-1-2 Logical POU (Program Organization Unit)

Logical POU Structure
A single POU is defined with the following two software elements.

1,2,3... 1. Declaration of memory usage (variable declarations)

2. Logic in an algorithm

The logical POU can be reused when these two elements have been con-
verted to a library file as a set. (It is also possible to reuse multiple rungs that
have been converted to a library file with the variables used in the rungs.)

Logical POU Types There are two types of logical POUs: programs and function blocks.

1,2,3... 1. Programs
Programs are large functional units or units that must be executed at a spe-
cific time. Basically, the unit is entirely declared in the user interface.

Project (.nlx)

Logical POUs

Program

Program

Function block (FB)

Function block (FB)

Configuration (PLC)

Global variables

Tasks

Cyclic

Cyclic task

Cyclic task

Interrupt

Interrupt task

Interrupt task

Project (.nlx)

Library

Program library file

Program library file

Function block (FB) library file

Function block (FB) library file

Program section library file

Program section library file
11

Outline of the NE Programmer Section 2-1
2. Function Blocks
Function blocks are components of programs and are not executed at a
specific time. The unit is displayed as a single function in the user interface,
so only inputs and outputs are declared.

Executing a Logical
POU

The logical POU itself is not an executable unit; it is allocated to the configura-
tion (PLC) first and then can be executed.

1,2,3... 1. Programs are allocated to “tasks” in the resources (creating a program in-
stance) to become executable.

2. Function blocks are copied and pasted into a program (creating a function
block instance) to become executable.

Creating a Logical POU in NE Programmer
After creating an NE Programmer project, select File - New from the menus,
and input the POU name in the dialog box for creating a new POU. Set the
POU Type to either Program or Function Block.

Note To paste a function block in a program (i.e., to create an instance), the func-
tion block must be saved. Once the function block has been saved (by select-
ing Save Changes to project from the menu), its icon will appear in the
Project Explorer Bar and the icon can be dragged and dropped into the
desired program.

Item Logical POU

Program Function block (FB)

Unit size Large functional unit Functional unit smaller than
program

Execution timing (or) Requires execution at
specific time.

Does not require execution at
a specific time.

User interface All disclosed. I/O only disclosed.

FB

Logical POU

Program

FB

Logical POU

Program

Allocate
FB
instance

Copy/Paste

Configuration (PLC)

Resources

Task
(execution
units)

Execute
12

Outline of the NE Programmer Section 2-1
2-1-3 Variables
With the NE Programmer, the user does not give I/O memory addresses
(known as a physical addresses) directly when specifying addresses in the
CPU Unit when programming, making communications settings, or monitor-
ing. Variables are used to specify I/O memory addresses in the CPU Unit.

If the user has entered a variable in the variable table, the created variable is
automatically allocated a physical address in the CPU Unit's I/O memory. It is
not necessary for the user to know which physical addresses have been allo-
cated.

Local Variables and Global Variables
There are two basic variable types. Local variables are defined in individual
logical POUs and used just within the local logical POU. Global variables are
defined at the configuration level and can be used in all of the logical POUs.

Local Variables Variables defined in individual logical POUs (programs or function blocks) are
known as local variables. These variables are effective only in the local logical
POU.

Creating program.

Variable a Variable b

Setting cyclic commu-
nications allocations.

Send variable: m

Receive variable: n

Monitoring

Variable: s

a WORD

EM

Variable table
Name Data type Address

Register

Variable name a

Physical address

Automatic
allocation

I/O memory
13

Outline of the NE Programmer Section 2-1
The system automatically allocates local variables (both local program and
local FB variables) to a particular memory area (EM area banks other than
EM bank 0). The physical addresses are hidden.

The various kinds of local variables are listed below.

• Program:
Internal variables (VAR) and external variables (VAR_EXTERNAL)

• Function Block:
Internal variables (VAR), input variables (VAR_INPUT), output variables
(VAR_OUTPUT), and external variables (VAR_EXTERNAL)

• Internal variables (VAR) are used only in the logical POU, they do not
exchange values with external parameters, and cannot reference external
global variables.

• External variables (VAR_EXTERNAL) are special variables used within
the logical POU to reference global variables outside of the POU.

• Input variables (VAR_INPUT) exist only in function blocks and are used to
receive the values of external parameters.

• Output variables (VAR_INPUT) exist only in function blocks and are used
to pass values to external parameters.

a
a WORD

FB_1

a

a

a DWORD
b

a BOOL

b

EM

Logical POU

Program A

Program B

Program A local variables
Name

Name

Name

Data type

Data type

Data type

Address

Address

Address

Program B local variables

FB_1 local variables

Physical address

Automatic
allocation

Automatic
allocation

Automatic
allocation

I/O memory used for
automatic allocation

Program

Program

Internal variables

External variables

Reference

Global variables

Receive data Function Block

Function Block

Pass data

Parameter ParameterOutput
variable

Input
variable

Internal variables
(not displayed)

External variables
(not displayed)

Reference

Global variables
14

Outline of the NE Programmer Section 2-1
Note Even if local variables are defined with the same name in different logical
POUs, they are treated as different variables and allocated different physical
addresses.

Global Variables Variables defined at the configuration level and shared by all logical POUs are
known as global variables. Global variables provide an interface between logi-
cal POUs.

The system can allocate memory to global variables automatically or specific
physical addresses can be allocated manually (direct specification).

To use global variables within logical POUs, global variables must be refer-
enced from external variables as local variables. For details on external vari-
ables, refer to External Variables (VAR_EXTERNAL) in 2-2-10 Details on
Local Variables.

Note Physical addresses can also be directly specified without using variables.

2-1-4 Programming Languages
The algorithms in programs and function blocks (FB) can be written as ladder
diagrams (LD) or structured text (ST).

a
a WORD
b WORD D00100

FB_1

a

a

b

EM

D00100

Logical POU

Program A

Program B

Global variables
Name Data type Address Physical address

Automatic
allocation

I/O memory used for
automatic allocation

User-selected I/O memory
used for manual allocation

FB

a:=0;
b:=a+1;
IF a >20 THEN

Logical POU

Program

Algorithm

Language

Ladder diagram

ST

Programming
15

Variables Section 2-2
Creating Programs in NE Programmer
When creating logical POUs in NE Programmer, select LD when creating a
ladder diagram or ST when creating structured text.

Note (1) When using ladder diagrams, the program can be input directly in the lad-
der diagram with mnemonics. Mnemonics can also be input in a mne-
monics-only editing screen by selecting Edit - Edit Using Mnemonic
Editor from the menus. It is not possible, however to create logical POUs
that call function blocks.

(2) When using ladder diagrams, it is possible to import a text file (.txt) con-
taining the mnemonics. To import a file, 1) Select the logical POU in pro-
gram view, right-click, and select Change View, and then 2) Right-click in
mnemonic view, right-click, and select Import.

2-1-5 Libraries

Converting a Logical POU or Rungs to a Library
With the NE Programmer, logical POUs (programs or function blocks) or
rungs in a program can be converted to a library file and reused.

Creating Library Files in NE Programmer:
Either select the desired logical POU and select POU - Register to Library
from the Library Menu or select the rungs from the Ladder Window and select
Rung - Register to Library.

2-2 Variables

2-2-1 Naming Variables
The following rules apply to the CPU Units.

NE1S-series CPU Units • CPU Units comply with the IEC 61131-3 standard.

• Allowed characters: numbers 0 to 9, letters a to z, letters A to Z, and the
underscore character.

• Encoding: ASCII

• Number of characters: 48 characters max.

FB

FB

Program

Local
variables

Local
variables

Local
variables

Program section

Save

Save

Save

Library file (LIB)

Reuse

Reuse

Reuse

Project

Program

Local
variables

Program section
16

Variables Section 2-2
• Upper and lower case characters are distinguished but do not make vari-
ables different. For example, “aBc” and “AbC” are treated as the same
variable, but the variable “aBc” is recorded as “aBc”.

• Variable names cannot begin with a number (0 to 9).

• There cannot be two or more consecutive underscore characters.

• Variable names cannot have the following characters followed by a num-
ber, because these combinations are treated as actual data area
addresses.
A, W, H, T, C, D, E0, @D, *D, @E@, *E@, IR, DR, TK, and TR

• Also, the actual address expressions of external variables (preassigned
variables) cannot be used.

• Variables with only numbers are treated as actual addresses, e.g.,
“D00000” is treated as the word address D00000 and “0000” is treated as
the word address CIO 0000.

CJ2 CPU Units • Allowed characters: numbers 0 to 9, letters a to z, letters A to Z, and the
underscore character.

• Encoding: UTF-8

• Number of characters: 48 characters max.

• Upper and lower case characters are distinguished but do not make vari-
ables different. For example, “aBc” and “AbC” are treated as the same
variable, but the variable “aBc” is recorded as “aBc”.

• Variable names cannot begin with a number (0 to 9).

• There cannot be two or more consecutive underscore characters.

• Variable names cannot have the following characters followed by only a
number, because these combinations are treated as physical addresses.
A, W, H, T, C, D, E0, @D, *D, @E@, *E@, IR, DR, TK, and TR
For example, “D100” is treated as word address D100.

• Variables consisting of only numbers are treated as physical addresses.
For example, “100” is treated as the word address CIO 100.

2-2-2 Types of Variable
The following variable types are supported.

• Internal Variables (VAR)
Internal variables are used only within an instance. They cannot be used
pass data directly to or from parameters outside of the instance.

• Input Variables (VAR_INPUT)
Input variables can input data from parameters outside of the instance.
The default input variable is an EN (Enable) variable, which passes input
condition data.

• Output Variables (VAR_OUTPUT)
Output variables can output data to parameters outside of the instance.
The default output variable is an ENO (Enable Out) variable, which
passes the instance’s execution status.

• External Variables (VAR_EXTERNAL)
External variables are local variables that are used to access global vari-
ables. They include both system variables that are registered in the NE
Programmer in advance, as well as user-defined local variables. When
handling I/O with variables, always define I/O as global variables and
access the global variables through external variables. System variables
are registered in advance as external variables. User-defined global vari-
17

Variables Section 2-2
ables are automatically registered as external variables when they are
used as operands for instructions in logical POUs. If a variable is first cre-
ated as an external variable, the user must manually register it as a global
variable in the External Variable Tab Page of the Variable Editor to use it
as a global variable. We thus recommend that the required global vari-
ables are defined before starting to program the ladder diagrams.

• Global Variables
Global variables are defined in the in the configuration and are shared by
all logical POUs. Global variables include system variables, such as the
Conditions Flags and some Auxiliary Area bits, that are registered in the
NE Programmer in advance, as well as user-defined global variables.

2-2-3 Variable Properties
The following table lists the variable properties.

Variable property Content Value

Data type Selects the variable's data type. BOOL, INT, UINT, DINT, UDINT, WORD,
DWORD, REAL, TIMER, COUNTER, STRING,
or user-defined

Note For function blocks, the logical POU name
of the function block is displayed.

Array size Sets the number of elements for a one-dimen-
sional or two-dimensional array. Two-dimen-
sional arrays can be set only for CJ2 CPU Units.

When not specifying an array, leave this settings
blank for both a one-dimensional and two-
dimensional array.

When specifying a one-dimensional array, set
the number of array elements for a one-dimen-
sional array and leave the setting for a two-
dimensional array blank.
When specifying a two-dimensional array, set
the number of array elements for a two-dimen-
sional array and leave the setting for a one-
dimensional array blank.
*A two-dimensional array cannot be specified for
the NE1S.
*Refer to 2-2-3 Variable Properties for other
restrictions on elements.

Size Displays the size used by the variable in the
memory.

Initial value With a program, this property sets the variable's
value at the start of operation.
With a function block, this property sets the vari-
able's value when an instance is executed.

Note The initial values of variables cannot be
set for CJ2 CPU Units.

Set an initial value as follows, according to the
variable's data type:
• BOOL, WORD, or DWORD:

Input the value in unsigned hexadecimal after
“16#”.

• INT or DINT:
Input the value in unsigned decimal after
“+10#” or “−10#”.

• UINT or UDINT:
Input the value in unsigned decimal after “10#”.

• REAL: Real number.
Example: +1.0, -0.23, +9.8E-3

• STRING: Character string.
Example: “Data”

Address This property sets a specific address when the
address is being set manually (direct AT specifi-
cation).
This property cannot be changed for local vari-
ables.

18

Variables Section 2-2
The properties listed in the table are described in detail below.

2-2-4 Data Type
The data format of the variable is called the data type. The following data
types are supported for NE1S-series CPU Units and CJ2 CPU Units.

Network variable This property sets whether to convert variables
to network variables. It sets whether external
access (i.e., reading or writing) is enabled for
variable names. This setting can be made only
for global variables. It cannot be made for local
variables.

Enabled: Variable names can be accessed (i.e.,
read and written) externally.

Disabled: Variable names cannot be accessed
(i.e., read and written) externally.
Local variables can always be accessed exter-
nally.

Network I/O variable When using cyclic communications, select Input
when disclosing the variable as an input from
the network, select Output when disclosing the
variable as an output to the network, and select
None when the variable will not be disclosed.

None: Do not disclose the variable as a connec-
tion target.
Input: Disclose the variable as an input from the
network.

Output: Disclose the variable as an output to the
network.
Global variables that have been set to Input or
Output can be imported to the Network Configu-
rator after the project has been saved. After the
global variables have been imported, variable
names can be used in programming to set con-
nections for ControlNet cyclic communications.
Local variables are always set to None.

Retain/nonretain This property specifies whether the variable's
value is retained when operation starts and the
power is reset.

Retained or not retained.

Comment Use this property to input a comment for the
variable.

256 bytes max.

Variable property Content Value

Data type

Basic types

INT (integer)

DINT (double integer)

UINT (unsigned integer)

UDINT (unsigned double integer)

BOOL (1 bit)

WORD (16 bits)

DWORD (32 bits)

TIMER (timer)

COUNTER (counter)

STRING (character string)

User-set types

Structure Arrays can be created.
Structures can be set as arrays.

Array variables can be created (except
for STRING, TIMER, or COUNTER).

REAL (real number)
19

Variables Section 2-2
Note Arrays and Structures
With NE1S-series CPU Units and CJ2 CPU Units, one-dimensional array vari-
ables and user-defined data structures can be created.

• Array variables:
A one-dimensional array variable can be created by setting the number of
elements to an integer value between 1 and 255 for an NE1S-series CPU
Unit or to between 1 and 32,000 for a CJ2 CPU Unit.

• Two-dimensional arrays can be created for CJ2 CPU Units.

• Structured variables:
A structure is a set of variables containing several variables (members)
with different data types. The user can configure the structure freely.
Members can be specified by specifying the variable name and member
name.

Data Ranges of Data Types

Note (1) When a variable is entered in the timer number (0 to 4095) operand of a
timer instruction, such as TIMX or TIMHX, the data type will be TIMER.
When this variable is used as an operand in another instruction, it will be
treated as the timer Completion Flag if the operand takes 1-bit data or as
a timer PV if the operand takes 16-bit data. The timer PVs are 16-bit bi-
nary data because NE Programmer uses only the binary format for the
PVs.
The TIMER data type cannot be used in ST language function blocks.

(2) When a variable is entered in the counter number (0 to 4095) operand of
a counter instruction, such as CNTX or CNTRX, the data type will be
COUNTER. When this variable is used as an operand in another instruc-
tion, it will be treated as a counter Completion Flag if the operand takes
1-bit data or as a counter PV if the operand takes 16-bit data. The counter
PVs are 16-bit binary data because NE Programmer uses only the binary
format for the PVs.
The COUNTER data type cannot be used in ST language function blocks.

2-2-5 Array Elements (Array Specification)
A set of data with the same properties can be handled in a single structure
(array). Input the array's maximum number of elements in this property to
define the variable as an array.

Only one-dimensional arrays can be created with the NE Programmer if a
NE1S-series CPU Unit is used.

Data type Contents Size Data range

BOOL Bit data 1 bit 16#0 or 16#1

INT Integer 16 bits −10#32768 to +10#32767

UINT Unsigned integer 16 bits 10#0 to 10#65535

DINT Double integer 32 bits −10#2147483648 to +10#2147483647

UDINT Double unsigned integer 32 bits 10#0 to 10#4294967295

WORD 16-bit data 16 bits 16#0000 to 16#FFFF

DWORD 32-bit data 32 bits 16#00000000 to 16#FFFFFFFF

REAL Real number 32 bits Conforms to IEEE754

STRING Character string data
(ASCII data)

128 bytes or
127 characters

TIMER Timer (See note 1.) 1 bit or 16 bits 16#0, 16#1, or 16#0000 to 16#FFFF

COUNTER Counter (See note 2.) 1 bit or 16 bits 16#0, 16#1, or 16#0000 to 16#FFFF
20

Variables Section 2-2
One-dimensional and two-dimensional arrays can be created if the CJ2 CPU
Unit is used.

• The number of elements in an array can be set to between 1 and 255 for
an NE1S-series CPU Unit and to between 1 and 32,000 for a CJ2 CPU
Unit.

• The array specification can be used for internal variables (VAR), input
variables (VAR_INPUT), output variables (VAR_OUTPUT), and external
variables (VAR_EXTERNAL).

• When entering the variable name, specify the subscript in square brack-
ets after the variable name.

• The subscript (for example, the subscript in variable a[]) can be specified
in the following three ways.

a. Directly specify the subscript number (ladder or ST language).
Example: a[2]

b. Specify a local variable as the subscript (ladder or ST language).
Example: a[n], where n is a local variable

c. Specify an arithmetic expression as the subscript (ST language only).
Example: a[b+c], where b and c are local variables

Note The four arithmetic operators (+, -, *, and /) can be used in expres-
sions.

• Two-dimensional arrays can be created for CJ2 CPU Units.
Example: a[0][0],a[i][j]

Note An array is a group of data items with the same data type. Each variable ele-
ment is specified by the local variable name and a subscript. (The subscript
indicates the position of an element within the array.) With a one-dimensional
array, the subscript's number indicates the element in the array.
Example) An array with 10 elements and local variable name SCL
The following 10 local variables can be used: SCL[0], SCL[1], SCL[2], SCL[3],
SCL[4], SCL[5], SCL[6], SCL[7], SCL[8], and SCL[9].

0
1
2
3
4
5
6
7
8
9

SCL

WORD type

WORD type
WORD type
WORD type
WORD type
WORD type
WORD type
WORD type
WORD type
WORD type

To access this data, specify SCL[3].
21

Variables Section 2-2
Array Data Types and Subscript Variable Data Types
The subscript data types that can be set for each array data type are listed in
the following table.

*1 Example: Specifying a[i], where i is an array variable
(Notation example: d[d[0]]

*2 Example: Specifying a[i], where i is a data structure member
(Notation example: d[c.b])

*3 Example: Specifying a[i], where i is a data structure
(Notation example: d[c])

Allowable Notations for
Subscripts

In addition to the above, formulas including addition, subtraction, multiplica-
tion, and division (+, -, *, and /) can be used for subscripts in ST programing
(Example: d[x+y]).

Allowable Notations for
Subscripts in Array Data
Structures

Subscript
data type

Array data
type

NE1S and CJ2 CJ2 only

Basic data types Arrays and data struc-
tures

INT UINT DINT UDINT BOOL WORD DWORD TIMER COUNTER REAL Array
*1

Data
struc-
ture

mem-
ber*2

Data
struc-
ture*3

INT ❍ ❍ ❍ ❍ × ❍ ❍ × × × Refer to the Allowable
Notations for Subscripts,
below.UINT ❍ ❍ ❍ ❍ × ❍ ❍ × × ×

DINT ❍ ❍ ❍ ❍ × ❍ ❍ × × ×

UDINT ❍ ❍ ❍ ❍ × ❍ ❍ × × ×

BOOL ❍ ❍ ❍ ❍ × ❍ ❍ × × ×

WORD ❍ ❍ ❍ ❍ × ❍ ❍ × × ×

DWORD ❍ ❍ ❍ ❍ × ❍ ❍ × × ×

TIMER × × × × × × × × × ×

COUNTER × × × × × × × × × ×

REAL ❍ ❍ ❍ ❍ × ❍ ❍ × × ×

Data struc-
ture

❍ ❍ ❍ ❍ × ❍ ❍ × × ×

Data struc-
ture mem-
ber

❍ ❍ ❍ ❍ × ❍ ❍ × × ×

STRING × × × × × × × × × ×

Notation
example

Description NE1S CJ2

d[0] Using a number for an array subscript ❍ ❍

d[i] Using a variable of an allowed basic data type for an
array subscript

❍ ❍

d[d[0]] Using an array variable of an allowed basic data type for
an array subscript

× ❍

d[d[i]] Using an array variable that includes an index variable as
a subscript for an array subscript

× ×

d[c] Using a data structure variable for an array subscript × ×
d[c.b] Using a member of a data structure of an allowed basic

data for an array subscript
× ❍

Notation
example

Description NE1S CJ2

c[i] Using variables as subscripts for array data struc-
tures

❍ ❍

c[1]. a[i] Using variables in the subscripts for members of
array data structures

❍ ❍
22

Variables Section 2-2
Restrictions on Arrays

Note When specifying the starting address (or end address) of multiple words in an
instruction operand (see note), the address cannot be passed to a local vari-
able by an input parameter or output parameter.

Note For example, multiple words are accessed when specifying an in-
struction's control data or the starting and end words of the BLOCK
SET instruction (BSET(071)).

In this case, prepare arrays or structured variables with the required number
of elements, set the data in the arrays or structures in the function block defini-
tion, and specify the start (or end) of the array or structure in the operand.
This method effectively specifies the starting address (or end address) of mul-
tiple words.

c[i]. a[0] Using variables as subscripts for array data struc-
tures to specify members

× ❍

c[i]. a[1]

c[i]. b

Notation
example

Description NE1S CJ2

Item NE1S CJ2

Number of elements 1 to 255 1 to 32,000

Data size per variable 255 bytes max. 64 Kbytes

Initial values One variable 256 bytes max. Setting not sup-
ported.

Total data size 250 K bytes max. Setting not sup-
ported.

SCL-BODY

SCL
EN ENO

S D
100

SCL WORD[10]

SCL
0 16#0000

1 10#0

2 16#0300

3 16#4000

MOV

16#0000

SCL[0]

MOV

10#0

SCL[1]

MOV

16#0300

SCL[2]

MOV

16#4000

SCL[3]

SCL

S

SCL[0]

D

P_on

Example

Function block definition

Variables

Instance

Specifying this value in
the SCL instruction is
the same as specifying
the start address.

Set data in array variables.

Specify the beginning of the array in
the SCL instruction.
23

Variables Section 2-2
Setting the Property • Input the number of elements (1 or more) in the Array Size Field in the
Edit Variables Dialog Box. If the Array Size Field is set to 0, the variable
will not be an array.

• When entering the local variable name, specify the subscript in square
brackets after the local variable name.
Example: When BOOL variable “a” is defined as an array with 8 array ele-

ments, the 7th element of variable “a” can be input as the operand bit by
inputting LD a[7].

• For two-dimensional arrays (CJ2 CPU Units only), double-click the Array
Elements Row and input the number of two-dimensional elements (1 to
9).

Note Basically, an array is used when the starting address (or end address) of mul-
tiple words is specified for an instruction operand. The data cannot be passed
using a parameter because parameters pass values. Prepare a local array
variable of the required size, set the data in the array in the function block def-
inition, and specify the start (or end) of the local array variable for the oper-
and. For details on using arrays to specify the starting/end addresses of
multiple-word operands, refer to Appendix D in the NE1S Series PLC Opera-
tion Manual.

2-2-6 Initial Value (NE1S-series CPU Units Only) (See note.)
Note The initial values of variables cannot be set for CJ2 CPU Units.

For programs, this property specifies the variable's value when operation
starts. For function blocks, this property specifies the variable's value when
the instance is executed. When an instance is first executed, internal variables
(VAR) and output variables (VAR_OUTPUT) are set to there initial values.
Later, the variable's value may change as the instance is executed.

Setting the Property Input the desired value in the Initial Value Field in the Edit Variables Dialog
Box. Input a value consistent with the variable's data type, as shown in the fol-
lowing table.

Automatic allocation/direct address Initial value setting

Automatic allocation Held Cannot be set.

Not held Can be set.

Direct address CIO Area Can be set.

Work Area Can be set.

Holding Area Cannot be set.

Auxiliary Area Cannot be set.

Data Memory (DM) Area Cannot be set.

Extended Memory (EM) Area Cannot be set.

Timer (Completion Flag/PV) Cannot be set.

Counter (Completion Flag/PV) Cannot be set.

Data type Contents Initial value Initial value input method

BOOL Bit data 16#0 or 16#1 Input as unsigned hexadecimal.
Input the value after “16#”.

INT Integer −10#32768 to +10#32767 Input as signed decimal.
Input the value after “+10#” or “−10#”.
(If “10#” is input, a + sign will be attached
automatically.)

UNIT Unsigned integer 10#0 to 10#65535 Input as unsigned decimal.
Input the value after “10#”.
24

Variables Section 2-2
!Caution If you convert an NE1S project to a CJ2 project, any initial value settings used
in the NE1S project must be set from the program. This is because the CJ2
CPU Units do not support the initial value settings. If initial values are not set
from the program and the project is downloaded to a CJ2 CPU Unit, unex-
pected operation may occur.

2-2-7 Address (Direct Allocation of a Physical Address)
A physical address cannot be specified directly for a local variable. To specify
a physical address, enter the physical address directly for the operation
instead of using a local variable. Global variables are always accessed as
external variables even if a physical address is specified.

When using ST language, a physical address cannot be directly allocated.

For example, if “100” is input in an ST program, it is interpreted as the decimal
value 100 (10#100). If “100” is input in a ladder program, it is interpreted as
CIO address CIO 0100.

2-2-8 Retain/Nonretain
This property specifies whether the variable will retain its data when the PLC
is turned ON, operation starts, or a fatal error occurs. (If the CPU Unit is not
equipped with a battery, the data will be cleared regardless of the Retain set-
ting.)

The following tables show whether variable data is retained or cleared when
the power is turned ON, operation starts, or a fatal error occurs regardless of
the Retain and IOM Hold Bit (A50012) settings.

Effect of Forced Status
Hold Bit (A50013) Setting

The status of forced variable data will be as follows when the PLC is turned
ON, operation starts, or a fatal error occurs regardless of the Forced Status
Hold Bit (A50013) setting:

DINT Double integer −10#2147483648 to
+10#2147483647

Input as signed decimal.
Input the value after “+10#” or “−10#”.
(If “10#” is input, a + sign will be attached
automatically.)

UDINT Double unsigned integer 10#0 to 10#4294967295 Input as unsigned decimal.
Input the value after “10#”.

WORD 16-bit data 16#0000 to 16#FFFF Input as unsigned hexadecimal.
Input the value after “16#”.

DWORD 32-bit data 16#00000000 to 16#FFFFFFFF Input as unsigned hexadecimal.
Input the value after “16#”.

REAL Real number 0.0 Input a signed numerical value. Input the
value after the sign.

E.g., +1.0, −0.23, +9.87E-3

STRING Character string data
(ASCII data)

--- ---

Data type Contents Initial value Initial value input method

Retain/
Nonretain setting

Address Initial value Variable data

Retain Automatic
allocation

Cannot be set Retained

Nonretain Automatic
allocation

Set Initial value

Not set Cleared (0)

Retain setting Address Hold Bit condition

Retain or Do not
retain

Automatic alloca-
tion

Forced status
cleared.
25

Variables Section 2-2
Setting the Property Select Retain or Nonretain in the Retain/Nonretain Field of the Edit Variables
Dialog Box.

When allocating address to global variables, they will be set to either Retain or
Nonretain and cannot be changed.

2-2-9 Local Variable Properties and Types of Local Variables
The following table shows which properties must be set, can be set, and can-
not be set, based on the local variable usage.

Note Initial values cannot be set for CJ2 CPU Units.

2-2-10 Details on Local Variables
■ Internal Variables (VAR)

Internal variables are used within an instance. These variables are internal to
each instance. They cannot be referenced from outside of the instance and
are not displayed in the instance.

The values of internal variables are retained until the next time the instance is
executed. Consequently, even if instances of the same function block defini-
tion are executed with the same I/O parameters, the result will not necessarily
be the same.

Example:

The internal variable tim_a in instance Pulse_2sON_1sOFF is different from
internal variable tim_a in instance Pulse_4sON_1sOFF, so the instances can-
not reference and will not affect each other’s tim_a value.

Note In NE Programmer, internal variables are created with a default variable name
of “FI”, which is a local variable that is ON the first time that an instance is exe-
cuted. (The “FI” internal variable can be used to initialize the instance.)

Property Variable usage

Internal Input Output External

Name Must be set. Must be set. Must be set. Must be set.

Type Must be set. Must be set. Must be set. Must be set.

Initial Value Can be set. Can be set. Can be set. Can be set.

Array specification Can be set. Can be set. Can be set. Can be set.

Retain Can be set. Can be set. Can be set. Can be set.

AT (direct allocation to a
specific physical
address, global vari-
ables only)

Cannot be
set.

Cannot be
set.

Cannot be
set.

Cannot be
set.

P_On 1.0

10#10

CLOCK PULSE
EN ENO

ON_TIME

OFF_TIME

10#20

Pulse_2sON_1sOFF

P_On 1.1

10#10

CLOCK PULSE
EN ENO

ON_TIME

OFF_TIME

10#40

Pulse_4sON_1sOFF

tim_a WORD
tim_b WORD
ON_TIME INT
OFF_TIME INT

Variable table
Name

Internal
Internal
Input
Input

TypeUsage
26

Variables Section 2-2
Retaining Data through Power Interruptions and Start of Operation

Internal variables (VAR) retain the value from the last time that the instance
was called. In addition, the Retain Option can be selected so that an internal
variable will also retains its value when the power is interrupted or operation
starts (the mode is switched from PROGRAM mode to RUN or MONITOR
mode).

Initial Value

An initial value can be set for an internal variable (VAR) that is not being
retained (i.e., when the Retain Option not selected). An initial value cannot be
set for an internal variable if the Retain Option is selected.
Internal variables that are not being retained will be initialized to 0.

The initial value will be set, regardless of the value of the IOM Hold Bit
(A50012).

Local Variable Usage (Types)

■ Input Variables (VAR_INPUT)

Input variables pass arguments to the instance from the outside. The input
variables are displayed on the left side of the instance.

When an instance is called, the value of the input source (data contained in
the specified parameter just before the instance was called) will be passed to
the input variable.

Example

Note (1) The same variable name cannot be assigned to an input variable
(VAR_INPUT) and output variable (VAR_OUTPUT). If it is necessary to
have the same variable as an input variable and output variable, register
the variables with different names and transfer the value of the input vari-
able to the output variable in the function block with an instruction such
as MOV.

(2) When the instance is executed, input values are passed from parameters
to input variables before the algorithm is processed. Consequently, val-
ues cannot be read from parameters to input variables while the algorithm
is being processed. If it is necessary to read a value within the execution
cycle of the algorithm, do not pass the value from a parameter. Assign the

Auxiliary Area control bit Initial value

IOM Hold Bit (A50012) ON Initial value is set.

OFF Initial value is set.

P_On 1.0
FB

EN ENO

PV CV

D0 D100

The value of the parameter specified as the input (value of D0)
is passed to the instance’s input variable (PV).

D1000

0.0 10.0

D200

ADD_INT_DINT

EN ENO

IN16 OUT32

IN32

D100

tmp DINT
EN BOOL
IN16 INT
IN32 DINT
ENO BOOL
OUT32 DINT

SIGN IN16 tmp
P_On

+L IN32 tmp OUT32

IN16 is an INT variable, so the content of D100 is used.

IN32 is a DINT variable, so the content of D200 and
D201 is used.

Algorithm (Body)

Variable table
Name

Internal
Input
Input
Input
Output
Output

TypeUsage
27

Variables Section 2-2
value to an internal variable and use an AT setting (direct allocation of a
physical address).

Initial Value

When you set an initial value for an input variable (VAR_INPUT), that value
will be written to the variable when the parameter for input variable EN goes
ON and the instance is executed for the first time (and that one time only). If
an initial value has not been set for an input variable, the input variable will be
set to 0 when the instance is first executed.

EN (Enable) Variable

When an input variable (VAR_INPUT) is created, the default input variable is
the EN variable. The instance will be executed when the parameter for input
variable EN is ON.

The initial value will be set, regardless of the value of the IOM Hold Bit
(A50012).

■ Output Variables (VAR_OUTPUT)

Output variables pass return values from the instance to external applications.
The output variables are displayed on the right side of the instance.

After the instance is executed, the value of the output variable is passed to the
specified parameter.

Example

Like internal variables (VAR), the values of output variables (VAR_OUTPUT)
are retained until the next time the instance is executed.

Example:
In the following example, the value of output variable CV will be retained until
the next time the instance is executed.

Note (1) The same variable name cannot be assigned to an input variable
(VAR_INPUT) and output variable (VAR_OUTPUT). If it is necessary to
have the same variable as an input variable and output variable, register
the variables with different names and transfer the value of the input vari-
able to the output variable in the function block with an instruction such
as MOV.

P_On FB
EN ENO

PV CVD0 D100

1.0

The value of the output variable (CV) is passed to the parameter
specified as the output destination, which is D100 in this case.

D1000

0.0 10.0

D200

ADD_INT_DINT
EN ENO

IN16 OUT32

IN32

D100

tmp DINT
EN BOOL
IN16 INT
IN32 DINT
ENO BOOL
OUT32 DINT

SIGN IN16 tmp
EN

+L IN32 tmp OUT32

OUT32 is a DINT variable, so
the variable's value is passed
to D1000 and D1001.

Algorithm (Body)

Variable table
Name

Internal
Input
Input
Input
Output
Output

TypeUsage

CTD
CD Q

LD

PV CV D150

Product A counter
28

Variables Section 2-2
(2) Output variable values (data) are passed to the corresponding parame-
ters after the algorithm is processed. Consequently, values cannot be
written from output variables to parameters while the algorithm is being
executed. If it is necessary to write a value within the execution cycle of
the algorithm, do not write the value to a parameter. Assign the value to
an internal variable and use an AT setting (direct allocation of a physical
address).

Initial Value

An initial value can be set for an output variable (VAR_OUTPUT) that is not
being retained, i.e., when the Retain Option is not selected. An initial value
cannot be set for an output variable if the Retain Option is selected.

The initial value will be set, regardless of the value of the IOM Hold Bit
(A50012).

ENO (Enable Output) Variable

When a local output variable is created, the default variable is the ENO vari-
able. The ENO output variable will be turned ON when the instance is called.
The user can change this value. The ENO output variable can be used as a
flag to check whether or not instance execution has been completed normally.

■ External Variables (VAR_EXTERNAL)

External variables are local variables that are used to access global variables.
They include both system variables that are registered in the NE Programmer
in advance, as well as user-defined local variables. When handling I/O with
variables, always define I/O as global variables and access the global vari-
ables through external variables. System variables are registered in advance
as external variables. User-defined global variables are automatically regis-
tered as external variables when they are used as operands for instructions in
logical POUs. If a variable is first created as an external variable, the user
must manually register it as a global variable in the External Variable Tab
Page of the Variable Editor to use it as a global variable. We thus recommend
that the required global variables are defined before starting to program the
ladder diagrams.

2-2-11 Creating Variables in NE Programmer
In NE Programmer, variables are not declared by inputting a declarative state-
ment. To create variables, insert the variables in the variable tables and input
the properties.

Internal Variables When a logical POU (program or function block) is created, the unit's individ-
ual variable table is displayed automatically. Variables can be registered in the
table with either of the following methods.

1,2,3... 1. Inputting the instructions first:
If a new variable name is input in an operand when inputting the instruc-
tion, the variable will be registered automatically in the variable table's in-
ternal variable sheet.

2. Inputting the variable table first:
Right-click the variable table, select Add, and register the variable in the
variable table. When the instructions are input later, the registered variable
name can be input in the operands.

Physical addresses cannot be input directly for local variables by inputting the
physical address in the Edit Variables Dialog Box.
29

Variables Section 2-2
Global Variables After creating an NE Programmer project, select File - New from the menus,
change the configuration name in the Configuration Setting Window if neces-
sary, and create a new configuration. In the project workspace, double-click
the global variables under the configuration. Right-click the variable table,
select Add, and register the variable in the variable table. When the instruc-
tions are input later, the registered variable name can be input in the oper-
ands.

Physical addresses can be input directly for global variables by inputting the
physical address in the Address Field in the Edit Variables Dialog Box.

2-2-12 Grouping Variables
In function blocks, the input variables (VAR_INPUT) and output variables
(VAR_OUTPUT) can be placed in separate groups and displayed with input
and output group names.

When grouping input or output variables, the group name is displayed on the
input and output side when the function block is pasted into a program.

Grouping FB I/O Variables in NE Programmer:
Select the input or output variables to be grouped, right-click, and select
Group Input/Output Variables - Group from the popup menu.

2-2-13 Importing and Exporting Variables
Exporting Variables With NE1S-series CPU Units and CJ2 CPU Units, variable data can be

exported in the following file formats.

• OPC Server CSV file (for use with SCADA Software)

• Text file for use with the CX-Designer

• Text file for use with the SPU-Console

• CSV file (for use with external Programming Devices or programs such as
Excel)

Exporting with NE Programmer:

• OPC Server, CX-Designer, or SPU-Console Format:
Select File - Export Variable and select the desired file format.

Display Example of Ungrouped Variables Display Example of Grouped Variables
30

Function Blocks Section 2-3
• CSV Format:
Right-click in the variable table and select Export.

Importing Variables The following data can also be imported.

• CSV files (for use with external Programming Devices or programs such
as Excel)

Importing with NE Programmer:
Right-click the local or global variable table and select Import - CSV Format.

2-3 Function Blocks

2-3-1 Function Block Features and Operation

Overview A function block is a basic program element containing a standard processing
function that has been defined in advance. Once the function block has been
defined, the user just has to insert the function block in the program and set
the I/O in order to use the function.

As a standard process, a function block is not created with actual physical
addresses, but rather with local variables. The user sets parameters (con-
stants, variables, or physical addresses) in those variables to use the function
block.

Advantages of
Function Blocks

Function blocks allow complex programming units to be reused easily. Once
standard program sections have been created in a function block and saved in
a file, they can be reused just by placing the function block in a program and
setting the parameters for the function block’s I/O. Reusing standardized func-
tion blocks will reduce the time required for programming/debugging, reduce
coding errors, and make the program easier to understand.

Structured Programming Structured programs created with function blocks have better design quality
and require less development time.

■ Easy-to-read “Black Box” Design

The I/O operands are displayed as local variable names in the program, so
the pro-gram is like a “black box” when entering or reading the program and
no extra time is wasted trying to understand the internal algorithm.

Input Output

Input Output

Output

Function block A

Program 2

Copy of function block A

Copy of function block A

Copy of function block A

Define in advance.
Insert in program.
(Drag and drop.)

FB
variable

FB
variable

FB
variable

Set Set

FB
variable

FB
variable

Program 1

Standard
program section
written with
variables
31

Function Blocks Section 2-3
■ Easily Create Different Processes from a Single Function Block

Many different processes can be created easily from a single function block by
using input variables (VAR_INPUT) for the parameters in the standard pro-
cess (parameters such as timer SVs, control constants, speed settings, and
travel distances).

■ Reduce Coding Errors

Coding mistakes can be reduced because blocks that have already been
debugged can be reused.

■ Protect Data

The local variables in the function block cannot be accessed directly from the
outside, so the data can be protected. (Data cannot be changed unintention-
ally.)

■ Programming with Variables provides Improved Reusability

The function block’s I/O is entered as local variables, so the data addresses in
the function block do not have to be changed as they do when copying and
reusing a program section.

Creating Libraries Processes that are independent and reusable (such as processes for individ-
ual steps, machinery, equipment, or control systems) can be saved as func-
tion block definitions and converted to library functions.

The function blocks are created with local variable names that are not tied to
physical addresses, so new programs can be developed easily just by reading
the definitions from the file and placing them in a new program.

Compatible with Multiple
Languages

Mathematical expressions that are difficult to enter in ladder language can be
entered easily in structured text (ST) language.

Function Block
Structure

A function block consists of the function block definition that is created in
advance and the function block instances that are actually inserted in the pro-
gram.

Function Block Definition The basic, reusable part of the function block is called the “function block def-
inition.” Each function block definition contains the algorithm and local variable
definitions, as shown in the following diagram.

1. Algorithm

The algorithm is standard programming written with variable names rather
than physical I/ O memory addresses. In NE Programmer, algorithms can be
written in either ladder programming or ST (structured text).

tim_a TIMER
tim_b TIMER
ON_TIME INT
OFF_TIME INT

TIMX tim_a OFF_TIME
tim_b

TIMX tim_b ON_TIME
tim_a

ENO

Name Type
Internal

Internal
Input
Input

Function Block Definition
Example: CLOCK PULSE

Algorithm

Example: CLOCK PULSE

1. Algorithm

2. Variable Definitions

Variable definitions

Usage
32

Function Blocks Section 2-3
2. Local Variable Definitions

The variable table lists each variable’s usage (input, output, or internal) and
properties (data type, etc.). For details on local variables, refer to 2-3-2
Restrictions in Variables in Function Blocks.

■ Number of Function Block Definitions

Up to 1,024 function block definitions can be created for one PLC (CPU Unit).

Instances When a function block definition is inserted in a program, the function block
uses a particular memory region for its local variables. Each function block
definition that is inserted in the program and allocated a different memory
region is called an “instance.” Each instance is assigned an identifier called an
“instance name.”

By generating instances, a single function block definition can be used to pro-
cess different I/O data with the same function.

Note Instances are managed by names. More than one instance with the same
name can also be inserted in the program. If two or more instances have the
same name and in the same POU, they will use the same internal variables
(VAR). If the instances are in different POUs, they will use different internal
variables.

For example, if a function block that uses a timer as an internal variable (VAR)
is inserted at several points in the POU, each instance must be given a differ-
ent name. If two or more of the instances have the same name, the timer
would be duplicated, which is not allowed.

If, however, internal variables are not used or they are used only temporarily
and initialized the next time an instance is executed, the same instance name
can be used to save memory.

a b

c

a b

c

Not yet in program
and memory not yet
allocated
(abstract).

1. Algorithm

Function Block Definition FB1

2. Parameters

Standard
program unit
with variable
names a, b, c,
etc.

Program Instance

Block instance in program with memory
allocated. (object)

Instance FB1_1 of function block definition FB1 Memory
used

Input
data Output data

Output data

Automatic
allocation

Automatic
allocation

Memory
for FB1_1

Memory
for FB1_2

Different I/O data
can be processed
with the same
function.

Instance FB1_2 of function block definition FB1

Input
data Output data

Output data

Insert in
program.

Insert in
program.

Table defining usage
and properties of
variables a, b, c, etc.
33

Function Blocks Section 2-3
■ Creating Instances

Instances can be created just by dragging and dropping the function block
icon. Drag the function block icon from the logical POU in the NE Programmer
workspace and drop it in the program.

■ Number of Instances

Multiple instances can be created from a single function block definition. Up to
1,024 instances can be created for a single PLC (CPU Unit). The allowed
number of instances is not related to the number of function block definitions
or the number of tasks in which the instances are inserted.

Parameters Each time an instance is created, set the values (constants, local program
variables, or physical I/O memory addresses) used to exchange data with the
function block's local I/O variables. These values are called parameters.

TIMER_FB

TIMER_FB

TIMER_FB

instance_A

instance_A

instance_B

Function Block Definition
TIMER_FB

Variable Definitions
Internal variable: WORK_NUM Use same internal variables.

Use different internal variables.

a b

c

Input 0.00

Instance of Function Block Definition A

Input 3.00

Output 2.00

Set the value (constant, local
program variable, or physical
address) that is the source of
the input data.

Set the local program variable
or physical address that is the
destination of the output data.

Actual data is passed. Here, all three are BOOL, so either 0 or 1 is passed.
34

Function Blocks Section 2-3
The data passed from the input parameter to the function block is not the
source address, but the data within the source address (with the data format
and size specified by the variable's data type). In a similar fashion, the data
passed from the function block to the output parameter is not an address, but
the actual data for the output address (with the data format and size specified
by the variable's data type).

Even if the input parameter or output parameter is a word address, the data
that is passed will be the data (with the format and size specified by the vari-
able's data type) starting from the specified word address.

Note (1) Only addresses in the following data areas can be used as parameters:
CIO Area, Auxiliary Area, DM Area, EM Area (bank 0), Holding Area, and
Work Area.
The following cannot be used:
a) Index and Data Registers (neither direct nor indirect specification)
b) Indirect addressing of DM or EM Area (neither binary nor BCD mode)

(2) Local program variables can also be specified as parameters, provided
that the local program variable's data size is the same as the local vari-
able's data size.

!Caution Input values are passed from parameters to the input variables (VAR_INPUT)
when an instance is executed but before the algorithm is processed. Conse-
quently, a parameter cannot be used to pass a value if it is necessary to read
the value during processing (within the execution cycle of the algorithm).
Instead, directly input a physical address to pass the value.
Likewise, output values (VAR_OUTPUT) are passed from output variables to
parameters just after the algorithm is processed. Consequently, a parameter
cannot be used to pass a value if it is necessary to write the value during pro-
cessing (within the execution cycle of the algorithm). Instead, directly input a
physical address to pass the value.

■ Reference Information

A variety of processes can be created easily from a single function block by
using parameter-like elements (such as fixed values) as input variables
(VAR_INPUT) and changing the values passed to the input variables for each
instance.

Example: Creating 3 Instances from a Single Function Block Definition

m k

n

Examples:
If m is type WORD, one word of data from D100 will be passed to the
variable.
If n is type DWORD, two words of data from D200 and D201 will be
passed to the variable.
If k is type LWORD, four words of data from the variable will be passed
to words D300 to D303.

Program

Input D100

Instance of Function Block Definition A

Output D300

Input D200
35

Function Blocks Section 2-3
The same instance name can be used at multiple locations in the program if
internal variables (VAR) are not used or processing will not be affected even if
internal variables (VAR) are used in the multiple locations.

In this case, the same memory area will be used, so some precautions are
required. For example, if an instance containing a timer instruction is used in
more than one program location, the same timer number will be used causing
output bit duplication, and the timers will not function properly if both instruc-
tions operate at the same time.

2-3-2 Restrictions in Variables in Function Blocks
The following table shows the number of local variables that can be used and
the kind of variable that is created by default for each of the variable usages.

P_On 1.0

10#10

CONTROL
EN ENO

ON_TIME

OFF_TIME

10#20

CASCADE_01

P_On 1.1

10#10

CONTROL
EN ENO

ON_TIME

OFF_TIME

10#15

CASCADE_02

P_On 1.2

10#8

CONTROL
EN ENO

ON_TIME

OFF_TIME

10#7

CASCADE_03

Function Block Definition

Example: CONTROL

Algorithm

Variables

Instance
CASCADE_02

Algorithm

Internal and I/O
variables

Instance
CASCADE_01

Algorithm

Internal and I/O
variables

Instance
CASCADE_03

Algorithm

Internal and I/O
variables

Cyclic task 0

Cyclic task 1

Example:
There are 3 FB
instances and each
has its own I/O and
internal variables.

P_On 1.0

10#13

CONTROL
EN ENO

PARA_1

PARA_2

10#10

CASCADE

P_On 1.1

10#15

CONTROL
EN ENO

PARA_1

PARA_2

10#50

CASCADE

Function block definition

Example: CONTROL

Algorithm

Variables

Instance
CASCADE

Algorithm
Internal and I/O
variables

Cyclic task 0

The same instance can be
used at multiple locations.

Variable usage Allowed number Variable created by default

Input
(VAR_INPUT)

Up to 64 per func-
tion block (not
including EN)

EN (Enable): Receives an input condition.

The instance is executed when the vari-
able is ON. The instance is not executed
when the variable is OFF.

Output
(VAR_OUTPUT)

Up to 64 per func-
tion block (not
including ENO)

ENO (Enable Output): Outputs the func-
tion block’s execution status.

The variable is turned ON when the
instance starts being executed. It can be
turned OFF by the algorithm. The variable
remains OFF when the instance is not
executed.

Internal (VAR) Unlimited FI: A local variable that turns ON the first
time the instance is executed. (It can be
used for initialization the first time an
instance is executed.)

External variables --- System variables
36

Function Blocks Section 2-3
Initial Values of Input Variables (VAR_INPUT) in Function Blocks (NE1S-
series CPU Units Only)

When you set an initial value for an input variable (VAR_INPUT), that value
will be written to the variable when the parameter for input variable EN goes
ON and the instance is executed for the first time (and that one time only). If
an initial value has not been set for an input variable, the input variable will be
set to 0 when the instance is first executed.

Initial Values of Output Variables (VAR_OUTPUT) in Function Blocks
(NE1S-series CPU Units Only)

An initial value can be set for an output variable (VAR_OUTPUT) that is not
being retained, i.e., when the Retain Option is not selected. An initial value
cannot be set for an output variable if the Retain Option is selected.

Initial Values of Internal Variables (VAR) in Function Blocks (NE1S-series
CPU Units Only)

An initial value can be set for an internal variable (VAR) that is not being
retained (i.e., when the Retain Option not selected). An initial value cannot be
set for an internal variable if the Retain Option is selected. Internal variables
that are not being retained will be initialized to 0.

The initial value will be set, regardless of the value of the IOM Hold Bit
(A50012).

!Caution With a CJ2 CPU Unit, initial values cannot be specified for input variables, out-
put variables and internal variables in function blocks. If you convert an NE1S
project to a CJ2 project, any initial value settings used in the NE1S project
must be set from the program or function block algorithm.

2-3-3 Function Block Specifications

Function Block Specifications

Function Block
Elements

The following table shows the items that must be entered by the user when
defining function blocks.

Item Description

Number of function block definitions 1,024 max. per NE1S-series CPU
Unit and 2,048 max. per CJ2 CPU
Unit

Number of instances 1,024 for the NE1S and 2,048 for
the CJ2

Number of instance nesting levels 8 levels max.

Number of input variables (VAR_INPUT) per
function block

64 variables max.

Number of output variables (VAR_OUTPUT) per
function block

64 variables max.

Item Description

Function block POU
name

The name of the function block definition (logical POU name)

Language The programming language used in the function block defini-
tion. Select ladder programming or structured text
37

Function Blocks Section 2-3
Function Block Definition
Name

This is the name of a function block, which is one kind of logical POU.

• Number of characters for logical POU names: 24 characters max.

• Allowed characters: Numbers 0 to 9, letters a to z, letters A to Z, and the
underscore character

• Upper and lower case characters are distinguished but do not make vari-
ables different. For example, “aBc” and “AbC” are treated as the same
variable, but the variable “aBc” is recorded as “aBc”.

• Variable names cannot begin with a number (0 to 9).

• There cannot be two or more consecutive underscore characters (_).

Language Select either ladder or structured text.

Local Variable Definitions Define the arguments and local variables used in the function block definition.
Refer to 2-2-1 Naming Variables for information on the specifications of local
variables that can be made.

■ Variable Notation

Local variable defini-
tions

Variable settings, such as operands and return values,
required when the function block is executed

• Type (usage) of the variable
• Name of the variable
• Data type of the variable
• Initial value of the variable

Algorithm Enter the programming logic in ladder or structured text.

Comment Function blocks can have comments.

Item Description

CLOCK PULSE
EN ENO
(BOOL) (BOOL)
ON_TIME
(INT)

OFF_TIME
(INT)

Function block POU name

CLOCK PULSE
EN

 ENO
(BOOL) (BOOL)

ON_TIME
 (INT)
OFF_TIME
(INT)

TIMX tim_a
tim_b

TIMX tim_b
tim_a

ENO

tim_a WORD
tim_b WORD
ON_TIME INT
OFF_TIME INT

Input variables
Output variables

Internal
variables

Variable table

Name
Internal
Internal
Input
Input

TypeUsage
38

Function Blocks Section 2-3
2-3-4 Instance Specifications

Composition of an
Instance

The following table lists the items that the user must set when registering an
instance.

Instance Name This is the name of the instance.

• Number of characters: 48 characters max.

• Allowed characters: Numbers 0 to 9, letters a to z, letters A to Z, the
underscore character

• Upper and lower case characters are distinguished but do not make vari-
ables different. For example, “aBc” and “AbC” are treated as the same
variable, but the variable “aBc” is recorded as “aBc”.

• Instance names cannot begin with a number (0 to 9).

• There cannot be two or more consecutive underscore characters (_).

• The instance name is displayed above the instance in the diagram.

Function Block Instance Areas

■ Calling an Instance from Multiple Locations

A single instance can be called from multiple locations. In this case, the inter-
nal variables (VAR) will be shared.

■ Making Multiple Instances

Multiple instances can be created from a single function block definition. In
this case, the values of internal variables (VAR) will be different in each
instance.

Example: Counting Product A and Product B

Prepare a function block definition called Down Counter (CTD) and set up
counters for product A and product B. There are two types of programs, one
for automatic operation and another for manual operation. The user can
switch to the appropriate mode of operation.

In this case, multiple instances will be created from a single function block.
The same instance must be accessible from multiple locations.

Item Description

Instance name Name of the instance

Parameters Input parameters Pass data to input variables (constants, local pro-
gram variables, or physical addresses)

Output parameters Receive data from output variables (local pro-
gram variables or physical addresses)

CLOCK PULSE
EN
ENO

ON_TIME

OFF_TIME

Pulse_2sON_1sOFF

Instance name

10#20

10#10
39

Function Blocks Section 2-3
Operating Specifications

Calling Instances The user can call an instance from any location. The instance will be executed
when the input to EN is ON.

CTD
CD Q

LD

PV CV D100

CTD
CD Q

LD

PV CV D200

CTD
CD Q

LD

PV CV D150

FB

FB

Program 1 (automatic operation) Program 2 (manual operation)

Product A counter Product B counter

Product B counter

Program 1
Instance A

Instance B

Reading the same product’s counter
value from different locations

Reading different products’ counter values
(Algorithm calculating counter value is the same.)

Use the same internal variables

Use different internal variables

Instance A

Instance B

I/O variables,
Internal
variables

Body

I/O variables,
Internal
variables

Body

FB definition

Variable
definitions

Body

0.0 1.0

D10

EN ENO

A BD0

Instance

In this case, the input to EN is bit 0.0 at the left of the diagram.

• When the input to EN is ON, the instance is executed and
the execution results are reflected in bit 1.0 and word D10.

• When the input to EN is OFF, the instance is not executed,
bit 1.0 is turned OFF, and the content of D10 is not changed.
40

Function Blocks Section 2-3
Operation when the
Instance Is Executed

The system calls a function block when the input to the function block’s EN
input variable is ON. When the function block is called, the system creates the
instance’s local variables and copies the algorithm registered in the function
block. The instance is then executed.

The order of execution is as follows:

1. Read data from parameters to input variables (VAR_INPUT).

2. Execute the algorithm.

3. Write data from output variables (VAR_OUTPUT) to parameters.

Note Data cannot be exchanged with parameters while the algorithm is being exe-
cuted. In addition, if an output variable is not changed by the execution of the
algorithm, the output parameter will retain its previous value.

P_On 1.0

10#10

CLOCK PULSE
EN ENO

ON_TIME

OFF_TIME

10#20

Pulse_2sON_1sOFF

&20
&10

TIMX tim_a OFF_TIME
tim_b

TIMX tim_b ON_TIME
tim_a

ENO

1. The FB is called.

2. The system creates the instance
variables and copies the algorithm.

FB instance (200-100ms_PULSE)

Algorithm (Body)

Name
Internal
Internal
Input

Input

Value
200-100ms_PULSE_tim_a
200-100ms_PULSE_tim_b
200-100ms_PULSE_ON_TIME
200-100ms_PULSE_OFF_TIME

3. The contents of the
instance are executed.Algorithm (Image)

TIMX Pulse_2sON_1sOFF tim_a Pulse_2sON_1sOFF OFF_TIME

TIMX Pulse_2sON_1sOFF tim_b Pulse_2sON_1sOFF ON_TIME

200-100ms_PULSE ENO

Pulse_2sON_1sOFF tim_b

Pulse_2sON_1sOFF tim_a

Usage

Input to EN is ON.

Parameters 1. Read values from parameters
to input variables.

2. Execute the algorithm.

3. Write values from output
variables to parameters.

Parameters
41

Function Blocks Section 2-3
Operation when the
Instance Is Not Executed

When the input to the function block’s EN input variable is OFF, the function
block is not called, so the internal variables of the instance do not change.

Output Variables when a FB Is Not Executed

NEO will have the status of the power flow (P.F.: execution condition). User-
defined output variables will retain their previous status.

!Caution An instance will not be executed while its EN input variable is OFF, so Differ-
entiation and Timer instructions will not be initialized while EN is OFF. If Differ-
entiation or Timer instructions are being used, use the Always ON Flag
(P_On) for the EN input condition and include the instruction’s input condition
within the function block definition.

Nesting A function block can be called from another function block, i.e., nesting is sup-
ported (up to 8 levels).

FB
EN ENO

1.0P_Off
P_On

ENO

1.0P_Off P_On

Program FB definition

Body

Execution results:
Output variable 1.0 is turned OFF, but
internal variable a retains its previous value.

If the programming were entered
directly into the program instead of in a
function block definition, both bit 1.0
and variable a would be turned OFF.

Program

Internal
variable a

Internal
variable a

OFF OFF

Previous status

EN ENO

Instance

OUT

FB1
FB2

1 2

Program
Instance A

Up to 8 levels

Instance A: FB1 Instance X: FB2

Call
Call

3

42

Function Blocks Section 2-3
Placement of Instances in Program

Branches Allowed on the
Left and Right Sides of the
Instance

Branches can be placed on the left side of the instance (EN input side) as well
as the right side of the instance (to the left of ENO).

Multiple Instances in a
Single Rung

A single program rung can have more than one instance.

Connections between
Instances are Allowed

An instance’s ENO output can be input directly to another instance’s EN input.
Furthermore, an instance’s output parameter can be input directly to another
instance’s input parameter.

Note The data type of the input parameter must match the data type of the output
parameter. As long as the data types match, other data types can be used
besides BOOL-BOOL, including WORD-WORD and DWORD-DWORD.

Up to 4 instances can be connected between the left and right bus bars in the ladder
diagram. If more than 4 are entered, the additional instructions will wrap around. There
can be up to 150 wrap-around lines per program section. Function block connections
are allowed within that range.

AND and OR Conditions
Allowed on Input Side

AND or OR conditions can be entered at the instance’s left side (either the EN
input side or the input parameter side).

Correct Correct

FB FB

Instruction

Instruction

Correct Correct

FB

FB FB

FB1
EN ENO

OUT1

EN ENO

IN1 OUT2

EN ENO

IN2 OUT3

FB4
EN ENO

IN3

FB2 FB3
43

Function Blocks Section 2-3
Input parameters can also be connected together.

An AND or OR condition can be inserted between function blocks, as shown
in the following diagram. On the other hand, instructions cannot be inserted
between parameters, as explained in Restrictions on Placement of Instances.

Restrictions on Placement of Instances
There are some restrictions on the placement of instances in the program.

Connecting an Output Bit
to an Output Parameter

An output bit cannot be connected to an output parameter.

Connecting an Instruction
to an ENO Output and
Output Parameter

A special instruction cannot be connected to an ENO output and output
parameter.

Connecting an Instruction
to Output Parameters

A special instruction cannot be connected to output parameters.

Instructions cannot be inserted.
44

Function Blocks Section 2-3
Connecting an EN Input
with an Input Parameter

A EN input cannot be connected to an input parameter.

Connecting an ENO
Output with an Output
Parameter

A ENO output cannot be connected to an output parameter.

Connecting an Input to an
Output Parameter

An input cannot be connected directly to an output parameter.

Connecting an Input
Parameter to an Output Bit

An input parameter cannot be connected directly to an output.

Inserting an AND or OR
Condition between
Parameters

An AND or OR condition cannot be inserted between parameters.

Instructions cannot be inserted.
45

Function Blocks Section 2-3
Parameter Specifications

Allowed Parameter Inputs The following data can be set in input and output parameters.

Input Parameters:

• Constants (See note.)

• Local program variables (for example: aa)
(The data type must match the corresponding input variable.)

• Physical addresses (for example: D00100 or 0000.00)

Output Parameters:

• Local program variables (for example: aa)
(The data type must match the corresponding output variable.)

• Physical addresses (for example: D00100 or 0000.00)

Note The input range of the constant depends on the data type, as shown in the fol-
lowing table.

Input the desired value in the Initial Value Field in the Edit Variables Dialog
Box. Input a value consistent with the variable's data type, as shown in the fol-
lowing table.

Floating-point Data

The following data can be expressed by floating-point data:

• –∞

• –3.402823 x 1038 ≤ value ≤ –1.175494 x 10–38

• 0

• 1.175494 x 10–38 ≤ value ≤ 3.402823 x 1038

• +∞
• Not a number (NaN)

Data type Content Range of values Initial value input method

BOOL Bit data 16#0 or 16#1 Input as unsigned hexadecimal after “16#”.

INT Integer −10#32768 to +10#32767 Input as signed decimal after “+10#” or
“−10#”. (If “10#” is input, a + sign will be
attached automatically.)

UINT Unsigned integer 10#0 to 10#65535 Input as unsigned decimal after “10#”.

DINT Double integer −10#2147483648 to
+10#2147483647

Input as signed decimal after “+10#” or
 “−10#”. (If “10#” is input, a + sign will be
attached automatically.)

UDINT Unsigned double integer 10#0 to 10#4294967295 Input as unsigned decimal after “10#”.

WORD 16-bit data 16#0000 to16#FFFF Input as unsigned hexadecimal after “16#”.

DWORD 32-bit data 16#00000000 to16#FFFFFFFF Input as unsigned hexadecimal after “16#”.

REAL Real number Refer to the details on floating-
point data below.

Input a signed numerical value. Input the
value after the sign.
E.g., +1.0, −0.23, +9.87E-3

STRING Character string data
(ASCII data)

127 characters ---

−1.175494 × 10–38 1.175494 × 10–38

– ∞ +–3.402823 × 1038 3.402823 × 1038–1 0 1 ∞
46

Function Blocks Section 2-3
Special Numbers

The formats for NaN, ±∞, and 0 are as follows:

NaN*: e = 255, f ≠ 0
+∞: e = 255, f = 0, s = 0
–∞: e = 255, f = 0, s = 1
0: e = 0

*NaN (not a number) is not a valid floating-point number. Executing floating-
point calculation instructions will not result in NaN.

Restrictions on Variable
Data Types

Parameters cannot be input to TIMER or COUNTER variables or output from
TIMER or COUNTER variables.

Timing of Data Transfers
to/from Variables

Input data is passed from parameters to the corresponding input variables
before the algorithm is processed. Output variable data is passed to the corre-
sponding parameters after algorithm processing is completed. Consequently,
values cannot be passed from parameters to input variables while the algo-
rithm is being executed.

Restrictions on Parameter
Data Quantity

The maximum amount of a parameter I/O data is 1,024 words per instance.

Connecting a Bit Control
Instruction to a Parameter

For details on connecting a parameter to a Bit Control Instruction, refer to the
sections Placement of Instances in Program and Restrictions on Placement of
Instances above.

2-3-5 Restrictions on Function Blocks

Instructions Restricted in Ladder Programs

Instructions Prohibited in
Function Block Definitions

The END (001) instruction cannot be used in function block definitions. Any
other instructions that can be used in the program can also be used in func-
tion blocks.

I/O Variable Restrictions
(Unsupported Data Areas)

Addresses in the following data areas cannot be used as parameters for input
and output variables.

• Index Registers and Data Registers (Neither indirect nor direct address-
ing is supported.)

• Indirect addressing of DM or EM Area addresses (Neither binary-mode
nor BCD-mode indirect addressing is supported.)

Refreshing Timer and
Counter PVs

Timer and counter PVs are always stored in binary mode, so PVs of all Timer
and Counter Instructions must be treated as binary data whether or not the
instructions are in function blocks.

Interlocks When a function block is called from an interlocked program section, the con-
tents of the function block definition will not be executed. The interlocked func-
tion block will behave just like an interlocked subroutine.

FB

IL

P_Off

ILC

FB_BODY

Interlocked Interlock will not
affect instructions in
the function block
definition.
47

Function Blocks Section 2-3
Differentiation
Instructions in Function
Block Definitions

An instance will not be executed while its EN input variable is OFF, so the fol-
lowing precautions are essential when using a Differentiation Instruction in a
function block definition. (Differentiation Instructions include DIFU, DIFD, and
any instruction with an @ or % prefix.)

• As long as the instance’s EN input variable is OFF, the execution condition
will retain its previous status (the last status when the EN input variable
was ON) and the Differentiation Instruction will not operate.

• When the instance’s EN input variable goes ON, the present execution
condition status will not be compared to the last cycle’s status. The
present execution condition will be compared to the last condition when
the EN input variable was ON, so the Differentiation Instruction will not
operate properly. (If the EN input variable remains ON, the Differentiation
Instruction will operate properly when the next rising edge or falling edge
occurs.)

Example:

If Differentiation Instructions are being used, always use the Always ON Flag
(P_On) for the EN input condition and include the instruction’s input condition
within the function block definition.

Example:

Timer Instructions in
Function Block Definitions

An instance will not be executed while its EN input variable is OFF, so the fol-
lowing precautions are essential when using a Timer Instruction in a function
block definition.

The Timer Instruction will not be initialized even though the instance’s EN
input variable goes OFF. Consequently, the timer’s Completion Flag will not be
turned OFF if the EN input variable goes OFF after the timer started operat-
ing.

Example:

FB1
EN ENO

IN1 OUT1

0.00

LD EN
OR IN1

SET OUT1

Body

These Differentiation Instructions do not operate when
input condition 0.00 goes from OFF to ON the first time.
The instructions do not operate while input condition
0.00 is OFF.

FB1
EN ENO

a OUT1

IN1

↑ LD a
↑ OR IN1
SET OUT1

The EN input condition is always ON, so
these Differentiation Instructions operate
normally.

BodyP_On

0.00

FB1
EN ENO

UP

LD EN
TIM tim UP

Body

The timer’s Completion Flag (UP) will not be turned
OFF even though input condition 0.00 goes OFF.

0.00
48

Function Blocks Section 2-3
If Timer Instructions are being used in the function block definition, always use
the Always ON Flag (P_On) for the EN input condition and include the instruc-
tion’s input condition within the function block definition.

Example:

• If the same instance containing a timer is used in multiple locations at the
same time, the timer will be duplicated.

ST Programming
Restrictions

• Only the following statements and operators are supported.

• Assignment statements

• Selection statements (CASE and IF statements)

• Iteration statements (FOR, WHILE, and REPEAT statements)

• Arithmetic operators

• Logical operators

• Comparison operators

• Comments

• The TIMER and COUNTER data types cannot be used.

• Use parentheses to indicate the priority of arithmetic operations.
Example: Var_D:=(Var_A+Var_B)*Var_C;

• Tabs and spaces can be used to indent text.

Online Editing
Restrictions

The following online editing operations cannot be performed on the user pro-
gram in the CPU Unit.

• I/O variables cannot be added, deleted, or changed.

• Internal variables cannot be deleted or changed.

• FB body names cannot be changed.

• FB instance names cannot be changed.

• FB instances cannot be added.

• Comments cannot be edited.

Note (1) Internal variables can be added, but there are restrictions on the variables
that can be added.

(2) Global variables can be added.

Error-related
Restrictions

If a fatal error occurs in the CPU Unit while a function block definition is being
executed, ladder program execution will stop at the point where the error
occurred.

FB1
EN ENO

a UP

LD a
TIM tim UP

The timer’s completion flag (UP) is turned
OFF when input condition a (0.00) goes OFF.

BodyP_On

0.00

FB
EN ENO

AAA BBB D200D100

0.0 LD P_On
++ AAA

MOV AAA BBB

10.0

Program FB definition

BodyInstance name

Fatal error occurs here.
49

Function Blocks Section 2-3
In this case, the MOV AAA BBB instruction will not be executed and output
variable D200 will retain the same value that it had before the function block
was executed.
50

SECTION 3
Installation

This section describes software installation.

3-1 Installation Preparations . 52

3-1-1 System Requirements . 52

3-1-2 Installation Types . 52

3-2 Installing the NE Programmer . 52

3-2-1 Installation Procedure . 52

3-2-2 Uninstallation Procedure . 53

3-2-3 Upgrading Software Versions . 55

3-3 Installing the USB Driver . 55
51

Installation Preparations Section 3-1
3-1 Installation Preparations

3-1-1 System Requirements
A computer with the following specifications is required to install the NE Pro-
grammer.

*1 Requirements for Windows Vista:
CPU: Pentium, 1 GHz min., Memory: 1 GB

3-1-2 Installation Types
Installing the NE
Programmer

For details on installing the NE Programmer, refer to 3-2 Installing the NE Pro-
grammer. One or both of the NE Programmer and Network Configurator can
be installed.

Installing the USB Driver For details on connecting online using USB, refer to 3-3 Installing the USB
Driver.

3-2 Installing the NE Programmer

3-2-1 Installation Procedure
Use the following procedure to install the NE Programmer.

Note Administrator privileges are required to install the software.

1,2,3... 1. Insert the installation CD in the CD-ROM drive.

2. Execute setup.exe from the CD-ROM using either of the following meth-
ods.

• Click the icon to access the CD-ROM and double-click the setup.exe file.

• Select Run from the Start menu, browse the CD-ROM for the setup.exe
file and then click the OK Button. The following window will be displayed.

Item Specification

Computer IBM PC/AT or compatible

CPU Pentium 300 MHz or higher (Pentium 1 GHz or higher recom-
mended)*1

OS Microsoft Windows 2000

Microsoft Windows XP

Microsoft Windows Vista*1

Supported lan-
guages

Japanese/English

Memory 512 MB min.*1

HDD 200 MB min. of available space

Monitor S-VGA or better

CD-ROM 1 min.

Communications
port to connect to the
NE1S

One or more of the following: USB port, RS-232C port, or
Ethernet port
Or one of the following: DeviceNet Interface Card (see note) or
RA Communications Card (using RS Linx communications
driver)

Note Connections with NE1S CPU Units on the network is
possible via USB port, RS-232C ports, or Ethernet
ports.
52

Installing the NE Programmer Section 3-2
3. Click the Next Button. The License Agreement Window will be displayed.

4. Select the I accept the terms of the License Agreement option and then
click the Next Button. The Customer Information Window will be displayed.

5. Enter the User Name, Company Name, and Serial Number, and then click
the Next Button. The following Select Features Window will be displayed.

6. Select CIP Communication Link and any other programs to be installed
(CIP Communication Link must be selected), specify the installation desti-
nation, and click the Next Button. The Ready to Install the Program Win-
dow will be displayed.

7. Click the Install Button to start installation. When installation completes
normally, the InstallShield Wizard Complete Window will be displayed.

8. Click the Finish Button.

3-2-2 Uninstallation Procedure
Use the following procedure to uninstall the NE Programmer.

1,2,3... 1. Select Settings - Control Panel - Add/Remove Programs (or Add/Re-
move Applications) from the Start menu.
53

Installing the NE Programmer Section 3-2
2. Select Control&Network Support Software v3 in the Add/Remove Pro-
grams Dialog Box (or Add/Remove Applications Dialog Box), as shown be-
low, and click the Change/Remove Button.

• The following window will be displayed.

3. Click the Remove Button, and then click the Next Button.

4. Click the Yes Button.
The software will be uninstalled. When uninstallation is completed normal-
ly, the Maintenance Complete Window will be displayed.

5. Click the Finish Button.
54

Installing the USB Driver Section 3-3
3-2-3 Upgrading Software Versions
Use the following procedure to upgrade the version of the NE Programmer.

Installing an Update Install the updated version without uninstalling the existing software.

1,2,3... 1. The updated version is provided as an executable (.exe) file, so either of
the following methods can be used to execute the update file.

• Double-click the file and click the OK Button.

• Select Run from the Start menu, browse and select the update file,
and click the OK Button.

Installing a Release

1,2,3... 1. Uninstall the software to be upgraded (refer to 3-2-2 Uninstallation Proce-
dure).

2. Install the new software version (refer to 3-2-1 Installation Procedure).

3-3 Installing the USB Driver
Note Administrator privileges are required to install the software.

Use the following procedure to install the USB driver.

1,2,3... 1. Connect the CPU Unit and the computer with a USB cable.

2. Turn ON the power supply to the CPU Unit.
The following dialog box will be displayed.

After a few moments, the following dialog box will be displayed.
55

Installing the USB Driver Section 3-3
3. Click the Next Button.
The following dialog box will be displayed.

4. Select the Search for a suitable driver for my device (recommended) option
and click the Next Button.
The following dialog box will be displayed.

5. Select only the Specify a location option (do not select any other options),
and click the Next Button.
The following dialog box will be displayed.
56

Installing the USB Driver Section 3-3
6. Click the Browse Button, then in the dialog box that is displayed specify
the CD-ROM\driver\NE1S_usb\win2000 folder for an NE1S-series CPU
Unit or the CD-ROM\driver\CJ2H_usb folder for a CJ2 CPU Unit, and then
click the OK Button.
The following dialog box will be displayed.

7. Click the Next Button.
The following dialog box will be displayed if the USB driver is installed nor-
mally.

8. Click the Finish Button.
This completes the installation of the USB driver.
57

Installing the USB Driver Section 3-3
58

SECTION 4
Outline of Operations and Functions of the NE Programmer

This section provides an outline of the operations and functions of the NE Programmer.

4-1 Starting the NE Programmer. 60

4-2 Main Window . 61

4-3 Project Window. 62

4-4 Menu Item Lists . 63

4-4-1 File Menu . 63

4-4-2 Edit Menu . 63

4-4-3 View Menu . 65

4-4-4 Ladder Menu. 65

4-4-5 ST Menu . 66

4-4-6 Mnemonic Menu (Displayed in Mnemonic Editor Only) 67

4-4-7 Variable Menu. 67

4-4-8 Data Type Menu . 67

4-4-9 Build Menu . 68

4-4-10 Controller Menu . 68

4-4-11 Library Menu . 69

4-4-12 Tool Menu. 69

4-4-13 Window Menu . 69

4-4-14 Help Menu . 70

4-5 Shortcut Keys . 70

4-5-1 Window/View Operations. 70

4-5-2 File Operations . 70

4-5-3 Edit Operations . 71

4-5-4 Offline/Programming Operations . 72

4-5-5 Variable Operations . 72

4-5-6 Build Operations. 72

4-5-7 Online/Controller Operations . 73

4-6 Option Settings . 73

4-6-1 General Window . 74

4-6-2 Outline . 75

4-6-3 Variable Window . 76

4-6-4 Ladder Window . 77

4-6-5 Mnemonic Window . 80

4-6-6 ST Window . 81

4-6-7 Library Window . 82

4-6-8 Program Check Window. 83

4-6-9 Data Trace Window . 85
59

Starting the NE Programmer Section 4-1
4-1 Starting the NE Programmer
1,2,3... 1. To start the Network Configurator, select Start - Program - OMRON Con-

trol&Network Support Software v3 - NE Programmer - NE Program-
mer. The following initial window will be displayed.

2. Select File - New - Project. The following New Dialog Box will be dis-
played.
The dialog box for creating a new project will be displayed as shown in the
following figure.

On the left side, select one of the
following Controllers.
• CJ2: CJ2 CPU Unit
• NE1S: NE1S-series CPU Unit

Input the project
name in the right side.
60

Main Window Section 4-2
4-2 Main Window
This section describes the main functions of the Main Window.

Title Bar

Project Window
Outline Window

Variable Editor

Ladder Editor

Cross Reference Popup Window

Output Window

Property Window

Toolbar

Status Bar

Library Window

Main Menu

Watch Window

Name Function

Title Bar Displays the file name.

Main Menu Commands are selected from this menu.

Tool Bar Functions are selected by clicking the icons.

Project Window Used to manage programs and data.

Outline Window Displays an outline of the ladder program currently being edited. If any part of the outline is clicked,
a jump will be made to the corresponding location in the program.

Variable Editor Used to register and edit variables. (There is a Variable Editor for local variables and one for global
variables).

Ladder Editor Used to create and edit ladder programs. Up to 15 Ladder Editor Windows can be displayed at the
same time.

Library Window Used to manage user-defined libraries (programs, function blocks, and program parts).

Cross Reference
Popup Window

Displays other instructions that use the variable at the cursor location. If any cross-referenced
instruction is clicked, a jump will be made to the corresponding location in the program.

Watch Window Displays the present values of registered variables and physical addresses.
61

Project Window Section 4-3
4-3 Project Window
This section describes the parts of the Project Window.

In the initial status, there are no elements created in the Project Window
except for the NE Programmer workspace.

Refer to SECTION 5 Programming for the procedures to create elements.

Output Window Displays various information, such as compiling error information and the results of program com-
parison.

Property Window Displays the properties of the instruction at the cursor position.

Status Bar Displays information, such as the configuration name and online/offline status.

Name Function

Name Description

Workspace Used as a workspace for the NE Programmer.

Project A project is a unit of data consisting of the library objects, data
types, logical POUs, and configurations that are being edited.

Data Types A folder that displays the data types that can be used in the
project and is used to declare data types.

Logical POUs Logical POUs (program organization units) are units used to
configure programs. POUs are the units by which software
can be reused. POUs can be one of two types of element,
function blocks and programs. Function blocks are called from
a program and programs are allocated to tasks for execution.

Configuration A configuration is the element that corresponds to an entire
PLC system. Global variables can be declared for a configura-
tion.

Resource Resources consist of programs allocated to tasks and local
variables. With the NE1S, one resource folder exists in the
configuration.

Configuration
62

Menu Item Lists Section 4-4
4-4 Menu Item Lists
This section lists the functions on the main and submenus in the Main Win-
dow of the NE Programmer.

4-4-1 File Menu

4-4-2 Edit Menu

Menu Shortcut Function

New - Project Ctrl + N Creates a new project.

New - Configuration Creates a new configuration.

New - POU Creates a new logical POU.

Open Ctrl + O Opens an existing project.

Save Ctrl + S Saves the project being edited (overwrites current project data).

Save As Saves the project being edited under a new name.

Save Changes to project Ctrl + Shift + S Updates the project for the program or function block that is being
edited.

Edit Data types Opens the Data Type Editor.

Configuration - Edit Global Vari-
ables

Alt + G Edits global variables.

Configuration - Replace physical
addresses in programs

Ctrl + Shift + R Replaces physical addresses in the program with global variables
specified by that physical address.

Task - Create Adds a task.

Task - Allocate - (program name) Allocates a program to the selected task.

Task - Release Releases a task allocation.

Task - Execute on Startup Sets the task to be active (i.e., to be executed) at startup.

Task - Standby on Startup Sets the task to be inactive (i.e., not to be executed) at startup.

Logical POU - Edit Displays the Ladder Editor and Variable Editor for the currently
selected program or function block.

Logical POU - Delete Deletes the currently selected program or function block.

Logical POU - Protect Sets read protection for a function block.

Print Ctrl + P Prints the specified items.

Print Preview Displays a preview for printing.

Setup Printer Sets the printer to use for printing.

Page Setup Sets the margins, title, header, and footer to use for printing.

Export Variable - OMRON OPC
Server File

Exports variables in external Support Software formats.

Exit Exists the application.

Menu Shortcut Function

Undo Ctrl + Z Undoes the previously performed operation.

Redo Ctrl + Y Redoes the operation that was undone with Undo.

Cut Ctrl + X Cuts the specified range of data.

Copy Ctrl + C Copies the specified range of data.

Paste Ctrl + V Pastes the contents of the clipboard.

Delete Delete Deletes the specified range of data.

Rename F2 Used to change the name of a program or function block.

Select All Ctrl + A Selects all data.

Find Ctrl + F Searches for a text string.

Find Next F3 Finds the next instance of a text string.

Find Prev Shift + F3 Finds the previous instance of a text string.

Replace Ctrl + H Replaces a text string.
63

Menu Item Lists Section 4-4
Additional Menu Items when Editing Ladder Programs

Additional Menu Items when Editing Mnemonic Programs

Additional Menu Items when Editing ST Programs

Bookmark Ctrl + B Registers a bookmark or jumps to a bookmark.

Find in Programs Ctrl +Shift+ F Searches mnemonics, variables, physical addresses, instance
names, line comments, and instruction comments in all POUs. The
specific items to be searched can be specified. The search results
are displayed in the Output Window and relevant locations can be
jumped to by double-clicking on the search results.

Cross reference - Register Registers the details currently displayed in the Cross Reference
Window as log data.

Cross reference - Remove Deletes registered log data.

Cross reference - Prev Moves back one log.

Cross reference - Next Moves forward one log.

Menu Shortcut Function

Jump - Jump Ctrl + G Jumps to a specified step number or rung number.

Jump - Bit Address Reference Alt + Shift + A Searches for program inputs and outputs that affect each other.
If an input condition is specified, a search is made backward for an
output with the same bit address.

If an output is specified, a search is made foreword for an input
condition with the same bit address.

Jump - Next Operand Reference Alt + Shift + N Jumps to the next operand.

Jump - Next Input Alt + Shift + I Jumps to the next input.

Jump - Next Output Alt + Shift + O Jumps to the next output.

Jump - Previous Jump Point Alt + Shift + B Returns to the previous instruction found with Next Address Refer-
ence.

Jump - Jump Variable Define Jumps to the position in the Variable Editor where the selected
instruction operand’s variable is defined (declared).

Edit Instruction Used to edit the currently selected instruction or function block
instance name.

Edit Variable F8 Used to edit the selected instruction operand’s variable.

Edit Comment Used to edit the comment for the currently selected instruction or
function block.

Copy Operand Crtl + Shift + C Used to copy the operand only.

Update Function Block Instance Used to update changes in the input and output variables when the
input and output variables of the logical POU’s function block were
changed after the function block was pasted as an instance. (The

: icon will appear next to an instance when there has been a
change.)

Edit Using Mnemonic Editor Used to edit one rung of a ladder program with the Mnemonic Edi-
tor.

Menu Shortcut Function

Jump - Jump Ctrl + G Jumps to a specified step number.

Jump - Jump Variable Define Jumps to the position in the Variable Editor where the selected
instruction operand’s variable is defined (declared).

Insert upward Ctrl + G Inserts an instruction above the current row.

Insert downward Inserts an instruction below the current row.

Menu Shortcut Function

Jump - Go To Line Ctrl + G Jumps to a specified line number.

Jump - Jump Variable Define Jumps to the position in the Variable Editor where the selected ST
program variable is defined (declared).

Menu Shortcut Function
64

Menu Item Lists Section 4-4
4-4-3 View Menu

Items Added to the View Menu at Ladder Program Editing

4-4-4 Ladder Menu
The Ladder Menu is displayed only when the Ladder Editor is active.

Menu Shortcut Function

Toolbars: General, Build, Control-
ler, Display, Data Type, Variable,
LD, Mnemonic, ST

Displays/hides the toolbars in the Main Window.

Status Bar Displays/hides the status bar.

Window - Workspace Alt + 1 Displays/hides the Workspace Window.

Window - Output Alt + 2 Displays/hides the Output Window.

Window - Watch Alt + 3 Displays/hides the Watch Window.

Window - Cross Reference Tool Alt + 4 Displays/hides the Cross Reference Popup Window.

Window - Library Alt + 5 Displays/hides the Library Window.

Window - Property Alt + 6 Displays/hides the Property Window.

Window - Outline Alt + 7 Displays/hides the Outline Window.

Window - Initialize window position Returns the window arrangement to its initial status (the status
after the NE Programmer was first installed).

To Lower Layer Shift + F Jumps from a function block instance to its body program.

To Upper Layer Jumps from the body program of a function block to the location
that called the function block.

Variable Editor - Upper Changes the Variable Editor’s position to the top (default position),
effective the next time the Variable Editor starts.

Variable Editor - Right Changes the Variable Editor’s position to the right side, effective
the next time the Variable Editor starts.

Variable Editor - Lower Changes the Variable Editor’s position to the bottom, effective the
next time the Variable Editor starts.

Variable Editor - Left Changes the Variable Editor’s position to the left side, effective the
next time the Variable Editor starts.

Variable Editor - Visible Displays/hides the Variable Editor.

Monitoring Data Type - Monitor in
Hex

Alt + Shift + H Displays the items registered in the Watch Window in hexadecimal.

Monitoring Data Type - Decimal Displays the items registered in the Watch Window in decimal.

Monitoring Data Type - Signed
Decimal

Displays the items registered in the Watch Window in signed deci-
mal.

Monitoring Data Type - Binary
Number

Displays the items registered in the Watch Window in binary.

Monitoring Data Type - Auto Displays the items registered in the Watch Window to match the
data type.

Zoom In Alt + → Magnifies the program display.

Zoom Out Alt + ← Reduces the program display.

Zoom to Fit Alt + ↑ Fits the program display to the window width.

Menu Shortcut Function

Rung Number and Program
Address

Displays/hides the rung number and program address.

Instruction Description Displays/hides the instruction description.

Grid G Displays/hides the grid.

Menu Shortcut Function

Insert -Open Contact C Inserts a NO input condition at the specified position.

Insert - Closed Contact / Inserts a NC input condition at the specified position.
65

Menu Item Lists Section 4-4
4-4-5 ST Menu
This menu is displayed only when the ST editor is active.

Insert - Open Contact OR W Inserts an ORed NO condition at the specified position.

Insert - Closed Contact OR X Inserts an ORed NC condition at the specified position.

Insert - Coil O Inserts an output instruction at the specified position.

Insert - Negative Coil Q Inserts a negative output instruction at the specified position.

Insert - Instruction I Inserts an instruction at the specified position.

Insert - Function Block F Inserts a function block at the specified position.

Insert - Insert Line Comment Tab Inserts a line comment at the specified position.

Mode - Select Switches the editing mode to Select Mode.

Mode - Open Contact Switches the editing mode to NO Input Condition Mode.

Mode - Closed Contact Switches the editing mode to NC Input Condition Mode.

Mode - Open Contact OR Switches the editing mode to Input Condition OR Mode.

Mode - Coil Switches the editing mode to Output Mode.

Mode - Negated Coil Switches the editing mode to Negative Output Mode.

Mode - Function Block Switches the editing mode to Function Block Variable Input Mode.

Mode - Line Switches the editing mode to Draw Line Mode.

Mode - Erase Switches the editing mode to Erase Line Mode.

Rung - Select Ctrl + Enter Selects a rung.

Rung - Insert Row Above Ctrl + I Inserts an open row above the cursor position.

Rung - Insert Row Below Ctrl + Shift + I Inserts an open row below the cursor position.

Rung - Delete Row Ctrl + D Deletes the selected row.

Rung - Insert Column Inserts a column at the cursor position.

Rung - Delete Column Deletes the column at the cursor position.

Draw Line Ctrl + L Switches the editing mode to Draw Line Mode, so the cursor
becomes the starting point for line drawing.

Erase Line Ctrl + Shift + L Switches the editing mode to Erase Line Mode, so the cursor
becomes the starting point for line erasing.

Change Variable Usage - Input/
Output/Internal

Changes a variable for a function block to an input variable, output
variable, or internal variable.

Immediate Refresh Changes an instruction between a immediate refresh instructions
and a normally refreshed instruction.

Invert (NOT) Switches between NO and NC input conditions and between out-
puts and negative outputs.

Transition Sensing - Nothing/Posi-
tive/Negative

Sets or releases a transition (differential) condition for an input
condition.

Online Edit - Begin Ctrl + E Starts online editing.

Online Edit - Cancel Ctrl + U Cancels online editing.

Online Edit - Finish Ctrl + Shift + E Ends online editing.

Add to Watch Adds an instruction operand to the Watch Window.

Menu Shortcut Function

Menu Shortcut Function

Add Variable Ctrl + R Adds the selected text string to the variable.

Sort - Ascending sort by name Ctrl + Q Sorts items in the ST Monitor Window by name in ascending order.

Sort - Descending sort by name Ctrl + Shift + Q Sorts items in the ST Monitor Window by name in descending
order.

Sort - Ascending sort by value Ctrl + U Sorts items in the ST Monitor Window by value in ascending order.

Sort - Descending sort by value Ctrl + Shift + U Sorts items in the ST Monitor Window by value in descending
order.

Display Monitor Window Ctrl + Shift + M Displays/hides the ST Monitor Window.
66

Menu Item Lists Section 4-4
4-4-6 Mnemonic Menu (Displayed in Mnemonic Editor Only)

4-4-7 Variable Menu

4-4-8 Data Type Menu
The Data Type Menu is displayed only when the Data Type Editor is active.

Menu Shortcut Function

Change Variable Usage - Input/
Output/Internal

Changes a variable for a function block to an input variable, output
variable, or internal variable.

Immediate Refresh Changes an instruction between a immediate refresh instructions
and a normally refreshed instruction.

Invert (NOT) Ctrl + R Switches between NO and NC input conditions and between out-
puts and negative output.

Differentiate - Nothing/Positive/
Negative

Sets or releases a transition (differential) condition for an input
condition.

Add to Watch Adds an instruction operand to the Watch Window.

Import Imports mnemonic data from a CSV file.

Export Exports mnemonic data to a CSV file.

Menu Shortcut Function

Add Adds new variables.

Edit Deletes existing variables.

Group Input/Output Variables -
Group

Ctrl + G Creates a group of I/O variables for a function block to make them
the function block easier to understand.

Group Input/Output Variables -
Release Group

Ctrl + Shift + G Ungroups the I/O variables for a function block.

Group Input/Output Variables -
Release Member

Ctrl + Shift + M Removes the selected members from the group.

Rename Ctrl + E Changes the group name.

Change Variable Usage - Input/
Output/Internal/External

Changes the variable to an input variable, output variable, internal
variable, or external variable

Register Global Variables Registers selected variables as global variables.

Check Consistent with Extern Checks whether an external variable and global variable match.

Up Ctrl + ↑ Shifts the selected member up one rung.

Down Ctrl + ↓ Shifts the selected member down one rung.

Add to Watch Adds a variable to the Watch Window.

Import - CSV Format Imports variables from a CSV-format file.

Export - CSV Format Exports variables to a CSV-format file.

Menu Shortcut Function

Insert - Struct Inserts a data structure.

Insert - Element Inserts an element into a data structure.

Edit Edits a user-defined data structure.

Move Upward Moves a user-defined data structure upward.

Move Downward Moves a user-defined data structure downward.

Check Checks a data structure for errors.

Import - CSV File Imports a data structure from a CSV-format file.

Export - CSV File Exports a data structure to a CSV-format file.
67

Menu Item Lists Section 4-4
4-4-9 Build Menu

4-4-10 Controller Menu

Menu Shortcut Function

Compile Ctrl + F7 Compiles and performs a program check on the active program or
function block.

Build F7 Builds the entire program.

Stop build Stops building a program.

Menu Shortcut Function

Connect Ctrl + W Used to select the communications port and then connect online to
the PLC.

Disconnect Ctrl + Shift + W Disconnects from the CPU Unit.

Change Controller Changes the device to which the connection is made (eliminates
the need to disconnect).

Change Controller Changes the controller type.

Auto Upload from Controller Ctrl + Shift + A Automatically finds the connected PLC and communications condi-
tions, connects the PLC online, and uploads the program.

Upload from Controller Ctrl + Shift + T Used to upload the program, PLC Setup, TCP/IP settings, and I/O
tables from the PLC to the computer.

Download to Controller Ctrl + T Used to download the program, PLC Setup, TCP/IP settings, and
I/O tables from the computer to the PLC.

Compare with Controller Compares the programs on the computer and in the PLC.

System Configuration Used to set up the PLC.

Operating Mode - Program/Moni-
tor/Run

Ctrl + 1/Ctrl + 3/
Ctrl + 4

Changes the PLC’s operating mode.

Monitor Ctrl + M Starts the monitor.

Backup value of variables Saves the present variable values to a CSV file.

Restore value of variables Restores saved variable values from a CSV file.

I/O Table - Create Creates the real I/O tables.

I/O Table - Delete Deletes the registered I/O tables. The CPU Unit will operate with
the real I/O tables.

I/O Table - Compare Compares the real I/O tables and registered I/O tables.

Clear Error F4 Clears an error.

Clear Memory Clears the CPU Unit memory, including the user program, parame-
ter area, and I/O memory.

Restart Service Starts the SMTP server and SNMP server.

Set - On Sets (turns ON) a bit.

Set - Off Resets (turns OFF) a bit.

Set - Force On Ctrl + J Force-sets (forces ON) a bit.

Set - Force Off Ctrl + K Force-resets (forces OFF) a bit.

Set - Force Cancel Clears a force-set or force-reset bit.

Set - Cancel All Forces Clears all force-set and force-reset bits.

Set - Value Changes the PV of the selected variable or physical address.

Set - Timer/Counter Setting Value Changes the PV of the timer or counter.

Differential Monitor Executes differential monitoring.

Error Log Displays the PLC error log.

Change Log - Enable Mode Enables the change log.

Change Log - Disable Mode Disables the change log.

Change Log - Change Log List Reads the change log list.

Cycle Time Displays the cycle time.

Data Trace Used to execute a data trace.
68

Menu Item Lists Section 4-4
4-4-11 Library Menu

4-4-12 Tool Menu

4-4-13 Window Menu

Variable Reference Report Displays a list showing the usage of variables.

Set Clock Used to set the clock in the CPU Unit.

Release Access Rights Forcibly releases the access rights held by the PLC.

Menu Shortcut Function

POU - Register to Library Registers a POU in the library.

POU - Add to Project Adds a POU registered in the library to a project.

Rung - Register to Library Registers a rung group in the library.

Rung - Insert to Program Adds a rung group registered in the library to a program.

Map Folder Changes the library folder allocated in the computer.

Disconnect Folder Clears the library folder allocation.

Create Folder Creates a folder.

Property Displays information on the library.

Update Redisplays the library folder tree.

Edit Used to edit library properties.

Delete Deletes a library object or folder.

Option Sets the operation used for the library function.

Menu Shortcut Function

Select Interface -
CJ2 USB/Serial Port
NE1S Serial Port
DeviceNet I/F
Ethernet I/F
RSLinx I/F

Used to select the communications interface.
• CJ2 USB/Serial Port: USB port or RS-232 port
• NE1S Serial Port: USB port
• DeviceNet Interface: DeviceNet
• Ethernet Interface: Ethernet port
• RSLinx interface: RSLinx port

Key Customize Used to change shortcut key allocations.

Option Sets various options for NE Programmer displays and operations.

Menu Shortcut Function

Next Docked Alt + 0 Switches to the next window as the active window in the following
order: Workspace, Outline, Output, Watch, Property, Cross Refer-
ence, Library, MDI Window.

Previous Docked Alt + Shift + 0 Switches to the next window as the active window in the following
order: MDI Window, Library, Cross Reference, Property, Watch,
Output, Outline, Workspace.

Toggle Split Window F6 Switches between the Variable Editor and Program Editor.

Toggle POU/Task Window Alt + F6 Switches between the program window and the task window.

Close All Closes all windows.

Cascade Cascades all open windows.

Tile Horizontally Tiles all open windows vertically.

Tile Vertically Tiles all open windows horizontally.

Arrange Icons Arranges the icons for minimized windows.

Menu Shortcut Function
69

Shortcut Keys Section 4-5
4-4-14 Help Menu

4-5 Shortcut Keys
The following tables list the NE Programmer’s shortcut key operations.

4-5-1 Window/View Operations

4-5-2 File Operations

Menu Shortcut Function

Topics Displays the NE Programmer help function.

Instruction Reference Displays the instruction reference.

About Displays information on the NE Programmer version.

Shortcut keys Menu name Function

Ctrl + PageUp/
PageDown

--- Switches the Tab Page.

Shift + F10 --- Displays the popup menu at the cursor position (same as
right-clicking).

Ctrl + F4 --- Closes the program window.

F6 Window - Toggle Split Window Switches between the Variable Editor and Program Edi-
tor.

Alt + F6 Window - Toggle POU/Task Window Switches between the program window and the task win-
dow.

Ctrl + Tab Window - (open window name) Switches to an open program window.

Alt + 0 Window - Next Docked Switches to the next window as the active window in the
following order: Workspace, Outline, Output, Watch,
Property, Cross Reference, Library, MDI Window.

Alt + Shift + 0 Window - Previous Docked Switches to the next window as the active window in the
following order: MDI Window, Library, Cross Reference,
Property, Watch, Output, Outline, Workspace.

Alt + 1 View - Window - Workspace Displays/hides the Workspace Window.

Alt + 2 View - Window - Output Displays/hides the Output Window.

Alt + 3 View - Window - Watch Displays/hides the Watch Window.

Alt + 4 View - Window - Cross Reference Tool Displays/hides the Cross Reference Popup Window.

Alt + 5 View - Window - Library Displays/hides the Library Window.

Alt + 6 View - Window - Property Displays/hides the Property Window.

Alt + 7 View - Window - Outline Displays/hides the Outline Window.

Shift + F View - To Lower Layer Jumps from a function block instance to its body program.

Alt + → View - Zoom In Magnifies the program display.

Alt + ← View - Zoom Out Reduces the program display.

Alt + ↑ View - Zoom to Fit Fits the program display to the window width.

G View - Grid Displays/hides the grid.

Ctrl + Shift M ST - Display Monitoring Window Displays/hides the ST Monitor Window.

Shortcut keys Menu name Function

Ctrl + N File - New - Project Creates a new project.

Ctrl + O File - Open Opens an existing project.

Ctrl + S File - Save Saves the project being edited (overwrites current project
data).

Ctrl + Shift + S File - Save Changes to project Updates the project for the program or function block that
is being edited.
70

Shortcut Keys Section 4-5
4-5-3 Edit Operations

Alt + G File - Configuration - Edit Global Vari-
ables

Edits global variables.

Ctrl + Shift + R File - Configuration - Replace physical
addresses in programs

Replaces physical addresses in the program with global
variables specified by that physical address.

Ctrl + P File - Print Prints the specified items.

Shortcut keys Menu name Function

Ctrl + Z Edit - Undo Undoes the previously performed operation.

Ctrl + Y Edit - Redo Redoes the operation that was undone with Undo.

Ctrl + X Edit - Cut Cuts the specified range of data.

Ctrl + C Edit - Copy Copies the specified range of data.

Ctrl + V Edit - Paste Pastes the contents of the clipboard.

Delete Edit - Delete Deletes the specified range of data.

F2 Edit - Rename Used to change the name of a project, function block, pro-
gram, or configuration.

Ctrl + A Edit - Select All Selects all data in the selected window.

Ctrl + F Edit - Find Searches for a text string.

F3 Edit - Find Next Finds the next instance of a text string.

Shift + F3 Edit - Find Prev Finds the previous instance of a text string.

Ctrl + H Edit - Replace Replaces a text string.

Ctrl + B Edit - Bookmark Edits a bookmark.

Ctrl + Shift + F Edit - Find in Programs Searches for the specified item.

Ctrl + G Edit - Jump - Jump
Edit - Jump - Go To Link

Edit - Jump - Jump

• In Ladder Editor, jumps to a specified step number or
rung number.

• In ST Editor, adds the selected text as a variable.
• In Mnemonic Editor, inverts the specified instruction.

Alt + Shift + A Edit - Jump - Bit Address Reference In Ladder Editor, searches for corresponding input condi-
tions or outputs associated with the selected operand.

If an input condition is specified, a search is made back-
ward for an output with the same bit address.
If an output is specified, a search is made foreword for an
input condition with the same bit address.

Alt + Shift + N Edit - Jump - Next Operand Reference In Ladder Editor, jumps to the next operand with the same
address/variable.

Alt + Shift + I Edit - Jump - Next Input In Ladder Editor, jumps to the next input with the same
address/variable.

Alt + Shift + O Edit - Jump - Next Output In Ladder Editor, jumps to the next output with the same
address/variable.

Alt + Shift + B Edit - Jump - Previous Jump Point In Ladder Editor, returns to the position before the jump.

F8 Edit - Edit Variable Used to edit the selected instruction operand’s variable.

Ctrl + Shift + C Edit - Copy Operand Used to copy the operand only.

Shortcut keys Menu name Function
71

Shortcut Keys Section 4-5
4-5-4 Offline/Programming Operations

4-5-5 Variable Operations

4-5-6 Build Operations

Shortcut keys Menu name Function

C LD - Insert - Open Contact Inserts a NO input condition at the specified position.

/ LD - Insert - Closed Contact Inserts a NC input condition at the specified position.

W LD - Insert - Open Contact OR Inserts an ORed NO condition at the specified position.

X LD - insert - Closed Contact OR Inserts an ORed NC condition at the specified position.

O LD - Insert - Coil Inserts an output instruction at the specified position.

Q LD - Insert - Negative Coil Inserts a negative output instruction at the specified posi-
tion.

I LD - Insert - Instruction Inserts an instruction at the specified position.

F LD - Insert - Function Block Inserts a function block at the specified position.

Tab LD - Insert - Insert Line Comment Inserts a line comment at the specified position.

Ctrl + Enter LD - Rung - Select Selects a rung when using the Ladder Editor.

Ctrl + R ST - Add Variable
Mnemonic - Invert

• In ST Editor, adds the selected text as a variable.
• In Mnemonic Editor, inverts the specified instruction.

Ctrl + I Ladder - Rung - Insert Row Above Inserts an open row above the cursor position.

Ctrl + Shift + I Ladder - Rung - Insert Row Below Inserts an open row below the cursor position.

Ctrl + D Ladder - Rung - Delete Row Deletes the selected row.

Ctrl + L Ladder - Draw Line Switches the editing mode to Draw Line Mode.

Ctrl + Shift + L Ladder - Erase Line Switches the editing mode to Erase Line Mode.

Ctrl + →/ ←/↑/↓ --- In a ladder program, draws a line with the cursor position
as a starting point.

Ctrl + Shift + →/ ←/
↑/↓

--- In a ladder program, deletes a line with the cursor posi-
tion as a starting point.

/ Ladder - Invert (NOT) Inverts the specified instruction.

Ctrl + E Ladder - Online Edit - Begin Starts online editing.

Ctrl + U Ladder - Online Edit - Cancel Cancels online editing.

Ctrl + Shift + E Ladder - Online Edit - Finish Ends online editing.

Shortcut keys Menu name Function

Ctrl + G Variable - Group Input/Output Variables
- Group

In Variable Editor or Global Variable Editor, groups the
selected I/O variables.

Ctrl + Shift + G Variable - Group Input/Output Variables
- Release Group

In Variable Editor or Global Variable Editor, ungroups all
of the I/O variables in the group.

Ctrl + Shift + M Variable - Group Input/Output Variables
- Release Member

In Variable Editor or Global Variable Editor, removes the
selected member from the group.

Ctrl + E Variable - Rename Changes the group name.

Ctrl + ↑ Variable - Up Shifts the function block’s selected input variable or out-
put variable up one position in the Variable Editor.

Ctrl + ↓ Variable - Down Shifts the function block’s selected input variable or out-
put variable down one position in the Variable Editor.

Shortcut keys Menu name Function

Ctrl + F7 Build - Compile Compiles the active program or function block.

F7 Build - Build Builds the project.
72

Option Settings Section 4-6
4-5-7 Online/Controller Operations

4-6 Option Settings
This menu contains various settings for NE Programmer displays and opera-
tions.

Select Tool - Option. The following Integrated Options Dialog Box will be dis-
played.

Shortcut keys Menu name Function

Ctrl + W Controller - Connect Connects to the Controller.

Ctrl + Shift + W Controller - Disconnect Disconnects from the Controller.

Ctrl + Shift + A Controller - Auto upload from Controller Automatically uploads from the connected Controller.

Ctrl + Shift + T Controller - Upload from Controller Uploads from a Controller.

Ctrl + T Controller - Download to Controller Downloads to a Controller.

Ctrl + 1 Controller - Operating Mode - Program Switches the Controller to PROGRAM mode.

Ctrl + 3 Controller - Operating Mode - Monitor Switches the Controller to MONITOR mode.

Ctrl + 4 Controller - Operating Mode - Run Switches the Controller to RUN mode.

Ctrl + M Controller - Monitor Starts monitoring.

F4 Controller - Clear Error Clears errors.

Ctrl + J Controller - Set - Force On Force-sets (forces ON) a bit.

Ctrl + K Controller - Set - Force Off Force-resets (forces OFF) a bit.

Item Description

General Sets general displays and operation for the NE Programmer.

Outline Sets display items in the Outline Window and timing linked with the
ladder editor.

Variable Specifies which variable properties will be displayed.

Ladder Specifies whether variable names, physical addresses, and com-
ments will be displayed/hidden in the Ladder Editor, and how many
lines will be displayed. Displays/hides grid lines, sets fonts, cell
widths, and colors for items in the Ladder Editor.

Specifies whether instance names will be generated automatically.

Mnemonic Specifies whether values, comments, addresses, and data types
will be displayed/hidden in the Mnemonic Editor.

ST Sets the font properties and colors of items in the ST Editor.

Library Specifies whether to edit local variables when rung elements are
inserted. Also specifies whether prefixes are added to global vari-
ables when using the library’s POUs.

Program Check Sets the program check level.

Data Trace Sets the colors of items in the data trace display.
73

Option Settings Section 4-6
4-6-1 General Window

Index Variable

Select this option to permit writing (i.e., PV changes, force-setting/resetting,
and setting/resetting) array variable elements with a variable index, e.g., A[i].

Note An array variable’s index value is based on the index value the last time that
the value was monitored, so a write operation may operate on a different array
element if the variable’s index value was changed since the last write opera-
tion.

I/O Address Display

If I/O Units are allocated in I/O tables, the corresponding I/O bits will be dis-
played in the ladder window with I/O addresses.
Set whether to display the I/O address and the display format.
No display: The I/O address will not be displayed.
Display IQ: The I/O address will be displayed with “I” for inputs and “Q” for out-
puts.
Display XY: The I/O address will be displayed with “X” for inputs and “Y” for
outputs.

To Lower Layer/To Upper Layer

Select this option to automatically search for function block instance variables
(default: enabled). If this option is disabled, the automatic variable search
function will not operate.
74

Option Settings Section 4-6
4-6-2 Outline
Display Tab Page

View Items

Select the items to display in the Outline Window: Comments, Function
Blocks, Outputs, Libraries, Interlocks, END, Step No.

Reset All

Use this button to reset all view item settings. (The settings will be as shown in
the above figure.)

Operation Tab Page

Linkage to a Program Editor

Select the timing for linking to the Program Editor.

Reset All

Use this button to reset all settings. (The settings will be as shown in the
above figure.)
75

Option Settings Section 4-6
4-6-3 Variable Window

Usage

Select the variable type: Internal, Global, System, Input, Output, External, or
System External.

View Items

Select the variable properties to be displayed in the Variable Editor Window.
(Different properties can be set for each variable type.)

Names, Usage, Data Type, Addresses, Initial Values, Retain Settings,
Comments, Network I/O Setting, Network Variables

In the following example, the Usages, Data Types and Comments Options
have been selected.
76

Option Settings Section 4-6
4-6-4 Ladder Window
Display Tab Page

Variables

Show Variable Name:
Select this option to display the variable names. The style of the variable
name display can be selected.

Variable Name Display Style:

• Omit Head
If all of the variable name cannot be displayed, select this option to display
only the last part of the variable name.

• Omit Tail
If all of the variable name cannot be displayed, select this option to display
only the first part of the variable name.

Physical Addresses

Show Physical Addresses:
Select this option to display the physical addresses in addition to variable
names (default: OFF). A physical address will be displayed, however, if it is
directly specified to the bit. The number of lines of physical addresses can be
set.

Comments

Show Variable Comments:
Select this option to display the variable comments. The number of lines of
variable comments can be set.

Show Instruction Comments:
Select this option to display the instruction comments. The number of lines of
instruction comments can be set.

Comment Display Style:

• Omit Head
If all of the comment cannot be displayed, select this option to display only
the last part of the comment.

• Omit Tail
If all of the comment cannot be displayed, select this option to display only
the first part of the comment.
77

Option Settings Section 4-6
Font

Click the Font Button to set the font used in the Ladder Editor.

Cell Width: Sets the width of cells in the Ladder Editor in pixels.
Show Rung Number and Program Address: Clear this option to increase the
ladder display width by not displaying the rung number or step number.
Show Instruction Description: Clear this option to not display descriptions of
special instructions.

Show Grid: Clear this option to hide the Ladder Editor’s grid.

Print Tab Page

Contains the same settings as the Display Tab Page.

Color Tab Page

The colors can be selected for the following Ladder Editor items. The Preview
Area displays an example of the selected colors.

Internal Variable, Input Variable, Output Variable, Global Variable, External
Variable, System Variable, Variable Comment, etc.
78

Option Settings Section 4-6
Change

Click the Change Button to set the color. The Set Color Dialog Box will be dis-
played. Set the colors for the selected Ladder Editor items.

Edit Tab Page

Create function block instances automatically

Select this option to automatically generate the instance name when a func-
tion block is pasted in the program. (The instance name is the function block
name with a consecutive number attached.)

Input Mode

Select the input mode to be used when editing bits and special instructions.
Mnemonic Input Mode: Mode for directly inputting mnemonics in the ladder
display. With this mode, input characters are automatically added as internal
variables. The timing for automatic addition can be set to either of the follow-
ing two options.

In editing:
The input variable name is automatically added as an internal variable when-
ever editing is performed.

In online editing:
The input variable name is automatically added as an internal variable when
editing is performed online.

One-key Input Mode: Mode for starting input by using shortcut keys assigned
to bits and instructions. Defaults include the following: C Key: LD Instructions,
O Key: OUT instructions, I Key: Special Instructions. Input addresses are
automatically added as global variables. (This is the default input mode.)

Note The shortcut keys can be changed as desired in the Key Customize
Window by selecting Tool - Key Customize.

In comment inputting: Support Option for Converting to Physical Addresses to
use support for converting to physical addresses (default: disabled). When a
physical address is directly input in the ladder editor, this function is used to
automatically generate the AT-specified global variable of that address and the
corresponding external variable. It is not possible to use this function, how-
ever, if the configuration is not already created in the project.
79

Option Settings Section 4-6
Mouse Tab Page

Wheel

Set the amount to scroll for each notch on the mouse wheel.
Roll the wheel one notch to scroll: Input the number of lines to scroll for each
notch (default: 1).
Use the Control Panel setting: Use the setting for amount of scrolling in the
Control Panel.

4-6-5 Mnemonic Window

Display Tab Page

Select the following items to be displayed in the Mnemonic Editor.

Values, Comments, Addresses, and Data Type
80

Option Settings Section 4-6
4-6-6 ST Window
Display Tab Page

Font

Click the Font Button to set the font used in the ST Editor.

Color Tab Page

The colors can be selected for the following ST Editor items. The Preview
Area displays an example of the selected colors.

Text, Background, Error Line, Warning Line, Error Line Text, Warning Line
Text, Comment, Keyword, Fixed String, Line Feed, End of File, Function,
Function Block Instance, and Variable Name

Change

Click the Change Button to set the color. The Set Color Dialog Box will be dis-
played. Set the colors for the selected ST Editor items.
81

Option Settings Section 4-6
Edit Tab Page

Perform settings for editing operations using the ST Editor.

Use Auto-indent

Select this option to automatically indent when performing a line feed while
editing programming using the ST Editor (default: enabled).

Tab Length

Set the tab length to be used when the Tab Key is used while editing program-
ming using the ST Editor. Select one of the following options: Two-character,
Four-character, or Eight-character (default: Eight-character).

4-6-7 Library Window

Edit local variable names when inserting rung part

When this option is selected, the Edit Local Variables Dialog Box will be dis-
played when one of the library’s rung elements is dragged and dropped into
the program.
82

Option Settings Section 4-6
Display a global variable edit dialog box when adding to a project

When this option is selected, the Add Prefix/Suffix Dialog Box will be dis-
played and a prefix and suffix will be added to all global variables in a POU
when a library POU is added to a project.

4-6-8 Program Check Window

Check Level

The program check level can be set to Level A (default setting), Level B, or
User Definition. If level A is selected, a stricter program check will be per-
formed. (Refer to the following table.)

The check items can be customized by selecting User Definition. (Refer to the
following table for check items.)

• Select whether to perform the check by selecting the check item in the list.

• Select either Error or Warning as the error notification.

• If the Reset All Button is pressed, the levels will be set to level A.

Note Check items cannot be selected and “error” or “warning” cannot be
specified if level A or level B is selected.

Level A

Check item Normal POUs Function block
POUs

Compiling Building Compiling Building

Duplicate CNT number Check Yes Yes Yes Yes

Duplicate TIM number Check Yes Yes Yes Yes

Duplicate FAL/FALS Check Yes Yes Yes Yes

Check Duplicate Bit Output and
Channel Output

Yes Yes Yes Yes

Check only the Duplicate Bit Output No No No No

Duplicate FB Instance Variable Check Yes Yes Yes Yes

Coil without contact No No No No

Contact without coil No No No No

Check that auto-allocation area is not
used

Yes Yes Yes Yes

Check FOR/NEXT Instructions Yes Yes Yes Yes
83

Option Settings Section 4-6
Level B

User Definition Execution/non-execution of check items and error notification settings (either
ERROR or WARNING) can be configured.

For details, refer to Tool - Option, Program Check.

Check the following of END Instruc-
tions

Yes Yes No No

Check IL-ILC Instructions Yes Yes Yes Yes

Check JMP/JME Instructions Yes Yes Yes Yes

Check the Auto-variables Yes Yes Yes Yes

Check operand size and variable type Yes Yes Yes Yes

Check operand size and array length
when the element number is 0

No No No No

Check the unused FB instance vari-
ables

Yes Yes Yes Yes

Check item Normal POUs Function block
POUs

Compiling Building Compiling Building

Check item Normal POUs Function block
POUs

Compiling Building Compiling Building

Duplicate CNT number Check No No No No

Duplicate TIM number Check No No No No

Duplicate FAL/FALS Check No No No No

Check Duplicate Bit Output and
Channel Output

No No No No

Check only the Duplicate Bit Output No No No No

Duplicate FB Instance Variable Check No No No No

Coil without contact No No No No

Contact without coil No No No No

Check that auto-allocation area is not
used

Yes Yes Yes Yes

Check FOR/NEXT Instructions Yes Yes Yes Yes

Check the following of END Instruc-
tions

Yes Yes No No

Check IL/ILC Instructions Yes Yes Yes Yes

Check JMP/JME Instructions Yes Yes Yes Yes

Check the Auto-variables Yes Yes Yes Yes

Check operand size and variable type Yes Yes Yes Yes

Check operand size and array length
when the element number is 0

No No No No

Check the unused FB instance vari-
ables

Yes Yes Yes Yes
84

Option Settings Section 4-6
4-6-9 Data Trace Window
Bit Area Colors Tab Page

The colors can be selected for the following items in the data trace bit area.
The Preview Area displays an example of the selected colors.

Variable/Address, Value, Background, Grid Line, Graph

Change

Click the Change Button to set the color. The Set Color Dialog Box will be dis-
played. Set the colors for the selected data trace bit area items.

Word Area Colors Tab
Page

The colors can be selected for the following items in the data trace word area.
The Preview Area displays an example of the selected colors.

Variable/Address, Area 1, Area 2, Area 3, Area 4, Area 5, Area 6, Back-
ground, Grid Line

Change

Click the Change Button to set the color. The Set Color Dialog Box will be dis-
played. Set the colors for the selected data trace word area items.
85

Option Settings Section 4-6
86

SECTION 5
Programming

This section provides details on programming.

5-1 Overview . 89

5-1-1 Basic Flow of Programming . 89

5-2 Creating Projects and Logical POUs . 90

5-2-1 Creating Projects. 90

5-2-2 Creating Logical POUs (Programs or Function Blocks) 90

5-2-3 Saving Edited Data in the Project . 92

5-2-4 Saving the Project . 92

5-2-5 Changing the Controller Series. 92

5-3 Programming Methods . 94

5-3-1 Ladder Diagrams . 94

5-3-2 List of Inputs for Instructions . 108

5-3-3 Inputting Bit and Word Addresses . 109

5-3-4 Inputting Constants. 110

5-3-5 Inputting Operand Numbers . 110

5-3-6 Converting Specified Physical Addresses to Variables. 111

5-3-7 Support for Converting to Physical Addresses 111

5-3-8 Programming in Standard Text Language . 116

5-4 Creating Function Blocks and Pasting Them into Programs 120

5-4-1 Creating Function Blocks . 120

5-4-2 Programming a Function Block . 121

5-4-3 Pasting Function Blocks into Programs . 123

5-4-4 Editing the Function Block Body after Pasting 126

5-4-5 Moving to the Function Block Body (Internal) 127

5-5 Read Protection for Logical POUs . 127

5-6 Creating Configurations and Assigning Programs to Tasks 129

5-6-1 Creating a Configuration . 129

5-6-2 Creating and Editing Global Variables . 131

5-6-3 Pasting Programs into Tasks . 133

5-6-4 Checking External Variables for Consistency 134

5-7 Editing Comments. 136

5-7-1 Overview. 136

5-7-2 Inputting Variable Comments . 137

5-7-3 Inputting Instruction Comments . 137

5-7-4 Inputting Line Comments . 137

5-8 Search/Replace Function. 138

5-8-1 Overview. 138

5-8-2 Searching Programs . 138

5-8-3 Search/Replace/Jump Operations in the Ladder Editor 139

5-8-4 Search/Replace Operations in the Variable Editor 141
87

5-9 Cross Reference Function . 142

5-9-1 Overview . 142

5-9-2 Cross Reference Pop-up Window Displays and Operations 142

5-10 Using the Library. 142

5-10-1 Overview . 142

5-10-2 Displaying the Library Window . 143

5-10-3 Registering Logical POUs in the Library . 144

5-10-4 Registering Rung Groups in the Library . 145

5-10-5 Registering Folders in the Library. 146

5-10-6 Using the Library . 147

5-10-7 Transferring Library Items for the NE1S to CJ2. 149

5-11 Outline Window. 150

5-11-1 Outline Window . 150

5-11-2 Displaying the Outline Window . 150

5-12 Building and Compiling Programs . 150

5-12-1 Building and Compiling . 150

5-12-2 Building. 151

5-12-3 Compiling . 151

5-12-4 Level Settings for Program Check . 151

5-12-5 Detailed Build Information . 151

5-13 Importing and Exporting . 153

5-13-1 Overview . 153

5-13-2 Importing Mnemonics . 153

5-13-3 Importing and Exporting Variables . 154

5-14 Printing . 156

5-14-1 Page Setup . 156

5-14-2 Printing . 156

5-14-3 Print Preview . 156
88

Overview Section 5-1
5-1 Overview

5-1-1 Basic Flow of Programming

Note The configuration can be created and the global variables can be edited
before the logical POUs (programs and function blocks) are created.

4. Saving edited data in project. File - Save Changes to project

6. Creating a configuration. File - New - Configuration

7. Editing global variables.

↓

↓

↓

↓

↓

↓
5. Creating function blocks and pasting them into programs.

Creating function blocks and then dragging and dropping them into programs.

9. Saving the project. File - Save As

↓

↓

See note.

1. Create a project. File - New - Project

2. Create logical POUs (programs or function blocks). File - New - POU

3. Programming in ladder diagrams or standard text and
registering/editing variables with local variable editor.

8. Pasting programs into tasks.
Dragging and dropping programs into task folders.

5-2-1

5-2-2

5-3

5-2-3

5-4

5-6-1

5-6-2

5-6-3

5-2-4

Reference
89

Creating Projects and Logical POUs Section 5-2
5-2 Creating Projects and Logical POUs
Before actual programming, a project and logical POUs must be created.

5-2-1 Creating Projects
Use the following procedure to create a project.

1,2,3... 1. Right-click the Workspace in the Project Window and select Create
Project. Alternately, press the Ctrl+N Keys or select File - New - Project.
The following New Dialog Box will be displayed.

2. Select either a CJ2 CPU Unit or an NE1S-series CPU Unit. The restrictions
on programs that can be created and instructions that can be used depend
on the series of the CPU Unit. Therefore, strict restrictions apply to chang-
ing the series of the CPU Unit after the project has been created. It is not
possible to convert from a project for a CJ2 CPU Unit to a project for an
NE1S-series CPU Unit.

3. Inputting the Project Name
If the name NE1S is acceptable, click the OK Button. To change the
project, input the project name and then click the OK Button.

4. The following will be displayed in the Project Window.

This completes creating a project.

5-2-2 Creating Logical POUs (Programs or Function Blocks)
Use the following procedure to create logical POUs (programs or function
blocks).

1,2,3... 1. Right-click the Logical POUs in the Project Window and select Create
POU. Alternately, select File - New - POU.
The following New Dialog Box will be displayed.

Project
90

Creating Projects and Logical POUs Section 5-2
2. Input the program name in the POU Name field.

3. For Type, select Program.

Note If Function Block is selected a new function block will be created.

4. For Language, select the desired language. Select LD to program a ladder
diagram or ST to program in standard text.

5. Click the OK Button.
The logical POUs that are created will be displayed under Logical POUs in
the Project Window. Also, a Ladder Editor and Local Variable Editor will be
displayed for the program that was created.

This completes creating a program.

6. Finally, code the program.
Refer to 5-3 Programming Methods for information on programming meth-
ods.

Note (1) By default, the Local Variable Editor will be display connected to the top
of the Ladder Editor as shown above.

(2) To hide the Local Variable Editor, select View - Variable Editor - Visible.

(3) To display the Local Variable Editor, select View - Variable Editor - Vis-
ible again.

Program

Local Variable Editor

Ladder Editor
91

Creating Projects and Logical POUs Section 5-2
5-2-3 Saving Edited Data in the Project
After coding programs or function blocks, be sure to save any data that was
edited in the program.

To save the data, select File - Save Changes to project. Alternately, press
the Ctrl+Shift+S Keys.

An alarm will be displayed if there is an error in the program. Correct the error
and then select File - Save Changes to project again.

5-2-4 Saving the Project
Use the following procedure to save the project.

1,2,3... 1. Select File - Save or File - Save As.
The Save As Dialog Box will be displayed.

2. Specify the file location and file name to save in and then click the Save
Button.
The project will be saved with an .nlx filename extension.

5-2-5 Changing the Controller Series
A project for an NE1S-series CPU Unit can be converted to a project for a CJ2
CPU Unit by changing the Controller series.

!Caution The CJ2 CPU Units do not support initial value settings for variables. If you
convert an NE1S project to a CJ2 project, any initial value settings used in the
NE1S project will be lost and must be set from the program. Also, the instruc-
tion set and execution timing are different between the NE1S-series PLCs and
the CJ2 CPU Units. After conversion, sufficiently check the user program
(e.g., ladder program) and parameters to be sure that they operate correctly
before using them for actual system operation. Always perform a program
check on the program before downloading it to the PLC.

Note A project for a CJ2 CPU Unit cannot be changed to a project for a NE1S-
series CPU Unit.
92

Creating Projects and Logical POUs Section 5-2
1,2,3... 1. Right-click to select the project in the Project Window.

2. Select Convert Series from the menu. The Convert Controller Series Di-
alog Box will be displayed. Select the type of new Controller and click the
OK Button.

3. The following dialog box will be displayed. Click the Yes button.

Next, a message box that gives the backup location of the project file be-
fore the change will be displayed. Click the OK Button.

4. The Controller series (i.e., CPU Unit Series) will be changed. Confirm that
the listing in the Project Window has changed.

Listed as "NE1S."

Listed as "CJ2."
93

Programming Methods Section 5-3
5-3 Programming Methods
This section describes how to program using ladder diagrams or standard
text, and how to edit local variables.

5-3-1 Ladder Diagrams
This section describes basic ladder programming methods. Refer to SEC-
TION 2 for details on variables and methods for inputting constants and oper-
and numbers.

Note (1) The default input mode is the insert mode. Press the Insert Key to
change to overwrite mode. The mode will switch between overwrite and
insert mode every time the Insert Key is pressed. Either INS or OVR will
be displayed in the status bar to indicate the input mode.

(2) After programming, always select File - Save Changes to project. Alter-
nately, press the Ctrl+Shift+S Keys.
An alarm will be displayed if there is an error in the program. Correct the
error and then select File - Save Change to project again. Alternately,
press the Ctrl+Shift+S Keys.

(3) Always place an END instruction at the end of each program.

Changing the Display Zoom
The display zoom can be changed by using the View Menu, shortcut keys, or
the toolbar. The display can be magnified or reduced in 20% increments from
20% to 200%.

Magnifying the Ladder Editor

Select View - Zoom In (or Alt + →).
The Zoom In Icon in the toolbar can also be clicked.

Reducing the Ladder Editor

Select View - Zoom Out (or Alt + ←).
The Zoom Out Icon in the toolbar can also be clicked.

Zooming to Fit the Window Width

Select View - Zoom to Fit (or Alt + ↑).
The Zoom to Fit Icon in the toolbar can also be clicked.

Displaying and Hiding the Grid
The Ladder Editor grid can be displayed or hidden.
Select View - Grid.

Changing the Input Mode
The input mode can be selected when bits or instructions are selected. The
two following input modes can be used.

1. Mnemonic input mode

2. One-key input mode (default)

Select Tools - Option, and perform the setting in the Edit Tab Page of the
Ladder Dialog Box that will be displayed.
94

Programming Methods Section 5-3
Assigning Keys for One-key Input
The following keys are assigned for one-key input by default.

Keys assigned for one-key input can be changed as desired by using the Key
Customization Window. Select Tool - Key Customize to access this window.

Inputting NO Conditions

Using One-key Input

1,2,3... 1. On the Ladder Editor, move the cursor to the cell where the NO condition
is to be input.

2. Press the C Key. Lowercase can also be used. All other instructions are
also not case sensitive.
The Edit Contact Dialog Box will be displayed.

3. Enter the variable name and press the Enter Key (or click the OK Button).

Example: sw01

Variable names are also not case sensitive, even though they are regis-
tered with the case that is input. Regardless of the case that is displayed,
variables are not case sensitive. Example: The following all specify the
same variable: abc, Abc, and ABC.

The Edit Contact Dialog Box will be displayed.

4. Press the Enter Key (or click the OK Button) after inputting a comment or
leaving the entry blank. In this example, the Enter Key is pressed with the
entry left blank.
95

Programming Methods Section 5-3
As shown below, a NO input condition and the variable name will be dis-
played and the cursor will move to the next cell on the right.

If the variable that was specified above is not registered in the Variable Ed-
itor, it will automatically be registered as an internal variable in the Local
Variable Editor.

Using Mnemonic Input

1,2,3... 1. On the Ladder Editor, move the cursor to the cell where the NC condition
is to be input.

2. Input ldnot(space)(variable_name) from the keyboard and then press the
Enter Key. Either ld or LD may be input. Inputs for all other instructions are
not case-sensitive.
Variable names are also not case-sensitive, even though they are regis-
tered with the case that is input. Regardless of the case that is displayed,
variables are not case-sensitive. Example: The following all specify the
same variable: abc, Abc, and ABC.

Example: ld sw01

When the Enter Key is pressed, the NO condition and variable will be dis-
played as shown below and the cursor will move to the next cell to the right.

Inputting NC Conditions

Using One-key Input

1,2,3... 1. On the Ladder Editor, move the cursor to the cell where the NC condition
is to be input.

An instruction input box will be
automatically displayed when the
instruction is input from the keyboard.
96

Programming Methods Section 5-3
2. Press the Forward Slash Key.
The Edit Contact Dialog Box will be displayed.

3. Enter the variable name and press the Enter Key (or click the OK Button).
Example: auto
The Edit Comment Dialog Box will be displayed.

4. Press the Enter Key (or click the OK Button) after inputting a comment or
leaving the entry blank. In this example, the Enter Key is pressed with the
entry left blank.

As shown below, a NC input condition and the variable name will be dis-
played and the cursor will move to the next cell on the right.

1,2,3... 1. On the Ladder Editor, move the cursor to the cell where the NC condition
is to be input.

2. Input ldnot(space)(variable_name) from the keyboard and then press the
Enter Key.

The NC condition and variable will be displayed as shown below and the
cursor will move to the next cell to the right.

Example: ldnot auto

Inputting Outputs (Coils)

Using One-key Input

1,2,3... 1. Move the cursor to the cell to the right on the input conditions of the line in
which to write the output, as indicated by the position of the cursor in the
above figure.

2. Press the O Key (i.e., letter O).
The Edit Coil Dialog Box will be displayed.

3. Enter the variable name and press the Enter Key (or click the OK Button).
Example: start
The Edit Comment Dialog Box will be displayed.

4. Press the Enter Key (or click the OK Button) after inputting a comment or
leaving the entry blank. In this example, the Enter Key is pressed with the
entry left blank.
As shown in the following figure, the output and variable name will be dis-
played on the far right, and the cursor will move to the beginning of the next
line.
97

Programming Methods Section 5-3
Using Mnemonic Input Mode

1,2,3... 1. Move the cursor to the cell to the right on the input conditions of the line in
which to input the output, as indicated by the position of the cursor in the
above figure.

2. Input outnot(space)(variable_name) from the keyboard and then press
the Enter Key. To specify a negated output condition, input as follows:
 outnot(space)(variable_name).

The output and variable will be displayed in the rightmost cell as shown be-
low and the cursor will move to the beginning of the next line.

Example: out start

Note I/O Display for I/O Bits
“I” for inputs and “Q” for outputs or “X” for inputs and “Y” for outputs can be
displayed before input bit addresses in the ladder window by selecting Display
IQ or Display XY in the Display I/O Address Field of the General Tab Page in
the Option Menu.

Inputting Special Instructions

Using One-key Input Mode

1,2,3... 1. Move the cursor to the cell to the right on the input conditions of the line in
which to input the special instruction.

2. Press the I Key.
The Edit Instruction Dialog Box will be displayed.

3. Input (special instruction)(space)(operand variable name) [(space)(oper-
and variable name)] from the keyboard, and then press the Enter Key (or
click the OK Button).
Example: mov DataNo01 Speed01

The Edit Variable Comment Dialog Box will be displayed.
98

Programming Methods Section 5-3
4. Press the Enter Key (or click the OK Button) after inputting a comment or
leaving the entry blank. In this example, the Enter Key is pressed with the
entry left blank.
As shown in the following figure, the special instruction and the operand
variable name will be displayed on the far right, and the cursor will move to
the beginning of the next line.

Using Mnemonic Input Mode

1,2,3... 1. Move the cursor to the cell to the right on the input conditions of the line in
which to input the instruction.

2. From the keyboard,
input (instruction)(space)(variable_name_of_operand)...,
repeated “(space)(variable_name_of_operand)”
for each operand required by the instruction, and then press the Enter Key.

The instructions and operand variables will be displayed in the rightmost
cell as shown below and the cursor will move to the beginning of the next
line.

Example: mov DataNo01 Speed01

Inputting Special
Instructions from the
Function Window

Special instructions can also be added to the program by dragging and drop-
ping them from the Function Window onto the Ladder Editor.

The following two display methods can be used for the Function Window.

• Categorized display (categorization)

• Alphabetical display (ascending alphabetical order)
99

Programming Methods Section 5-3
The display method can be switched by right-clicking the Instructions Tab in
the Function Window and selecting View - Classified or View - Alphabetical.

Editing Instructions

1,2,3... 1. Double-click the instruction to be edited. Alternately, right-click the instruc-
tion and select Edit Instruction. Alternately, move the cursor to the in-
struction and press the Enter Key.
The Edit Instruction Dialog Box will be displayed.

2. Double-click an operand to edit it. (Alternately, select the operand and
press the Enter Key.
A list of selections for the operand will be displayed as shown below.

• Classified • Alphabetical
100

Programming Methods Section 5-3
3. Complete editing the instruction and then click the OK Button.

Inputting Differentiated Conditions

1,2,3... 1. Input the input condition.

2. Right-click the input condition, select Transition-Sensing - Positive or
Transition-Sensing - Negative.

• Example of Positive Transition Sensing

• Example of Negative Transition Sensing

Note Input can also be made in the Details Display of the Edit Instruction
Dialog Box. In addition, an upward (positive) transition can be spec-
ified using @ + instruction and a downward (negative) transition
can be specified using the % + instruction in mnemonic input mode.

Inputting Vertical and Horizontal Lines: Line Connection Mode

Inputting Lines with the Mouse

1,2,3... 1. Click the Draw Line Icon in the toolbar to enter line connection mode.

2. Move the cursor to the starting point of the line (indicated as a light green
dot) and click the left mouse button to set the starting point.

3. Move the cursor to the end point of the line. The line to be created will be
indicated in blue.

4. Click the end point of the line.
The line will be displayed.
101

Programming Methods Section 5-3
To leave line connection mode, click the Select Icon.

Inputting Lines from the Keyboard

1,2,3... 1. Move the cursor to the starting point for the line and then press the Ctrl+L
Keys.

2. Move the cursor to the end point of the line using the cursor keys. The line
to be created will be indicated in blue.

3. Press the Ctrl+L Keys at the end point for the line.
The line will be displayed.

Deleting Vertical and Horizontal Lines: Line Deletion Mode

Deleting Lines with the Mouse

1,2,3... 1. Click the Erase Line Icon in the toolbar to enter line deletion mode.

2. Move the cursor to the starting point of the line to be deleted (indicated as
a light green dot) and click the left mouse button to set the starting point.

3. Move the cursor to the end point of the line to be deleted. The line to be
deleted will be indicated in gray.

4. Click the end point of the line to be deleted.
The line will be deleted.
102

Programming Methods Section 5-3
To leave line deletion mode, click the Select Icon.

Deleting Lines from the Keyboard

1,2,3... 1. Move the cursor to the starting point for the line and then press the
Ctrl+Shift+L Keys.

2. Move the cursor to the end point of the line using the cursor keys. The line
to be deleted will be indicated in gray.

3. Press the Ctrl+Shift+L Keys at the end point for the line.
The line will be deleted.

Deleting Instructions and Lines
Instructions and lines can be deleted by pressing the Backspace or Delete
Key in the same way as for standard text editors or word processors.

Lines can also be deleted in line deletion mode. Refer to Deleting Vertical and
Horizontal Lines: Line Deletion Mode for the procedure.

Registering and Editing Local Variables

Registering Variables When a logical POU (program or function block) is created, a Local Variable
Editor will be displayed for each one. Variables can be registered or edited in
the Local Variable Editor using either of the following methods.

1,2,3... 1. Inputting Instructions First: As shown above under Inputting NO Condi-
tions, if a new variable is specified as an operand when inputting an in-
struction, the variable will be registered as an internal variable in the Local
Variable Editor. If necessary, the parameters of these variables can later
be edited in the Local Variable Editor. (Refer to Editing Variables later in
this section.)

2. Entering Variables in Variable Editor First: The Edit Variables Dialog Box
can be displayed by right-clicking in the Local Variable Editor and selecting
Add (or alternately by double-clicking the table) to enable registering vari-
ables in the Local Variable Editor. Refer to Editing Variables later in this
section for information on the Edit Variable Dialog Box.
The variables that were registered can then be input for operands when in-
putting instructions.

Editing Variables This section describes methods for editing variables and variable parameters.

■ Displaying the Local Variable Editor

If the Local Variable Editor is not displayed, double-click the program name or
function block name in the Project Window.

The Local Variable Editor and Ladder Editor will be displayed.

If the Local Variable Editor is still not displayed, select View - Variable Editor
- Visible.
103

Programming Methods Section 5-3
■ Editing Variable Parameters

1,2,3... 1. Double-click the variable to be edited. Alternately, right-click the instruction
and select Edit. The Edit Variables Dialog Box will be displayed.

2. To edit other parameters, double-click the parameter to be edited.
For local variables, physical addresses can be directly input in the Address
Field of the Edit Variables Dialog Box.

3. Edit the parameter.

4. When all editing has been completed, click the OK Button.
Variable parameters are given in the following table.

Double-click the parameter
to edit. Parameters with the
following mark cannot be
edited:

Variable Parameter Description Values

Variable name Displays the name of the variable being edited.
The name of the variable can also be changed.

Refer to 2-2-1 Naming Variables for details.

Data Type Set the data type of the variable. BOOL, INT, UINT, DINT, UDINT, WORD,
DWORD, TIMER, COUNTER, STRING, REAL,
or user-defined
For a function block, the name of the logical
POU of the function block will be displayed.

Array Size Set the number of elements for a one-dimen-
sional array or a two-dimensional array. Two-
dimensional arrays can be set only for CJ2 CPU
Units.

When not specifying an array, leave this settings
blank for both a one-dimensional and two-
dimensional array.
When specifying a one-dimensional array, set
the number of array elements for a one-dimen-
sional array and leave the setting for a two-
dimensional array blank.

When specifying a two-dimensional array, set
the number of array elements for a two-dimen-
sional array and leave the setting for a one-
dimensional array blank.
*A two-dimensional array cannot be specified for
the NE1S.

*Refer to 2-2-3 Variable Properties for other
restrictions on elements.

Size Displays the size used by the variable in the
memory.

104

Programming Methods Section 5-3
Note (1) When the Cross Reference Pop-up Window has been displayed (by se-
lecting View - Window - Cross Reference Tool), a variable’s cross ref-
erence information (program address, instruction name, program name,
etc.) can be displayed just by selecting that variable in the Variable Editor.

(2) Refer to 2-2 Variables for detailed variable specifications.

■ Inserting Variables

1,2,3... 1. Right-click the line at which to insert a variable and select Insert from the
pop-up menu. Alternately, double-click an empty row.
The Edit Variables Dialog Box will be displayed.

2. Set the parameters of the Variable and then click the OK Button.
The variable will be inserted.

■ Deleting Variables

1,2,3... 1. Select the variable to be deleted and press the Delete Key.

2. A dialog box will appear to confirm the deletion. Click the Yes Button.
The variable will be deleted.

Specifying Arrays
Arrays can be used to handle an array as a group of data elements with the
same properties. To create an array variables, set the Array Size in the Edit
Variables Dialog Box to a value between 1 and 255.

• Arrays can be specified for internal variable (VAR), input variables
(VAR_INPUT), output variables (VAR_OUTPUT), or external variables
(VAR_EXTERNAL).

• With NE1S-series CPU Units, only one-dimensional arrays can be cre-
ated. With CJ2 CPU Units, one-dimensional and two-dimensional arrays
can be created.

Initial Value For programs, set the initial value of the variable
when program execution is started. For function
blocks, set the value of the variable when an
instance of the function block is executed.

Note The initial values of variables cannot be
set for CJ2 CPU Units.

Set the initial value of the variable according to
the data type.

• BOOL, WORD, or DWORD: Unsigned hexa-
decimal Input the number after “16#”.

• INT or DINT: Signed decimal Input the number
after “+10#” or “−10#”.

• UINT or UDINT: Unsigned decimal Input the
number after “10#”.

• REAL: Real number
(e.g., +1.0, −0.23, +9.8E-3)

• STRING: Character string, e.g., “Data”

Address This property cannot be changed for local vari-
ables.

Network Variable This property cannot be changed for local vari-
ables.

Always Enabled.

Network I/O Setting This property cannot be changed for local vari-
ables.

Always None.

Retain/Nonretain Specify whether to maintain the value of the
variable when power is turned OFF and ON, and
when operation is started.

Retain or Nonretain

Comment Input a comment for the variable. 256 characters max.

Variable Parameter Description Values
105

Programming Methods Section 5-3
• When specifying the name of an array variable in a program, the index
must be placed in brackets after the variable name (example: ARRAY[0]).
Refer to 2-2-5 Array Elements (Array Specification) for details on using
indices.

Use the following procedure to specify an array variable.

1,2,3... 1. Add a variable in the Variable Editor. Alternately, double-click an empty
row. To edit an existing variable, double-click the variable to be edited.
The Edit Variables Dialog Box will be displayed. Click the Array Size Row.
The dialog box for setting the number of elements for one-dimensional and
two-dimensional arrays will be displayed.

2. Set the 1st Dimension Field and 2nd Dimension Field to a number from 1
to 9 and click the OK Button. The variable will be defined as an array as
shown in the following figure. In this example, the numbers of array ele-
ments are set to 2 and 3.

The variable will be one-dimensional if no entry is made in the 2nd Dimen-
sion Field.

Creating Data Structures
A data structure is a variable consisting of elements with different data types
that are treated as a single variable. The user can define data structures as
required. The variable name and element names can be specified for specific
elements.

Use the following procedure to create a data structure.

Inserting a Data Structure

1,2,3... 1. Double-click Data Types in the Workspace.

Input variable name.

Double-click to change
data type.

Click here and then enter the
number of array elements. For the
NE1S, only a one-dimensional
array can be set. A two-
dimensional array cannot be set.
For the CJ2, a one-dimensional or
two-dimensional array can be set.
106

Programming Methods Section 5-3
The Data Structure Table will be displayed. All data structures that are cur-
rently registered will be displayed in the Data Structure Table.

2. Right-click the last line (where nothing is registered) and select Insert -
Struct.
The Edit Structure Dialog Box will be displayed.

3. Input the name of the structure and any comment that is required and then
click the OK Button.

The data structure will be inserted as a data type and displayed as shown
below.

Double-click here.
107

Programming Methods Section 5-3
Inserting Elements

1,2,3... 1. Right-click the data structure that was added (Positioning01 in the above
example) and select Insert - Element.
The Edit Element Dialog Box will be displayed.

2. Input the name of the element, the data type, the array size (if required),
and any comment that is required and then click the OK Button.

Note If an array size is specified, the element will be defined as an array
inside the data structure.

The element will be inserted and displayed as shown below.

3. Repeat the above steps to add other elements.

Setting Example

Grouping Variables
Input variables (VAR_INPUT) or output variables (VAR_OUTPUT) can be
grouped for function block to display a group name for the inputs or outputs.
Refer to page 121 in 5-4-2 Programming a Function Block for details.

5-3-2 List of Inputs for Instructions
Use the following keys to input execution conditions.

Use the following inputs to specify instructions.

Spaces are indicated by @.

Key Execution condition

@ Upward differentiation

% Downward differentiation

! Immediate refreshing

Instruction Input

LD LD@ variable_name

OR OR@ variable_name

AND AND@ variable_name

LDNOT LDNOT@ variable_name
108

Programming Methods Section 5-3
Refer to 5-3-4 Inputting Constants and 5-3-5 Inputting Operand Numbers for
the methods for inputting constants and operand numbers.

5-3-3 Inputting Bit and Word Addresses
The inputs used to specify bit and word addresses are listed in the following
table.

Refer to 5-3-4 Inputting Constants and 5-3-5 Inputting Operand Numbers for
the methods for inputting constants and operand numbers.

ORNOT ORNOT@ variable_name

ANDNOT ANDNOT@ variable_name

OUT OUT@ variable_name

OUTNOT OUTNOT@ variable_name

!LD ! LD@ variable_name

!AND ! AND@ variable_name

!OR ! OR@ variable_name

!LDNOT ! LDNOT@ variable_name

!ANDNOT ! ANDNOT@ variable_name

%LD % LD@ variable_name

%AND % AND@ variable_name

%OR % OR@ variable_name

!@LD ! @ LD@ variable_name

!@AND ! @ AND@ variable_name

!@OR ! @ OR@ variable_name

!%LD ! % LD@ variable_name

!%AND ! % AND@ variable_name

!%OR ! % OR@ variable_name

!OUT ! OUT@ variable_name

!OUTNOT ! OUTNOT@ variable_name

TIMER (TIMX) TIMX@timer_number@10# set_value or 16#
set_value

COUNTER (CNTX) CNTX@counter_number@10# set_value or 16#
set_value

Special Instructions executed each
scan

instruction@operand@operand@operand

Upwardly differentiated instruc-
tions

@ instruction@operand@operand@operand

Downwardly differentiation instruc-
tions

% instruction@operand@operand@operand

Immediate refresh instructions ! instruction@operand@operand@operand

Instruction Input

Area Bit address Word address

CIO Area bit-address word-address

Work Area (word
bits)

Wbit-address Wword-address

Holding Area Hbit-address Hword-address

Auxiliary Area Abit-address Aword-address

Timer Area Ttimer_number Ttimer-number

Counter Area Ccounter-number Ccounter-number

Task Area TKtask-number ---

DM Area --- Dword-address
109

Programming Methods Section 5-3
5-3-4 Inputting Constants
When inputting a constant in the following cases, always include the prefix
code corresponding to the data type (16#, 10#, or -10# for integers, or deci-
mal point or @E@ for real numbers).

• Inputting an instruction operand (other than timer/counter number inputs)

• Inputting I/O memory data

• Inputting a constant for an initial value

• Inputting function block parameters

Unsigned Hexadecimal:
Input 16#

Input the prefix 16# before a hexadecimal constant.
For example, input “16#1A” to input the hexadecimal value 1A.

Positive or Zero Decimal:
Input 10#

Input the prefix 10# before a positive decimal constant (or 0).
For example, input “10#123” to input the decimal value 123.

Negative Decimal:
Input -10#

Input the prefix -10# before a negative decimal constant.
For example, input “-10#123” to input the decimal value -123.

Real Number: Decimal or
@E@

Real numbers can be input with decimal points or as @E@. For example, the
input “-0.123” or “-1.23E-1” is acceptable.

To input a fixed character
string, insert it between
single quotation marks (').

Example: 'abcdefg'

Binary (ST Program Only):
Input 2#

Binary numbers can be input in ST language only. Input the prefix 2# before a
binary constant.
For example, input “2#010” to input the binary value 010.

Octal (ST Program Only):
Input 8#

Octal numbers can be input in ST language only. Input the prefix 8# before an
octal constant.
For example, input “8#10” to input the octal value 10.

!Caution If a number is input without a 16#, 10#, or -10# prefix code, it is treated as a
word address in the CIO Area.
For example, an input of “100” specifies CIO 0100 in the CIO Area.

5-3-5 Inputting Operand Numbers
Inputting Timer/Counter
Numbers

Input timer and counter numbers (and only these numbers) as a plain decimal
value without a 10# prefix code. (A prefix such as 16# or 10# cannot be input.)

For example, to enter a timer with timer number 2 and decimal SV of 200,
input TIMX 2 10#200.

EM Area --- Eword-address

Indirect address in
DM Area

--- @Dword-address

Indirect address in
EM Area

--- *E0_word-address
@E0_word-address,

Constants --- 10# +number16# +number, etc.

Data Register Area --- DRaddress

Index Register Area --- IRaddress

Indirect address in
Index Register Area

--- ,IR* ,IR*+ ,IR*++ ,−IR* ,−−IR*DR*,
IR* XXXX, IR*

Area Bit address Word address
110

Programming Methods Section 5-3
Inputting Jump Numbers Always input jump numbers with a 16# or 10# prefix code. If the prefix is omit-
ted, the number indicates a CIO Area word address and the content of that
address is used as the jump number.

For example, to enter a JMP instruction with jump number 2, input JMP 10#2
or JMP 16#2. (If JMP 2 is input, the content of CIO 0002 is used as the jump
number.)

Inputting Task Numbers Always input a decimal task numbers with the 10# prefix code. (A prefix code
of 16# cannot be used.) If the prefix is omitted, the number indicates a CIO
Area word address and the content of that address is used as the task num-
ber.

For example, to enter a TASK ON instruction with task number 3, input TKON
10#3. (If TKON 3 is input, the content of CIO 0003 is used as the task num-
ber.)

5-3-6 Converting Specified Physical Addresses to Variables
If a ladder program was created with physical addresses instead of variable
names and global variables for the physical addresses were added later, the
physical addresses in the program can all be converted to global variables at
once. In that case, global variables will be automatically added to external
variables.

Example Application:
This function is useful when a program is created first with physical addresses
and then corresponding variable names are later assigned altogether.

Note (1) If there is a physical address duplication error (build error), the conversion
will not be performed because the replacement global variable cannot be
determined.

(2) A global variable will not be replaced if there is another kind of variable
(local variable in the ladder program or external variable) with the same
name as the global variable.

Procedure

1,2,3... 1. Select File - Configuration - Replace physical addresses in programs
or right-click a Global Variables in the Project Window and select Replace
physical addresses in programs from the popup menu.

A dialog box will be displayed to confirm that the physical addresses in the
program will be replaced by the specified variables. Click the OK Button to
continue.

2. A message box for confirmation will be displayed. Click the OK Button.

3. The Find Tab of the Output Window will show the progress of the conver-
sion (replacing or completed).

5-3-7 Support for Converting to Physical Addresses
This function automatically creates an AT-specified global variable for a physi-
cal address when a physical address is input for an input condition or output
bit and then converts it to a corresponding external variable.
111

Programming Methods Section 5-3
If the physical address is directly input into the Ladder Editor and then a com-
ment is input, the variable will be automatically created.

It is also possible at the same time to input comments during continued oper-
ation by inputting or selecting a variable in the Ladder Editor and pressing the
Enter Key.

Enabling Support for Converting to Physical Addresses
The following settings must be made in Option Settings to enable support for
converting to physical addresses.

• Select the One Key Input Mode Option in the Input Mode Field on the Edit
Tab Page of the Ladder Window and select the In comment inputting
Option (default: OFF).

The following precautions apply to using this function.

• To use this function, there must be a configuration.

• The network variable conversion attribute (described below) of the vari-
able being created must be set to disable network variable conversion.

• It may not be possible to automatically create variables if there are vari-
ables with the same name but different data types.

Automatically created variables can be checked in the Variable Editor.

!Caution Support for converting to physical addresses is achieved by inputting a com-
ment. If a comment is not input, variables will not be automatically created
even if the settings have been made and the necessary conditions have been
met. If a physical address is created without a comment, however, variables
can be created automatically if a comment is input later.

Automatically Created Variable Names
The following variable names are created automatically.

Word Addresses “_address_”

An underscore character is inserted before and after the physical address.

Example: _D10000_, _E0_10000_

Bit Addresses “_wordaddress_bitaddress_”

An underscore character is inserted before and after the physical address and
also between the word address and bit address.

Example: _0000_12_, _A100_15_

Variables that are automatically created from physical addresses cannot be
accessed externally.

Note Physical addresses may remain unchanged if variables cannot be
automatically generated due to mismatching data types with exter-
nal variables of the same name.

Input Procedure Example

Using Bit Address
Variables

There are two input methods. (The differences are given in step 3.)

1,2,3... 1. In the Ladder Editor, right-click and select an instruction from the Insert
Menu. (In this example, a normally open condition is selected.)
112

Programming Methods Section 5-3
2. Enter a variable name in the Edit Contact Dialog Box. (In this example, 0.0
is entered.)

• Press the Enter Key to input a comment.

3. Press the Enter Key. The Edit Variable Comment Dialog Box will be dis-
played. Enter a comment and click the OK Button.

• Enter a comment with the Edit Button.

3. Click the Edit Button.

Detailed settings will be displayed in the Variable Area and elsewhere. En-
ter a comment and click the OK button.

4. Automatically created variable names and input comments will be dis-
played in the Variable Editor and Ladder Editor.

!Caution The Edit Variable Comment Dialog Box will not be displayed when the Enter
Key is pressed in step 2 if the In comment inputting Option has not been
selected on the Edit Tab Page in Option Settings of the Ladder Window. In the
same way, the Comments Option in the Variable Area will not be enabled, and
it will not be possible to edit comments.
113

Programming Methods Section 5-3
Converting Word
Addresses to Variables

There are two input methods. (The differences are given from step 2.)

1,2,3... 1. In the Ladder Editor, right-click and select an instruction from the Insert
Menu. (In this example, Instruction is selected and MOV is input.)

• Press the Enter Key to input a comment.

2. Press the Space Key.
The Edit Operand Dialog Box will be displayed. Enter operand 1 and press
the Enter Key.

3. The Edit Operand Dialog Box will be displayed again. Enter operand 2 and
press the Enter Key.

4. Enter a comment for operand 1 (for Var1 in this example) and press the En-
ter Key.

5. Enter a comment for operand 2 (for Var2 in this example), and press the
Enter Key or click the OK Button.
114

Programming Methods Section 5-3
6. Automatically created variable names and input comments will be dis-
played in the Variable Editor and Ladder Editor.

• Clicking the Edit Button

2. Input the variables for each operand in the Edit Operand Area. Once the
variables for the operands have been set, move the cursor to the field that
has an instruction input, and press the Enter Key.
115

Programming Methods Section 5-3
3. The Edit Variable Comment Dialog Box will be displayed. Enter a com-
ment for the variable.

4. Automatically created variable names and input comments will be dis-
played in the Variable Editor and Ladder Editor.

5-3-8 Programming in Standard Text Language

Character Set
The character set for characters other than those for identifiers used in pro-
grams conforms to IEC 61131-3.

• Characters are not case-sensitive.

• The character set conforms to the Basic Code Table in ISO 646.

• Keywords can combine uppercase and lowercase letters (e.g., iF or if).

Identifiers

Overview Identifiers are text strings used to express the following language elements.
116

Programming Methods Section 5-3
• Naming program control units

• Naming I/O and variables

• Naming functions and function blocks

Text Allowed for
Identifiers

The same characters and the same number of characters as used for vari-
ables in ladder diagram programming can be used for identifiers in ST pro-
gramming.

Note Refer to 2-2 Variables for detailed variable specifications.

Restrictions The following restrictions apply to identifiers.

• The first character must not be a number.

• Two underscores (_) must not be used consecutively.

• Spaces cannot be used.

• In addition to the restrictions on characters and number of characters for
variables in ladder programming, reserved words for ST language pro-
gramming cannot be used. Refer to ST Language Reserved Words on
page 225 for details on reserved words for ST language programming.

Data Types

Basic Data Types The basic data types and their sizes are listed in the following table.

Variables are edited with the Variable Editor. Variables can be registered with
the ST Editor, but they cannot be changed.

Basic Data Types That Are
Not Supported

The following basic data types are not supported.

Data type Meaning Size Words
allocated

Description

INT Integer 16 bits 1 word (−32768 to +32767)

DINT Double-word integer 32 bits 2 words (−2147483648 to
2147483647)
Word 0: Lower 16 bits
Word 1: Upper 16 bits

UINT Unsigned integer 16 bits 1 word (0 to 65535)

UDINT Unsigned double-
word integer

32 bits 2 words (0 to 4294967295)
Word 0: Lower 16 bits
Word 1: Upper 16 bits

BOOL Bit string of 1 bit 1 bit 1 bit 1 or 0

WORD Bit string of 16 bits 16 bits 1 word

DWORD Bit string of 32 bits 32 bits 2 words Word 0: Lower 16 bits
Word 1: Upper 16 bits

REAL Real number 32 bits 2 words Conforms to IEEE754.

STRING Text string 64 words 64 words

Data type Meaning

SINT 8-bit integer

USINT Unsigned 8-bit integer

LINT 64-bit integer

ULINT Unsigned 64-bit integer

LREAL Double-word real number

BYTE Bit string of 8 bits

LWORD Bit string of 64 bits
117

Programming Methods Section 5-3
Declaring Variables and Data Structures
Variables and data structures are edited with the Variable Editor and Structure
Editor. Direct address (AT) specifications and variable parameters (e.g.,
retain/nonretain) are set with the Variable Editor.

Variables and data structures cannot be declared (VAR - END_VAR) in the ST
Editor.

Creating an ST Program

1,2,3... 1. Right-click the Logical POUs in the Project Window and select Create
POU. Alternately, select File - New - POU.
The following New Dialog Box will be displayed.

2. Input the program name or function name in the POU Name field. In this
example, ST_PROG01 is used.

3. For Type, select Program or Function Block. In this example Program is
selected.

4. For Language, select ST.

5. Click the OK Button.
The logical POUs that are created will be displayed under Logical POUs in
the Project Window. Also, an ST Editor will be displayed for the program or
function block that was created.

This completes creating a program.

6. Finally, code the program.
Refer to Appendix B for operators and conditional statements.
Refer to page 103 in 5-3-1 for procedures to use the Local Variable Editor.

Note After coding a program or function block, always select File - Save Changes
to project to save the changes to the project. Alternately, press the
Ctrl+Shift+S Keys.

Select ST.

Ladder programs ST program that was created Local Variable Editor

ST Editor
118

Programming Methods Section 5-3
Registering Variables from the ST Editor
Variables and data structures are edited with the Variable Editor and Structure
Editor, but variables can be registered from the ST Editor. Use the following
procedure.

1,2,3... 1. Select the variable in the ST Editor as shown below by clicking and drag-
ging.

2. Right-click and select Add Variable.
The following Edit Variables Dialog Box will be displayed.

3. Set the parameters and then click the OK Button.
The variable will be registered in the variable editor.

Refer to page 103 in 5-3-1 for procedures to use the Edit Variables Dialog
Box and the Variable Editor.
119

Creating Function Blocks and Pasting Them into Programs Section 5-4
5-4 Creating Function Blocks and Pasting Them into
Programs

This section describes basic methods for creating function blocks.

Refer to 2-3 for information on the function of function blocks.

5-4-1 Creating Function Blocks
1,2,3... 1. Right-click the Logical POUs in the Project Window and select Create

POU. Alternately, select File - New - POU.
The following New Dialog Box will be displayed.

2. Input the function name in the POU Name field. In this example, Flicker is
used.

3. For Type, select Function Block.

Note If Program is selected a new program will be created.

4. Click the OK Button.
The function block will be created and displayed in the Workspace as
shown below. Also, a Ladder Editor and FB Variable Editor will be dis-
played for the function block that was created.

This completes creating a function block.

Function block

Ladder Editor FB Variable Editor

FI is an FB local variable that
turns ON the first time the
instance is executed. (It can be
used for initialization the first
time an instance is executed.)
It is created by default.
120

Creating Function Blocks and Pasting Them into Programs Section 5-4
5-4-2 Programming a Function Block
The procedures for programming the contents of a function block are the
same as those described in 5-3 Programming Methods.

Note Refer to 2-3 Function Blocks for information on the function of function blocks.

1,2,3... 1. As an example, ladder diagram program will be used to create a function
block for the following flicker rung.

2. Select File - Save Change to project. Alternately, press the Ctrl+Shift+S
Keys.
The function block will be saved in the project.
A program cannot be assigned to a function block unless the function block
has been saved in the project.

Reference Information: Grouping Input Variables or Output Variables for Function
Blocks

When a function block is pasted into a program with the procedure described
later in this section, the program can be very difficult to read if there are too
many input variables in the operand input box or too many output variables in
the output operand box. The following procedure can be used to simplify the
display and use one input variable or one output variable to represent all of
the input or output variables.

1,2,3... 1. On the Input Tab Page or Output Tab Page of the Local Variable Editor, se-
lect the variables to be grouped.

• The following example shows a selection to group input variables.

Variable name Type Data type

tim_a VAR TIMER

tim_b VAR TIMER

ON_TIME VAR_INPUT UINT

OFF_TIME VAR_INPUT UINT

start VAR_INPUT BOOL

Flicker VAR_OUTPUT BOOL
121

Creating Function Blocks and Pasting Them into Programs Section 5-4
2. Right-click the variables that were selected and select Group Input/Out-
put Variables - Group.
The Add FB I/O Group Dialog Box will be displayed.

3. Input the name of the I/O group and then click the OK Button.
As shown below, the variables have been grouped under the specified I/O
group name.

• The following example shows a group called RB1_IN.

• To ungroup the variables, right-click the I/O group name and select Group
Input/Output Variables - Release Group.

• To delete elements from the group, open the group folder, right-click the
element, and then select Release Member from the Group Input/Output
Variables Menu. To change the display order of the group elements, right-
click the element, and then select Up, or Down.

Reference Information: Changing Variable Types
Internal variables can be changed to input, output, or external variables, and
output, input, or external variables can be changed to internal variables. This
is performed on the Ladder Editor.

The following example shows how to change an internal variable to an input
variable.

Right-click the internal variable to be changed on the Ladder Editor and select
Change Variable Usage - Input.

The variable type will be changed from an internal variable to an input vari-
able. When the variable type is change, the variable will be removed from the
Internal Tab Page of the Variable Editor and placed on the Input Tab Page.
122

Creating Function Blocks and Pasting Them into Programs Section 5-4
5-4-3 Pasting Function Blocks into Programs
Use the following procedure to paste a function block into a program.

1,2,3... 1. Drag the function block from the Workspace and drop it at the insertion
point in the ladder diagram. When using one-key input mode, the function
block can be inserted by pressing the F Key.

If the insertion point is selected and clicked in Function Block Mode (en-
tered by selecting Ladder - Mode - Function Block), the Edit Function
Block Dialog Box will be displayed. Select the function block, input the in-
stance name, and click the OK Button.

The function block will be inserted into the ladder diagram and displayed
as shown below.

Automatically Generated Instance Variables

If the Create Function Block Instances Automatically setting is enabled
(default) in the Edit Tab of the Ladder Window under Tool - Option, instance
variables will be automatically generated and an instance name will be au-
tomatically displayed, as shown in the above diagram. The instance name
consists of the FB body name + _XXX (where XXX indicates a serial num-
ber starting from 001). When the Create Function Block Instances Auto-
matically setting is enabled (default), the procedure described in step 3 is
not required.

2. Input the function block operands.

• Method 1:
Double-click the operand input position (or select it and press the En-
ter Key) to display the Edit Function Block Argument Dialog Box. Input
the function block operands in this dialog box.

• Method 2:
It is also possible to select the input position and input the value direct-
ly from the keyboard, or drag and drop the variable from the Variable
Editor to the operand.

Note (1) Addresses can also be specified for operands, but data types and sizes
will not be checked. Always use the proper data type so that data is not
corrupted.

(2) Refer to 5-3-4 Inputting Constants and 5-3-5 Inputting Operand Numbers
for the methods for inputting constants and operand numbers.

Automatically allocated instance name
123

Creating Function Blocks and Pasting Them into Programs Section 5-4
• Input Example

Operand Input Method 1 a. Double-click the function block operand input position to display the
Edit Function Block Argument Dialog Box.

b. In the Parameter List area, select the desired variable in the function
block. The selected variable will be highlighted in gray. (In this exam-
ple, select an input variable such as start in the Input Tab Page. Select
the output variable Flicker in the Output Tab Page.)

c. In the Variable List at the upper-right, select the variable that you want
to be the input source and click the Register Parameter List Button.
(In this example, start_flg is registered to input variable start.)

If you want to input a constant, input the constant directly in the Vari-
able or Address Field. (In this example, 10#00010 is input directly for
input variable ON_TIME and 10#00015 is input directly for input vari-
able OFF_TIME.

In the Variable List at the upper-right, select the variable that you want
to be the output destination and click the Register Parameter List
Button. (In this example, Flicker_fL is registered to output variable
Flicker.)

Operand Input Method 2 Direct Input

Select the position where you want to input the function block operand and
directly input the value from the keyboard (in mnemonic input mode only).
124

Creating Function Blocks and Pasting Them into Programs Section 5-4
Dragging and Dropping a Variable

Drag and drop the variable from the Variable Editor to the desired input posi-
tion. The data types of the source and destination variables must be the
same.

Note If I/O groups have been created for input variables or output variables, the
group names will be displayed as shown below when the function block is
pasted into a program.

3. Assign an instance name to the function block.

Note The procedure in step 3 is not required if the Create Function Block
Instances Automatically setting is enabled (default) in the Edit Tab
of the Ladder Window under Tool - Option. Proceed to step 4.

• Select the function block in the ladder diagram and select Edit Instruc-
tions from the pop-up menu.The following dialog box will be displayed.

Input "10#150" directly.

Variable is entered.

Drag and drop

Ungrouped Variables Grouped Variables

→

125

Creating Function Blocks and Pasting Them into Programs Section 5-4
• Input the instance name (Flicker01 in this example) and then click the OK
Button. The instance name will be displayed on the function block as
shown below.

4. Select File - Save Change to project. Alternately, press the Ctrl+Shift+S
Keys.
The program will be saved in the project.
A program cannot be assigned to a task unless the program has been
saved in the project.

This completes pasting a function block.

Note (1) After programming, always select File - Save Changes to project. Alter-
nately, press the Ctrl+Shift+S Keys.
An alarm will be displayed if there is an error in the program. Correct the
error and then select File - Save Change to project again.

(2) Read-protection can be set for a function block. Refer to 5-5 Read Pro-
tection for Logical POUs for the procedure.

5-4-4 Editing the Function Block Body after Pasting
Changes to a function block definition itself (editing of input variables or output
variables) can be reflected in an instance even if the function block body was
already pasted as an instance. Function block instances can be updated by
selecting Edit - Update Function Block Instance.

With this menu command, it is no longer necessary to delete and repaste
instances in the program after editing the function block definition itself. It is
also unnecessary to input the argument/operand values again.

Procedure

Use the following procedure to update function block instances.

1,2,3... 1. After pasting the function block body as an instance, edit the function block
body’s input variables or output variables (change, add, or delete) and save
the project.

• A confirmation dialog box will be displayed, indicating the following:
Function block was modified. Please check the output window. At the
same time, the Find Tab Page in the Output Window will show the pro-
gram addresses of that function block’s instances.

Instance name
126

Read Protection for Logical POUs Section 5-5
• A yellow : icon will be displayed at the upper-left corner of instances
in the program, warning that there has been a change, and a circuit er-
ror will occur.

2. Either select Edit - Update Function Block Instance or select the in-
stance, right-click, and select Update Function Block Instance from the
popup menu. The changes to the function block definition will be reflected
in the program’s instances and the yellow warning icons and circuit errors
will be cleared.

!Caution Be sure to thoroughly check the arguments of locations used (marked with a
) if input variables or output variables are increased or decreased or if the

order is changed.

5-4-5 Moving to the Function Block Body (Internal)
Moving to the Function
Block Body

Use the following procedure to move the cursor to the body of the function
block body selected with the Ladder Editor.

1,2,3... 1. Click the function block instance in the Ladder Editor.

2. Select View - To Lower Layer. (Alternatively, double-click, press the Enter
Key, or click the toolbar icon.) The cursor will move to the corresponding
function block body.

Note If the operation is performed by clicking the input variables (or output vari-
ables) of the function block instance, the cursor will automatically move to the
position in the program where the variable is used (Ladder Editor only). This
function can be disabled using a setting under *Tool - Options*.

Moving to the Location That Called the Function Block
Use the following procedure to move the cursor from the function block body
to the location that called the function block.

Select View - To Upper Layer. (Alternatively, click the toolbar icon.) The cur-
sor will move to the function block instance of the call source.

5-5 Read Protection for Logical POUs
Passwords can be set to set read protection for logical POUs in function
blocks or programs.

This function is also enabled offline.

If read protection is set, a function block cannot be displayed or edited without
inputting the password.

Printing can be performed only if Read Protection is OFF or is ON but tempo-
rarily disabled.

A red line is displayed to indicate a circuit error.

▲

A yellow icon is displayed to warn that
the function block definition has been edited.

▲

127

Read Protection for Logical POUs Section 5-5
Note Read-protection is ON but temporarily disabled when a read-pro-
tected function block is displayed after inputting the correct pass-
word.

1,2,3... 1. Right-click the function block or program to be read-protected and select
Protect from the popup menu.

The following Set Password Dialog Box will be displayed.

2. Input the password and then click the OK Button.
A password will be set for the function block specified in step 1. After the
password is set, the function block cannot be displayed or edited without
inputting the password.

3. The following message will be displayed when you attempt to open a func-
tion block or program for which a password has been set. Input the pass-
word to temporarily release the protection and perform the editing.

Display Icons
The three display icons for function blocks are shown in the following table.

Clearing Read Protection
When protection is temporarily disabled, input the current password in the Old
Password Field, input an empty (i.e., blank) password in the New Password
Field, and click the OK Button. The set read protection will be cleared.

Right-click the function block or program
and select Protect.

POU type Protection OFF Protection ON Protection ON but
temporarily

disabled

Function block

Program
128

Creating Configurations and Assigning Programs to Tasks Section 5-6
5-6 Creating Configurations and Assigning Programs to Tasks

5-6-1 Creating a Configuration
Use the following procedure to create a new configuration.

1,2,3... 1. 1 Right-click the project name in the Workspace and select Create Con-
figuration. Alternately, select File - New - Configuration.
The following New Dialog Box will be displayed.

2. Select the CPU Unit.
The CPU Units displayed here are the CPU Units for the series selected
when the project was created. (The figure above applies to a project with
a CJ2 CPU Unit.)

3. Input the configuration name and then click the OK Button. The new con-
figuration will be displayed in the Workspace.

This completes creating a configuration.

Select the
CPU Unit.

Configuration
129

Creating Configurations and Assigning Programs to Tasks Section 5-6
Changing the CPU Unit Type (PLC Type)

1,2,3... 1. To change the type of CPU Unit, select Controller − Convert Controller.
The following Convert Controller Dialog Box will be displayed.

2. Select the Controller from the list box and click the OK Button.

3. The following confirmation message will be displayed. The Yes Button.

4. A backup file of the project before converting the type of CPU Unit will be
automatically created with the name “previous project
name_0xxxxxxxxxxx.nlx”. The Xs in the filename are numbers for the year,
month, day, hour, minutes, and seconds.

5. The CPU Unit specified as the type of CPU Unit for the new controller will
be set.
130

Creating Configurations and Assigning Programs to Tasks Section 5-6
5-6-2 Creating and Editing Global Variables

Displaying the Global Variable Editor

1,2,3... 1. Create a new configuration (File - New - Configuration).
The global variables will be displayed in the Workspace.

2. Double-click Global Variables in the Workspace.
The Global Variable Editor will be displayed.

■ Global Sheet

■ System Sheet

System global variables are registered in advance in the System Sheet. Sys-
tem global variables cannot be changed.

Adding Global Variables

1,2,3... 1. Right-click on the Global Variable Sheet and select Add from the pop-up
menu. Alternately, double-click an empty row.
The Edit Variables Dialog Box will be displayed.
131

Creating Configurations and Assigning Programs to Tasks Section 5-6
2. Input the variable name.

3. Set the variable parameters.

4. When all settings have been completed, click the OK Button.
Parameters are displayed as described in the following table.

Note Refer to 2-2 for detailed variable specifications.

Input variable name.

Double-click parameter
to set.

Parameter Meaning Values

Path Displays the valid scope of the variable. Global variables: Project_name/
configuration_name

Data Type Set the data type of the variable. BOOL, INT, UINT, DINT, UDINT,
WORD, DWORD, TIMER,
COUNTER, STRING, REAL, or
user-defined

Array Size Set the number of elements for a one-dimensional array or a
two-dimensional array. Two-dimensional arrays can be set only
for CJ2 CPU Units.

When not specifying an array, leave
this settings blank for both a one-
dimensional and two-dimensional
array.
When specifying a one-dimensional
array, set the number of array ele-
ments for a one-dimensional array
and leave the setting for a two-
dimensional array blank.
When specifying a two-dimensional
array, set the number of array ele-
ments for a two-dimensional array
and leave the setting for a one-
dimensional array blank.
*A two-dimensional array cannot be
specified for the NE1S.
*Refer to 2-2-3 Variable Properties
for other restrictions on elements.

Size Displays the size used by the variable in the memory ---

Initial Value Set the values for when operation is started.
Note The initial values of variables cannot be set for CJ2 CPU

Units.

Set the initial value of the variable
according to the data type.
• BOOL, WORD, or DWORD:

Unsigned hexadecimal Input the
number after “16#”.

• INT or DINT: Signed decimal Input
the number after “+10#” or “−10#”.

• UINT or UDINT: Unsigned decimal
Input the number after “10#”.

• REAL: Real number
(e.g., +1.0, −0.23, +9.8E-3)

• STRING: Character string, e.g.,
“Data”

Address Set when a specific address is manually set for the variable (AT
designation). This setting is supported only for global variables.
132

Creating Configurations and Assigning Programs to Tasks Section 5-6
Note When the Cross Reference Pop-up Window has been displayed (by selecting
View - Window - Cross Reference Tool), a variable’s cross reference infor-
mation (program address, instruction name, program name, etc.) can be dis-
played just by selecting that variable in the Variable Editor.

Editing Global Variables

1,2,3... 1. Double-click the variable to be edited on the Global Sheet. Alternately,
right-click the variable and select Edit.
The Edit Variables Dialog Box will be displayed.

2. Edit the parameters of the Variable and then click the OK Button.

Deleting Global Variables

1,2,3... 1. Select the variable to be deleted and press the Delete Key.

2. A dialog box will appear to confirm the deletion. Click the Yes Button.
The variable will be deleted.

5-6-3 Pasting Programs into Tasks
Tasks control the timing of program execution. Logical POU programs are
assigned to tasks to execute them.

There are two types of tasks: cyclic tasks and interrupt tasks (power OFF
interrupt, scheduled interrupt, I/O interrupt, and external interrupt tasks). Extra
cyclic tasks are not supported.

Up to 128 cyclic tasks (task numbers 0 to 127) can be used. When specifying
the task number in the operand of a TASK ON (TKON) or TASK OFF (TKOF)
instruction, the task number can be specified directly by inputting the number
in decimal after “10#” or it can be specified indirectly by inputting an I/O mem-
ory address containing the task number.
If TKONα is used, set the value of variable a to the task number.

Example: When the instruction “TKON 3” is input, the task number is the value
in CIO 0003.

Network Variable This property sets whether to convert variables to network vari-
ables. It sets whether external access (i.e., reading or writing)
is enabled for variable names. This setting can be made only
for global variables. It cannot be made for local variables.

Enabled: Variable names can be
accessed (i.e., read and written)
externally.
Disabled: Variable names cannot be
accessed (i.e., read and written)
externally.

Network I/O Setting When using cyclic communications, select Input when disclos-
ing the variable as an input from the network, select Output
when disclosing the variable as an output to the network, and
select None when the variable will not be disclosed.

None: Do not disclose the variable
as a connection target.
Input: Disclose the variable as an
input from the network.
Output: Disclose the variable as an
output to the network.
Global variables that have been set
to Input or Output can be imported
to the Network Configurator after the
project has been saved. After the
global variables have been
imported, variable names can be
used in programming to set connec-
tions for ControlNet cyclic communi-
cations.

Retain/Nonretain Specify whether to maintain the value of the variable when
power is turned OFF and ON, and when operation is started.

Retain or Nonretain

Comment Input a comment for the variable. 256 characters max.

Parameter Meaning Values
133

Creating Configurations and Assigning Programs to Tasks Section 5-6
Use the following procedure to paste a program into a task.

1,2,3... 1. Drag the program from the Workspace and drop it on the task folder. In this
example, the program TEST01 is assigned to Cycle Execution Task (0-
127).

The following Allocate Task Dialog Box will be displayed.

2. Set the Execute Option and Task Number (these are automatically set if
the program is dragged and dropped), and then click the OK Button.
The program will be assigned to the task and displayed as shown below.

Assigning a program to a task makes it possible to execute the task.

Note Logical POUs and tasks can be switched in the workspace. The window can
be switched by selecting Window - Toggle POU/Task Window or by pressing
Alt Key and F6 Key. (Function blocks, however, can be switched from tasks to
logical POUs only.)
The window can also be changed when the Controller is connected online.

5-6-4 Checking External Variables for Consistency
The NE Programmer can check whether there are any inconsistencies
between the configuration’s global variables and the external variables of the
logical POUs assigned to that configuration as tasks. Inconsistencies can
occur for either of the following two reasons.

1. Variables with the same name exist in both programs, but the data types
or sizes do not match.

2. External variables exist, but global variables do not exist.

If there is an inconsistency, a build error will occur.

The External Variable Consistency Check function checks for the two incon-
sistencies described above and helps correct the inconsistencies if any are
detected.

Program assigned to a
task.
134

Creating Configurations and Assigning Programs to Tasks Section 5-6
1,2,3... 1. Either select Variable - Check Consistent with Extern from the Menu Bar
or select Check Consistent with Extern from the popup menu in the Vari-
able Window or Program Window.

If no inconsistencies are found, the message A problem is not in adjust-
ment will be displayed. In this case, click the OK Button to continue.

2. If any inconsistencies are found, the following Check Consistent with Ex-
tern Dialog Box will be displayed.

a. Unifying to the Global Variable’s Data Definition

Select the variable in the Global variable mismatch list and click the
Global >> External Button. Click the Yes Button in the confirmation
dialog box that is displayed.

Note For consistency, the external variable’s comment is overwritten by
the selected global variable’s comment.

b. Unifying to the External Variable’s Data Definition

Select the variable in the External variable mismatch list and click the
Global << External Button. Click the Yes Button in the confirmation
dialog box that is displayed.

Note For consistency, the comments of the external variable/global vari-
able are overwritten by the selected external variable’s comment.
In addition, the global variable’s AT specification, initial value, and
network variable settings will be deleted.
135

Editing Comments Section 5-7
5-7 Editing Comments

5-7-1 Overview
The following comments can be input and edited.

Note (1) Variable comments and instruction comments can be displayed or hidden
and the number of display lines can be displayed on the Options Dialog
Box displayed when Tool - Option is selected.

Comment type Description Display location

Variable comments Comments for variables Refer to the following figure.

Instruction com-
ments

Comments for instructions

Line comments Comments that are input on
comment lines inserted above
or below rungs

Line comment

Variable comment set to two lines.

Instruction comment set to two lines

Variable comments
set to one line.

Variable comment

Instruction
comment set to
one line.
136

Editing Comments Section 5-7
5-7-2 Inputting Variable Comments
1,2,3... 1. Double-click the variable to which a comment is to be added on the Vari-

able Editor.
The Edit Variables Dialog Box will be displayed.

2. Double-click the comment field.
Editing the comment will be enabled.

3. Input the comment and then click the OK Button.

In addition to the method described above, comments can be input by using
the support for converting variables to physical addresses. For information on
that method, refer to 5-3-7 Support for Converting to Physical Addresses. For
display examples, refer to 5-7-1 Overview for display examples.

5-7-3 Inputting Instruction Comments
1,2,3... 1. Right-click the instruction to which a comment is to be added on the Ladder

Editor and then select Edit Comment.
The Edit Instruction Comment Dialog Box will be displayed.

2. Input the comment and then click the OK Button.

Refer to 5-7-1 Overview for display examples.

5-7-4 Inputting Line Comments
1,2,3... 1. Right-click the line where a comment is to be added and then select Insert

- Insert Line Comment.
The Edit Line Comment Dialog Box will be displayed.

2. Input the comment and then click the OK Button.

Double-click here.
137

Search/Replace Function Section 5-8
Note Up to 2,000 characters can be input for a line comment.

Refer to 5-7-1 Overview for display examples.

5-8 Search/Replace Function

5-8-1 Overview
The following search and replace operations can be performed.

5-8-2 Searching Programs
1,2,3... 1. Press the Ctrl+Shift+F Keys. Alternately select Edit - Find in Programs.

The Find in Programs Dialog Box will be displayed.

2. Set the range to be searched, the text string to search for, and the search
conditions, and then click the OK Button.
The search results will be displayed in the Output Window.

Type Function

Searching programs Mnemonics, variables, physical addresses, instance
names, line comments, instruction comments, etc.
can be searched in all or specific POUs. ST pro-
grams are not searched.
The search results are output to the Output Window.
The locations that were found can be jumped to by
double-clicking in the Output Window.

Search/replace/jump opera-
tions in the Ladder Editor

Search/replace operations can be performed in the
active Ladder Editor.
Jumping is possible to specified step numbers (pro-
gram addresses) or rung numbers.

Search/replace/jump opera-
tions in the Variable Editor

Search/replace operations can be performed in the
active Variable Editor.

Select this option
to include FB
instances in the
search.

Select the area to be searched.

Select this option and specify a
POU from the list to search only
one POU.

Select this option and specify a
task from the list to search only
one task

Input the search string.

Double-click to jump to
the relevant location in
the program.
138

Search/Replace Function Section 5-8
5-8-3 Search/Replace/Jump Operations in the Ladder Editor

Searching in the Ladder Editor

1,2,3... 1. Open the Ladder Editor to be searched.

2. Press the Ctrl+F Keys. Alternately select Edit - Find.
The Find Dialog Box will be displayed.

Note When the CPU Unit is connected online, a search operation was executed in
the Ladder Editor, and you want to search through all tasks, select the Search
all tasks in this configuration Option. If you want to search only the active
tasks, select the Search active tasks during online Option.

3. Set the range to be searched, the text string to search for, and the search
conditions, and then click the Find Next Button.

• If the text string is found, the line in the Variable Editor containing it will be
highlighted (selected).

• Press the F3 Key to find the next occurrence.

• Press the Shift+F3 Keys to return to the previously found location.

Jumping to a Variable Declaration from the Ladder Editor
When a variable is selected in the Ladder Editor, the NE Programmer can
jump directly to that variable’s declaration position (in the Variable Editor).

1,2,3... 1. Select the variable in the Ladder Editor.

2. Select Edit - Jump - Jump Variable Define. The NE Programmer will
jump to the same variable name in the Variable Editor.

Replacing in the Ladder Editor

1,2,3... 1. Open the Ladder Editor in which to perform the replace operation.

2. Press the Ctrl+H Keys. Alternately select Edit - Replace.
The Replace Dialog Box will be displayed.

3. Set the range to be searched, the text string to search for, the replacement
text string, and the search conditions, and then click the Find Next Button.
If the text string is found, the instruction in the Ladder Editor containing it
will be highlighted (selected).

4. Click the Replace Button.
The text string will be replaced.

Input the search
string.

Select the
object to
search.

Input the search
string.

Select the object to search.

Input the replacement
string.
139

Search/Replace Function Section 5-8
Jumping in the Ladder Editor

1,2,3... 1. Make the Ladder Editor active and press the Ctrl+G Keys. Alternately se-
lect Edit - Jump.
The Step/Rung No. Jump Dialog Box will be displayed.

2. Set the step number (program address) or rung number and then click the
OK Button.
The cursor will jump to the specified step or rung and the instruction or
rung will be highlighted (selected).

Searching for Address References in the Ladder Editor (Shift+Alt+A Key)
Jumps can be made from an input instruction at the cursor to an output
instruction using the same variable for from an output instruction to an input
instruction using the same variable.

1,2,3... 1. In the Ladder Editor, select the input or output instruction for which to
search for address references.

2. Press the Shift+Alt+A Key. Alternately, select Edit - Jump - Bit Address
Reference.
The cursor will jump to an output or input instruction using the same vari-
able. The cursor will jump to the next output or input instruction each time
the Shift+Alt+A Key is pressed.

Other Search Operation in the Ladder Editor

Next Operand (Shift+Alt+N
Keys)

A jump can be made from the instruction at the cursor to an instruction with
the same operand.

1,2,3... 1. In the Ladder Editor, select the instruction with the address for which to
search.

2. Press the Shift+Alt+N Key. Alternately, select Edit - Jump - Next Oper-
and Reference.
The cursor will jump to an instruction with the same address.

Next Input (Shift+Alt+I
Keys)

A jump can be made from the instruction at the cursor to an input instruction
with the same variable.

1,2,3... 1. In the Ladder Editor, select the instruction with the variable for which to
search.

2. Press the Shift+Alt+I Key. Alternately, select Edit - Jump - Next Input.
The cursor will jump to an input instruction with the same variable.

Next Output (Shift+Alt+O
Keys)

A jump can be made from the instruction at the cursor to an output instruction
with the same variable.

1,2,3... 1. In the Ladder Editor, select the instruction with the variable for which to
search.

2. Press the Shift+Alt+O Key. Alternately, select Edit - Jump - Next Output.
The cursor will jump to an output instruction with the same variable.
140

Search/Replace Function Section 5-8
Back (Shift+Alt+B Keys) The cursor can be returned to the previous instruction from which a search
was made.

Press the Shift+Alt+B Key. Alternately select Edit - Jump - Previous Jump
Point.
The cursor will return to the previous instruction.

5-8-4 Search/Replace Operations in the Variable Editor

Search Operations in the Variable Editor

1,2,3... 1. Place the cursor in the Variable Editor to be searched.

2. Press the Ctrl+F Keys. Alternately select Edit - Find.
The Find Dialog Box will be displayed.

3. Set the range to be searched, the text string to search for, and the search
conditions, and then click the Find Next Button.

• If the text string is found, the line in the Variable Editor containing it will be
highlighted.

• Press the F3 Key to find the next occurrence.

• Press the Shift+F3 Keys to return to the previously found location.

Replace Operations in the Variable Editor

1,2,3... 1. Place the cursor in the Variable Editor in which to perform a replace oper-
ation.

2. Press the Ctrl+H Keys. Alternately select Edit - Replace.
The Replace Dialog Box will be displayed.

3. Set the range to be searched, the text string to search for, the replacement
text string, and the search conditions, and then click the Find Next Button.
If the text string is found, the line in the Variable Editor containing it will be
highlighted.

4. Click the Replace Button.
The text string will be replaced.

Input the search
string.

Input the search
string.

Input the replacement
string.
141

Cross Reference Function Section 5-9
5-9 Cross Reference Function

5-9-1 Overview
When the cursor is over a variable or address in the Ladder Editor or Variable
Table, the cross reference function can display a list (in the Cross Reference
Pop-up Window) showing the corresponding instructions in which that vari-
able or address is used. Jumps can be made to the instructions by double-
clicking items displayed in the list.

A log is also kept of the instructions that are found to enable jumping to them
by selected instructions registered in the log.

5-9-2 Cross Reference Pop-up Window Displays and Operations
1,2,3... 1. If the Cross Reference Window is not currently displayed, select View -

Window - Cross Reference Tool.

2. Move the cursor to the variable or address for which to search.
A list will be displayed to show the instructions in which the variable or ad-
dress at the cursor is used, as shown below.

In this example, the cursor is located over the variable RbStat2.

Note When some of the function block’s I/O variables have been grouped, the
Cross Reference Pop-up Window will display all of the cross reference infor-
mation for the group members. Also, when an array variable is displayed, the
Cross Reference Pop-up Window will display all of the cross reference infor-
mation for the other array variables with the same variable name.

5-10 Using the Library

5-10-1 Overview
Logical POUs (programs or function blocks) and groups of rungs can be
saved as library files so that they can be reused.

As shown above, programs, function blocks, and rung groups (one or more
rungs) can be stored and reused with one file for each program, one file for
each function block, and one file for each rung group.

Each library contains information such as the local variables (internal, input,
output, and external variables), function blocks, data type definitions, and glo-
bal variables.

Deletes records from the log.
This button will be grayed-out if
there are no records.

Click to go to the
previous or next
records. These
buttons will be
grayed-out if
there are no
records.

Click to register the contents of the Cross-
Reference Window in the log.

Click to jump to the instruction.
142

Using the Library Section 5-10
By default, the library files are stored under a Local Library folder in the instal-
lation directory, as shown above.

As shown below, groups of library files can be registered and managed in a
directory hierarchy.

You can also right-click the Library Directory and select Map Folder to regis-
ter another folder in the first level of the library. System development by multi-
ple engineers is possible by specifying a shared folder on a server in the first
level of the library directory.

• Program or function block library files that have been registered can be
added to projects by right-clicking and selecting Register to Library.

• To reuse rung groups, they can be dragged and dropped on the ladder
diagram program, or alternately the rung groups can be added by right-
clicking and selecting Insert to Program.

Note “Local Library” is the installation folder. It requires system adminis-
trator rights. To allow users without system administrator rights to
access the local library, create a folder with appropriate access
rights, and allocate that folder to the local library.

Note Library parts cannot be edited after they have been registered in the library.
They must be re-registered in order to change them.

Libraries by Type of Controller
The library display and operation in the Library Window depend on the con-
troller series (CPU Unit series); they do not depend on the type of library. If
the currently open project is for the CJ2, items for the NE1S will be displayed
with a “disabled” icon, and they cannot be added to the project for the CJ2
CPU Unit. In the same way, if a project for a NE1S-series CPU Unit is open,
library items for the CJ2 will be disabled and you cannot add them to the
project for the NE1S-series CPU Unit.

5-10-2 Displaying the Library Window
1,2,3... 1. If the Library Window is not currently displayed, select View - Window -

Library.

2. The Library Window will be displayed.
The Library Window will be automatically displayed when a library file is
registered as described in sections below.

Display Showing the Controller Series
The display elements in the Library Window that depend on the controller
series (CPU Unit series) are shown below.
143

Using the Library Section 5-10
■ Example: Library Window Opened for Project for CJ2 CPU Unit

Check the library properties to determine whether the library items are for the
NE1S or the CJ2. Double-click or right-click and select Properties from the
pop-up menu.

5-10-3 Registering Logical POUs in the Library
1,2,3... 1. Right-click the logical POU (program or function block) in the Workspace

and select Register to Library from the popup menu.
The following dialog box will be displayed.

The library elements for the NE1S
are marked with an icon showing
that the library cannot be used
because the Library Window that is
open is for a project for the CJ2
CPU Unit.
144

Using the Library Section 5-10
• To create a new folder in the library tree, select the insertion location and
click the New Folder Button.

2. Select the folder in which to register the library part (Local Library, the de-
fault folder, in this example) and then click the OK Button.
The Register Library Dialog Box will be displayed.

3. Input the name of the part and any other required items and then click the
OK Button.
The part will be registered in the library and displayed in the Library Win-
dow as shown below.

5-10-4 Registering Rung Groups in the Library
1,2,3... 1. Select one or more rungs in the Ladder Editor and select Library - Rung

- Register to Library.

The following dialog box will be displayed.

• When the logical POU used to
register a library has a text file,
the library can be linked to the
relevant text file.

• Click the Add Button and specify
the text file.

• The added text file can be opened
from the Properties Window for
the registered library (right-click
on the library and select
Properties).

Click the rung header area to select the rung. Click the rung header area
while holding down the Shift Key to select multiple rungs.
145

Using the Library Section 5-10
• To create a new folder in the library tree, select the insertion location and
click the New Folder Button.

2. Select the folder in which to register the library part (Local Library, the de-
fault folder, in this example) and then click the OK Button.

• The Register Library Dialog Box will be displayed.

3. Input the name of the part and any other required items and then click the
OK Button.
The part will be registered in the library and displayed in the Library Win-
dow as shown below.

5-10-5 Registering Folders in the Library
1,2,3... 1. Right-click the Library and select Map Folder.

• When the rung group used to
register a library has a text file,
the rung group can be linked to
the relevant text file.

• Click the Add Button and specify
the text file.

• The added text file can be opened
from the Properties Window for
the registered rung group (right-
click on the rung group and select
Properties).
146

Using the Library Section 5-10
The following Browse Folder Dialog Box will be displayed.

2. Select the folder to be added and then click the OK Button.
The specified folder will be added to the library tree.

5-10-6 Using the Library

POUs (Programs and Function Blocks)
Program sections and function blocks can be inserted in projects.

1,2,3... 1. Right-click the program or function block and select Add to Project. The
following confirmation dialog box will be displayed.

2. Click the Yes Button.

• If the POU contains a global variable, the following Setting Prefix/Suffix for
Global Variables Dialog Box will be displayed.

• Use this dialog box to attach prefixes and suffixes to all global variables
contained in POUs at once.

Note This function enables the variable names for global variables to be
changed altogether, making reuse of global variables easy.

Example: Adding the prefix L1 and the suffix _Fr.

3. After setting, click the OK Button. When prefix/suffix settings are not re-
quired, click the OK Button without making any settings.

• The program or function block will be added to the project. The POU
name will be displayed in the project (do not use a library name).

Note If the same POU name already exists in the project, a dialog box
will be displayed to confirm that it is OK to overwrite it.
147

Using the Library Section 5-10
• The prefix/suffix settings in the above example will be displayed as fol-
lows:

Rung Groups
Rung groups can be simply dragged and dropped into ladder programs.
Delete variables and change variable names as required.

1,2,3... 1. Drag and drop the rung group into the ladder program (or right-click on the
rung group and select Insert to Program). The following confirmation di-
alog box will be displayed.

2. Click the Yes Button.

• If the rung contains function blocks, the following confirmation dialog box
will be displayed.

• Click the Yes Button.

• The following Edit Local Variables Dialog Box will be displayed.

3. To use the variables without any changes, click the OK Button.

• To change the variable name, double-click the variable name and change
the name.

• To delete all variables, click the Delete All Button.
148

Using the Library Section 5-10
• To return to the original settings after editing the variables, click the Reset
Button.
Click the OK Button to display the Edit Comment Dialog Box.

4. Enter a comment and click the OK Button. The rung will be inserted into
the ladder program.

Example

5-10-7 Transferring Library Items for the NE1S to CJ2
Library items for NE1S-series CPU Units cannot be added to projects for CJ2
CPU Units without making changes. Perform the following procedure to con-
vert library items for CJ2 CPU Units into library items for NE1S-series CPU
Units.

The following procedure is recommended to convert the items.

1,2,3... 1. Create a project for an NE1S-series CPU Unit and add library items for the
NE1S-series CPU Unit to be converted for a CJ2 CPU Unit.

2. Change the Controller series (CPU Unit series) and convert the project
from one for a NE1S-series CPU Unit to one for a CJ2 CPU Unit.

The object name is displayed within brackets [].

Comment entered in the Edit
Comment Dialog Box

Comment
entered in
Description
field when
registering
rung group

First and last rung of group
displayed in lime green (default).
Colors can be changed on Color
Tab Page of View Settings
Dialog Box (View - Option).

The comment entered in the Edit
Comment Dialog Box is
displayed.
149

Outline Window Section 5-11
3. Initial settings may become disabled or other operation may change when
the series is changed. Therefore, debug the programming and verify oper-
ation after converting to a project for the CJ2 CPU Unit.

4. Register the library items as library items for the CJ2 CPU Unit.

Note CJ2 projects cannot be converted to NE1S projects. Therefore, CJ2 CPU Unit
library items cannot be used in projects for NE1S-series CPU Units.

5-11 Outline Window

5-11-1 Outline Window
The Outline Window displays an outline of the logical POU (program or func-
tion block) that is being edited. Jumping to any instruction in the Ladder Editor
or ST Editor is possible by clicking it in the Outline Window.

As shown above, line comments, outputs, function blocks, rung groups, the
interlock instruction, and the END instruction are displayed in the Outline Win-
dow.

Note For structured text, only the line comments and function blocks are displayed
in the Outline Window.

Option Settings Display items in the Outline Window and the timing of operation related to the
Ladder Editor can be changed. To make changes, select Tool - Option - Out-
line. For details, refer to 4-6-2 Outline.

5-11-2 Displaying the Outline Window
1,2,3... 1. If the Outline Window is not currently displayed, select View - Window -

Outline.
The Outline Window will be displayed. If a logical POU is being edited at
the time, an outline will be displayed in the Outline Window.

2. To display an outline of a specific logical POU, double-click it in the Work-
space.
When the logical POU is opened, an outline will be displayed in the Outline
Window at the same time.

5-12 Building and Compiling Programs

5-12-1 Building and Compiling
A project is build, all of the programs in the project are checked and an exe-
cutable file for the CPU Unit is generated. Always build the project before
downloading it to the CPU Unit.

Compiling can be used to perform program checks on individual logical POUs
(programs or function blocks). Only one active logical POU (i.e., the one being
edited) can be compiled at the same time.

The program check level can be set.
150

Building and Compiling Programs Section 5-12
5-12-2 Building
Press the F7 Key. Alternately select Build - Build.

The project will be built. Any errors or warning generated during building will
be displayed in the Output Window.

Display Example

5-12-3 Compiling
1,2,3... 1. Make the program or function block to be checked active (i.e., open it).

2. Press the Ctrl+F7 Keys. Alternately select Edit - Compile.
The program will be checked and any errors or warning generated during
compilation will be displayed in the Output Window.

Display Example

5-12-4 Level Settings for Program Check
Use the following procedure to set the level for program checking. If level A is
set, a stricter program check will be performed. (The default is level A.)

For details on the program check, refer to 10-6-8 Program Check.

5-12-5 Detailed Build Information
There is a tab page for build information in the configuration properties. The
build information for each element is displayed here when building a program.
If the program has not been built, a message will be displayed to say that the
information cannot be displayed and that building the program is required to
display the information.

The display shows the degree to which the user program is consuming the
resources of the selected CPU Unit for each element. Build information is
mainly useful for the following points.

• Judgment criteria when changing the model of CPU Unit

• As part of hardware management
151

Building and Compiling Programs Section 5-12
1,2,3... 1. Right-click the configuration in the Project Window and select Properties
from the menu. Click the Build Detailed Info Tab.

Note The Build Detailed Info Tab Page will be displayed only if the pro-
gram has been built without error.

2. The percentage graph at the bottom of the dialog box will switch according
to the elements selected in the list.

Note There will be a build error if the graph of the selection item exceeds 100% for
the program. If a build error occurs, information on the type of insufficient
resource will be displayed in an error message in the Output Window. Take
measures for each item of information.
If the resources are insufficient, revise the program to reduce the amount of
resources used or change the CPU Unit to a model with a larger capacity.
152

Importing and Exporting Section 5-13
!Caution If there is a build error, the Build Detailed Info Tab Page will not be displayed in
the configuration properties.

5-13 Importing and Exporting

5-13-1 Overview
The following logical POUs can be imported and variables can be imported/
exported from the Variable Editor.

5-13-2 Importing Mnemonics

Import
Reads mnemonic data stored in text files in proprietary formats.

1,2,3... 1. Select Mnemonic - Import in the Mnemonic Editor, specify the desired file
name, and select Open.

Export
Saves edited mnemonic data in a text file in proprietary formats.

Element Import/Export files

Mnemonics Import: Text (.txt) files in special formats

Export: Text (.txt) files in special formats

Variables Import: CSV files in special formats

Export:
• CSV files in special formats

• Text files for SPU Console

Also, files that can be exported depend on the CPU Unit
for the following items.
• NE1S Projects

• CSV files for NE OPC Servers
• Text files for CX-Designer of version 2.x or earlier
• Text files for CX-Designer version 2.03H for NS-Runt-

ime version 1.00H
• CJ2 Projects

• CSV files for SYSMAC OPC servers of version 3.x
• Text files for CX-Designer version 3.0
153

Importing and Exporting Section 5-13
1,2,3... 1. Select Mnemonic - Export in the Mnemonic Editor, specify the desired file
name, and select Save.

5-13-3 Importing and Exporting Variables

Importing
Use to following procedure to import CSV files created on external Program-
ming Devices, Excel, etc.

1,2,3... 1. Either select Variable - Import - CSV Format. from the Menu Bar, or right-
click the Local Variable Editor or Global Variable Editor and select Import
- CSV Format from the popup menu.
The following dialog box will be displayed.

2. Specify the location and name of the file and click the Open Button.
The variables will be imported.

Exporting CSV Files
Variable data can be saved in CSV flies for use on external Programming
Devices, Excel, etc.

1,2,3... 1. Either select Variable - Export - CSV Format. from the Menu Bar, or right-
click the Local Variable Editor or Global Variable Editor and select Export
- CSV Format from the popup menu.
The following dialog box will be displayed.

2. Specify the location and name of the file to save and click the Save Button.
The variables will be saved in a CSV file.
154

Importing and Exporting Section 5-13
Exporting in OPC Server, CX-Designer, or SPU-Console Format
Use the following procedure to save variable data to a CSV or text file for use
with OPC Server, CX-Designer, or SPU-Console.

1,2,3... 1. Select File - Export Variables. The Save Dialog Box will be displayed.

2. Select the file type in the Save as Type Field.

3. Specify the location and name of the file to save and click the Save Button.
The variables will be saved in the specified application’s format.

Note (1) If CX-Designer Format Files (*.txt) or SPU Console Format Files (*.txt) is
selected, only global variables with specified physical addresses will be
exported.

(2) With CX-Designer V3.0 Format Files (*.txt), all global variables will be ex-
ported regardless of whether a physical address is specified. Local vari-
ables of function blocks will not be exported.

This option can be selected to output
the variable file to the clipboard, so that
the file can be exported by pasting.
155

Printing Section 5-14
5-14 Printing
All kinds of project data can be printed.

5-14-1 Page Setup
1,2,3... 1. Select File - Page Setup.

5-14-2 Printing
1,2,3... 1. Select File - Print.

2. Select the item to be printed in the Project Workspace at the left side of the
Window. The contents of data types, logical POUs (programs or function
blocks), global variables, PLC Setup, Ethernet settings, build settings, I/O
tables, or Custom Keys can be printed.

Note If read protection is set for a logical POU (program or function
block), a protection icon will be displayed and it will not be possible
to select the logical POU for printing.

Note Sub-items can be added or removed from the print job by right-clicking the
item and selecting or removing the sub-items (such as ladder diagrams or
variable types) in the popup menu.

5-14-3 Print Preview
1,2,3... Click the Preview Button at the bottom of the Print Window or select File -

Print Preview from the Menu Bar.

Tab page Contents

Margin Use to set the page margins in the Top, Bottom, Left, Right,
Header, and Footer Fields.

Title Setting Use to input the title text and set the number of lines, position,
and font.

Header Header text can be input in the Left, Center, or Right Fields.

Footer Footer text can be input in the Left, Center, or Right Fields.
156

SECTION 6
PLC System Configuration

This section describes the configuration of the PLC system.

6-1 Overview . 158

6-1-1 Settings . 158

6-1-2 Displaying the Setup Window for the System Configuration. 158

6-2 PLC Setup (PLC Setup Area Tab Page) . 159

6-3 Ethernet Setup (Ethernet Tab Page) . 159

6-4 Build Settings (Build Tab Page) . 160

6-4-1 Build Settings . 160

6-5 I/O Table Settings (I/O Table Tab Page) . 161

6-5-1 Online Operations: Creating, Deleting, Comparing 161

6-5-2 Offline Operations: Editing I/O Tables. 161
157

Overview Section 6-1
6-1 Overview
This section provides an overview of the settings and describes how to display
the setting windows.

6-1-1 Settings
The following PLC system configuration settings can be made.

6-1-2 Displaying the Setup Window for the System Configuration
Use the following procedure to display the Setup Window for the system con-
figuration.

1,2,3... 1. Right-click the configuration name (i.e., the PLC name) in the Project
Workspace.

2. Select System Configuration from the popup menu.
The following Setup Window will be displayed.

The setting on each tab page are described in the following sections.

Setting tab name Setting

PLC Setup Includes settings such as startup settings, CPU Unit settings,
timer/interrupt settings, Special I/O Unit refresh settings, and
communications settings.

Ethernet Includes the built-in Ethernet Setup.

Build Includes settings such as detailed timer/counter settings and
IR/DR sharing settings for tasks.

I/O Table Used to create I/O tables online or edit I/O tables offline.

Right-click.
158

PLC Setup (PLC Setup Area Tab Page) Section 6-2
6-2 PLC Setup (PLC Setup Area Tab Page)
This section describes the setting procedure for the PLC Setup.

For details on the PLC Setup for NE1S CPU Units, refer to the SYSMAC
NE1S Series Operation Manual (Cat. No. Z901).

For details on the PLC Setup for CJ2 CPU Units, refer to Appendix E and
Appendix F.

1,2,3... 1. Click the PLC Setup Tab from the Configuration Setting Window.
The PLC Setup Tab Page, shown below, will be displayed.

2. Make all of the required settings and then click the OK Button.

6-3 Ethernet Setup (Ethernet Tab Page)
This section describes the setting procedure for the Ethernet Setup.

For details on Setup for NE1S CPU Units, refer to the SYSMAC NE1S Series
Operation Manual (Cat. No. Z901).

For details on Ethernet settings for CJ2 CPU Units, refer to Appendix F Ether-
net Settings for CJ2 CPU Units.

1,2,3... 1. Click the Ethernet Tab from the Configuration Setting Window.
The Ethernet Tab Page, shown below, will be displayed.

Select the group.

Basic help is
displayed on the
current parameter.

Returns all
parameters to their
default settings.

The current settings
are displayed.
Double-click here to
change the settings.
(Parameters with a
 mark cannot be
changed.)

The default value
and setting range
for the current
parameter are
displayed.

Select the group.

Basic help is
displayed on the
current parameter.

Returns all
parameters to their
default settings.

The current settings
are displayed.
Double-click here to
change the settings.
(Parameters with a
 mark cannot be
changed.)

The default value
and setting range
for the current
parameter are
displayed.
159

Build Settings (Build Tab Page) Section 6-4
2. Make all of the required settings and then click the OK Button.

6-4 Build Settings (Build Tab Page)
This section describes the setting procedure for the Build Settings.

Refer to 6-4-1 Build Settings for details on the individual settings.

1,2,3... 1. Click the Build Tab from the Configuration Setting Window.
The Build Tab Page, shown below, will be displayed.

2. Make all of the required settings and then click the OK Button.

6-4-1 Build Settings

NE1S-series CPU Unit Build Settings

Select the group.

Basic help is
displayed on the
current parameter.

Returns all
parameters to their
default settings.

The current settings
are displayed.
Double-click here to
change the settings.
(Parameters with a
 mark cannot be
changed.)

The default value
and setting range
for the current
parameter are
displayed.

Group Setting Default Setting range

Area for Global/Pro-
gram

Timer Start Address 1,024 0 to 4,095

Timer Variable Size 1,024 0 to 4,096

Counter Start Address 1,024 0 to 4,095

Counter Variable Size 1,024 0 to 4,096

Area for FB Timer Start Address for FB 2,048 0 to 4,095

Timer Variable Size for FB 2,048 0 to 4,096

Timer Variable Reserve Size for Online
Edit

1 0 to 4,096

Counter Start Address for FB 2,048 0 to 4,095

Counter Variable Size for FB 2,048 0 to 4,096

Counter Variable Reserve Size for
Online Edit

1 0 to 4,096

General Settings IR/DR Area Shared Between Tasks Independent Independent or share
160

I/O Table Settings (I/O Table Tab Page) Section 6-5
CJ2 CPU Unit Build Settings

6-5 I/O Table Settings (I/O Table Tab Page)
This section describes the setting procedure for the I/O table settings.

For details on I/O allocations for NE1S-series CPU Units, refer to the SYS-
MAC NE1S Series Operation Manual (Cat. No. Z901).

For details on I/O allocations for CJ2 CPU Units, refer to the CJ2 CPU Unit
Software User's Manual (Cat. No. W473).

I/O table settings can be perform online (mostly to create the I/O tables) or
they can be performed offline (e.g., editing the I/O tables).

The I/O setting procedures for both online operation and offline operation are
described in this section.

6-5-1 Online Operations: Creating, Deleting, Comparing

Creating I/O Tables Use the following procedure to create I/O tables.

1,2,3... 1. Select Controller - Connect to connect online to the PLC.

2. Select Controller - I/O Table - Create.
The real I/O tables will be created.

Deleting I/O Tables Use the following procedure to delete I/O tables.

1,2,3... 1. Select Controller - Connect to connect online to the PLC.

2. Select Controller - I/O Table - Delete.
The real I/O tables will be deleted.

Comparing I/O Tables Use the following procedure to compare the real I/O tables and the registered
I/O tables.

1,2,3... 1. Select Controller - Connect to connect online to the PLC.

2. Select Controller - I/O Table - Compare.
The real I/O tables and the registered I/O tables will be compared.

6-5-2 Offline Operations: Editing I/O Tables
Use the following procedure to edit I/O tables offline.

1,2,3... 1. Click the I/O Table Tab from the Configuration Setting Window.
The following window will be displayed.

Group Setting Default Setting range

Area for Variables Timer Start Address 1,024 0 to 4,095

Timer Variable Size 3,072 0 to 4,096

Counter Start Address 1,024 0 to 4,095

Counter Variable Size 3,072 0 to 4,096

General Settings IR/DR Area Shared Between Tasks Independent Independent or
share
161

I/O Table Settings (I/O Table Tab Page) Section 6-5
2. Click the Backplane Button.
The Backplane Setting Dialog Box will be displayed.
A CJ-series PLC (like the CJ2) is a building block PLC. It does not have a
Backplane, but a Backplane can be virtually set using settings in the NE
Programmer.

To set a specific start address, clear the check mark from Automatic and
input the start address for the Rack.
With a CJ2 CPU Unit, the Backplane will be added immediately after the
project is created.

First, click here to add a CPU
Backplane. Once the CPU
Rack has been completed,
click here again to add any
Expansion Backplanes
needed by the system.

The CPU Backplane is
added first. The display
will automatically
change to Expansion
Backplanes after a CPU
Backplane is added.
162

I/O Table Settings (I/O Table Tab Page) Section 6-5
3. Click the OK Button.
The following CPU Backplane Window will be displayed.

4. Drag and drop any of the Units from the Unit List Area to an Empty Unit in
the Structure Area.
The Unit will be registered in the slot.

In this example, the
first address is set to
Automatic, so Rack 00
is assigned.

Drag and drop
Units to register
them in the
Structure at the top
of the window.

Deletes a Unit
registered in the
structure.

Used to make
settings for a
registered Unit.

Displays the
properties of the
selected Unit.

Select the slot in the
Structure Area and the
Unit in the Unit List Area
and click this button.

Deletes a Unit
registered in
the structure.

Used to make
settings for a
registered
Unit.

Drag and drop Units.
163

I/O Table Settings (I/O Table Tab Page) Section 6-5
5. Settings for the Unit must be made next. Click the Setting Button.
The Unit Setting Dialog Box will be displayed.

6. Make all of the required settings and then click the OK Button.
The I/O Table Tab Page will return.

7. Make all of the required settings and then click the OK Button.

Select the group.

Basic help is
displayed on the
current parameter.

Returns all
parameters to their
default settings.

The current settings
are displayed.
Double-click here to
change the settings.
(Parameters with a
 mark cannot be
changed.)

The default value
and setting range
for the current
parameter are
displayed.
164

SECTION 7
Online Operation

This section provides the procedures for online operation.

7-1 Connecting via Serial Communications (USB/RS-232C) 167

7-1-1 Installing the USB Driver . 167

7-1-2 Connecting Online via USB or RS-232C . 167

7-2 Connecting Online via Ethernet . 170

7-2-1 Connecting Online via Ethernet . 170

7-2-2 Connecting Online via Ethernet . 170

7-2-3 Ethernet Setup. 173

7-2-4 Downloading Ethernet Settings . 174

7-3 Automatic Upload Function . 175

7-3-1 Overview. 175

7-3-2 Executing the Automatic Upload Function 175

7-4 Changing the CPU Unit That Is Connected . 177

7-4-1 Overview. 177

7-4-2 Changing to a CPU Unit on the Same Ethernet Network. 178

7-4-3 Changing to a CPU Unit on a Different Network. 179

7-5 Online Operations for I/O Tables . 181

7-5-1 I/O Tables . 181

7-5-2 Real I/O Tables and Registered I/O Tables. 181

7-5-3 Creating I/O Tables. 181

7-5-4 Deleting I/O Tables. 182

7-5-5 Verifying I/O Tables . 182

7-6 Uploading, Downloading, and Comparing Programs and Other Data 182

7-6-1 Overview. 182

7-6-2 Uploading . 183

7-6-3 Downloading. 185

7-6-4 Comparing . 188

7-7 Changing the Operating Mode . 189

7-8 Monitoring . 189

7-8-1 Overview. 189

7-8-2 Starting Monitoring Functions . 190

7-8-3 Monitoring in the Ladder Editor. 191

7-8-4 Monitoring in the Watch Window . 191

7-9 Saving and Restoring Variable PVs . 194

7-9-1 Function . 194

7-9-2 Procedure . 194

7-10 Forcing Bits ON and OFF (Force-set and Force-reset). 195

7-10-1 Overview. 195

7-10-2 Turning Bits ON/OFF, Forcing Bits ON/OFF,
and Clearing Forced Status . 196
165

7-10-3 Forced Status Display . 197

7-11 Changing the PVs of Variables . 197

7-12 Changing Timer/Counter Set Values . 198

7-13 Differential Monitor. 198

7-14 Online Editing . 199

7-14-1 Online Editing . 199

7-14-2 Online Editing Procedures . 201

7-14-3 Adding Global Variables . 202

7-14-4 Editing Function Block Parameters Online. 203

7-15 Clearing Errors. 203

7-16 Clearing Memory. 204

7-17 Restarting Services . 204

7-18 Displaying Errors and the Error Log . 205

7-18-1 Displaying Current Errors . 205

7-18-2 Displaying the Error log . 206

7-18-3 Displaying Messages. 207

7-18-4 Displaying Ethernet Errors . 208

7-19 Change Log . 209

7-19-1 Overview (NE1S CPU Units Only). 209

7-19-2 Enabling/Disabling the Change Log . 209

7-19-3 Change Log Input Examples . 209

7-19-4 Change Log Display . 210

7-20 Displaying the Cycle Time . 211

7-21 Data Tracing . 211

7-21-1 Data Tracing . 211

7-21-2 Opening and Closing the Data Trace Window 212

7-21-3 Setting Data Trace Parameters . 212

7-21-4 Setting Data Trace Display Colors . 215

7-21-5 Executing the Data Trace Monitor Function 215

7-22 Variable Reference List . 216

7-22-1 Variable Usage List . 217

7-22-2 Cross Reference Report. 218

7-23 Setting the CPU Unit Clock. 219

7-24 Forcibly Releasing the Access Right . 219
166

Connecting via Serial Communications (USB/RS-232C) Section 7-1
7-1 Connecting via Serial Communications (USB/RS-232C)
This section describes how to connect the NE Programmer online to the CPU
Unit using serial communications (USB/RS-232C).

The first time USB is used to connect to the CPU Unit, the USB driver will
need to be installed. To connect using RS-232C communications, go to 7-1-2.

7-1-1 Installing the USB Driver
Refer to 3-3 Installing the USB Driver for details on installing the USB driver.

7-1-2 Connecting Online via USB or RS-232C
Use the following procedure to connect the NE Programmer online to the CPU
Unit using USB or RS-232C communications.

1,2,3... 1. Select Tool − Select Interface - NE1S Serial PORT to connect to an
NE1S-series CPU Unit and select Tool - Select Interface - CJ2 USB/Se-
rial Port to connect to a CJ2 CPU Unit.

2. Select Controller - Connect. Alternately, press the Ctrl+W Keys.
The following dialog box will be displayed.

3. Select the USB or RS-232C port number for the Serial Port and then click
the OK Button.
The following dialog box will be displayed.
167

Connecting via Serial Communications (USB/RS-232C) Section 7-1
4. Click the Refresh Button.
The CPU Unit and Communications Unit mounted to the CPU Rack will be
displayed as shown below.

5. Select the CPU Unit and then click the OK Button.

Note This connection path can be saved. (See the note at the end of this
procedure.)

If an online connection is made normally, On-line will be displayed in the
status bar at the bottom of the window.

6. To go offline again, select Controller - Disconnect. Alternately, press the
Ctrl+Shift+W Keys.

Note When connected online, there is a setting in the Browse Network Dialog Box
to select whether or not to save the connection path.

• Clear (default)
Each time the NE Programmer connects online, it is necessary to browse
to a network path.
168

Connecting via Serial Communications (USB/RS-232C) Section 7-1
• Save
The connection path is displayed from the last time that the NE Program-
mer was connected. In this case, the window in step 5 is displayed when
step 3 is completed, so you can connect online to the last network path
just by clicking the OK Button.

Use the following procedure to set this option.

1,2,3... 1. Click the Option Button in the lower-right corner of the Browse Network Di-
alog Box. The following window will be displayed.

2. Select Clear or Save and click the OK Button.
169

Connecting Online via Ethernet Section 7-2
7-2 Connecting Online via Ethernet
This section describes how to connect the NE Programmer online to the CPU
Unit using Ethernet.

!Caution If the destination node address (IP address) is not set correctly, the NE Pro-
grammer may connect unexpectedly to another PLC, and invalid device
parameters may be set. Always verify that the correct PLC is connected
before downloading data.

7-2-1 Connecting Online via Ethernet
There are several methods that can be used when connecting online to the
CPU Unit via Ethernet for the first time. Here, the IP address of the computer
will be changed to make the online connection.

To change the IP address of the CPU Unit (i.e., to match an existing network
address) after once having connected online to the CPU Unit via Ethernet,
refer to the manual for the relevant CPU Unit. (See note.)

1,2,3... 1. Refer to the manual for the relevant CPU Unit for information on the default
IP address of an NE1S-series CPU Unit or CJ2 CPU Unit. (See note.) In
this example, we will assume the IP address of the computer will be
changed to 192.168.200.10.
Refer to the user's manual for your operating system for the method of
changing the IP address of your computer.

2. Connect the CPU Unit and the computer to Ethernet.

3. Turn ON the power supply to the CPU Unit.

Note Refer to the following manuals for the CPU Units.
NE1S CPU Units:
SYSMAC NE1S Series Operation Manual (Cat. No. Z901)
CJ2 CPU Units:
SYSMAC CJ Series CJ2 CPU Unit Hardware User's Manual (Cat.
No. W472)

7-2-2 Connecting Online via Ethernet
Use the following procedures to connect the NE Programmer online to the
CPU Unit using Ethernet.

1,2,3... 1. Select Tool - Select Interface - Ethernet I/F.

2. Select Controller - Connect. Alternately, press the Ctrl+W Keys.
The following dialog box will be displayed.
170

Connecting Online via Ethernet Section 7-2
3. Click the Refresh Button.
The network will be browsed and the results of browsing will be displayed
as shown in the following figure.

4. Click the expand button (i.e., the + button) for the CPU Unit to expand the
options. In the following figure, 192.168.250.31 CJ2H-31 is selected.

Note With the CJ2, the built-in Ethernet port is also called the EtherNet/
IP Unit on the backplane. Therefore, the built-in EtherNet/IP port
(program name: CJ2B-EIP21) is given directly under TCP:2. The
backplane will be displayed when the built-in EtherNet/IP Unit op-
tion is expanded.

5. A CJ2 CPU Unit or other Unit will be displayed when you expand the back-
plane option under the built-in EtherNet/IP port. Select the CPU Unit and
then click the OK Button.

If an online connection is made normally, On-line will be displayed in the
status bar at the bottom of the window, as shown in the following figure.
171

Connecting Online via Ethernet Section 7-2
Note Communications error will be displayed in the status bar at the bot-
tom of the window as shown in the following figure if a communica-
tions error, such as due to a cable disconnection, is detected during
online connection.

6. To go offline again, select Controller - Disconnect. Alternately, press the
Ctrl+Shift+W Keys.

Note When connected online, there is a setting in the Browse Network Dialog Box
to select whether or not to save the connection path.

• Clear (default)
Each time the NE Programmer connects online, it is necessary to browse
to a network path.

• Save
The connection path is displayed from the last time that the NE Program-
mer was connected. In this case, the window in step 5 is displayed when
step 3 is completed, so you can connect online to the last network path
just by clicking the OK Button.

Use the following procedure to set this option.

1,2,3... 1. Click the Option Button in the lower-right corner of the Browse Network Di-
alog Box. The following window will be displayed.

2. Select Clear or Save in the Browse data Area and click the OK Button.

Note To connect online to an NE1S CPU Unit on a different segment, use the fol-
lowing procedure to input the IP address directly.

1. Click the Option Button in the Browse Network Dialog Box. The following
dialog box will be displayed.

2. Select Disable in the Input address after auto-scan on ethernet Area and
then click the OK Button.
172

Connecting Online via Ethernet Section 7-2
3. Click the Refresh Button in the Browse Network Dialog Box.
The following Browse Address Dialog Box will be displayed along with the
IP addresses found in the Browse Network Dialog Box.

4. Click the Add Button. The following Browse Address Dialog Box will be dis-
played.

5. Directly input the IP address in the Address Field.

7-2-3 Ethernet Setup
To change the network or host portion of the IP address, first change them in
the Ethernet Setup (IP address settings) from the NE Programmer and then
download the Ethernet Setup to the CPU Unit.

Refer to the manual for the relevant CPU Unit for information on setting the
rotary switches.

1,2,3... 1. Right-click the configuration name (i.e., the PLC name) in the Project
Workspace. (Alternately, select Controller - System Configuration.)

2. Select System Configuration from the popup menu.
The System Configuration Setting Window shown in step 4 will be dis-
played.

3. Click the Ethernet Button.

4. Select TCP/IP Settings in the Group List.
The following dialog box will be displayed to set TCP/IP.

Right-click.
173

Connecting Online via Ethernet Section 7-2
5. Double-click IP Address and enter the IP address. If required, set the net-
work mask.

6. Click the OK Button.

This completes setting the IP address. Refer to the following procedure Down-
loading Ethernet Settings and transfer the settings that have been made to
the CPU Unit.

7-2-4 Downloading Ethernet Settings
Ethernet settings can be transferred to the CPU Unit.

Use the following procedure to download the Ethernet settings online to the
CPU Unit.

1,2,3... 1. Connect online to the CPU Unit. (A serial connection can be used if de-
sired.)

2. Select Controller - Download to Controller. Alternately, press the Ctrl+T
Keys.
The following dialog box will be displayed.

3. Select only the Ethernet Settings option (do not select any other options),
and click the OK Button.

The Ethernet settings will be downloaded. If the download ends normally,
the following dialog box will be displayed.

Click
Double-click

There are only
TCP/IP settings for
a CJ2 CPU Unit.

Click to clear selection.

Click to select.
174

Automatic Upload Function Section 7-3
Note The Ethernet settings are automatically backed up in flash memory inside the
CPU Unit.
Do not turn OFF the power supply to the CPU Unit while the settings are
being backed up.
The BKUP indicator on the front of the CPU Unit will light during the automatic
backup operation.

4. Restart the CPU Unit according to the manual for the relevant CPU Unit.
SYSMAC NE1S Series Operation Manual (Cat. No. Z901)
SYSMAC CJ Series CJ2 CPU Unit Hardware User's Manual (Cat. No.
W472)

7-3 Automatic Upload Function

7-3-1 Overview
If the personal computer and CPU Unit are directly connected via USB or RS-
232C communications, the NE Programmer can be automatically connected
online to the CPU Unit. After going online, you can automatically upload and
monitor the program as well.

Refer to information starting in 7-6 Uploading, Downloading, and Comparing
Programs and Other Data and 7-8 Monitoring for details on transferring and
monitoring the program.

Note (1) The automatic upload function cannot be used if another application is
using the serial port.

(2) The automatic upload function can be used only with a direct serial con-
nection.

7-3-2 Executing the Automatic Upload Function
Use the following procedure to execute the automatic upload function.

Note The automatic upload function cannot be used if another application is using
the serial port on the personal computer.

1,2,3... 1. Select Tool - Select Interface and then NE1S Serial PORT for an NE1S-
series CPU Unit or CJ2 USB/Serial Port for a CJ2 CPU Unit.

2. Select Controller - Auto Upload from Controller.
The following dialog box will be displayed.

3. Click the Yes Button. The Setup Interface Dialog Box will be displayed.

Note In some cases, this dialog box will not be displayed. If it is not displayed, pro-
ceed to step 4.
175

Automatic Upload Function Section 7-3
This software retains the interface settings from the previous upload (auto-
matic upload or regular upload). When the Yes Button is clicked in step 3, the
NE Programmer checks for a connection at this port. If there is a connection,
the Setup Interface Dialog Box will not be displayed; the Browse Network Dia-
log Box (step 4) will be displayed instead.

4. Set the USB port’s communications port and baud rate and click the OK
Button. The Browse Network Dialog Box will be displayed.

5. Click the Refresh Button.
The CPU Unit and Communications Units mounted in the CPU Rack will
be displayed, as shown in the following diagram.

6. Select the NE1S-CPU01 Icon as shown below and then click the OK But-
ton.

Note This connection path can be saved. (See the note at the end of this
procedure.)

• If there is unsaved data, a dialog box will be displayed that prompts you to
save the data. Follow the directions and save the data.
176

Changing the CPU Unit That Is Connected Section 7-4
After connecting online to the CPU Unit, the program, PLC Setup, Ethernet
settings, and I/O table will be uploaded from the CPU Unit. The following
dialog box will be displayed when the data has been uploaded.

7. Click the OK Button.

Note When connected online, there is a setting in the Browse Network Dialog Box
to select whether or not to save the connection path.

• Clear (default)
Each time the NE Programmer connects online, it is necessary to browse
to a network path.

• Save
The connection path is displayed from the last time that the NE Program-
mer was connected. In this case, the window in step 5 is displayed when
step 3 is completed, so you can connect online to the last network path
just by clicking the OK Button.

Use the following procedure to set this option.

1,2,3... 1. Click the Option Button in the lower-right corner of the Browse Network Di-
alog Box. The following window will be displayed.

2. Select Clear or Save and click the OK Button.

7-4 Changing the CPU Unit That Is Connected

7-4-1 Overview
Use this function to connect to a different CPU Unit when the NE Programmer
is already connected online to a CPU Unit. When the CPU Unit connection is
changed, the automatic upload function will be executed after connecting to
the new CPU Unit.

There are two ways to change the CPU Unit:

• Changing to a CPU Unit on the same network. For example, changing to
a CPU Unit connected to the same Ethernet network as the CPU Unit that
is currently connected. Refer to 7-4-2.

• Changing to a CPU Unit on a different network. For example, changing to
a CPU Unit connected to an Ethernet network when a CPU Unit is cur-
rently connected via USB. Refer to 7-4-3.
177

Changing the CPU Unit That Is Connected Section 7-4
7-4-2 Changing to a CPU Unit on the Same Ethernet Network
Use the following procedure to change the connection to a CPU Unit con-
nected to the same Ethernet network as the CPU Unit that is currently con-
nected.

1,2,3... 1. Select Controller - Change Controller.
The following dialog box will appear if there is any unsaved data.

2. Click the Yes Button and save the data on the NE Programmer if the data
is required.
Click the No Button is the data is not required.

• The Browse Network Dialog Box will be displayed.

• If the IP address of the CPU Unit to be connected is not displayed, click
the Refresh Button.

3. Select the IP address of the CPU Unit to be connected.

4. Click the OK Button.
The following dialog box will be displayed.

5. Click the Yes Button.
The automatic upload function will be performed after connecting to the
specified CPU Unit. The following dialog box will be displayed if the auto-
matic upload function is executed normally.
178

Changing the CPU Unit That Is Connected Section 7-4
7-4-3 Changing to a CPU Unit on a Different Network
Use the following procedure to change the connection to a CPU Unit con-
nected to an Ethernet network when a CPU Unit is currently connected via
USB.

1,2,3... 1. Select Controller - Change Controller.
The following dialog box will be displayed if there is any unsaved data.

2. Click the Yes Button and save the data on the NE Programmer if the data
is required.
Click the No Button is the data is not required.

• The Setup Interface Dialog Box will be displayed.

3. The serial port and baud rate being used for the current connection will be
displayed. Check the settings and then click the OK Button.
The Browse Network Dialog Box will be displayed.

4. Select TCP:2 (Ethernet port) and then click the Refresh Button.
The Browse Address Dialog Box will be displayed.

Select the Ethernet port
(TCP2) to connect externally.
179

Changing the CPU Unit That Is Connected Section 7-4
5. Click the Add Button and input the IP address in the dialog box that will be
displayed. The Browse Address Dialog Box will return.
The IP address that was input will be displayed as shown below.

6. Click the OK Button.
The IP address that was input will be displayed in the Browse Network Di-
alog Box.

7. Select the IP address of the CPU Unit to be connected.

8. Click the OK Button.
The following dialog box will be displayed.

9. Click the Yes Button.
The automatic upload function will be performed after connecting to the
specified CPU Unit. The following dialog box will be displayed if the auto-
matic upload function is executed normally.
180

Online Operations for I/O Tables Section 7-5
7-5 Online Operations for I/O Tables
This section describes creating, deleting, and comparing I/O tables online.

7-5-1 I/O Tables
I/O tables are tables that list the models and locations of the Units mounted in
the PLC.

The I/O tables registered in the CPU Unit are used to allocate I/O memory in
the CPU Unit to real I/O (i.e., Basic I/O Units), Special I/O Units, and CPU Bus
Units.

Always create I/O tables and register them in the CPU Unit after adding any
new Unit to the PLC or after removing any Unit from the PLC.

7-5-2 Real I/O Tables and Registered I/O Tables

Real I/O Tables The real I/O tables are tables that are created by the CPU Unit in the PLC to
show the Units actually mounted in the PLC.

When the I/O table creation operation is performed, the real I/O tables are
registered in the CPU Unit as the registered I/O tables. The real I/O tables
cannot be changing from the NE Programmer.

Registered I/O Tables The registered I/O tables in the CPU Unit are used by the CPU Unit when allo-
cating I/O. Use either of the following procedures to register I/O tables in the
CPU Unit.

• Execute the I/O table creation operation online to register the real I/O
tables in the CPU Unit as the registered I/O tables.

• Create and edit I/O tables offline and then transfer them to the CPU Unit.

7-5-3 Creating I/O Tables
Use the following procedure to create the real I/O tables online.

1,2,3... 1. Connect online to the CPU Unit.

2. Select Controller - I/O Table - Create.
The following dialog box will be displayed.

3. Click the Yes Button.
The real I/O tables will be registered in the CPU Unit as registered I/O ta-
bles.
181

Uploading, Downloading, and Comparing Programs and Other Data Section 7-6
7-5-4 Deleting I/O Tables
Use the following procedure to delete the registered I/O tables online.

1,2,3... 1. Connect online to the CPU Unit.

2. Select Controller - I/O Table - Delete.
The following dialog box will be displayed.

3. Click the Yes Button.
The registered I/O tables will be created.

7-5-5 Verifying I/O Tables
Use the following procedure to compare the registered I/O tables and the real
I/O tables online.

1,2,3... 1. Connect online to the CPU Unit.

2. Select Controller - I/O Table - Compare.

The registered I/O tables will be compared to the real I/O tables and the
results will be displayed.

7-6 Uploading, Downloading, and Comparing Programs and
Other Data

7-6-1 Overview
The following data can be uploaded to the NE Programmer, downloaded to
the CPU Unit, or compared between the CPU Unit and NE Programmer: I/O
tables, PLC Setup, and Ethernet Setup.

The CPU Unit operating modes during which uploading, downloading, and
comparing are possible are shown in the following table.

Menu command RUN MONITOR PROGRAM

Controller - Upload from Controller Yes Yes Yes

Controller - Download to Controller No No Yes

Controller - Compare with Controller Yes Yes Yes
182

Uploading, Downloading, and Comparing Programs and Other Data Section 7-6
!Caution Confirm safety at the destination node before editing or transferring a pro-
gram, PLC Setup, I/O table, I/O memory data, or parameter data to another
node. Doing either of these without confirming safety may result in unex-
pected operation and injury.

!Caution Before actual operation, check the parameter settings and user program
(such as the ladder program) for proper execution in trial operation. Always
check the program before transferring it.

!Caution Always clear the memory of a CJ2 CPU Unit before downloading programs,
the PLC Setup, or the I/O tables from the NE Programmer. If the memory is
not cleared before downloading the data, unexpected operation may occur in
the controlled system.

Note (1) Confirm that the controlled system will not be adversely affected before
changing the operating mode of the CPU Unit.

(2) Valuable programs may be lost if the direction of program transfer is not
correct. Double-check the transfer direction before transferring data.

Perform all of the following operations online. Before starting, connect the NE
Programmer online to the CPU Unit.

7-6-2 Uploading
Use the following procedure to upload any of the following from the CPU Unit
to the NE Programmer: Program, PLC Setup, Ethernet settings, and I/O
tables.

1,2,3... 1. Select Controller - Upload from Controller.
A confirmation dialog box will be displayed asking if you want to save the
project.

2. To save the current project, click the Yes Button, enter the project file
name, and then click the Save Button.
183

Uploading, Downloading, and Comparing Programs and Other Data Section 7-6
3. Select the data to be uploaded and then click the OK Button.

4. The data selected in step 3 will be uploaded from the CPU Unit to the NE
Programmer.
The following dialog box will be displayed if the data is uploaded normally.

5. Click the OK Button.

Upload Protection for Programs
It is possible to set an upload protection password for the program. Upload
protection will be enabled when a program in a computer that has a set pass-
word is downloaded to the PLC.

This enables prohibiting uploading of a program with a set password if the
password does not match when it is checked. The following describes the
basic operation.

• Only programs can be upload-protected. The PLC Setup, Ethernet set-
tings, and I/O table settings can be uploaded and edited.

• The password will not be checked if the password in the computer does
not match the password in the PLC.

• Downloading and online editing can be performed and settings can be
changed regardless of whether there is a password.

Setting the Password Right-click the configuration in the Workspace and select Program Upload
Protect (P) from the pop-up menu. The following dialog box will be displayed
to set the password.

Input the password and then click the OK Button.

Releasing the Password Input the current password into the Old Password Field, leave the New Pass-
word Field and Reenter Password Field blank, and then click the OK Button.
184

Uploading, Downloading, and Comparing Programs and Other Data Section 7-6
Checking the Password at
Upload

The following dialog box will be displayed to check the password if an upload
protection password has been set and the password does not match when it
is checked. The password will be verified when upload is performed from the
Controller or verification is performed with the Controller.

7-6-3 Downloading
Use the following procedure to download any of the following from the NE Pro-
grammer to the CPU Unit: Program, PLC Setup, Ethernet settings, and I/O
tables.

1,2,3... 1. Select Controller - Download to Controller.
The following dialog box will be displayed.

2. Select the data to be downloaded and then click the OK Button.
The following dialog box will be displayed if there are already retained vari-
ables in the CPU Unit with the same data type as retained variables in a
program being downloaded.

Refer to Preserving the Values of Retained Variables below for details on
preserving the PVs of retained variables.

3. Select the data to be downloaded and then click the OK Button.
The selected data selected will be downloaded from the NE Programmer
to the CPU Unit. The following dialog box will be displayed if the data is
downloaded normally.

4. Click the OK Button.
185

Uploading, Downloading, and Comparing Programs and Other Data Section 7-6
Preserving the Values of Retained Variables
If there are already retained variables in the CPU Unit with the same data type
as retained variables in a program being downloaded, the retained variables
in the CPU Unit can be preserved.

Note Observe the following precautions.

• The force-set/force-reset status of automatically allocated variables will
not be preserved.

• The force-set/force-reset status of automatically allocated variables is
cleared when the CPU Unit is switched from PROGRAM mode to MONI-
TOR or RUN mode.

• If the program is downloaded when automatically allocated variables have
been force-set/force-reset, the variables may have unexpected force-set/
force-reset status after the download is completed. We recommend clear-
ing the forced status of all automatically allocated variables before down-
loading the program.

• Network I/O variables will be held even if they are set to not be held.

This list shows various requirements for the PVs of retained variables to be
preserved after downloading. There is a table following the list with examples
for cases *1 to *10.

• Variables in the downloaded program are set to be retained and automat-
ically allocated. Variables with address specifications or non-retained vari-
ables are not preserved. (*1)

• The variable names are being used in the program in the Controller
before the download. (*2, *3, *4)

• The variables and data types in the Controller before the download match
the ones in the program being downloaded. (*5)

• For structures, the data types match for each member. Also, members
are valid even if the member’s declaration location changed. (*6)

• For array variables, it depends on whether the number of elements in-
creased or decreased. If the number of elements decreased, all vari-
ables will be valid. If the number of elements increased, only the
number of elements before the download will be valid. (*7)

• There are no changes to task allocations or nesting of function block
instances. (*8, *9, *10)

• The variables are not written from another source while the download is in
progress.
186

Uploading, Downloading, and Comparing Programs and Other Data Section 7-6
When a variable has been overwritten from another application, the vari-
able may be returned to its previous value.

Status Information in program
(downloaded information)

Information in Controller
(information before download)

PV status after
download

1 Retain/Non-retain and
Address specification

BOOL VarA
(with address specification)

BOOL VarA
(automatic allocation/retain/non-
retain)

Not retained

BOOL VarA
(with address specification)

BOOL VarA
(with address specification)

Not retained

BOOL VarA
(automatic allocation/retain)

BOOL VarA
(with address specification)

Retained

BOOL VarA
(automatic allocation/retain)

BOOL VarA
(automatic allocation/non-retain)

Retained

BOOL VarA
(automatic allocation/non-retain)

BOOL VarA
(automatic allocation/retain)

Not retained

2 Variable exists in both
project and Controller.

VarA VarA Retained

3 Variable does not exist
in Controller.

VarA None Not retained

4 Variable does not exist
in project.

None VarA Not retained

5 Data types match. BOOL VarA BOOL VarA Retained

6 Data types do not
match.

BOOL VarA WORD VarA Not retained

DWORD VarA WORD VarA Not retained

TYPE stA:
STRUCT

Member1: BOOL;
Member2: WORD;
Member3: UINT;
Member4: DWORD;

END_STRUCT;
END_TYPE
VAR

VarA: stA;
END_VAR;

TYPE stA:
STRUCT

Member2: BOOL;
Member1: WORD;
Member3: UDINT;

END_STRUCT;
END_TYPE
VAR

VarA: stA;
END_VAR;

Retained
Retained
Not retained
Not retained

TYPE stA:
STRUCT

Member2: BOOL;
Member1: WORD;
Member3: UDINT;

END_STRUCT;
END_TYPE
VAR

VarA: stA;
END_VAR;

TYPE stA:
STRUCT

Member1: BOOL;
Member2: WORD;
Member3: UINT;
Member4: DWORD;

END_STRUCT;
END_TYPE
VAR

VarA: stA;
END_VAR;

Retained
Retained
Not retained
Not retained

7 Number of array ele-
ments is different.

BOOL VarA[3]

VarA[0]
VarA[1]
VarA[2]

BOOL VarA[3]

VarA[0]
VarA[1]

Retained
Retained
Not retained

BOOL VarA[3]
VarA[0]
VarA[1]

BOOL VarA[3]
VarA[0]
VarA[1]
VarA[2]

Retained
Retained
Not retained
187

Uploading, Downloading, and Comparing Programs and Other Data Section 7-6
7-6-4 Comparing
Use the following procedure to copy any of the following between the NE Pro-
grammer and the CPU Unit: Program, PLC Setup, Ethernet settings, and I/O
tables.

1,2,3... 1. Select Controller - Compare with Controller.
The following dialog box will be displayed.

2. Select the data to be compared and then click the OK Button.
The selected data selected will be compared between the NE Programmer
and the CPU Unit.
The results of comparison will be displayed on the Compare Tab Page of
the Output Window as shown below.

8 Task allocation was
changed.

\Cyclic task (0 to 127) 0
\VarA

\Cyclic task (0 to 127) 1
\VarA

Not retained

9 FB instance name was
changed.

\Cyclic task (0 to 127) 0
\InstA\VarA

\Cyclic task (0 to 127) 0
\InstB\VarA

Not retained

10 FB instance nesting
was changed.

\Cyclic task (0 to 127) 0
\InstA\VarA

\Cyclic task (0 to 127) 0
\InstA\InstB\VarA

Not retained

Status Information in program
(downloaded information)

Information in Controller
(information before download)

PV status after
download
188

Changing the Operating Mode Section 7-7
7-7 Changing the Operating Mode
Use the following menu commands to change the operating mode of the CPU
Unit from the NE Programmer.

Note Confirm that the controlled system will not be adversely affected before
changing the operating mode of the CPU Unit.

7-8 Monitoring

7-8-1 Overview
The monitoring function enables ladder program execution to be monitored in
a window.

The NE Programmer supports the following two types of monitoring.

• Monitoring status and present values on the Ladder Editor

• Monitoring present values of specified variables (or addresses) in the I/O
memory of the CPU Unit in the Watch Window.

The following operations are used in the above monitoring windows.

• Status/PV Monitor

• Force ON/Force OFF

• Differential Monitor (detecting ON to OFF and OFF to ON transitions in bit
status)

• PV Change

• Program Change while Monitoring: Refer to 7-14 Online Editing.

• Timer/Counter SV Change: Refer to 7-14 Online Editing.

!Caution Confirm safety sufficiently before starting to monitor status or PVs on the Lad-
der Editor or in the Watch Window.
Operating errors, e.g., of shortcut keys that result in forcing ON or OFF bits or
turning ON or OFF bits may result in operating errors in the controlled system
connected to Output Units regardless of the operating mode of the CPU Unit.

Relationship between Monitoring Types and Operations

Operating mode Menu command

PROGRAM Controller - Operating Mode - Program

MONITOR Controller - Operating Mode - Monitor

RUN Controller - Operating Mode - Run

Operation Type of monitoring Operating mode of
CPU UnitLadder

Editor
Watch

Window

Status/PV Monitor Yes Yes All modes

Force ON/Force OFF Yes Yes All modes except
RUN

Differential monitor Yes Yes All modes

PV Change for timers, counters, I/
O areas, DM Area, or EM Area

Yes Yes All modes except
RUN

Online editing (Including Timer/
Counter SV Change)

Yes No All modes except
RUN
189

Monitoring Section 7-8
7-8-2 Starting Monitoring Functions
When the NE Programmer is connected online to a CPU Unit, monitoring will
automatically be started in the Ladder Editor and Watch Window.

Note (1) The program in the NE Programmer and the program in the CPU Unit
must be the same to enable monitoring. If they are not the same, transfer
the program. For details on transferring programs, refer to 7-6 Uploading,
Downloading, and Comparing Programs and Other Data.

(2) The automatic upload function can be used to automatically upload the
program from the CPU Unit and start monitoring. (The automatic upload
function can be used only when the NE Programmer and CPU Unit are
connected directly via USB or RS-232C communications. Refer to 7-3
Automatic Upload Function for details on the automatic upload function.

1,2,3... 1. Connect the NE Programmer online to the CPU Unit.

2. Double-click the task to be monitored in the Project Window to display the
Ladder Editor.
Monitoring will automatically be started in the Ladder Editor and Watch
Window.

• ON execution status (i.e., the power flow) in the ladder diagram will be
indicated in light green. (Light green is the default color.)

• If the CPU Unit is in MONITOR or RUN mode and the current task is
active, the background will be light blue. (Light blue is the default color.)

• If the Watch Window is not currently displayed, select View - Window -
Watch.

Operations that can be performed in the Ladder Editor or Watch Window dur-
ing monitoring are described in the following sections.
190

Monitoring Section 7-8
7-8-3 Monitoring in the Ladder Editor
In online status, double-click the task to be monitored in the Project Window to
display the Ladder Editor.

The following Ladder Editor Status Monitor Window will be displayed.

• PV: Present value, SV: Set value

• Depending on the operating status of the CPU Unit, ON execution status
(i.e., the power flow) in the ladder diagram will be indicated in light green.
(Light green is the default color.)

• If the CPU Unit is in MONITOR or RUN mode, the background will be light
blue. (Light blue is the default color.)

• To change the display colors, select Tool - Option to display the Inte-
grated Options Window, click the Ladder Icon, and click the Color Tab.

• The icon shown below will be displayed to indicated forced status if a bit is
forced ON or forced OFF.

Note The following indications are used for operand data for function
blocks that are being monitored.

Constants are input using “10#” and “16#”.

7-8-4 Monitoring in the Watch Window

Monitoring by Registering Variables (Bits or Words) in the Editor

1,2,3... 1. In online status, double-click the task to be monitored in the Project Win-
dow to display the Ladder Editor.

NE Programmer version 1.53
and higher

NE Programmer version 1.60
and lower

Decimal: Number after 10#
Hexadecimal: Number after 16#

Decimal: Number after plus or
minus sign
Hexadecimal: HEX after number

Examples

10#1234
16#1234

+1234

1234 HEX

PV

PV

SV
191

Monitoring Section 7-8
2. If the Watch Window is not currently displayed, select View - Window -
Watch.
The Watch Window will be displayed.

3. In the Ladder Editor, select one or more variables (bits or words) to be
monitored, right click, and select Add to Watch from the popup menu.
The specified bit or word will be added to the Watch Window and its
present value will be automatically monitored as shown below.

Example of Setting Multiple Variables

• “S On” will be displayed for bits that are forced ON and R Off will be dis-
played for bits that are forced ON.

• If the project is saved, information on the variables that have been added
to the Watch Window will be saved as well.

• The tab pages from Watch 1 to Watch 4 can be used to group the vari-
ables that are being monitored.

• Any variables that have been forced ON or OFF will be displayed on the
Force Status Tab Page.
Execute Update Force Status the first time the Force Status Tab Page is
selected. (A dialog box will be displayed automatically when the tab is
clicked.)
Once a bit has been forced ON or OFF, it will remain on the Force Status
Tab Page even if its forced status is cleared. To remove a bit from the
Force Status Tab Page, right-click the Watch Window and select Update
Status.

• If multiple BOOL , TIMER, or COUNTER variables have been selected, all
the variables can be set, reset, force-set, or force-reset.

Monitoring by Registering Variables (Bits or Words) in the Watch Window

1,2,3... 1. Right-click the Watch Window and select Add to Watch from the popup
menu.
The New Watch Item Dialog Box will be displayed.

Right-click the tab to select Create Tab, Delete Tab, Move, or Rename.
192

Monitoring Section 7-8
2. To register a variable, select the Variable Option, input the variable name,
and then click the OK Button.
To register a bit or word, select the Address Option, input the address, and
then click the OK Button.
The specified variable (bit or word) will be added to the Watch Window and
the present value will be monitored.

Example when D100 Is Designated

3. Repeat the previous step to monitor multiple variables (bits or words).

Note Consecutive addresses (e.g., D101, D102 . . .) can be easily input
when watch items are repeatedly added after registering address-
es of bits or words.

Changing the Display
Format

To change the display format, select the items in the Watch Window (multiple
items can be selected), right-click, and select Monitoring Data Type and then
Monitor in Hex, Decimal, Signed Decimal, Binary Number, or Data Type
from on the popup menu.

Example when Data Type Is Selected

• The display format for PVs of items in the Watch WIndow can be individu-
ally specified by selecting the following commands from the View Menu or
toolbar.
Select View - Monitoring Data Type and then Monitor in Hex, Decimal,
Signed Decimal, Binary Number, or Data Type.

Setting the Watch Range
A dialog box will be displayed to ask the display range if the number of ele-
ments for the specified array is 256 or higher.

Input the number of the start element and the number of elements to register,
and then click the OK Button.
193

Saving and Restoring Variable PVs Section 7-9
7-9 Saving and Restoring Variable PVs

7-9-1 Function
This function reads all of the variable PVs saved in the CPU Unit and saves
the data in a CSV file; it also restores the saved variable to the CPU Unit.

All of the variables are saved and restored together, including global, local,
retained, and non-retained variables.

!WARNING Restore variables only after confirming that doing so will not adversely affect
the system.

Note Observe the following precautions.

• The force-set/force-reset status of automatically allocated variables will
not be preserved.

• The force-set/force-reset status of automatically allocated variables is
cleared when the CPU Unit is switched from PROGRAM mode to MONI-
TOR or RUN mode.

7-9-2 Procedure

Saving PVs

1,2,3... 1. Select Controller - Backup value of variables. The Backup values Dialog
Box will be displayed.

2. Specify the file location and file name and click the Save Button. The fol-
lowing dialog box will be displayed if the save operation was completed
normally.
194

Forcing Bits ON and OFF (Force-set and Force-reset) Section 7-10
Restoring PVs

1,2,3... 1. Select Controller - Restore value of variables. The Restore values Dia-
log Box will be displayed.

2. Specify the source file and click the Open Button. The following dialog box
will be displayed if the restore operation was completed normally.

If none of the saved variables exist in the CPU Unit, the following error
message will be displayed.

7-10 Forcing Bits ON and OFF (Force-set and Force-reset)

7-10-1 Overview

Force ON/Force OFF When the CPU Unit is online in MONITOR or PROGRAM mode, input bits,
output bits, and timer/counter Completion Flags can be forced ON or OFF
from the Ladder Editor or Watch Window.

The forced status is maintained until it is cleared or until it is forced ON or OFF
again. Forced status will not change regardless of external input status or the
results of program execution.

Force ON/Force OFF When the CPU Unit is online in MONITOR or PROGRAM mode, input bits,
output bits, and timer/counter Completion Flags can be turned ON or OFF
from the Ladder Editor or Watch Window.

The set status, however, is not forced and will change if the external input sta-
tus changes or if the status changes as a result of ladder program execution.
This is the difference between turning bits ON or OFF normally and forcing
bits ON or OFF.
195

Forcing Bits ON and OFF (Force-set and Force-reset) Section 7-10
Note (1) Confirm that the controlled system will not be adversely affected before
changing the status of any bit in memory, including turning bits ON and
OFF, forcing bits ON and OFF, and resetting forced status.

(2) The status of bits forced ON and OFF while online will be maintained
even after the NE Programmer is taken offline.

(3) Before going offline, check the forced status on the Force Status Tab
Page and clear the forced status.

(4) Do not unintentionally go offline while there is forced status remaining in
the CPU Unit.

(5) The program in the NE Programmer and the program in the CPU Unit
must be the same to enable forcing bits ON or OFF. If they are not the
same, upload the program.

An option in the Integrated Options Window’s General Tab Page must be
selected in order to allow write operations (PV change, force-set/reset, and
set/reset operations) on array variables specified with an index, such as A[i].
To enable these write operations, select Tool - Option to display the Inte-
grated Options Window, click the General Icon, and select the Permit a write
operation to the Array element with index variable, e.g., A[i]. Option.

Note An array variable’s index value is based on the index value the last time that
the value was monitored, so a write operation may operate on a different array
element if the variable’s index value was changed since the last write opera-
tion.

7-10-2 Turning Bits ON/OFF, Forcing Bits ON/OFF, and Clearing Forced
Status

To change the status of a bit, select it in the Ladder Editor or Watch Window
and select one of the following from the Set Menu: On, Off, Force On, Force
Off, Release Force Status.

Example for Force ON/Force OFF

• The icon shown below will be displayed on the Ladder Editor to indicate
forced status if a bit is forced ON or forced OFF.

• In the Watch Window, S On will be displayed for bits that are forced ON
and R Off will be displayed for bits that are forced ON.

Note When bits are turned ON or OFF, the icon, S On, and R Off will not be dis-
played in the Ladder Editor or Watch Window and only the normal display for
ON and OFF status will be displayed.
196

Changing the PVs of Variables Section 7-11
7-10-3 Forced Status Display
Click the Force Status Tab in the Watch Window to display all the forced sta-
tuses for connected CPU Units. The following screen shows an example of
the forced status display.

The forced status can be read from the CPU Unit using the following two
methods:

• Click the Force Status Tab the first time the NE Programmer is started.

• Select Scan Force Status after right-clicking the Force Status Tab.

When the forced status for the connected CPU Unit is changed by the NE Pro-
grammer, the change is immediately shown on the Force Status Tab Page.
When the forced status is changed from another NE Programmer installation,
the change will not be shown until the forced status is refreshed with the most
recent data.

7-11 Changing the PVs of Variables
When the CPU Unit is online in MONITOR or PROGRAM mode, the present
values of words can be changed from the Watch Window or the Ladder Editor.

Any present values that are changed, however, are not forced and will change
if the external input status changes or if the status changes as a result of lad-
der program execution.

Note Confirm that the controlled system will not be adversely affected before
changing a present value.

1,2,3... 1. Right-click the PV to be changed in the Watch Window and select Set -
Value from the popup menu.
The Value Dialog Box will be displayed.

2. Input the desired value and then click the OK Button.
The specified value will be displayed in the Watch Window and Ladder Ed-
itor.
197

Changing Timer/Counter Set Values Section 7-12
An option in the Integrated Options Window’s General Tab Page must be
selected in order to allow write operations (PV change, force-set/reset, and
set/reset operations) on array variables specified with an index, such as A[i].
To enable these write operations, select Tool - Option to display the Inte-
grated Options Window, click the General Icon, and select the Permit a write
operation to the Array element with index variable, e.g., A[i]. Option.

Note An array variable’s index value is based on the index value the last time that
the value was monitored, so a write operation may operate on a different array
element if the variable’s index value was changed since the last write opera-
tion.

7-12 Changing Timer/Counter Set Values
When the CPU Unit is online in MONITOR or PROGRAM mode, timer and
counter set values can be changed with an online editing operation. Timer
and counter set values can also be changed from constants to external set-
tings such as a CIO word, Work word, or DM word.

Note Before changing a timer or counter set value, verify that the change will not
adversely effect the system or equipment.

Supported Instructions Set values can be changed in the following instructions.

Timer/Counter Operation Mode: Binary Mode

Timer instructions: TIMX, TIMHX(551), TIMLX(553), TMHHX(552), and
TTIMX(555)
Counter instructions: CNTX and CNTRX(548)

The following example procedure shows how to change a timer’s set value.

1,2,3... 1. Monitor the rung containing the timer that will be edited.

2. Select the TIMX instruction’s set value, right-click, and select Set - Timer/
Counter Setting Value from the popup menu. The following dialog box will
be displayed.

3. Change the variable or address/value and click the Apply Button. The set
value will be changed. (The timer set value can be changed repeatedly un-
til the Close Button is clicked.)

7-13 Differential Monitor
ON to OFF and OFF to ON transitions in bits can be detected online from the
Ladder Editor and Watch Window.
198

Online Editing Section 7-14
1,2,3... 1. Right-click the variable for differential monitoring in the Watch Window or
Ladder Editor and select Differential Monitor from the popup menu.
The Differential Monitor Dialog Box will be displayed.

2. Select the Differentiation Up/Down and then click the Start Button.
When the differentiation condition is met, the display will change as shown
below for an Up condition.

7-14 Online Editing

7-14-1 Online Editing
When the CPU Unit is online in MONITOR or PROGRAM mode, multiple lad-
der rungs can be edited simultaneously from the Ladder Editor while monitor-
ing status.

Note With NE1S-CPU01 Rev. 3.0 or earlier revisions, multiple ladder
rungs cannot be edited even if there are line comments included
with the rungs.

Broadly speaking, the following two types of online editing operations are sup-
ported.

• Editing or deleting the selected rung

• Inserting rungs before or after the selected rung

The following editing functions are supported for online editing.

• Inserting, deleting, and changing basic instructions

• Inserting, deleting, and changing special instructions

• Adding external or internal variables

• Changing differentiated instructions (setting/releasing upward or down-
ward differentiation or adding/deleting/changing differentiated instruc-
tions)
199

Online Editing Section 7-14
• Adding global variables

• Adding, changing, and deleting function block parameters

!Caution Confirm that the controlled system will not be adversely affected even if the
cycle time is increased before performing online editing. An increased cycle
time may prevent input signals from being read.

Note (1) When online editing is performed, changes will be written first to the nor-
mal RAM in the CPU Unit and then they will be backed up in the flash
memory in the CPU Unit. Do not turn OFF the power supply to the CPU
Unit while the settings are being backed up to flash memory (i.e., while
the BKUP indicator is lit). The following display will appear in the status
bar while data is being written to flash memory.

(2) If the CPU Unit and NE Programmer do not contain the same program,
and error message will be displayed and online editing will not be possi-
ble.

(3) To may major corrections to the program or to move rungs, edit the pro-
gram offline and then download it to the CPU Unit.

(4) Do not edit the program in a way that would cause the maximum cycle
time set in the PLC Setup to be exceeded.
If the maximum cycle time is exceeded, a cycle time exceeded error will
occur and operation will stop.

If a cycle time exceeded error occurs, operation will stop.

• To start operation again, switch to PROGRAM mode and then return
to RUN or MONITOR mode.

If a cycle time exceeded error persists, do the following.

• Change the program or increase the maximum cycle time setting.

• Perform the operation to clear error displays.

The CPU Unit will stop for a short period of time when any of the following
instructions is inserted or deleted.

JMP, JME, or END

(5) Refer to 7-15 Clearing Errors and 7-18 Displaying Errors and the Error
Log for information on clearing error displays.

(6) There must be at least one END instruction in a program. Leave at least
one END instruction in the program when performing online editing.
200

Online Editing Section 7-14
7-14-2 Online Editing Procedures
The following example shows how to input an OR using online editing.

1,2,3... 1. While monitoring the program, display the rung where online editing is to
be performed.

2. Right-click the rung to be edited and select Online Edit - Begin from the
popup menu. It does not matter what portion of the rung is selected. In this
example, rung 4 will be edited.
The following dialog box will be displayed.

Note The number of differentiations that can be added will not be dis-
played for program POUs of a CJ2 CPU Unit.

3. Click the OK Button.
The selected rung will be displayed with a yellow background as shown be-
low. (Yellow is the default color.)

4. Edit the rung. Editing methods are the same as for offline operations.
In this example, an OR will be added for RbSetComp for the NC input con-
dition at the beginning of the above rung.

5. Right-click the Edit Window and select Online Edit - Finish from the pop-
up menu.
A confirmation dialog box will be displayed.

6. Click the Yes Button.
The changes will be downloaded and the following dialog box will be dis-
played when the download has been finished.
201

Online Editing Section 7-14
7. Click the OK Button.
The monitor window will be displayed with the changed applied.

This completes the online editing.

7-14-3 Adding Global Variables
Use the following procedure to add global variables in online editing. The
restrictions that apply are also given below.

Procedure

1,2,3... 1. When a new variable is added during online editing, the following Edit Vari-
able Dialog Box will be displayed.

2. Change the Usage setting to Global.

Addresses and network variables can be set for global variables.

3. Click the OK Button. The new variable will be registered as a global vari-
able. The new variable will also be registered as an external variable.

Precautions The added global variable cannot be edited or deleted during online editing.

• The addition of a new variable to the global and external variables can be
cancelled during online editing by ending global editing.

• When online editing has been completed and changes have been trans-
ferred, it is necessary to close the connection, edit/delete the global vari-
ables, build the program, and download the project.
202

Clearing Errors Section 7-15
7-14-4 Editing Function Block Parameters Online
Function block parameters (i.e., the inputs and outputs of the function block;
refer to the following figure) can be edited online. The following operations can
be edited.

• Changing from a variable (e.g., VarA) to a different variable (e.g., VarB)

• Changing from a variable to a constant (e.g., 10#1234) or an address
(e.g., 0000.00)

• Changing from a constant or address to a constant or address

• Changing from a constant or address to a variable or address

• Deleting a variable or constant to (i.e., changing from allocate to omit)

• Adding a variable, constant, or address (i.e., changing from omit to allo-
cate)

• Creating direct connections

Connection lines from the left bus bar to function block input variables
Connection lines from function block output variables to function block
input variables

• Deleting direct connection lines

The parameters shown with circles in the following figure can be edited.

7-15 Clearing Errors
Use the following procedure to clear error displays.

1,2,3... 1. If an error is displayed, first remove the cause of the error.

2. Select Controller - Clear Error. Alternately, press the F4 Key.
Errors, however, cannot be cleared when another Programming Devices
has the access right or the CPU Unit is in RUN mode.

The information will be displayed in the status bar when an error occurs.

Information will also be display on the Error Tab Page of the Error Log Win-
dow.

Refer to 7-18 Displaying Errors and the Error Log for information on errors
and the Error Log Window.

Controller - Clear Error is the same function as that executed for the Clear
Button on the Error Tab Page in the Error Log Window.
203

Clearing Memory Section 7-16
7-16 Clearing Memory
Memory in the CPU Unit can be cleared in the following units.

• All user programming (multiple programs)

• I/O Memory Area

• Parameter Area

Perform all of the following operations online. Before starting, connect the NE
Programmer online to the CPU Unit.

1,2,3... 1. Select Controller - Clear Memory.
The following dialog box will be displayed.

2. Select the data to be cleared and then click the OK Button.
The following dialog box will be displayed.

3. Click the Yes Button.
The data specified in step 2 will be cleared.

7-17 Restarting Services
Use the following procedures to restart the SMTP and SNTP services.

Note This function can be used to make changes to the email settings (SMTP) and
time settings (SNTP) in the Ethernet Setting valid, eliminating the need to
restart the CPU Unit.
Refer to the NE1S Series Operation Manual (Cat. No. Z901) for information
on making the SMTP email settings and SNTP time settings.

1,2,3... 1. Select Controller - Restart Service.
The Restart Dialog Box will be displayed.

2. Select the service or services to be restarted and then click the OK Button.
The specified service or services will be restarted.
204

Displaying Errors and the Error Log Section 7-18
CJ2 CPU Units do not support the SMTP service or as SNTP service. There-
fore, service restart menu items cannot be used for CJ2 CPU Unit projects.

7-18 Displaying Errors and the Error Log
This section describes the procedures to display current errors and delete
error log displays. Errors and the error log are displayed in the Error Log Win-
dow. Messages generated by the MSG instruction are also displayed.

When an error that is stored in the error log occurs, an error message will
flash in red in the status bar.

Perform all of the following operations online. Before starting, connect the NE
Programmer online to the CPU Unit.

7-18-1 Displaying Current Errors
Use the following procedure to display current errors.

1,2,3... 1. Select Controller - Error Log.
The Error Tab Page of the Error Log Window will be displayed as shown
below.

• Current errors will also be display on the Error Tab Page of the Error Log
Window.

• Errors that occur after this window has been displayed will automatically
be added to the display.

• The error level of each error (fatal or nonfatal) will also be indicated.
205

Displaying Errors and the Error Log Section 7-18
• The errors that may be displayed as follows:

2. If an error is displayed, first remove the cause of the error.

3. Click the Clear Button. All error displays will be cleared. (This is the same
function as that executed for Controller - Clear Error.

Errors, however, cannot be cleared when another Programming Devices has
the access right or the CPU Unit is in RUN mode.

7-18-2 Displaying the Error log
Use the following procedure to display the error log.

Click the Error Log Tab in the Error Log Window.

An error log like the following one will be displayed.

• Error errors displayed on the Error Log Tab Page are the same as those
display on the Error Tab Page. Refer to the previous section for details.

• The error log contains up to 20 records. If more than 21 error occur, the
oldest records will be deleted.

• The error log will be cleared if the Clear Button is pressed.

Note Current errors and the error log are not displayed in the Error Log Window
when there is a CPU standby error (fatal). CPU standby status occurs when
the POWER indicator on the Power Supply Unit is lit, but the RUN and ERR/
ALM indicators on the front of the CPU Unit are both not lit.

Fatal Errors (in Order of Priority) Nonfatal Errors (in Order of
Priority)

Memory error

I/O bus error

Unit/Rack number duplication error

Too many I/O error

I/O setting error

Program error

Cycle time exceeded error

System error (FALS)

System error (FAL)

Interrupt task error

PLC Setup error

I/O verification error

CPU Bus Unit error

Special I/O Unit error

Battery error

CPU Bus Unit setting error

Special I/O Unit setting error

Communications interface error
206

Displaying Errors and the Error Log Section 7-18
7-18-3 Displaying Messages
Use the following procedure to display messages generated by the MSG
instruction.

Click the Message Tab in the Error Log Window.

A message list like the following one will be displayed.

• The message numbers will be displayed along with the text of the mes-
sage.

• Up to 8 messages will be displayed.

• The currently selected message will be cleared if the Clear Button is
pressed.

• All messages will be cleared if the All Clear Button is pressed.

• Double-byte codes can be displayed.

• Messages generated by the FAL and FALS instructions will not be dis-
played.
207

Displaying Errors and the Error Log Section 7-18
7-18-4 Displaying Ethernet Errors
Use the following procedure to display Ethernet errors.

Click the Ethernet Error Log Tab in the Error Log Window.

Ethernet errors, like those shown below, will be displayed.

Error Status The error status is indicated as follows:

IP Address Settings Error
Unit IP Address Settings Error
FTP Server Error
SMTP Settings Error
SNTP Settings Error
Unit IP Address Settings Over
IP Routing Settings Error
IP Address Duplicate Error
IP Address Changes Under Running
Ethernet Communications Error

Ethernet Communications
Errors

The following error status is displayed for the Ethernet communications error.

SMTP Communications Error
SNTP Communications Error
FINS/TCP Connection Error
FINS/TCP Send Error
FINS/TCP Receive Error
FINS/UCP Send Error
FINS/UCP Receive Error
208

Change Log Section 7-19
7-19 Change Log

7-19-1 Overview (NE1S CPU Units Only)
The change log function cannot be used with CJ2 CPU Units.
The log data created when downloading, editing online, creating/clearing I/O
tables, or clearing memory can be recorded in the CPU Unit.

• The settings can be made to send the data by email when the change log
is recorded.

• Recorded change log entries can be deleted by the user.

• Recorded log data can also be overwritten during online editing.

• The change log can be enabled/disabled by the user (default: disabled).

7-19-2 Enabling/Disabling the Change Log
Set whether to enable or disable the change log. The default setting is dis-
abled.

Select Controller - Change Log and then either Enable Mode or Disable
Mode. When Enable Mode is selected for change log, the Change Log Dialog
Box will be displayed when downloading, editing online, creating/clearing I/O
tables, or clearing memory.

7-19-3 Change Log Input Examples
Creating I/O Tables • When creating I/O tables, the following Change Log Dialog Box will be

displayed.

• Input the comment and other required data, and then click the Write But-
ton.

Item Details

Save timing Downloading, executing online editing, creating/clearing
I/O tables, clearing memory, and changing Timer/Counter
SVs

Number of saved data
records

100 records

Saved data Time, operation (download, online edit, I/O table create/
clear, memory clear), version, author, comments (120
bytes)

Location of saved data Recorded data = Flash ROM in CPU Unit

Simple backup Supports simple backup operations

Displays the number of bytes
input/number of bytes that
can be input.
209

Change Log Section 7-19
Editing Online • When online editing is completed, the following Change Log Dialog Box
will be displayed.

• Input the comment and other required data, select Append or OverWrite,
and then click the Write Button.
To record several online editing operations as a single change log, select
Overwrite. To record each operation as a separate change log, select
Append.

7-19-4 Change Log Display
Select Controller - Change Log - Change Log List to display the Change
Log List Window.

Select Append or OverWrite.
This operation is enabled
during online editing only.

Refreshes the
change log
display.

Clears the
change log.

Saves the
change log as
a CSV file.
210

Displaying the Cycle Time Section 7-20
7-20 Displaying the Cycle Time
The following procedure can be used to measure and display the cycle time of
the program that is being executed. The CPU Unit must be in RUN or MONI-
TOR mode to use this function.

Select Controller - Cycle Time.

The following Cycle Time Dialog Box will be displayed.

• The peak, average, bottom, and current cycle times will be cleared if the
Clear Button is pressed.

• The peak, average, bottom, and current cycle times will be remeasured
and displayed again if the Update Button is pressed.

• The Cycle Time Dialog Box will be closed if the Close Button is pressed.

Note Even if the above procedure is not performed, the average cycle time will be
displayed in the status bar when the CPU Unit is in RUN or MONITOR mode.

7-21 Data Tracing

7-21-1 Data Tracing
Data tracing displays the operating status of the CPU Unit on the NE Pro-
grammer. Operating status includes the status of bits and the present values
(PVs) of words.

When the specified trigger condition is met after starting data tracing, the
CPU Unit will store the status of specified bits and the PVs of specified words
in trace memory in the CPU Unit according to sampling conditions. The NE
Programmer can read the data stored in the CPU Unit and display it on time
charts.

Note The Data Trace Start Flag will turn ON when the data trace operation is exe-
cuted.

• Any of three trigger conditions can be selected.

Bit OFF to ON transition, bit ON to OFF transition, or specified word
contents

• Either of two sampling conditions can be selected.

Each cycle or when the TRSM instruction is executed.

• Data tracing will stop when the trace memory become full and then the
trace data will be transferred to the NE Programmer and displayed.
211

Data Tracing Section 7-21
• Data tracing is performed by the CPU Unit itself, which enables high-
speed sampling in comparison to time chart monitoring.

■ Number of traceable bits and words:

Bits: 31, Words: 6

7-21-2 Opening and Closing the Data Trace Window
Monitoring data traces is performed in the Data Trace Window.

Opening Select Controller - Data Trace.

The following Data Trace Window will be displayed.

Closing Click the Close Button in the Data Trace Window.

The Data Trace Window will be closed.

7-21-3 Setting Data Trace Parameters
This section described how to set the data trace parameters.

Displaying the Parameter Settings Dialog Box

1,2,3... 1. Click the Settings Button in the Data Trace Window.
The following Parameter Settings Dialog Box will be displayed.
212

Data Tracing Section 7-21
2. Make all of the required settings and then click the OK Button.
The settings are described individually below.

Trigger The Trigger fields are used to set the type of trigger and the condition for the
bit or word trigger.

Select Start, Middle, or End as the type of trigger.

Start: Used to display status after the trigger.
Middle: Used to display status before and after the trigger.
End: Used to display status before the trigger.

■ Using a Bit Trigger

Select Falling/Rising, specify the variable or address, and select Falling or
Rising.

■ Using a Word Trigger

Select Value, specify the variable or address, and input a hexadecimal value.

If TIM/CNT is input, the timer/counter Completion Flag will be used.

Sampling Set the sampling condition in the Sampling Area.

Select one of the two sampling methods.

Trace Data (Channel
Area)

Use the following procedure to specify the word variables or addresses to be
sampled in the Trace Data (Channel Area).

Sampling method Function Contents of sampled data

Once Per Cycle Sampling will be performed
once per cycle.

I/O data after the END instruc-
tion is executed

On TRSM Instruction Sampling will be performed
when the TRSM instruction is
executed.

I/O data when the END
instruction is executed
213

Data Tracing Section 7-21
1,2,3... 1. Click the Regist Button.
The following Regist Variables or Address Dialog Box will be displayed.

2. Input the word variable or address to be sampled and then click the Regist
Button.

3. Repeat step 2 to monitor more than one word. Up to 6 word variables and
addresses can be registered.

4. Set all the required variables or addresses and then click the Close Button.

Note To delete a variable or address that has been set, select the variable or
address and click the Unregist Button.

Trace Data (Bit Area) Use the following procedure to specify the bit variables or addresses to be
sampled in the Trace Data (Bit Area).

1,2,3... 1. Click the Regist Button.
The following Regist Variables or Address Dialog Box will be displayed.

2. Input the bit variable or address to be sampled and then click the Regist
Button.

3. Repeat step 2 to monitor more than one bit. Up to 31 bit variables and ad-
dresses can be registered.

4. Set all the required variables or addresses and then click the Close Button.

Note To delete a variable or address that has been set, select the variable or
address and click the Unregist Button.
214

Data Tracing Section 7-21
7-21-4 Setting Data Trace Display Colors
This section described how to set the colors displayed on the Data Trace Win-
dow.

Bit Area Colors

1,2,3... 1. Click the Option Button in the Data Trace Window.
The following Bit Area Color Tab Page of the Color Settings Dialog Box will
be displayed.

2. Select the item for which to change the color and then click the Change
Button.

3. The standard Windows color setting dialog box will be displayed. Set the
desired color.

Word Area Colors

1,2,3... 1. Click the Channel Area Color Tab in the Color Settings Dialog Box.

2. Select the item for which to change the color and then click the Change
Button.

3. The standard Windows color setting dialog box will be displayed. Set the
desired color.

7-21-5 Executing the Data Trace Monitor Function
Use the following procedure to execute the data trace monitor function.

Be sure to set the data trace parameters before executing this procedure.

1,2,3... 1. Click the Start Button in the Data Trace Window.

• The data trace will be started.

Select the item to
change:
Variable/Address
Bit Status
Background
Grid Lines
Graph

Select the item to
change:
Variable/Address
Value 1 to 6
Background
Grid Line
215

Variable Reference List Section 7-22
• Sampling will be started when the trigger condition is met, and traced
data will be stored in the trace memory in the CPU Unit.

• When the trace memory becomes full, sampling will stop automatically.
Traced data will be read from the CPU Unit and the trace data will be dis-
played in the Data Trace Window as shown below.

• To stop the data trace before trace memory becomes full, click the Stop
Button. The Data Trace Window will be displayed when the Stop Button is
clicked.

Changing the Display
Scale

The trace data display scale can be enlarged or reduced by clicking the Large
or Small Button while the data trace data is being displayed.

7-22 Variable Reference List
The Variable Reference List Window displays the Variable Usage Report and
Cross Reference Report. This window can be accessed both offline and
online.

Variable Usage Report The variables registered in the project are listed in this report together with
whether the registered variables are being used in the program. The variables
not being used can be deleted.

Cross Reference Report This report lists in which instructions, location, and program the variables are
being used. The usage status of variables can be listed for individual POUs or
for all POUs.
216

Variable Reference List Section 7-22
7-22-1 Variable Usage List
1,2,3... 1. Select Controller - Variable Reference. The Variable Usage List Tab will

be displayed in the Variable Reference List Window, as shown here.

2. Select a POU name from the POU field, and then click the Report Button.
The following Variable Usage Report will be displayed.

• Click the All Delete Button to delete all unused variables.

• To delete unused variables individually, select the variable to be deleted
(multiple variables can also be selected), and click the Delete Button.

Select these options to include
global variables and system
variables in the display.

Select the individual POU
name or All POUs.
217

Variable Reference List Section 7-22
7-22-2 Cross Reference Report
1,2,3... 1. Click the Cross Reference Report Tab in the Variable Reference List Win-

dow to display the following window.

2. Select a POU name from the POU field, and then click the Report Button.
The following Cross Reference Report will be displayed, and the same in-
formation will be displayed as text in the Find Tab Page of the Output Win-
dow.

• Click the Export Button to save the contents of the report as a CSV file.

Note After closing the Variable Reference List Dialog Box, you can jump to the
instruction by double-clicking the text output to the Output Window.

Enter a search keyword to limit

the targets.Select the individual POU
name or All POUs.
218

Setting the CPU Unit Clock Section 7-23
7-23 Setting the CPU Unit Clock
Use the following procedure to synchronize the CPU Unit’s clock with the per-
sonal computer’s clock.

1,2,3... 1. Select Controller - Set Clock. The following Time Dialog Box will be dis-
played.

2. Click the Setup Button. The CPU Unit’s clock will be synchronized with the
personal computer’s clock.

The CPU Unit’s clock can also be set by setting the Date and Time fields
in this dialog box, and then clicking the Setup Button.

7-24 Forcibly Releasing the Access Right
The access right to the CJ2 CPU Unit can be forcibly released.

• Perform troubleshooting if the access right is not released.

• This function is not required for NE1S-series CPU Units and the menu
commands will be disabled.

The access right is used to perform exclusive access control to a CPU Unit
from Support Software on multiple computers. CPU Unit access rights are
obtained while communications are being processed for a series of opera-
tions, such as downloading and online editing, from the Support Software. It is
impossible to perform downloading or online editing from Support Software on
another computer that does not have the access right.

The access rights may be obtained if an error occurs, such as when the com-
munications cable is disconnected, during downloading, or during online edit-
ing. If this occurs, forcibly release the access right.

Use the following procedure to forcibly release the access right.

1,2,3... 1. Select Controller - Release Access Rights. The following dialog box will
be displayed for confirmation.
219

Forcibly Releasing the Access Right Section 7-24
2. Click the Yes Button.
220

Appendix A
Variable Applications Guidelines

This section provides guidelines for using function blocks with the NE Programmer.

Using Variable Data Types

Integer Data Types (1, 2, or 4-word Data)
Use the following data types when handling single numbers in 1, 2, or 4-word units.

• INT and UINT

• DINT and DINT

Note Use signed integers if the numbers being used will fit in the range.

Word Data Types (1, 2, or 4-word Data)
Use the following data types when handling groups of data (non-numeric data) in 1, 2, or 4-word units.

• WORD

• DWORD

Array Settings

Array Variables
Use for First or End Addresses of Word Ranges
When specifying an instruction operand that is the first address or end address of a range of words (see note),
the required values cannot be passed to variables through input parameters or output parameters.

Note Refer to the SYSMAC NE1S Series Operation Manual (Cat. No. Z901) and Appendix D Instruction Sup-
port and Operand/Variable Restrictions to determine which instruction operands must have array vari-
ables because they specify the first/end address of a range of words.

In this case, prepare an array variable with the required number of array elements, set the data in each array
element in the function block, and specify the beginning (or end) array variable in the operand. Using an array
variable allows you to specify the first address or end address of a range of words.

Handling a Single String of Data in Multiple Words
In this example, an array contains the directory and filename (operand S2) for an FREAD instruction.

• Variable
Internal variable (VAR), data type = WORD, array setting with 10 elements, variable names = filename[0] to
filename[9]

• Ladder Programming

Set data in each array element.

Specify the first element
of the array in the instruction
operand.

FREAD (omitted) (omitted) file_name[0] (omitted)
MOV 16#0000 file_name[2])
MOV 16#3233 file_name[1]
MOV 16#5C31 file_name[0]
221

Variable Applications Guidelines Appendix A
Handling Control Data in Multiple Words
In this example, an array contains the number of words and first source word (operand S1) for an FREAD
instruction.

• Variable
Internal variable (VAR), data type = DINT, array setting with 3 elements, variable names = read_num[0] to
read_num[9]

• Ladder Programming

Handling a Block of Read Data in Multiple Words
The allowed amount of read data must be determined in advance and an array must be prepared that can han-
dle the maximum amount of data. In this example, an array receives the FREAD instruction’s read data (oper-
and D).

• Variable
Internal variable, data type = WORD, array setting with 100 elements, variable names = read_data[0] to
read_data[99]

• Ladder Programming

Division Using Integer Array Variables (Ladder Programming Only)
A two element array can be used to store the result from a ladder program’s SIGNED BINARY DIVIDE (/)
instruction. The result from the instruction is D (quotient) and D+1 (remainder). This method can be used to
obtain the remainder from a division operation in ladder programming.

Note When ST language is used, it isn’t necessary to use an array to receive the result of a division operation.
Also, the remainder can’t be calculated directly in ST language. The remainder must be calculated as
follows:
Remainder = Dividend − (Divisor × Quotient)

Specifying External Variables or Physical Addresses for
Function Blocks
Specify either the external variable or the physical address to enable reading or writing of Auxiliary Area bits
within the algorithm (i.e., within the execution cycle) in the function block. (Auxiliary Area bits can also be used
to receive and pass I/O variables.)

Example:
Using Communications Port Enabled Flags (A20200 to A20207) in Function Blocks
The function block input variables are executed by referencing the items copied to the instances when the func-
tion block is called. The Communications Port Enabled Flags turn ON/OFF asynchronously with the program
execution. When these bits are referenced as input variables in a function block, the Communications Port
Enabled Flags are copied to the Instance Area when the function block is called. After copying, even if the
value is changed prior to referencing the Communications Port Enabled Flags, detection is not possible in the
function block program. Therefore, either define the Communications Port Enabled Flags as local variables and
reference them as external variables from the function block, or specify the physical addresses (e.g., A20200).

Set data in each array element.

Specify the first element of the array
in the instruction operand.FREAD (omitted) (omitted) file_name[0] (omitted)

MOVL 10#100 read_num[0] (No._of_words)
MOVL 10#0 read_num[1] (1st_source_word)

FREAD (omitted) (omitted) (omitted) read_data[0]
222

Appendix B
Structured Text Keywords

Operators

Restrictions
• Ladder programming special instructions cannot be used.

• Writing “100” means “10#100.”

Conditional Statements

Operation Symbol Data types supported by
operator

Example Value
(example)

Priority
1: Lowest

11: Highest

Parentheses and
brackets

(expression),
array[index]

--- (2 + 3) * (4 + 5) 45 1

Function evaluation identifier
(operand_list)

--- --- --- 2

Exponential ** Not supported --- --- 3

Complement − INT, DINT −10 4

Boolean complement NOT BOOL, WORD, DWORD NOT TRUE FALSE 4

Multiplication * INT, DINT, UINT, UDINT 10 * 3 30 5

Division / INT, DINT, UINT, UDINT 6/2 3 5

Remainder calculation MOD INT, DINT, UINT, UDINT 17 MOD 10 7 5

Addition + INT, DINT, UINT, UDINT, STRING 2 + 3 5 6

Subtraction − INT, DINT, UINT, UDINT 4 − 2 2 6

Comparisons <, >, <=, >= BOOL, WORD, DWORD, INT,
DINT, UINT, UDINT, STRING

4 > 12 FALSE 7

Equality = BOOL, WORD, DWORD, INT,
DINT, UINT, UDINT, STRING

10#16 = 16#10 TRUE 8

Non-equality <> BOOL, WORD, DWORD, INT,
DINT, UINT, UDINT

8 <> 16 TRUE 8

Boolean AND &, AND BOOL, WORD, DWORD TRUE & FALSE FALSE 9

Boolean exclusive OR XOR BOOL, WORD, DWORD TRUE XOR
FALSE

TRUE 10

Boolean OR OR BOOL, WORD, DWORD TRUE OR FALSE TRUE 11

Keyword Example Function

RETURN RETURN; Return.
Leaves the called function block and returns to the calling POU.
With the NE Programmer, the RETURN statement can be used in the
function block only.

IF IF a < b THEN c: = 1;
ELSIF a = b THEN C: = 2;
ELSE c: = 3;
END_IF;

Selection.
Evaluates group expression when the condition (a<b) is true. When the
condition is false, the expression is not evaluated and the group follow-
ing ELSE is evaluated.

CASE CASE f OF
1: a: = 3;
2..5: a: = 4;
ELSE a: = 0;
END_CASE;

Selection.
Evaluates one group according to the value in the expression following
the keyword CASE. The variable or expression f must be an INT data
type.
223

Structured Text Keywords Appendix B
Functions

FOR FOR a: = 1 TO 10 BY 3 DO
f[a]: = b;
END_FOR;

Repetition.
Evaluates the expressions in the range of DO to END_FOR, starting
with 1 for variable a and sequentially adding 3 each execution, repeat-
ing until a reaches 10. It starts with the value of variable a, and ends
with the value following TO, increasing with the value of BY. All values
must be ANY_INT types.

Note If BY is omitted, the default is 1 and all data must be INT type.

WHILE WHILE b > 1 DO
 b: = b/2
END_WHILE;

Repetition.
Evaluates the expressions of one group, repeating until the condition
(b>1) is false. The condition for this expression is evaluated at the
beginning of the loop, and when it is not true, the loop is not evaluated.

REPEAT REPEAT
 a: = a*b;
UNTIL a < 10000
END_REPEAT;

Repetition.
Evaluates the expressions of one group, repeating until the condition
(a<10000) is true. The condition for this expression is evaluated at the
end of the loop, i.e., even if it is not true, the loop is evaluated at least
once.

EXIT FOR a: = 1 TO 2 DO
 IF flag THEN EXIT;
 END_IF
 SUM: = SUM + a
END_FOR

End.
This statement can be used to exit an evaluation for a repetition state-
ment.

Type Name Description

Math ADD Adds

MUL Multiplies

SUB Subtracts

MOD Finds remainder

DIV Divides

MOVE Assigns

Bit manipulation SHL Shifts 1 bit left

SHR Shifts 1 bit right

ROR Rotates 1 bit right without carry bit

ROL Rotates 1 bit left without carry bit

Logic operation AND Logical AND

OR Logical OR

XOR Logical exclusive OR

NOT Logical NOT

Character string
manipulation

LEFT Gets character string from the left

RIGHT Gets character string from the right

MID Gets character string from any position

DELETE Deletes character string

CONCAT Concatenates character strings

INSERT Inserts character string

REPLACE Replaces character string

LEN Gets character string length

FIND Finds character string j

Selection MAX Gets maximum value

MIN Gets minimum value

Keyword Example Function
224

Structured Text Keywords Appendix B
ST Language Reserved Words
The following ST language reserved words cannot be used as identifiers.

Data type conversion INT_TO_UINT Converts INT to UINT

INT_TO_DINT Converts INT to DINT

INT_TO_UDINT Converts INT to UDINT

INT_TO_WORD Converts INT to WORD

UINT_TO_INT Converts UINT to INT

UINT_TO_DINT Converts UINT to DINT

UINT_TO_UDINT Converts UINT to UDINT

UINT_TO_WORD Converts UINT to WORD

DINT_TO_INT Converts DINT to INT

DINT_TO_UINT Converts DINT to UINT

DINT_TO_UDINT Converts DINT to UDINT

DINT_TO_DWORD Converts DINT to DWORD

UDINT_TO_INT Converts UDINT to INT

UDINT_TO_UINT Converts UDINT to UINT

UDINT_TO_DINT Converts UDINT to DINT

UDINT_TO_DWORD Converts UDINT to DWORD

WORD_TO_INT Converts WORD to INT

WORD_TO_UINT Converts WORD to UINT

WORD_TO_DWORD Converts WORD to DWORD

DWORD_TO_INT Converts DWORD to INT

DWORD_TO_UINT Converts DWORD to UINT

DWORD_TO_WORD Converts DWORD to WORD

N END_RESOURCE DATE F_TRIG ~

R RETAIN TIME_OF_DAY CTU *

L RETURN TIME CTD /

D STEP AND CTUD MOD

P END_STEP OR TP +

SD STRUCT NOT TON -

DS END_STRUCT SHL TOF <

SL TASK SHR RTC >

ACTION TRANSITION ROR LD <=

END_ACTION FROM ROL LDN >=

ARRAY TO SUB ST =

AT END_TRANSITION MUL STN <>

CASE TRUE MOD S &

OF TYPE EXPT R VAR_SYSTEM

ELSE END_TYPE ABS ANDN CHANNEL

END_CASE VAR SQRT AND(FI

CONFIGURATION END_VAR LN ANDN(

END_CONFIGURATION VAR_INPUT LOG ORN

CONSTANT VAR_IN_OUT EXP OR(

EN VAR_OUTPUT SIN ORN(

ENO VAR_EXTERNAL COS XOR

EXIT VAR_ACCESS TAN XORN

FALSE VAR_GLOBAL ASIN XOR(

Type Name Description
225

Structured Text Keywords Appendix B
F_EDGE VAR_TEMP ACOS XORN(

FOR WHILE ATAN ADD

BY END_WHILE USINT_TO_DINT ADD(

DO WITH BOOL_TO_BYTE SUB(

END_FOR ANY SEL MUL(

FUNCTION ANY_NUM MIN DIV

END_FUNCTION ANY_REAL MAX DIV(

FUNCTION_BLOCK LREAL LIMIT GT

END_FUNCTION_BLOCK REAL MUX GT(

IF ANY_INT T GE(

THEN SINT GE EQ(

ELSEIF INT EQ NE(

ELSE DINT LT LE

END_IF LINT NE LE(

INITIAL_STEP USINT LEN JMP

END_STEP UINT LEFT JMPNC

PROGRAM ULINT RIGHT JMPC

WITH UDINT MID CAL

END_PROGRAM ANY_BIT CONCAT CALNC

R_EDGE BOOL INSERT CALC

READ_ONLY BYTE DELETE RET

READ_WRITE WORD REPLACE RETNC

REPEAT DWORD FIND RETC

UNTIL LWORD SR (

END_REPEAT STRING RS)

RESOURCE ANY_DATE SEMA Function

ON DATE_AND_TIME R_TRIG **
226

Appendix C
External Variables

Classification Name External variable in
NE Programmer

Data type Address

Conditions Flags Greater Than or Equals (GE) Flag P_GE BOOL CF00

Not Equals (NE) Flag P_NE BOOL CF001

Less Than or Equals (LE) Flag P_LE BOOL CF002

Instruction Execution Error (ER) Flag P_ER BOOL CF003

Carry (CY) Flag P_CY BOOL CF004

Greater Than (GT) Flag P_GT BOOL CF005

Equals (EQ) Flag P_EQ BOOL CF006

Less Than (LT) Flag P_LT BOOL CF007

Negative (N) Flag P_N BOOL CF008

Overflow (OF) Flag P_OF BOOL CF009

Underflow (UF) Flag P_UF BOOL CF010

Access Error Flag P_AER BOOL CF011

Always OFF Flag P_Off BOOL CF114

Always ON Flag P_On BOOL CF113

Clock Pulses 0.02 second clock pulse bit P_0_02s BOOL CF103

0.1 second clock pulse bit P_0_1s BOOL CF100

0.2 second clock pulse bit P_0_2s BOOL CF101

1 minute clock pulse bit P_1mim BOOL CF104

1.0 second clock pulse bit P_1s BOOL CF102

Auxiliary Area Flags/
Bits

First Cycle Flag P_First_Cycle BOOL A200.11

First Task Execution Flag P_First_Cycle_Task BOOL A200.15

Maximum Cycle Time P_Max_Cycle_Time DWORD A262

Present Scan Time P_Cycle_Time_Value DWORD A264

Cycle Time Error Flag P_Cycle_Time_Error BOOL A401.08

Low Battery Flag P_Low_Battery BOOL A402.04

Output OFF Bit P_Output_Off_Bit BOOL A500.15
227

External Variables Appendix C
228

Appendix D
CIP Message Communications

This document describes CIP message transmission for NE1S Series by using CSND instructions.

CIP Object on page 229 through Example of Use for NE1S Series on page 238 describe the basic information
required for CIP to use CSND instructions to help you understand CSND instruction specifications deeply.

Refer to Data Access for NE1S Series on page 244 when the using CSND instructions.

Refer to Data Type on page 264 and Response Code on page 268 as required for a lists of data types and
error codes supported by NE1S Series.

CIP Object

Object Model
Each device is modeled as a group of “Objects” in the conception of CIP. Object represents something that a
particular element of a device is abstracted.

You should access to each Object when accessing from the outside.

Object represents the processing and the data resulted from abstraction of a function in the device.

A request from the outside of Object, such as Read Data, is called “Service.”

Data belonging to Object is called “Attribute.”

The entity of Object is called “Instance” or “Object Instance.”

When Object is generalized, it is called “Class.” For example, “Japan” is one of Instances (Object Instances) of
Class “Nation.”

Object

Object

Object

Device

Service Data

Processing

Object Instance

Attribute

External request
(Example. Read, Write)

Data

Data

Data
229

CIP Message Communications Appendix D
Reference Information
In CIP Common Specifications, “Object,” “Class,” “Instance,” “Attribute” and “Service” are explained as follows:

(Extracts from CIP Common Specifications)

Designation of Object Address
This is the concept to access to Object or Attribute.

Each Object Class has “Class ID”.

There are two types of “Class ID”; one is standardized by ODVA and the other is decided independently by
each device vendor.

Each Object Instance also has ID. This is called “Instance ID.” Different Instance ID is assigned to each Object.
As for Object Class standardized by ODVA, Instance ID is given to it according to the ODVA method. On the
other hand, vendor's own Instance ID is decided independently by the vendor.

Each Attribute also has “Attribute ID.”

Each Object is accessed to by using “Class ID,” “Instance ID,” and “Attribute ID.”

In the device, you can designate Object by specifying these three IDs.

When requesting “Service,” you should specify “Class ID,” “Instance ID,” and “Attribute ID.” (Instance ID and
Attribute ID may not be required, depending on the Service.)

These three IDs are called “IOI (Internal Object Identifier)” because they identify the location of Object in the
device.

Object An abstract representation of a particular component within a product.

Class A set of objects that all represent the same kind of system component. A class is a generalization of an
object. All objects in a class are identical in form and behavior, but may contain different attribute values.

Instance A specific and real (physical) occurrence of an object. For example: NewZealand is an instance of the object
class Country. The terms Object, Instance, and Object Instance all refer to a specific Instance.

Attribute A description of an externally visible characteristic or feature of an object. Typically, attributes provide status
information or govern the operation of an Object. For example: the ASCII name of an object; and the repeti-
tion rate of a cyclic object.

Service A function supported by an object and/or object class. CIP defines a set of common services and provides for
the definition of Object Class and/or Vendor Specific services.

Attribute 1

Class ID = 1

Attribute = 3
Attribute 2

Attribute 3

Attribute 4

Instance ID = 1 Instance ID = 1

Class ID = 2

Device
230

CIP Message Communications Appendix D
Link Path

Link Path
For CIP, different from the internet protocol, the relay route from the transmission node to the reception node is
all described in the transmission frame.

The described route is called “Link Path.” Link Path is described as “EPATH type.”

The conception of Link Path is as follows:

First of all, designate a network port of a transmission channel with the destination network, and designate
node address on that network, which is called Link Address. For the relay channel, similarly, designate a net-
work port with the destination network and node address on that network. Then, repeat the same procedure to
the final destination.

#1

#3 #2 #1

Object A Object B

Link Path = Port A: #3, Port C: #1

X Y Z

When sending data from X to Z.

Send data from the network port of X (Port-A) to #3 on that circuit, and the data
reaches Y. Then, send it from the network port of Y (Port-C) to #1 on that circuit.
Through this procedure, the destination node Z can be designated.

Port-A Port-B Port-C Port-D
231

CIP Message Communications Appendix D
Description by EPATH Type
For CIP, EPATH type is employed for describing Link Path and IOI.

This is the method of dividing Link Path or IOI into segments and assigning a value to each of them.

Therefore, Link Path description indicates the final destination by joining data called segments.

The segment includes the segment type information and the segment data.

Details of Segment Type
The interpretation method of a segment is included in the first 1 byte, which consists of tow parts; 3 bits of
“Segment Type” and 5 bits of “Segment Format.”

According to CIP Specifications, the Segment Type specifications are decided as follows:

The specifications of Segment Format are different for each Segment Type.

The following sections describe Port Segment, Logical Segment, and Data Segment which are to be
required for using CSND instructions.

Segment 1 Segment 2 Segment 3 Segment 4 · · · ·

Segment Type Description

7 6 5

0 0 0 Port Segment

0 0 1 Logical Segment

0 1 0 Network Segment

0 1 1 Symbolic Segment

1 0 0 Data Segment

1 0 1 Data Type

1 1 0 Data Type

1 1 1 Reserved

Segment Type

Segment Format

7 6 5 4 3 2 1 0
232

CIP Message Communications Appendix D
Port Segment
Port Segment is employed for describing the above-mentioned path.

Set ID of that port in Port Identifier.

Port Identifier is 4-bit, so that it can take a value of 0 to 15. “0” is reserved and not available. “1” is to indicate
the backplane port. “15” has a special meaning, indicating that the size of Port Identifier is larger than 1 byte. In
this case, Port Identifier is followed by 2-byte Port Identifier. This case is not explained here because, for EN1S
Series, Port Identifier will not exceed 1 byte.

Set “1” in Extended Link Address Size when Link Address of that port is larger than 1 byte.

Shown below is the description method of Port Segment when “0” is set in Extended Link Address Size.

Designate the size of Link Address when “1” is set in Extended Link Address Size. Shown below is the descrip-
tion method of Port Segment.

Set even-number byte in Link Address without fail. If it is an odd number, surely change it to an even number by
padding with “00.”

Segment Type Port Identifier

7 6 5 4 3 2 1 0

0 0 0

Extended Link
Address Size

Segment Type Port Identifier

7 6 5 4 3 2 1 0

0 0 0

Extended Link
Address Size

0

7 6 5 4 3 2 1 0

Link Address

Segment Type Port Identifier

7 6 5 4 3 2 1 0

0 0 0

Extended Link
Address Size

1

7 6 5 4 3 2 1 0

Link Address Size

7 6 5 4 3 2 1 0

Link Address

7 6 5 4 3 2 1 0

· · · · · · · · · · · · Link Address

· · · · · · →

→

233

CIP Message Communications Appendix D
Logical Segment
Logical Segment is employed for describing IOI.

The 32-bit logical address of Logical Format is reserved and not available.

The 8-bit and 16-bit logical addresses are available for Class ID and Instance ID which indicate IOI.

The 8-bit logical address is available for Attribute ID.

This is used for requesting Service to an optional Object of an optional device.

This can be also used for directly reading/writing IO memory of NE1S by designating the address.

Data Segment
Data Segment is employed for reading/writing variables of CPU Unit.

ANSI Extended Symbol Segment is mainly used for Data Segment.

Variable data is read/written by using the segment of this type.

Logical Type Description

4 3 2

0 0 0 Class ID

0 0 1 Instance ID

0 1 0 Member ID

0 1 1 Connection Point

1 0 0 Attribute ID

1 0 1 Special (Do not use the logical addressing definition for the Logical Format.)

1 1 0 Service ID (Do not use the logical addressing definition for the Logical Format.)

1 1 1 Reserved

Logical Format Description

1 0

0 0 8-bit logical address

0 1 16-bit logical address

1 0 32-bit logical address

1 1 Reserved

Segment Type Logical Type

7 6 5 4 3 2 1 0

0 0 1

Logical Format

Segment Format Bits

Segment Sub-Type Description

4 3 2 1 0

0 0 0 0 0 Simple Data Segment

1 0 0 0 1 ANSI Extended Symbol Segment

All Segment Sub-Types are reserved except the above.

 Segment Type Segment Sub-Type

7 6 5 4 3 2 1 0

1 0 0

Data Segment Data

Variable length
234

CIP Message Communications Appendix D
ANSI Extended Symbol Segment

Variables and IOI
As mentioned above, Object Model is used in the concept of CIP. A device is recognized as a group of Objects.
You have to identify the data you want to access to by using Class/Instance.

When accessing to a variable by using a variable name, the variable name must be converted to Class/
Instance. For NE1S Series, CPU Unit performs the conversion process, so that the user doesn't have to do it.
All the user need to do is just to designate a variable in spite of Class/Instance.

Segment Type Segment Sub-Type

7 6 5 4 3 2 1 0

1 0 0 1

7 6 5 4 3 2 1 0

Symbol Size

7 6 5 4 3 2 1 0

Symbol (ANSI)

7 6 5 4 3 2 1 0

Symbol (ANSI)

0 0 0 1

· · · · · · · · · · · ·

· · · · · ·
235

CIP Message Communications Appendix D
Inputting a Network Path

Network Path
The network path indicates the path from the local CPU Unit to another PLC in the network. The NE1S-series
PLCs can use the network path for routing.

When a Network Path is Required
A network path can be specified in the following case.

• SEND CIP COMMAND Instruction (CSND)
When reading or writing the I/O memory of another node in the network with the SEND CIP COMMAND
Instruction (CSND), the network path can be specified in the instruction's control data.

The I/O memory of another PLC in the network can be accessed through a variable by specifying the network
path and variable name.

Specifying the Network Path
Specify the network as shown in the following table.

Example:
Specifying the path from the local CPU Unit to a local variable in another CPU Unit in a ControlNet Network

Target device Specifying the network path for a SEND CIP COMMAND
Instruction (CSND)

Backplane 01 hex

Specifying a Unit mounted to the local CPU Unit Specify the unit address in hexadecimal.

For a CPU Bus Unit, specify the unit number + 10 hex.

Specifying the network port Ethernet port, e.g., 02 hex

Specifying a Unit in the network Specify the network node address in hexadecimal.

Specifying the other PLC’s CPU Unit 00 hex (unit address)

2. Specify the ControlNet Unit's unit address.

1. Specify the Backplane.

Local CPU Unit

3. Specify the port.

4. Specify the ControlNet
Unit's node address.

5. Specify the Backplane.

CotrolNet

6. Other CPU Unit.

Lo
ca

l C
P

U
 U

ni
t

1.
 B

ac
kp

la
ne

2.
 C

on
tr

ol
N

et
 U

ni
t's

 u
ni

t a
dd

re
ss

3.
 P

or
t

4.
 C

on
tr

ol
N

et
 U

ni
t's

 n
od

e
ad

dr
es

s

5.
 B

ac
kp

la
ne

6.
 O

th
er

 C
P

U
 U

ni
t

236

CIP Message Communications Appendix D
Refer to Data Access for NE1S Series for information on the CSND instruction.

Example Specifying the network path for a SEND CIP COMMAND
Instruction (CSND)

Specification
method

1. Backplane 16#01

2. ControlNet Unit’s unit address
(Example: Unit address = 3)

16#13

3. Port
(Example: Port = Port B)

16#02

4. ControlNet Unit’s node address
(Example: Node address = 5)

16#5

5. Backplane 16#01

6. Other CPU Unit 16#00
237

CIP Message Communications Appendix D
Example of Use for NE1S Series

Setup of Link Path

Port Number
Described below is the network port for designating Link Path.

For NE1S Series, the base unit (backplane) is also recognized as part of the network when designating Link
Address.

CPU Unit
CPU Unit has two ports.

One is a backplane port and the other is Ethernet port.

The backplane port is CS1 bus (base unit). Communication from CPU Unit via a CPU Bus Unit surely goes
through the backplane.

ControlNet Unit
ControlNet Unit has two ports.

One is a backplane port and the other is ControlNet port.

The backplane port is CS1 bus (base unit). Communication via CPU Unit or other CPU Bus Unit surely goes
through the backplane.

DeviceNet Unit
DeviceNet Unit has two ports.

One is a backplane port and the other is DeviceNet port.

The backplane port is CS1 bus (base unit). Communication via CPU Unit or other CPU Bus Unit surely goes
through the backplane.

Link Address
Link Address is a node address on the network for designating Link Path.

The method to set up Link Address is different for each network.

For NE1S Series, the base unit (backplane) is also recognized as part of the network when designating Link
Address.

Backplane (Base Unit)
• CPU Bus Unit

For NE1S Series, the base unit is recognized as a backplane port.
CPU Bus Units, such as ControlNet Unit or DeviceNet Unit, are also recognized as nodes on the back-
plane port.
Link Address of a CPU Bus Unit, on the backplane, is “Unit No. + 10 hex.” For example, when Unit No. is 0,
Link Address is 10 hex. When Unit No. is F, Link Address is 1F hex.

Port Port Number

Backplane 1

Ethernet 2

Port Port Number

Backplane 1

ControlNet 2

Port Port Number

Backplane 1

DeviceNet 2
238

CIP Message Communications Appendix D
• CPU Unit
Link Address of CPU Unit, on the backplane, will be surely 00 hex.
IP address is employed to describe Link Address of Ethernet port of CPU Unit, which is the same as that of
Ethernet port mentioned below.

Network
• Ethernet

IP address is employed to describe Link Address of Ethernet port.
All of IP address must be described with ASCII code.
For example, IP address of 192.168.200.200 will be [31] [39] [32] [2E] [31] [36] [38] [2E] [32] [30] [30] [2E]
[32] [30] [30].

• ControlNet
The node address of ControlNet is described as Link Address of ControlNet port.
The node address of ControlNet is “1” to “99” (01 hex to 63 hex). For ControlNet, Link Address doesn't
have to be described with ASCII code.

• DeviceNet
The node address of DeviceNet is described as Link Address of DeviceNet port.
The node address of DeviceNet is “0” to “63” (00 hex to 3F hex). For DeviceNet, Link Address doesn't have
to be described with ASCII code.

Example of Path
Example 1:

In case of accessing from CPU#1 to CPU#2 via ControlNet Unit

[Structure]

ControlNet Unit of CPU#1: Unit No. = 3, Node Address = 8

ControlNet Unit of CPU#2: Unit No. = 5, Node Address = 9

The route is as follows:

Backplane Port of CPU#1 → ControlNet Unit (Unit No. = 3) → ControlNet Port of
ControlNet Unit → ControlNet Unit (Node Address =9) → Backplane Port of
ControlNet Unit → CPU#2

The route above is explained below.

Port Segment is used for setting Link Path. Therefore, the top 3 bits (Segment Type) of the first byte will be “0”
inevitably.

The backplane port of CPU#1 comes first. Port No. of the backplane port is “1.” Because it falls into 1 byte,
Extended Link Address Size will be “0.”

Therefore, the first byte will be [01].

Unit No. of ControlNet Unit of CPU#1 is 03 hex, so that Link Address will be

10 hex + 03 hex = 13 hex. Therefore, the second will be [13].

Port No. of ControlNet Port of ControlNet Unit is “2,” so that the third will be [02]. Node Address of the target
ControlNet Unit (ControlNet Unit of CPU#2) is “9,” so that the fourth byte will be [09].

CPU
#1

CNS

Unit No.=3
Node No.=8

CPU
#2

CNS

Unit No.=5
Node No.=9

Link Path

Back-
plane

Back-
plane

ControlNet
239

CIP Message Communications Appendix D
Link Address of CPU Unit, on the backplane, is “0.” Therefore, the fifth and sixth bytes will be [01] and [00],
respectively.

Link Path will be as follows:

 [01] [13] [02] [09] [01] [00]

Example 2:

In case of accessing from CPU#1 to CPU#2 via Ethernet

[Structure]

IP Address of CPU#1 = 192.168.200.1

IP Address of CPU#2 = 192.168.200.33

The route is as follows:

Ethernet Port of CPU#1 → CPU#2 (IP Address = 192.168.200.33)

The route above is explained below.

Port Segment is used for setting Link Path. Therefore, the top 3 bits (Segment Type) of the first byte will be “0”
inevitably.

In this example, data is transmitted via Ethernet Port. Port No. of Ethernet Port is “2.”

IP Address is used for describing Link Address on Ethernet. IP Address is larger than 1 byte, so that Extended
Link Address Size will be “1.” Therefore, the first byte will be [12].

Link Address Size falls into the second byte. IP Address of the target CPU#2 is “192.168.200.33.” The number
of the letters of this IP Address should be counted, including dot (“.”) because the whole IP Address must be
described with ASCII code. In this case, there are 14 letters (= 0E hex).

Link Path is as follows:

 [12] [0E] [31] [39] [32] [2E] [31] [36] [38] [2E] [32] [30] [30] [2E] [33] [33]

Example 3:

In case of accessing from CPU#1 to CPU#3 via CPU#2 and ControlNet Unit

[Structure]

IP Address of CPU#1 = 192.168.200.100

IP Address of CPU #2 = 192.168.200.1

ControlNet Unit of CPU #2: Unit No. = 3, Node Address = 8

ControlNet Unit of CPU #3: Unit No. = 5, Node Address = 9

CPU
#1

CNS

IP Address=
192.168.200.1

CPU
#2

CNS

Link Path

IP Address=
192.168.200.33

Ethernet
240

CIP Message Communications Appendix D
The route is as follows:

Ethernet Port of CPU#1 → CPU#2 (IP Address = 192.168.200.1) → ControlNet Unit
(Unit No. = 3) → ControlNet Port of ControlNet Unit → ControlNet Unit (Node Address = 9) → Backplane
Port of ControlNet Unit → CPU#3

The route above is explained below.

Port Segment is used for setting Link Path. Therefore, the top 3 bits (Segment Type) of the first byte will be “0”
inevitably.

In this example, data is sent via Ethernet Port. Port No. of Ethernet Port is “2.”

IP Address is employed for Link Address on Ethernet. Because IP Address is larger than 1 byte, Extended Link
Address Size will be “1.” Therefore, the first byte will be [12].

Link Address Size falls into the second byte. IP Address of the target CPU#2 is “192.168.200.1.” The number of
the letters of this IP Address should be counted, including dot (“.”) because the whole IP Address must be
described with ASCII code. In this case, there are 13 letters (= 0D hex). Thirteen (byte) is an odd number, so
that [00] should be added at the end in order to make it an even number.

So far, Link Path is [12] [0D] [31] [39] [32] [2E] [31] [36] [38] [2E] [32] [30] [30] [2E] [31] [00].

Now data reaches CPU#2. Then, it is sent to CPU#3 via ControlNet Unit of CPU#2.

In order to go through ControlNet Unit of CPU#2, data must go through Backplane Port of CPU#2. Port No. of
Backplane Port is inevitably “1.” Because it falls into 1 byte, Extended Link Address Size will be “0.” Therefore,
the first byte will be [01].

Link Address is 10 hex + 03 hex=13 hex because Unit No. of ControlNet Unit of CPU#2 is 03 hex, so that the
second byte will be [13].

Because Port No. of ControlNet Port of ControlNet Unit is “2,” the third byte will be [02]. Node Address of the
target ControlNet Unit (ControlNet Unit of CPU#3) is “9,” so that the fourth byte will be [09].

Link Address of CPU Unit, on Backplane, is “0,” so that the fifth and the sixth bytes will be [01] and [00], respec-
tively.

Link Path of this part will be [01] [13] [02] [09] [01] [00].

The above-mentioned two Link Paths being joined, the whole Link Path is as follows:

[12] [0D] [31] [39] [32] [2E] [31] [36] [38] [2E] [32] [30] [30] [2E] [31] [00] [01] [13] [02] [09] [01] [00]

Example 4:
In case of accessing CPU#2 from CPU#1 via EtherNet/IP Unit
[Structure]
EtherNet/IP Unit of CPU#1: Unit No. = 3, IP Address = 192.168.100.10
EtherNet/IP Unit of CPU#2: Unit No. = 5, IP Address = 192.168.100.30

CPU
#2

CNS

IP Address=
192.168.200.1

CPU
#3

CNS

Link Path

Unit No.=5
Node No.=9

Unit No.=3
Node No.=8

IP Address=
192.168.200.100

CPU
#1 Back-

plane
Back-
plane

Ethernet

ControlNet
241

CIP Message Communications Appendix D
The route is as follows:

Backplane Port of CPU#1 → EtherNet/IP Unit (Unit No. = 3) → EtherNet Port of EtherNet/IP Unit → Ether-
Net/IP Unit (IP Address = 192.168.100.30) → Backplane Port of EtherNet/IP Unit → CPU#2

The route above is as follows:
Port Segment is used for setting the Link Path. Therefore, the top 3 bits (Segment Type) of the first byte will
always be “0”.
First in the route is the Backplane port of CPU#1. The port number of the Backplane port is always “1”. The
number will not be larger than 1 byte, and so the Extended Link Address Size will be “0”. Therefore, first will be
“01”.
The unit number of the EtherNet/IP Unit for CPU#1 is “03 hex”, so the Link Address will be 10 hex + 03 hex =
13 hex, and second will be “13”.
The Link Path so far is [01][13].
The port number of the EtherNet/IP port for the EtherNet/IP Unit is “2”, so the third byte is [02]. The IP Address
of the target EtherNet/IP Unit is 192.168.100.30. The dots (“.”) must also be counted when counting the num-
ber of characters in the IP Address because the whole IP Address must be described with ASCII. In this case,
there are 14 characters (= 0E hex).
The Link Path for this part is [12][0E][31][39][32][2E][31][36][38][2E][31][30][30][2E][33][30]. At this point the
EtherNet/IP Unit of CPU#2 has been reached.
The Link Address of the CPU Unit on the backplane is “0”, and so the Link Path for this part is [01][00].

Joining the two Link Paths above results in the following complete Link Path:

[01] [13] [12] [0E] [31] [39] [32] [2E] [31] [36] [38] [2E] [31] [30] [30] [2E] [33] [30] [01] [00]

Designation of Variable Name
ANSI Extended Symbol Segment of Data Segment is employed for designating Variable Name.

Example 1:

A variable of “ABCDE” is designated by the following description. The last part, [00], is the padding for making
the number of bytes an even number.

[91] [05] [41] [42] [43] [44] [45] [00]

Example 2:

The whole structure of an array variable is the same as in Example 1.

The whole of an array variable, ABC [10], is as follows:

[91] [03] [41] [42] [43] [00]

CPU
#1

EIP

Unit No.=3
IP Address=
192.168.100.10

CPU
#2

EIP

Unit No.=5
IP Address=
192.168.100.30

Link Path

Back
Plane

Back
Plane

EtherNet/IP
242

CIP Message Communications Appendix D
Example 3:

An element of an array variable is treated as “a member of Instance.” Member ID of Logical Segment is
employed for describing Instance Member.

An element of an array variable, ABC [3], is described as follows:

[91] [03] [41] [42] [43] [00] [28] [03]

Example 4:

For describing a member of a variable of the structured data type, ANSI Extended Symbol Segment is
employed for every dot, “.”, which divides members of a structure.

ABC.DE is described as follows:

[91] [03] [41] [42] [43] [00] [91] [02] [44] [45]
243

CIP Message Communications Appendix D
Data Access for NE1S Series

CSND Instruction

Overview of CSND Instruction
For NE1S Series, variable data can be accessed to by using CSND Instruction.

CSND Instruction is an instruction to send/receive a message of CIP.

CSND Instruction has three parameters; S data, D data, and C data.

Service data to be sent and transmission control information such as address are set up in S data and C data,
respectively. When CSND Instruction is executed, received response data is stored in D data.

S Data Details

FUNC No. Mnemonic Instruction Name Overview of Function

489 (@)CSND CIP Transmission Instruction Instruction to send CIP
Explicit Message

Execution Condition/Immediate Refreshing Specification

Execution Condition Execute cyclically every time it goes to ON. CSND

Execute 1 cycle at rising up. @CSND

Execute 1 cycle at falling down. Not supported.

Immediate Refreshing Specification Not supported.

(@)CSND(489)

S Data to be sent

D Data received.

C Control data

Offset (word)

S Data Size to be sent

S+1 Service Code

S+2 Service Data

: :

: :

Data Size to be sent Data Length of Service Code and the following data (unit: byte)

Service Code CIP Explicit Message Service Code

Service Data Service Data of Explicit Message Service of CIP Content is differ-
ent for each Service Code.

Service Data is stored in the order from lower byte to upper byte.

↑
Send data size

(in bytes)

↓

244

CIP Message Communications Appendix D
D Data Details

C Data Details
The C data depends on how the addresses data is specified.
The following section describes how to specify the data using a variable, Class/Instance/Attribute ID, or EPATH
type.

Specifying with Variables

Specify the data in the following format if it is accessed using variables.

Offset (word)

D Size of Data received

D+1 Service Code

D+2 General Status

D+3 Additional Status

D+4 Response Data

: :

: :

Size of Data
received

Data Length of Service Code and the following data (unit: byte)

Service Code Transmitted Explicit Message Service Code of CIP
The 8th bit is turned ON.
For example, when Service Code is 4C hex, it will be CC hex.

General Status Execution result of the transmitted Service
00 hex indicates a correct end. Other values indicate an error.

Additional Status Additional information of General Status
When Additional Status is larger than 1 Word, only the top 1 Word
is stored. Content is different for each Object addressed and Ser-
vice.

Response Data Response Data received

Received data is stored in the order from lower byte to upper byte.

Offset (word)

C Reception Buffer Size

C+1 0 Comm. Port
No.

0 0

C+2 0 0 0 0

C+3 Service Execution Time

C+4 8 0 IOI Size (N)

C+5 9 1 Variable Name Size

C+6 Variable Name_1 Variable Name _2

: : :

C+(4+N) Variable Name _X Variable Name _Y

C+(4+N)+1 Link Path Size (M)

C+(4+N)+2 LinkPath_1 LinkPath_2

: : :

: : :

C+(4+N)+1+M LinkPath_X LinkPath_Y

↑
Receive data
size (in bytes)

↓

↑
IOI Size

(in words)

↓

↑
Link Path Size

(in words)

↓

245

CIP Message Communications Appendix D
Reception Buffer
Size

Size of area for storing received data (area specified by D data).
(Unit: WORD)
When a response larger than the reception buffer size is received,
excess part of the received data will be annulled.

Comm. Port No. Internal logic port number. There are 8 ports, 0 to 7.

Service Execution
Time

Service execution time in the other node.
Usually, 0000 hex should be specified.

Variable Name Size Size of Variable Name to be accessed to. (Unit: Byte)

When Variable Name is “ABC,” Variable Name Size will be “3.”

Variable Name_1 to
Variable Name _Y

Variable Name to be accessed to. It should be designated with
ASCII Code.
When Variable Name is “ABC,” Variable Name_1 = 41 hex,
Variable Name_2 = 42 hex, Variable Name _3 = 43 hex, and
Variable Name _4 = 00 hex.

Link Path Size Specifies length of Link Path. (Unit: WORD)

Link Path_1 to
LinkPath_Y

Link Path
Up to 16 nodes can be relayed by specifying the link path. CSND
instructions may time out even when network and node status is
normal if the message is relayed through more than 16 nodes.
If the link path is specified with more than 16 nodes, a constant
time must be specified for the service execution time (normally
0000 hex).
246

CIP Message Communications Appendix D
Communications Port Number
Eight logical communications ports are provided. Eight communications instructions can be executed simulta-
neously.

Only one instruction can be executed at one time for each communications port. When executing 9 or more
communications instructions, you have to prepare exclusive control.

This communications port number is shared with NETWORK COMMUNICATIONS instruction (CSND) and
PROTOCOL MACRO instruction (PMCR). Therefore, you must be careful not to designate the same number
for these instructions.

Specifying with Class/Instance/Attribute ID

Specify the data in the following format if it is accessed using Class/Instance/Attribute ID. The IOI is automati-
cally created in EPATH format and sent when the instruction is executed. The logical value, however, is always
specified as 16 bits.

Communications Port Number

Eight logical communications ports are provided. Eight communications instructions can be executed simulta-
neously.

Offset (word)

C Reception Buffer Size

C+1 0 Comm. Port
No.

0 0

C+2 0 0 0 0

C+3 Service Execution Time

C+4 8 0 0

C+5 Class

C+6 Instance

C+7 Attribute

C+8 Link Path Size (M)

C+9 LinkPath_1 LinkPath_2

: : :

: : :

C+8+M LinkPath_X LinkPath_Y

Reception Buffer
Size

Size of area for storing received data (area specified by D data).
(Unit: WORD)
When a response larger than the reception buffer size is received,
the part that exceeds the buffer will be cancelled.

Comm. Port No. Internal logic port number. Eight ports from 0 to 7.

Service Execution
Time

Service execution time in the other node.
Normally, specify 0000 hex.

Class Specifies the Class.

Instance Specifies the Instance ID.

Attribute Specifies the Attribute. The attribute will be 00 if it is not specified.

Link Path Size Specifies the length of the Link Path. (Unit: WORD)

Link Path_1 to
LinkPath_Y

Link Path
Up to 16 nodes can be relayed by specifying the link path. CSND
instructions may time out even when network and node status is
normal if more than 16 nodes are relayed.
If the link path is specified with more than 16 nodes, a constant
time must be specified for the service execution time (normally
0000 hex).

↑
Link Path size

(in words)

↓

247

CIP Message Communications Appendix D
Only one instruction can be executed at one time for each communications port. When executing 9 or more
communications instructions, you have to prepare exclusive control.

This communications port number is shared with NETWORK COMMUNICATIONS instruction (CSND) and
PROTOCOL MACRO instruction (PMCR). Therefore, you must be careful not to designate the same number
for these instructions.

Specifying with EPATH Type

Specify the data in the following format if it is accessed using EPATH type.
Use this format is used if the data is specified using Class/Instance/Attribute and the size of the logical value is
specified in detail. If the logical values are all 16 bits, the same message will be sent as when specifying with
Class/Instance/Attribute described above.

Communications Port Number

Eight logical communications ports are provided. Eight communications instructions can be executed simulta-
neously.

Only one instruction can be executed at one time for each communications port. When executing 9 or more
communications instructions, you have to prepare exclusive control.

Offset (word)

C Reception Buffer Size

C+1 0 Comm. Port
No.

0 0

C+2 0 0 0 0

C+3 Service Execution Time

C+4 8 0 IOI size (N)

C+5 IOI_1

: :

: :

C+(4+N) ION_N

C+(4+N)+1 Link Path Size (M)

C+(4+N)+2 LinkPath_1 LinkPath_2

: : :

: : :

C+(4+N)+1+M LinkPath_X LinkPath_Y

Reception Buffer
Size

Size of area for storing received data (area specified by D data).
(Unit: WORD)
When a response larger than the reception buffer size is received,
the part that exceeds the buffer will be cancelled.

Comm. Port No. Internal logic port number. Eight ports from 0 to 7.

Service Execution
Time

Service execution time in the other node.
Normally, specify 0000 hex.

IOI Size Specifies the size of IOI in word increments.

IOI_1 to IOI_N Specifies IOI in EPATH format.

Link Path Size Specifies the length of the Link Path. (Unit: WORD)

Link Path_1 to
LinkPath_Y

Link Path
Up to 16 nodes can be relayed by specifying the link path. CSND
instructions may time out even when network and node status is
normal if more than 16 nodes are relayed.
If the link path is specified with more than 16 nodes, a constant
time must be specified for the service execution time (normally
0000 hex).

↑
IOI Size

(in words)

↓

↑
Link Path Size

(in words)

↓

248

CIP Message Communications Appendix D
This communications port number is shared with NETWORK COMMUNICATIONS instruction (CSND) and
PROTOCOL MACRO instruction (PMCR). Therefore, you must be careful not to designate the same number
for these instructions.

Specifying IOI

Specify the value for displaying Class/Instance/Attribute when specifying IOI in EPATH format. When specifying
in EPATH format, specify three items: Segment Type, Segment Format, and Logical Value. The Logical Value
can be specified in 8 bits or 16 bits. Whether 8 bits or 16 bits is used, however, depends on the addressed
device. Check the specifications of the addressed device.
For the NE1S Series, operation will be normal if the logical value is 255 or less whether 8 bits or 16 bits is spec-
iffied. If the logical value is 256 to 65535, specify 16 bits.

• Specifying 8 Bits

• Specifying 16 Bits

Examples of Segment Type and Segment Format

Example Specifying Class ID = 5, Instance ID = 2, and Attribute ID = 1

All are specified in 8 bits.

Example Specifying Class ID = 5 and Instance ID = 2

All are specified in 16 bits.

Offset (word)

C+4+n SegmentType+SegmentFormat LogicalValue

Offset (word)

C+4+n SegmentType+SegmentFormat 00

C+4+(n+1) LogicalValue

SegmentType + SegmentFormat

Type Specifying 8 bits Specifying 16 bits

Class ID 20 hex 21 hex

Instance ID 24 hex 25 hex

Attribute ID 30 hex 31 hex

Offset (word)

C+4 8 0 03

C+5 20 05

C+6 24 02

C+7 30 01

Offset (word)

C+4 8 0 04

C+5 21 00

C+6 0005

C+7 25 00

C+8 0002
249

CIP Message Communications Appendix D
Example Specifying Class ID = 5, Instance ID = 2, and Attribute ID = 1

Class ID and Instance ID are specified in 16 bits. Attribute ID is specified in 8 bits.

Flag and Status
The related flags are shown below.

The figure below shows the relation between execution of CSND Instruction and each flag.

Offset (word)

C+4 8 0 05

C+5 21 00

C+6 0005

C+7 25 00

C+8 0002

C+6 30 01

Name Address Description

Error Flag ER Goes to ON when address range of S, D, and C areas is too large.Goes to ON when
Network Instruction Execution Enable Flag is OFF for the communications port spec-
ified by C.

Otherwise, goes to OFF.

Network Com-
munications
Instruction
Execution
Enable Flag

A20200 to
A20207

Goes to 1 (ON) when network communications (CSND or PMCR instruction) is exe-
cutable.Each bit indicates a communications port. Goes to 0 (OFF) during execution
of network communication, and goes to 1 (ON) when execution ends in either case
of correct or error.

Network Com-
munications
Response
Code

A20300 to
A21000

0 during execution of CIP instruction. When processing ends, the value is stored.
General Error Code and Additional Error Code are stored in 1 byte of High side and
1 byte of Low side, respectively.
When such an error occurs that can be detected in CPU Unit, such as time out or
incorrect format, its response is stored only in this area. Note that it is not stored in
the response area.

Network Com-
munications
Execution
Error Flag

A21900 to
A21907

Goes to 1 (ON) when an error occurs during execution of network communication.
Each bit corresponds to each communications port. This status is held until next exe-
cution of network communication. Note that this bit goes to ON when an error occurs
during communications (no data in response area) or when receiving an error
response from Target (some data in response area).

P
O

R
T

1

1

P
O

R
T

2

2

P
O

R
T

3

3

P
O

R
T

4

4

P
O

R
T

5

5

P
O

R
T

6

6

P
O

R
T

7

7

P
O

R
T

0

0 8 15
Reserved (must be "0") A202

A203

8 15 8 7
Additional Status General Status PORT 0

A210
8 15 8 7

Additional Status General Status PORT 7

:

P
O

R
T

1

1

P
O

R
T

2

2

P
O

R
T

3

3

P
O

R
T

4

4

P
O

R
T

5

5

P
O

R
T

6

6

P
O

R
T

7

7

P
O

R
T

0

0 8 15
Reserved (must be "0") A219
250

CIP Message Communications Appendix D
Execution Timing
For instructions for network communication, when input conditions are satisfied, the communications process-
ing gets just started and it is in “Communications Port Service” of the peripheral services, in the background,
that the actual processing is executed.

1. When the input conditions are satisfied, if Network Communications Instruction Execution Enable Flag
(A20200 to A20207) is 1 (ON) at this moment, each instruction sets 0 (OFF) in Network Communications
Instruction Execution Enable Flag (A20200 to A20207), 0 (OFF) in Network Communications Execution Er-
ror Flag (A21900 to A21907), and 0000 hex in Network Communications Response Code (A203 to A210),
reads C, and starts the communications processing (CIP Instruction Issue/Response Reception).

2. In the peripheral service processing, data to be sent is created based on the operand (See note 1.), and
CIP Instruction to the Communications Units are issued.

3. If the issue processing is not completed in one peripheral service, that processing will be executed, by time
slice, in the next communications port service.

4. When a response is returned, the response data specified by the operand is updated in the peripheral ser-
vice (See note 2.). At this moment, Network Communications Instruction Execution Enable Flag (A20200 to
A20207) of the special auxiliary relay goes to 1 (ON), and Network Communications Execution Error Flag
(A21900 to A21907) and Network Communications Response Code (A203 to A210) are updated.

Note (1) In case of CSND Instruction, it reads S and creates an optional CIP Instruction.

(2) In case of CSND Instruction, D is updated with CIP Response.

 NW. Comm. Exe.
Enable Flag

1

0

CSND Command
Executing

CSND
Command.

NW. Comm.
Exe. Error Flag

1

0

NW. Comm. Exe.
Response Code

Previous
Value

0000

End correctly. "0000"
on executing

Error ends.
Other than

"0000"

Executing
CSND

Command.

Executing
CSND

Command.

End correctly

0000 0000 xxxx 0000 0000

"0000"
on executing

"0000"
on executing

CSND

S

C

D

Input
Condition

NW. Comm. Exe.
Enable Flag

Comm. processing in background

Cycle
time

Assemble data to be sent, from
command data, and send it.

Execute comm.(transmission/reception)
processing by time slice at peripheral
service execution, over several cycles.

Receive response and store it as
response data. Reflect comm. result
in special auxiliary relay.

End processing
and store results.

Start comm.
processing.
251

CIP Message Communications Appendix D
Read Service by Variables

Predefined Data Type
Shown below is the case that the data type of a variable is INT/WORD/UINT/UDINT/DWORD/BOOL/REAL.

Service Code=4C hex

Type: Data Type Code of a variable which was read. Refer to the following “Data Type Code.”

Structure
The situation is a little different for structured variables.

In case of a structured variable, it has to be confirmed whether or not the specified structured variable is
defined correctly. CRC Code (Cyclic Redundant Code) calculated from the structure definition is used for con-
firming that it is identified with the structure definition.

Although the format of Request Data is the same, that of Response Data is different.

“Type” will be A0 hex. CRC Code is stored in the channel next to Type Field.

Service Code=4C hex

Array Variable
In case of an array variable, access to the whole of an array variable is the same as in the case of Predefined
Data Type.

Access to an array element is access to “a member of Instance.”

Service Code=4C hex

Type: Data Type Code of a variable which was read. Refer to the following “Data Type Code.”

Example 1
In case that an array variable with ten INT-type elements, ArrayData[10], exists and that you access to the
whole of this array variable:

Request Data Response Data

Word Word

S+1 004C D+4 Type 00

S+2 0100 D+5 Data

:

Request Data Response Data

Word Word

S+1 004C D+4 A0 02

S+2 0100 D+5 CRC

D+6 Data

:

Request Data Response Data

Word Word

S+1 004C D+4 Type 00

S+2 0100 D+5 Data

: :

D+n
252

CIP Message Communications Appendix D
Service Code=4C hex

Example 2
In case that an array variable with ten INT-type elements, ArrayData[10], exists and that you access to the 3rd
element of this array variable, ArryData:[2]:

Service Code=4C hex

Request Data Response Data

Word Word

S+1 004C D+4 C3 00

S+2 0100 : Data

:

:

D+15 Data

Control Data

Word

C+5 91 09

C+6 41 72 “Ar”

C+7 72 61 “ra”

C+8 79 44 “yD”

C+9 61 74 “at”

C+10 61 00 “a”

Request Data Response Data

Word Word

S+1 004C D+4 C3 00

S+2 0100 D+5 Data

Control Data

Word

C+5 91 09

C+6 41 72 “Ar”

C+7 72 61 “ra”

C+8 79 44 “yD”

C+9 61 74 “at”

C+10 61 00 “a”

C+11 28 02 28 hex = Logical Segment: Member ID is specified.

02 hex = Member ID = “2.” The 3rd member is specified.
253

CIP Message Communications Appendix D
Write Service by Variables

Predefined Data Type
Shown below is the case that the data type of a variable is INT/WORD/UINT/UDINT/DWORD/BOOL/REAL.

Service Code=4D hex

Type: Data Type Code of a variable which was read. Refer to the following “Data Type Code.”

Data to be written: Set the data to be written in order from the lower byte to the upper byte.

Structure
The situation is a little different for structured variables.

In case of a structured variable, it has to be confirmed whether or not the specified structured variable is
defined correctly. CRC Code (Cyclic Redundant Code) calculated from the structure definition is used for con-
firming that it is identified with the structure definition.

Although the format of Request Data is the same, that of Response Data is different.

“Type” will be A0 hex. CRC Code is stored in the channel next to Type Field.

Service Code=4D hex

Array Variable
In case of an array variable, access to the whole of an array variable is the same as in the case of Predefined
Data Type.

Access to an array element is access to “a member of Instance.”

Service Code=4D hex

Type: Data Type Code of a variable which was read. Refer to the following “Data Type Code.”

Data to be written: Set the data to be written in order from the lower byte to the upper byte.

Request Data Response Data

Word Word

S+1 004D D+4 None

S+2 Type 00

S+3 0100

S+4 Data to be written

S+5 :

Request Data Response Data

Word Word

S+1 004D D+4 None

S+2 A0 02

S+3 CRC

S+4 0100

S+5 Data to be written

:

Request Data Response Data

Word Word

S+1 004D D+4 None

S+2 Type 00

S+3 0100

S+4 Data to be written

: :

S+n Data to be written:
254

CIP Message Communications Appendix D
Example 1
In case that an array variable with ten INT-type elements, ArrayData[10], exists and that you access to the
whole of this array variable:

Service Code=4D hex

Example 2
In case that an array variable with ten INT-type elements, ArrayData[10], exists and that you access to the 3rd
element of this array variable, ArryData:[2]:

Service Code=4D hex

Request Data Response Data

Word Word

S+1 004D D+4 None

S+2 C3 00

S+3 0100

S+4 Data to be written

: :

S+13 Data to be written:

Control Data

Word

C+5 91 09

C+6 41 72 “Ar”

C+7 72 61 “ra”

C+8 79 44 “yD”

C+9 61 74 “at”

C+10 61 00 “a”

Request Data Response Data

Word Word

S+1 004D D+4 None

S+2 C3 00

S+3 0100

S+4 Data to be written

Control Data

Word

C+5 91 09

C+6 41 72 “Ar”

C+7 72 61 “ra”

C+8 79 44 “yD”

C+9 61 74 “at”

C+10 61 00 “a”

C+11 28 02 28 hex = Logical Segment: Member ID is specified.
02 hex = Member ID = “2”. The 3rd member is specified.
255

CIP Message Communications Appendix D
Use Example of CSND Instruction

Read WORD-Type Variable via ControlNet

Read a variable of the right CPU Unit #2, “Var_A,” from the left CPU Unit #1, and store it in a variable of #1,
“Var_B.”

The route is as follows:

Backplane Port of CPU#1 → ControlNet Unit (Unit No. = 3) → ControlNet Port of ControlNet Unit → Con-
trolNet Unit (Node Address = 9) → Backplane Port of ControlNet Unit → CPU#2

Therefore, the path is described as follows:

[01] [13] [02] [09] [01] [00]

A variable to be accessed to is “Var_A” and it is described as follows:

[91] [05] [56] [61] [72] [5F] [41] [00]

Shown below is the parameter setting for CSND Instruction.

Service Code and Service Data are described in S data. Link Path and IOI (variable name) are described in C
data. The received response is stored in D data.

 NE1S
CPU

Control
Net

Unit
No.=3

Node
Adrs=8

NE1S
CPU

Control
Net

Unit
No.=5

Node
Adrs=9

CSND

S

D

C

Var_A

#1 #2

ControlNet

Back-
plane

Back-
plane

S Data

S 0004 Request Data Size (unit: byte)

S+1 004C Service Code

S+2 0100 Service Data
256

CIP Message Communications Appendix D
When S data and C data are set up and the CSND instruction is executed, received data is stored in D. The
execution result is stored in General Status area. For the details, refer to the General Status Code on
page 268. In some cases, not only General Status Code but also Additional Status Code may be added.

The data which was read is stored in Data of D+4. It is stored in the way of Little Endian (lining in order from the
lower byte to the upper byte).

Example of Ladder Program

C Data

C 000A Reception Buffer Size (unit: word) (when area of 10 words is specified)

C+1 0300 Set 3 in Communications Port No. of CSND Instruction.

C+2 0000 Reserved (0000 fixed)

C+3 0000 Service Execution Monitoring Timer (usually “0000”)

C+4 8004 Set “1” in the top bit. Describe the size of Variable Name in the unit of word.

C+5 9105 Describe Variable Name according to the method above.

C+6 5661 “Va”

C+7 725F “r_”

C+8 4100 “A” (Variable Name ends here.)

C+9 0003 Describe Link Path Size in the unit of word.

C+10 0113 Describe Link Path according to the method above.

C+11 0209

C+12 0100 Link Path ends here.

D Data

D 0008 Response Data Size (unit: byte)

D+1 00CC Service Code (The 8th bit goes to On. 4C=>CC)

D+2 0000 General Status (0000 hex indicates correct end.)

D+3 0000 Additional Status (The upper 2 bytes will be stored if any addi-
tional information.)

D+4 D200 Data Type Code (WORD Type = D2)

D+5 Data Data that was read.

Name Data
Type

No. of
Elements

Address Comment

Sdata WORD 16 W000 Operand S of CSND Instruction (data to be sent)

Ddata WORD 16 W020 Operand S of CSND Instruction (data received)

Cdata WORD 20 W040 Operand C of CSND Instruction (control)

KickSW BOOL Switch to start CSND Instruction

A202.03 Communications Instruction Execution Enable Flag
257

CIP Message Communications Appendix D
P_First_Cycle

MOV
(021)

16#0004

Sdata[0]
W000

A200.11

MOV
(021)

16#004C

Sdata[1]
W001

MOV
(021)

16#0100

Sdata[2]
W002 P_First_Cycle

MOV
(021)

16#000A

Cdata[0]
W040

A200.11

MOV
(021)

16#0300

Cdata[1]
W041

MOV
(021)

16#0000

Cdata[3]
W043

MOV
(021)

16#0000

Cdata[2]
W042

MOV
(021)

16#9105

Cdata[5]
W045

MOV
(021)

16#5661

Cdata[6]
W046

MOV
(021)

16#725F

Cdata[7]
W047

MOV
(021)

16#4100

Cdata[8]
W048

MOV
(021)

16#8004

Cdata[4]
W044

MOV
(021)

16#0003

Cdata[9]
W049

MOV
(021)

16#0113

Cdata[10]
W050
258

CIP Message Communications Appendix D
Write INT-Type Variable via Ethernet

Write data into a variable of the right CPU Unit #2, “Var_INT,” from the left CPU Unit #1.

The route is as follows:

Ethernet Port of CPU#1 → CPU#2 (IP Address = 192.168.200.33)

The path is described as follows:

[12] [0E] [31] [39] [32] [2E] [31] [36] [38] [2E] [32] [30] [30] [2E] [33] [33]

A variable to be accessed, “Var_INT,” is described as follows:

[91] [07] [56] [61] [72] [5F] [49] [4E] [54] [00]

Shown below is the parameter setting for CSND Instruction.

Service Code and Service Data are described in S data. Link Path and IOI (variable name) are described in C
data. The received response is stored in D data.

MOV
(021)

16#0209

Cdata[11]
W051

MOV
(021)

16#0100

Cdata[12]
W052

@CSND
(489)

Sdata[0]
W000

Ddata[0]
W020

Cdata[0]
W040

END
(001)

KickSW
A202.03

 NE1S
CPU

Control
Net

NE1S
CPU

Control
Net

CSND

S

D

C Var_INT

#1 #2

IP Address:
192.168.200.33

IP Address:
192.168.200.1

Ethernet
259

CIP Message Communications Appendix D
The data to be written is stored in the way of Little Endian (lining in order from the lower byte to the upper byte).

When S data and C data are set up and CSND Instruction is executed, received data is stored in D data. The
execution result is stored in General Status area. For the details, refer to the following “General Status Code.”
In some cases, not only General Status Code but also Additional Status Code may be added. If no Additional
Code exists, “0000” is stored.

S Data

S 0008 Request Data Size (unit: byte)

S+1 004D Service Code

S+2 C300 Data Type Code = C3

S+3 0100 No. of Elements = 1

S+4 Data Data to be written

C Data

C 000A Reception Buffer Size (unit: word) (when area of 10 words is specified.)

C+1 0000 When Communications Port No. of CSND Instruction is set to 0.

C+2 0000 Reserved (0000, fixed)

C+3 0000 Service Execution Monitoring Timer (usually, “0000”)

C+4 8005 Set the top bit to “1.” Describe the size of Variable Name in the unit of word.

C+5 9107 Describe Variable Name according to the method above.

C+6 5661 “Va”

C+7 725F “r_”

C+8 494E “IN”

C+9 5400 “T” (Variable Name ends here.)

C+10 0008 Describe Link Path Size in the unit of word.

C+11 120E Describe Link Path according to the method above.

C+12 3139 “19”

C+13 322E “2.”

C+14 3136 “16”

C+15 382E “8.”

C+16 3230 “20”

C+17 302E “0”

C+18 3333 “33” (Link Path ends here.)

D Data

D 0006 Response Data Size (unit: byte)

D+1 00CD Service Code (The 8th bit goes to On. 4D => CD)

D+2 0000 General Status (0000 hex indicates correct end.)

D+3 0000 Additional Status (The upper 2 bytes will be stored if any additional information.)
260

CIP Message Communications Appendix D
Example of Ladder Program

Name Data
Type

No. of
Elements

Address Comment

Sdata WORD 16 W000 Operand S of CSND Instruction (data to be sent)

Ddata WORD 16 W020 Operand S of CSND Instruction (data received)

Cdata WORD 20 W040 Operand C of CSND Instruction (control)

KickSW BOOL Switch to start CSND Instruction

A202.03 Communications Instruction Execution Enable Flag
261

CIP Message Communications Appendix D
 P_First_Cycle

MOV
(021)

16#0008

Sdata[0]
W000

A200.11

MOV
(021)

16#004D

Sdata[1]
W001

MOV
(021)

16#C300

Sdata[2]
W002

MOV
(021)

16#0100

Sdata[3]
W003

MOV
(021)

16#1234

Sdata[4]
W004 P_First_Cycle

MOV
(021)

16#000A

Cdata[0]
W040

A200.11

MOV
(021)

16#0000

Cdata[1]
W041

MOV
(021)

16#0000

Cdata[3]
W043

MOV
(021)

16#8005

Cdata[4]
W044

MOV
(021)

16#9107

Cdata[5]
W045

MOV
(021)

16#5661

Cdata[6]
W046

MOV
(021)

16#725F

Cdata[7]
W047

MOV
(021)

16#494E

Cdata[8]
W048

MOV
(021)

16#0000

Cdata[2]
W042
262

CIP Message Communications Appendix D
MOV
(021)

16#5400

Cdata[9]
W049

MOV
(021)

16#0008

Cdata[10]
W050

MOV
(021)

16#120E

Cdata[11]
W051

MOV
(021)

16#3139

Cdata[12]
W052

MOV
(021)

16#322E

Cdata[13]
W053

MOV
(021)

16#3136

Cdata[14]
W054

MOV
(021)

16#382E

Cdata[15]
W055

MOV
(021)

16#3230

Cdata[16]
W056

MOV
(021)

16#302E

Cdata[17]
W057

MOV
(021)

16#3333

Cdata[18]
W058

@CSND
(489)

Sdata[0]
W000

Ddata[0]
W020

Cdata[0]
W040

END
(001)

KickSW
A202.00
263

CIP Message Communications Appendix D
Data Type

Data Type Code

Data Placement
The data placement for each data type is described below. The data placement differs between the CPU Unit
memory and the data sent and received using the CSND instruction. Be sure to reorder the data when sending
or receiving data with the CSND instruction.

BOOL Data

CPU Unit Data Placement
BOOL data in the CPU Unit is at the specified bit location for fixed allocations using address specifications. For
automatic allocations, the bit location is automatically allocated. Information on forced set/reset status cannot
be read or written from the program.

CSND Instruction Data Placement

Data: True = 01 hex, False = 00 hex

Information on Forced Set/Reset Status: Forced = 01 hex, Not Forced = 00 hex

Only data can be written, i.e., forced status information cannot be written.

BOOL Data (Whole Array)

CPU Unit Data Placement

D0 to Dn: True = 01 hex, False = 00 hex

No. Data Type Name Code
[hex]

Description

1. TIMER 01 OMRON Specific Data Type for Timer Instruction
in which UP flag and Present Counter are
involved.

2. COUNTER 02 OMRON Specific Data Type for Counter Instruc-
tion in which UP flag and Present Counter are
involved.

3. BOOL C1 Logical Boolean with values TRUE and FALSE
TRUE = 01 hex, FALSE = 00 hex

4. INT C3 Signed 16-bit integer value

5. DINT C4 Signed 32-bit integer value

6. UINT C7 Unsigned 16-bit integer value

7. UDINT C8 Unsigned 32-bit integer value

8. REAL CA 32-bit floating point value

9. WORD D2 bit string - 16-bits

10. DWORD C3 bit string - 32-bits

11. STRUCT A0 Structured variable

12. STRING D0 String of letters

Bit

Wd 15 8 7 0

+0 Data Information on Forced Set/Reset Status

Bit

Wd 15 8 7 0

+0 D15 D8 D7 D8

+1 D17 D16

: :
264

CIP Message Communications Appendix D
Allocations always start a bit 0 for arrays. It is not possible to start allocations from any other bit (e.g., starting
from bit 4 is not possible).

CSND Instruction Data Placement

D0 to Dn: True = 01 hex, False = 00 hex

WORD, INT, or UINT Data

CPU Unit Data Placement

CSND Instruction Data Placement

DWORD, DINT, or UDINT Data

CPU Unit Data Placement

CSND Instruction Data Placement

TIMER Data

CPU Unit Data Placement
The data size and meaning of TIMER variables depend on the instruction that is used. When using instructions
that require a bit operand (e.g., LD, AND, OR, or, OUT), the Completion Flag is accessed. When using instruc-
tions that require other operands, the PV is accessed.

CSND Instruction Data Placement

Current Value: Current value of the timer

Bit

Wd 15 8 7 0

+0 D7 D0 D15 D8

+1 D17 D16

: :

Bit

Wd 15 8 7 0

+0 Data (H) Data (L)

Bit

Wd 15 8 7 0

+0 Data (L) Data (H)

Bit

Wd 15 8 7 0

+0 Data (LH) Data (LL)

+1 Data (HH) Data (HL)

Bit

Wd 15 8 7 0

+0 Data (LL) Data (LH)

+1 Data (HL) Data (HH)

Bit

Wd 15 8 7 0

+0 Current Value (H) Current Value (L)

Bit

Wd 15 8 7 0

+0 Current Value (L) Current Value (H)

+1 Up Flag Information of Forced Reset/Reset
265

CIP Message Communications Appendix D
Up Flag: Time up = 01 hex, Others = 00 hex

Information of Forced Reset/Reset: Forced = 01 hex, Not Forced = 00 hex

Only current values can be written.

COUNTER Data

CPU Unit Data Placement
The data size and meaning of COUNTER variables depend on the instruction that is used. When using instruc-
tions that require a bit operand (e.g., LD, AND, OR, or, OUT), the Completion Flag is accessed. When using
instructions that require other operands, the PV is accessed.

CSND Instruction Data Placement

Current Value: Current value of the timer

Up Flag: Count up = 01 hex, Others = 00 hex

Information of Forced Reset/Reset: Forced = 01 hex, Not Forced = 00 hex

Only current values can be written.

STRING Data

CPU Unit Data Placement

All data up to 00 hex is treated as string data. If there is an odd number of characters in the string, 00 hex is
stored in the lower byte of the word.

CSND Instruction Data Placement

Size: Data Size (unit = byte)

Data: Data of letters. When Data Size is an odd number, pad the lower side of the last word with 00 hex.

Bit

Wd 15 8 7 0

+0 Current Value (H) Current Value (L)

Bit

Wd 15 8 7 0

+0 Current Value (L) Current Value (H)

+1 Up Flag Information of Forced Reset/Reset

Bit

Wd 15 8 7 0

+0 Data 1 Data 2

+1 : :

: Data m Data n

+N 0 hex 0 hex

Bit

Wd 15 8 7 0

+0 Size 00

+1 Data 1 Data 2

: : :

+N Data m Data n
266

CIP Message Communications Appendix D
REAL Data
READ data conforms to the definition of single-precision floating-point data in IEEE 754. Single-precision data
uses 32 bits in the following format.

Actual value = (−1) s2e-127 (1.f)

CPU Unit Data Placement

CSND Instruction Data Placement

s e f

31 30 23 22 0

Bit

Wd 15 8 7 0

+0 f bits 08 to 15 f bits 00 to 07

+1 s e f bits 16 to 22

Bit

Wd 15 8 7 0

+0 f bits 00 to 07 f bits 08 to 15

+1 e f bits 16 to 22 e
267

CIP Message Communications Appendix D
Response Code

General Status Code
General Status Code is stored in the response reception area, D+2, after execution of CSND Instruction is
completed.

This code is also reflected in the upper byte of A203 to A210. When Additional Code is added, only part for 1
byte is reflected in the lower byte of A203 to A230.

General Status
Code (hex)

Status Name Description of Status

00 Success Service was successfully performed by the object specified.

01 Connection failure A connection related service failed along the connection path.

02 Resource unavailable Resources needed for the object to perform the requested service were
unavailable.

03 Invalid parameter value See Status Code 20 hex, which is the preferred value to use for this condi-
tion.

04 Path segment error The path segment identifier or the segment syntax was not understood by
the processing node. Path processing shall stop when a path segment
error is encountered.

05 Path destination
unknown

The path is referencing an object class, instance or structure element that
is not known or is not contained in the processing node. Path processing
shall stop when a path destination unknown error is encountered.

06 Partial transfer Only part of the expected data was transferred.

07 Only part of the
expected data was
transferred.

The messaging connection was lost.

08 Service not supported The requested service was not implemented or was not defined for this
Object Class/Instance.

09 Invalid attribute value Invalid attribute data detected.

0A Attribute list error An attribute in the Get_Attribute_List or Set_Attribute_List response has a
non-zero status.

0B Already in requested
mode/state

The object is already in the mode/state being requested by the service.

0C Object state conflict The object cannot perform the requested service in its current mode/state.

0D Object already exists The requested instance of object to be created already exists.

0E Attribute not settable A request to modify a non-modifiable attribute was received.

0F Privilege violation A permission/privilege check failed.

10 Device state conflict The device's current mode/state prohibits the execution of the requested
service.

11 Reply data too large The data to be transmitted in the response buffer is larger than the allo-
cated response buffer

12 Fragmentation of a
primitive value

The service specified an operation that is going to fragment a primitive
data value, i.e. half a REAL data type.

13 Not enough data The service did not supply enough data to perform the specified opera-
tion.

14 Attribute not supported The attribute specified in the request is not supported.

15 Too much data The service supplied more data than was expected.

16 Object does not exist The object specified does not exist in the device.

17 Service fragmentation
sequence not in
progress

The fragmentation sequence for this service is not currently active for this
data.

18 No stored attribute data The attribute data of this object was not saved prior to the requested ser-
vice.

19 Store operation failure The attribute data of this object was not saved due to a failure during the
attempt.
268

CIP Message Communications Appendix D
1A Routing failure (request
packet too large)

The service request packet was too large for transmission on a network in
the path to the destination. The routing device was forced to abort the ser-
vice.

1B Routing failure
(response packet too
large)

The service response packet was too large for transmission on a network
in the path from the destination. The routing device was forced to abort the
service.

1C Missing attribute list
entry data

The service did not supply an attribute in a list of attributes that was
needed by the service to perform the requested behavior.

1D Invalid attribute value
list

The service is returning the list of attributes supplied with status informa-
tion for those attributes that were invalid.

1E Embedded service
error

An embedded service resulted in an error.

1F Vendor specific error A vendor specific error has been encountered. The Additional Code Field
of the Error Response defines the particular error encountered. Use of this
General Error Code should only be performed when none of the Error
Codes presented in this table or within an Object Class definition accu-
rately reflect the error.

20 Invalid parameter A parameter associated with the request was invalid. This code is used
when a parameter does not meet the requirements of this specification
and/or the requirements defined in an Application Object Specification.

21 Write-once value or
medium already written

An attempt was made to write to a write-once medium (e.g. WORM drive,
PROM) that has already been written, or to modify a value that cannot be
changed once established.

22 Invalid Reply Received An invalid reply is received (e.g. reply service code does not match the
request service code, or reply message is shorter than the minimum
expected reply size). This status code can serve for other causes of invalid
replies.

23-24 Reserved by CIP for future extensions

25 Key Failure in path The Key Segment that was included as the first segment in the path does
not match the destination module. The object specific status shall indicate
which part of the key check failed.

26 Path Size Invalid The size of the path which was sent with the Service Request is either not
large enough to allow the Request to be routed to an object or too much
routing data was included.

27 Unexpected attribute in
list

An attempt was made to set an attribute that is not able to be set at this
time.

28 Invalid Member ID The Member ID specified in the request does not exist in the specified
Class/Instance/Attribute.

29 Member not settable A request to modify a non-modifiable member was received.

2A Group 2 only server
general failure

This error code may only be reported by DeviceNet group 2 only servers
with 4K or less code space and only in place of Service not supported,
Attribute not supported and Attribute not settable.

2B-CF Reserved by CIP for future extensions

D0-FF Reserved for Object
Class and service
errors

This range of error codes is to be used to indicate Object Class specific
errors. Use of this range should only be performed when none of the Error
Codes presented in this table accurately reflect the error that was encoun-
tered.

General Status
Code (hex)

Status Name Description of Status
269

CIP Message Communications Appendix D
Example of Additional Status in case that General Status Is 01 Hex.
(Status of Connection Manager Object)

General Status
(hex)

Additional
Status (hex)

Explanation

01 0100 Connection in Use or Duplicate Forward Open.

01 0103 Transport Class and Trigger combination not supported

01 0106 Ownership Conflict

01 0107 Connection not found at target application.

01 0108 Invalid Connection Type. Indicates a problem with either the Connection Type or Pri-
ority of the Connection.

01 0109 Invalid Connection Size

01 0110 Device not configured

01 0111 RPI not supported. May also indicate problem with connection time-out multiplier, or
production inhibit time.

01 0113 Connection Manager cannot support any more connections

01 0114 Either the Vendor Id or the Product Code in the key segment did not match the device

01 0115 Product Type in the key segment did not match the device

01 0116 Major or Minor Revision information in the key segment did not match the device

01 0117 Invalid Connection Point

01 0118 Invalid Configuration Format

01 0119 Connection request fails since there is no controlling connection currently open.

01 011A Target Application cannot support any more connections

01 011B RPI is smaller than the Production Inhibit Time.

01 0203 Connection cannot be closed since the connection has timed out

01 0204 Unconnected Send timed out waiting for a response.

01 0205 Parameter Error in Unconnected Send Service

01 0206 Message too large for Unconnected message service

01 0207 Unconnected acknowledge without reply

01 0301 No buffer memory available

01 0302 Network Bandwidth not available for data

01 0303 No Tag filters available

01 0304 Not Configured to send real-time data

01 0311 Port specified in Port Segment Not Available

01 0312 Link Address specified in Port Segment Not Available

01 0315 Invalid Segment Type or Segment Value in Path

01 0316 Path and Connection not equal in close

01 0317 Either Segment not present or Encoded Value in Network Segment is invalid.

01 0318 Link Address to Self Invalid

01 0319 Resources on Secondary Unavailable

01 031A Connection already established

01 031B Direct connection already established

01 031C Miscellaneous

01 031D Redundant connection mismatch

01 031F No connection resources exist for target path

01 0320-07FF Vendor specific
270

CIP Message Communications Appendix D
Error Code Unique to CSND Instruction
When CSND Instruction itself turns to be an error (incorrect parameter, etc.), this code is reflected in A203 to
A210.

Error Code
(hex)

Error Name Cause Remarks

2001 Inappropriate Request
Data Length

The value for the Request Data Size in the
first field of S is less than 4 (specified as
less than 4 bytes), or that the total request
data size exceeds the specified amount
(512 bytes).

The message will not be sent and
the Communications port Error
Flag for the corresponding port will
turn ON.

2002 Inappropriate Response
Data Length

The value for the Response Data Size in
the first field of D is less than 8 (specified
as less than 8 bytes).

2003 Inappropriate Control
Data Length

The Link Address Size in the sixth field of
C exceeds the specified amount (512
bytes).

0201 Insufficient Response
Area

The CIP response data length exceeds
the Response Buffer Size in the first field
of C.

The response will be discarded
and the Communications Port
Error Flag for the corresponding
port will turn ON.

--- EPATH Error CIP Segment Encoding Errors (EPATH
Errors) are listed below. For details on CIP
segments, refer to Appendix C: Data Man-
agement in CIP Common Specification
Volume 1 Release 1.0.

The message will not be sent and
the Communications port Error
Flag for the corresponding port will
turn ON.

2041 The value specified for the Path Type in
the IOI Path area of operand C (C+4, bit
15) is not 1 or 0 (i.e., Class/Instance/
Attribute or EPATH is not specified).

2042 The value for the IOI Size is 0 when the
Path Type is specified as 1 in the IOI Path
Area of operand C (C+4, bit 15).

0401 Logical Segment/Data Segment is not
specified when the Path Type is specified
as 1 in the IOI Path Area of operand C
(C+4, bit 15).

2043 The Logical Type is not specified as Class/
Instance/Attribute.

0411 The Logical Format is not specified as 8,
16, or 32bits.

0421 The Segment Sub-Type is not specified as
ANSI Extended Symbol Segment.

2044 The IOI length is set to 0x100 or higher for
the IOI Path in operand C.

1F03 Maximum Send/Receive
Length Exceeded

The send request exceeded the CIP maxi-
mum message size.

1F02 Link Path Error An undefined link path was specified. An
undefined port such as port No. 0x05 or
0x10 was specified.
271

CIP Message Communications Appendix D
0281 Internal Error An internal error occurred. The message will not be sent and
the Communications port Error
Flag for the corresponding port will
turn ON.

0282

0283

0284

1F81

1F01 Response Timeout A timeout occurred in the processing at
the target. The message was discarded
during communications processing (the
message frame length exceeded the max-
imum length, etc.).

The Communications Port Error
Flag for the corresponding port will
turn ON.

Error Code
(hex)

Error Name Cause Remarks
272

Appendix E
PLC Setup for CJ2 CPU Units

The section describes the PLC Setup items for CJ2 CPU Units that can be set from the NE Programmer. For
information on PLC Setup items for CJ2 CPU units, refer to the CJ2 CPU Unit Software User's Manual (Cat.
No. W473).

To display the settings window for the PLC Setup, right-click the configuration and select System Setup.

Startup Settings

Startup IOM Hold

Startup Force Status

Startup Operating Mode

Execution Setting

Settings Function Related flags
and words

New setting’s
effectiveness

Invalid
Valid
Default: Invalid

This setting determines whether or not the status of the IOM
Hold Bit (A50012) is retained at startup.
When you want all of the data in I/O Memory to be retained
when the power is turned ON, turn ON the IOM Hold Bit and
set this setting to 1 (ON).

A50012
(IOM Hold Bit)

At startup

Settings Function Related flags
and words

New setting’s
effectiveness

Invalid
Valid
Default: Invalid

This setting determines whether or not the status of the Forced
Status Hold Bit (A50013) is retained at startup.
When you want all of the bits that have been force-set or force-
reset to retain their forced status when the power is turned ON,
turn ON the Forced Status Hold Bit and set this setting to
Retained.

A50013
(Forced Status
Hold Bit)

At startup

Settings Function Related flags
and words

New setting’s
effectiveness

PROGRAM
MONITOR

RUN
Default: RUN

This setting determines whether the Startup Mode will be the
mode set on the Programming Console’s mode switch or the
mode set here in the PLC Setup.

--- At startup

Settings Function Related flags
and words

New setting’s
effectiveness

Invalid: Do not start
operation.

Valid: Start opera-
tion.
Default: Invalid

This property sets the startup condition. It sets whether to start
CPU Unit operation without waiting for Special I/O Units or
CPU Bus Units to finish starting when the power supply is
turned ON in RUN mode or MONITOR mode.

--- At startup
273

PLC Setup for CJ2 CPU Units Appendix E
CPU Settings

Detect Battery Error

Detect Duplicate Refresh Error

Register FAL to Error Log

Table Data Process Instructions

String Data Process Instructions

Data Shift Process Instructions

Settings Function Related flags
and words

New setting’s
effectiveness

Detect
Nondetect
Default: Detect

This setting determines whether CPU Unit battery errors are
detected. If this setting is set to Detect and a battery error is
detected, the ERR/ALM indicator on the CPU Unit will flash
and the Battery Error Flag (A40204) will be turned ON, but
CPU Unit operation will continue.

A40204
(Battery Error
Flag)

Next cycle

Settings Function Related flags
and words

New setting’s
effectiveness

Detect
Nondetect

Default: Detect

This setting determines whether interrupt task errors are
detected. If this setting is set to Detect and an interrupt task
error is detected, the ERR/ALM indicator on the CPU Unit will
flash and the Interrupt Task Error Flag (A40213) will be turned
ON, but CPU Unit operation will continue.

A40213
(Interrupt Task
Error Flag)

Next cycle

Settings Function Related flags
and words

New setting’s
effectiveness

Register
Unregister
Default: Register

This setting determines if user-defined FAL errors created with
FAL(006) and time monitoring for FPD(269) will be recorded in
the error log (A100 to A199).

--- Whenever
FAL(006) is exe-
cuted (every
cycle)

Settings Function Related flags
and words

New setting’s
effectiveness

Disable
Enable
Default: Disable

This setting determines if Table Data Instructions will be pro-
cessed over multiple cycle times (i.e., processed in the back-
ground).

--- Start of opera-
tion

Settings Function Related flags
and words

New setting’s
effectiveness

Disable

Enable
Default: Disable

This setting determines if Text String Data Instructions will be
processed over multiple cycle times (i.e., processed in the
background).

--- Start of opera-
tion

Settings Function Related flags
and words

New setting’s
effectiveness

Disable
Enable

Default: Disable

This setting determines if Data Shift Instructions will be pro-
cessed over multiple cycle times (i.e., processed in the back-
ground).

--- Start of opera-
tion
274

PLC Setup for CJ2 CPU Units Appendix E
Com Port Number

Stop CPU on Instruction Error

Timings Settings

Schedule Interrupt Interval

Cycle Monitor Time (Minimum Cycle Time

Cycle Time

Settings Function Related flags
and words

New setting’s
effectiveness

0 to 7: Communica-
tions ports 0 to 7
(internal logical
ports)

Default: 0

The communications port number (internal logical port) that
will be used for background execution. The same port number
is used for all instructions.

--- Start of opera-
tion

Settings Function Related flags
and words

New setting’s
effectiveness

Continue
Stop
Default: Continue

This setting determines whether instruction errors (instruction
processing errors (ER) and illegal access errors (AER)) are
treated as non-fatal or fatal errors. When this setting is set to
Stop, CPU Unit operation will be stopped if the ER or AER
Flags is turned ON (even when the AER Flag is turned ON for
an indirect DM/EM BCD error).

Related Flags: A29508 (Instruction Processing Error Flag)
A29509 (Indirect DM/EM BCD Error Flag)
A29510 (Illegal Access Error Flag)

A29508,
A29509,
A29510

(If this setting is
set to Continue,
these flags
won’t be turned
ON even if an
instruction error
occurs.)

Start of opera-
tion

Settings Function Related flags
and words

New setting’s
effectiveness

10 ms
1.0 ms
0.1 ms
Default: 10 ms

Sets the time interval for the scheduled interrupt task. --- Start of opera-
tion. .
(Can’t be
changed during
operation.)

Settings Function Related flags
and words

New setting’s
effectiveness

0.2 to 32000.0 ms
(0.1-ms increments)
Default: 0 ms

Set to the desired value to specify a minimum cycle time. If the
cycle time is less than this setting, it will be extended until this
time passes. Leave this setting at 0 ms for a variable cycle
time.

--- Start of opera-
tion. (Can’t be
changed during
operation.)

Settings Function Related flags
and words

New setting’s
effectiveness

Disabled
Enabled
Default: Disabled
(1,000 ms)

Set to Enabled to use a cycle monitor time setting other than
the default value of 1 s.

A264 and A265
(Present Cycle
Time)

Start of opera-
tion.
(Can’t be
changed during
operation.)
275

PLC Setup for CJ2 CPU Units Appendix E
Set Cycle Monitor Time

Power OFF Interrupt

Power OFF Detection Time

Settings Function Related flags
and words

New setting’s
effectiveness

10 to 4,000 ms

Default: 1,000 ms

This setting is valid only when Enable Minimum Cycle Time
Setting is set to Enable. The Cycle Time Too Long Flag
(A40108) will be turned ON if the cycle time exceeds this set-
ting.

A40108
(Cycle Time Too
Long Flag)

Start of opera-
tion.
(Can’t be
changed during
operation.)

Settings Function Related flags
and words

New setting’s
effectiveness

Invalid
Valid
Default: Invalid

When this setting is set to Enabled, the power OFF interrupt
task will be executed when power is interrupted.

--- At startup or at
start of opera-
tion.

(Can’t be
changed during
operation.)

Settings Function Related flags
and words

New setting’s
effectiveness

0 to 10 ms
(1-ms increments)
Default: 0

This setting determines how much of a delay there will be from
the detection of a power interruption (approximately 10 to 25
ms after the power supply voltage drops below 85% of the
rated value for an AC power supply or below 80% for a DC
power supply) to the confirmation of a power interruption. The
default setting is 0 ms.
When the power OFF interrupt task is enabled, it will be exe-
cuted when the power interruption is confirmed. If the power
OFF interrupt task is disabled, the CPU will be reset and oper-
ation will be stopped.

--- At startup or at
start of opera-
tion.
(Can’t be
changed during
operation.)
276

PLC Setup for CJ2 CPU Units Appendix E
SIOU Refresh Settings

Unit Settings

Item Settings Function Related flags
and words

New setting’s
effectiveness

Cyclic Refreshing of
Units 0 to 95

Enabled
Disabled

Default:
Enabled

These settings determine whether data will be
exchanged between the specified Unit and the
Special I/O Unit’s allocated words (10
words/Unit) during cyclic refreshing for Special
I/O Units.

--- Start of opera-
tion.

Item Settings Function Related flags
and words

New setting’s
effectiveness

Rack 0, Slot 0 No filter
0.5 ms
1 ms
2 ms
4 ms
8 ms
16 ms
32 ms

Default: 8 ms

Sets the input response time (ON response
time = OFF response time) for CJ-series
Basic I/O Units. The default setting is 8 ms
and the setting range is 0.5 ms to 32 ms.
This value can be increased to reduce the
effects of chattering and noise, or it can be
reduced to allow reception of shorter input
pulses.

A220 to A259:
Actual input
response
times for Basic
I/O Units

At startup.

Rack 0, Slot 1

Rack 0, Slot 2

Rack 0, Slot 3

Rack 0, Slot 4

Rack 0, Slot 5

Rack 0, Slot6

Rack 0, Slot 7

Rack 0, Slot 8

Rack 0, Slot 9

Rack 1, Slots 0 to 9

Rack 2, Slots 0 to 9

Rack 3, Slots 0 to 9

Rack 4, Slots 0 to 9

Rack 5, Slots 0 to 9

Rack 6, Slots 0 to 9

Rack 7, Slots 0 to 9
277

PLC Setup for CJ2 CPU Units Appendix E
Communications Settings

!CautionFor information on how to make serial port settings, refer to the CJ2 CPU Unit Hardware User's
Manual (Cat. No. W472).

Serial Port Port Mode

Serial Port Data Length

Serial Port Stop Bits

Serial Port Parity

Serial Port Baud Rate (bps)

Settings Function Related flags
and words

New setting’s
effectiveness

Default (SYSWAY)

Tool bus
SYSWAY
Serial gateway
NT Link (1:N)

This setting determines which serial communications mode
will be used for the USB port.

Next cycle.

Settings Function Related flags
and words

New setting’s
effectiveness

7 bits
8 bits

Default: 7 bits

These settings are valid only when the communications mode
is set to Host link.

These settings are also valid only when USB Port Port Settings
is set to Manual.

Next cycle.

Settings Function Related flags
and words

New setting’s
effectiveness

2 bits
1 bit

Default: 2 bits

These settings are valid only when the communications mode
is set to Host link.

These settings are also valid only when USB Port Port Settings
is set to Manual.

Next cycle.

Settings Function Related flags
and words

New setting’s
effectiveness

Parity - Even
Parity - Odd
Parity - None
Default:
Parity - Even

These setting is valid only when the communications mode is
set to Host link.

These settings are also valid only when USB Port Port Settings
is set to Manual.

Next cycle.

Settings Function Related flags
and words

New setting’s
effectiveness

300
600
1,200
2,400
4,800
9,600
19,200
38,400
57,600
115,200

Default: 9,600

Refer to the CPU Unit manual to set the appropriate baud rate for
the mode to be used.

Next cycle.
278

PLC Setup for CJ2 CPU Units Appendix E
Serial Port SYSWAY Mode Unit Number

Serial Port NT Link Max

Serial Port Response Monitor Time

Settings Function Related flags
and words

New setting’s
effectiveness

0 to 31

Default: 0

This setting determines the CPU Unit’s unit number when it is
connected in a 1-to-N (N=2 to 32) Host Link.

Next cycle.

Settings Function Related flags
and words

New setting’s
effectiveness

0 to 7
Default: 1

This setting determines the highest unit number of PT that can
be connected to the PLC.

Next cycle.

Settings Function Related flags
and words

New setting’s
effectiveness

0 to 25,500 ms
Default: 0 ms

Set the response monitor time in increments of 100 ms for the
setting of the RS-232C port.

Next cycle.
279

PLC Setup for CJ2 CPU Units Appendix E
FINS Write Protection

FINS Write Protection Settings

General Settings

Enabling the Total Service Time Setting

Setting the Total Service Time

Settings Function Related flags
and words

New setting’s
effectiveness

Enable or disable FINS
write protection
Default: Disable

This setting specifies whether or not to enable write pro-
tection on FINS commands sent to the CPU Unit through
the network. (The write protection does not apply to direct
serial connections.)

--- As soon as
changed.

The following settings can be used to allow write commands from up to specified nodes in the specified networks. (Write-
protection will not apply to the specified nodes.)
If the following settings are not made, write-protection will apply to all nodes other than the local node.

Network address: 0 to 127
Node address: 1 to 255
(255 = all nodes)
Default: Network address 0,
node address 1

Specifies the network address and node address of the
1st node that is not write-protected.

--- As soon as
changed.

: : : :

Network address: 0 to 127
Node address: 1 to 255
(255 = all nodes)
Default: Network address 0,
node address 1

Specifies the network address and node address of the
32nd node that is not write-protected.

--- As soon as
changed.

Settings Function Related flags
and words

New setting’s
effectiveness

Default (10%)
Default: 10%

Use this setting to set the total peripheral service time to a value
other than 10%.

--- Next cycle.

Settings Function Related flags
and words

New setting’s
effectiveness

0.1 to 3276.7 ms
(0.1-ms increments)

Default: 0

This setting sets the total service time. --- Next cycle.
280

Appendix F
Ethernet Settings for CJ2 CPU Units

List of Settings

Basic Setting Procedures for Ethernet Settings
Ethernet Settings are made on the Ethernet Tab Page of the Configuration Setting Window of NE Programmer.
The Ethernet Tab Page is shown below.

1,2,3...

1. Right-click the configuration name (i.e., the PLC name) in the Project Workspace and select System
Configuration from the popup menu.
The Configuration Setting Window will be displayed.

2. Click the Ethernet Tab in the Configuration Setting Window.
The following Ethernet Setting Window will be displayed.

3. Select the group and set the parameters.

4. After completing all settings, click the OK Button.

5. Download the settings to the CPU Unit. Select Controller - Download to Controller, select Ethernet
Setting, and then click the OK Button.
Refer to SECTION 7 Online Operation for information on downloading and other online operations for
the NE Programmer.

6. Restart the CPU Unit.

Group Setting Default

TCP/IP Settings BOOTP Unused

IP Address 192.168.200.200

Network Mask 255.255.255.0

Default Gateway 0.0.0.0

Host Name

MAC Address

Select the group.
At present, only
TCP/IP settings
can be made for
CJ2 CPU Units.

Simple help is
displayed on the
current parameter.

Click here to return all
parameters to their
default values.

The current settings
are displayed. Double-
click a parameter to
edit it. Parameters with
the following mark
cannot be edited:

The default value is
displayed.
281

Ethernet Settings for CJ2 CPU Units Appendix F
TCP/IP Settings
The settings in the TCP/IP group are shown below.

These settings are described individually below.

BOOTP
This window only displays whether the BOOTP function is enabled or not. The BOOTP setting cannot be
changed here.

Note BOOTP
The BOOTP function enables automatically setting the IP address, network mask, and default gateway
by obtaining IP configuration information from the BOOTP server on the network.
A BOOTP server must be installed separately on the network.

IP Address
• As a rule, the IP address is set on the rotary switches on the CPU Unit first and then the setting on the

Ethernet Setting Tab Page from the NE Programmer is set to match the setting on the rotary switches.

• The network portion of the IP address, however, must be changed using the Ethernet Settings on the NE
Programmer.

CPU Unit Rotary Switch Settings
Changes to the Ethernet Settings are effective the next time the CPU Unit is started.

For information on setting rotary switch for CJ2 CPU Units, refer to the SYSMAC CJ Series CJ2 CPU Unit
Hardware User's Manual (Cat. No. W472).

Network Mask
A subnet mask can be set.

Set the same subnet mask for all nodes on the same subnetwork.

Default Gateway
Select the IP address of the default gateway.

Do not set anything if a default gateway is not being used.

Class Subnet mask

Class A 255.0.0.0

Class B 255.255.0.0

Class C 255.255.255.0
282

Ethernet Settings for CJ2 CPU Units Appendix F
Host Name
Set a host name for the IP address of the CPU Unit.

Do not set anything if a host name is not being used.

MAC Address
The MAC Address of the CPU Unit is displayed.
283

Ethernet Settings for CJ2 CPU Units Appendix F
284

Index

A
access right

releasing, 219

Add to Watch, 192

addresses

allocation areas, 39

inputting, 109

applications

precautions, xvii

arrays, 20

settings, 221

specifying, 105

assigning keys, 95

auto-indent, 82

B
background execution settings, 274

battery

low battery error detection, 274

bits

forcing ON and OFF, 195

inputting addresses, 109

turning OFF, 196

turning ON, 196

turning ON and OFF, 196

BOOTP, 281

build settings, 160

building program, 150

C
change log, 209

displaying, 210

changing display mode, 94

check level, 83

level A, 83, 151

level B, 84

user definition, 84

CIP message communications, 229

CIP object, 229

clock setting, 219

clock settings

CPU Unit, 219

comments

editing, 136

instructions, 137

lines, 137

variables, 137

communications settings, 278

comparing, 188

comparing data, 188

compiling programs, 150

conditional statements, 223

configuration, 10

settings, 157, 158

configurations

creating, 129

connecting online, 167

connection

changing, 177

changing connected CPU Unit, 177

to CPU Unit on different network, 179

constants, 110

converting to variables when input comments, 79

counters

changing SVs, 198

cross-references, 142

report, 218

CSND instruction, 229

cycle time

displaying, 211

setting, 275

D
data structures

creating, 106

inserting elements, 108

data tracing, 211

data type code, 264

data types, 18, 19, 121

determining, 221

differential monitoring, 198

differentiation

restrictions, 48

direct address specification, 25

displaying and hiding the grid, 94

DM Area

settings, 5
downloading, 182, 185
285

Index
E
editing function block parameters online, 203

EN, 28

ENO, 29

EPATH type, 232

error log, 205

error status, 208

errors

clearing, 203

Ethernet, 208

function blocks, 49

settings, 275

Ethernet

communications errors, 208

errors, 208

IP address, 281

network mask, 281

settings, 159, 173

Ethernet settings

CJ2 CPU Units, 281

Ethernet setup, 159

execution settings, 274

exporting, 153

exporting variables, 30

external variables, 29, 222, 227

F
FI, 26

floating-point data, 46

forced status

clearing, 196

displaying, 197

force-resetting bits, 195

force-setting bits, 195

function block definitions, 32

function blocks, 31

advantages, 31

creating, 120

elements, 37

errors, 49

instances, 33

ladder programming restrictions, 47

moving to function block body, 127

operating specifications, 40

pasting into programs, 120, 123

restrictions, 47

specifications, 37

ST restrictions, 49

structure, 32

variable restrictions, 36

G
general status code, 268

global variables, 15

creating, 131

grouping variables, 30

I
I/O address display, 74

I/O table settings, 161

I/O tables, 181

creating, 181

deleting, 182

editing, 161

registering, 5
settings, 161

verifying, 182

importing, 153

importing variables, 31

input mode, 79

input variables, 27

installation, 5
precautions, xvii

software, 51

instance areas, 39

instances

calling, 40

number of, 34

outline, 33

specifications, 39

instruction comments, 137

instructions

inputting methods, 108

MSG, 205

interface

selection, 175

internal variables, 26

internals, 17

interrupts, 275

Power OFF Interrupt Task, 276

IP address

changing, 170
286

Index
J
jumping in programs, 140

K
key customization, 95

keywords, 223

L
ladder programming, 94

connecting lines, 101

deleting lines, 102

editing instructions, 100

inputting differentiated conditions, 101

inputting NC conditions, 96

inputting NO conditions, 95

inputting outputs, 97

inputting special instructions, 98

libraries, 16

library

registering folders, 146

registering rung groups, 145

registration, 144

suffixes and prefixes, 148

using, 142, 147

line comments, 137

Line Deletion Mode, 102

lines

deleting horizontal lines, 102

deleting vertical lines, 102

inputting horizontal lines, 101

inputting vertical lines, 101

link path, 231

local variables, 13

registering and deleting, 103

logical POUs, 10

creating, 90

M
memory

clearing, 204

messages

displaying, 207

mnemonic input, 96

monitoring, 189

N
NE Programmer

menu list, 63

starting, 60

NE1S serial port, 175

NT Links

maximum unit number, 279

O
object model, 229

one-key input, 95

online connection, 167

online editing, 199

function block parameters, 203

restrictions, 49

online operation, 165

operand numbers

inputting, 110

operands

copying, 64

operating mode

changing, 189

operating procedure, basic, 5
operation

checking operation, 5
testing, 6

operators, 223

Outline Window, 150

output variables, 28

P
parameters

outline, 34

password, 184

physical addresses, 25, 222

converting to variables, 111

converting to variables when inputting comments, 79

PLC Setup, 5, 159

CPU settings, 274

cycle monitor time, 276

cycle time, 275

minimum cycle time, 275

peripheral servicing, 280

power OFF detection time, 276

Special I/O Unit refreshing, 277
287

Index
startup settings, 273

timing settings, 275

Unit settings, 277

port

selection, 175

power interruptions

Power OFF Detection Delay Time, 276

power OFF interrupt task, 276

retaining/not retaining data, 25

precautions, xv

applications, xvii

general, xvi

safety, xvi

programming, 5
ST language, 116

transferring the program, 5
programs

check levels, 151

Project Window, 62

projects

creating, 90

structure, 10

PV

restrictions, 47

PVs, 197

R
read protection, 127

referencing, 35

replacing in programs, 138

reserved words, 225

response code, 268

response time

settings, 277

rung groups, 148

S
safety precautions, xvi

searching

input instructions from output instructions, 140

output instructions from input instructions, 140

searching programs, 138

services

restarting, 204

setup

initial setup, 5

SMTP, 204, 208

SNTP, 204, 208

specifications, 4
function block operation, 40

instances, 39

ST Editor, 118

importing, 153

ST programming, 116

character set, 116

data types, 117

functions, 224

identifiers, 116

reserved words, 225

variables and data structures, 118

startup mode

setting, 273

structured text

keywords, 223

restrictions, 49

system settings, 158

system variables, 227

T
tab length, 82

tasks, 133

allocation, 134

execution at startup, 133

pasting into programs, 134

TCP/IP settings, 281

timer instructions

restrictions, 48

timer settings, 275

timers

changing SVs, 198

U
uninstallation, 53

uploading, 182, 183

automatic, 175

protection, 184

USB driver

installation, 55, 167

V
variables, 13
288

Index
converting physical addresses to variables, 111

creating, 29

definitions, 38

editing, 103

enable output variable, 29

enable variable, 28

exporting, 155

external, 29

grouping, 30, 108

importing and exporting, 30, 154

initial values, 25

input, 27

inputting comments, 137

internal, 26

output, 28

properties, 18

registering, 103

restrictions, 47

restrictions in function blocks, 36

retaining, 25

types, 17

usage report, 217

verifying, 188

version upgrades, 55

W
Watch Window, 189, 191

adding items, 192

wheel, 80

wiring, 5
words

inputting addresses, 109

Z
zoom, changing, 94
289

Index
290

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content

01 August 2008 Original production

Cat. No. Z918-E1-01

Revision code
291

Revision History
292

Terms and Conditions of Sale
1. Offer; Acceptance. These terms and conditions (these "Terms") are deemed

part of all quotes, agreements, purchase orders, acknowledgments, price lists,
catalogs, manuals, brochures and other documents, whether electronic or in
writing, relating to the sale of products or services (collectively, the "Products")
by Omron Electronics LLC and its subsidiary companies (“Omron”). Omron
objects to any terms or conditions proposed in Buyer’s purchase order or other
documents which are inconsistent with, or in addition to, these Terms.

2. Prices; Payment Terms. All prices stated are current, subject to change with-
out notice by Omron. Omron reserves the right to increase or decrease prices
on any unshipped portions of outstanding orders. Payments for Products are
due net 30 days unless otherwise stated in the invoice.

3. Discounts. Cash discounts, if any, will apply only on the net amount of invoices
sent to Buyer after deducting transportation charges, taxes and duties, and will
be allowed only if (i) the invoice is paid according to Omron’s payment terms
and (ii) Buyer has no past due amounts.

4. Interest. Omron, at its option, may charge Buyer 1-1/2% interest per month or
the maximum legal rate, whichever is less, on any balance not paid within the
stated terms.

5. Orders. Omron will accept no order less than $200 net billing.
6. Governmental Approvals. Buyer shall be responsible for, and shall bear all

costs involved in, obtaining any government approvals required for the impor-
tation or sale of the Products.

7. Taxes. All taxes, duties and other governmental charges (other than general
real property and income taxes), including any interest or penalties thereon,
imposed directly or indirectly on Omron or required to be collected directly or
indirectly by Omron for the manufacture, production, sale, delivery, importa-
tion, consumption or use of the Products sold hereunder (including customs
duties and sales, excise, use, turnover and license taxes) shall be charged to
and remitted by Buyer to Omron.

8. Financial. If the financial position of Buyer at any time becomes unsatisfactory
to Omron, Omron reserves the right to stop shipments or require satisfactory
security or payment in advance. If Buyer fails to make payment or otherwise
comply with these Terms or any related agreement, Omron may (without liabil-
ity and in addition to other remedies) cancel any unshipped portion of Prod-
ucts sold hereunder and stop any Products in transit until Buyer pays all
amounts, including amounts payable hereunder, whether or not then due,
which are owing to it by Buyer. Buyer shall in any event remain liable for all
unpaid accounts.

9. Cancellation; Etc. Orders are not subject to rescheduling or cancellation
unless Buyer indemnifies Omron against all related costs or expenses.

10. Force Majeure. Omron shall not be liable for any delay or failure in delivery
resulting from causes beyond its control, including earthquakes, fires, floods,
strikes or other labor disputes, shortage of labor or materials, accidents to
machinery, acts of sabotage, riots, delay in or lack of transportation or the
requirements of any government authority.

11. Shipping; Delivery. Unless otherwise expressly agreed in writing by Omron:
a. Shipments shall be by a carrier selected by Omron; Omron will not drop ship

except in “break down” situations.
b. Such carrier shall act as the agent of Buyer and delivery to such carrier shall

constitute delivery to Buyer;
c. All sales and shipments of Products shall be FOB shipping point (unless oth-

erwise stated in writing by Omron), at which point title and risk of loss shall
pass from Omron to Buyer; provided that Omron shall retain a security inter-
est in the Products until the full purchase price is paid;

d. Delivery and shipping dates are estimates only; and
e. Omron will package Products as it deems proper for protection against nor-

mal handling and extra charges apply to special conditions.
12. Claims. Any claim by Buyer against Omron for shortage or damage to the

Products occurring before delivery to the carrier must be presented in writing
to Omron within 30 days of receipt of shipment and include the original trans-
portation bill signed by the carrier noting that the carrier received the Products
from Omron in the condition claimed.

13. Warranties. (a) Exclusive Warranty. Omron’s exclusive warranty is that the
Products will be free from defects in materials and workmanship for a period of
twelve months from the date of sale by Omron (or such other period expressed
in writing by Omron). Omron disclaims all other warranties, express or implied.
(b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION,
EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABIL-

ITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS.
BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE
PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR
INTENDED USE. Omron further disclaims all warranties and responsibility of
any type for claims or expenses based on infringement by the Products or oth-
erwise of any intellectual property right. (c) Buyer Remedy. Omron’s sole obli-
gation hereunder shall be, at Omron’s election, to (i) replace (in the form
originally shipped with Buyer responsible for labor charges for removal or
replacement thereof) the non-complying Product, (ii) repair the non-complying
Product, or (iii) repay or credit Buyer an amount equal to the purchase price of
the non-complying Product; provided that in no event shall Omron be responsi-
ble for warranty, repair, indemnity or any other claims or expenses regarding
the Products unless Omron’s analysis confirms that the Products were prop-
erly handled, stored, installed and maintained and not subject to contamina-
tion, abuse, misuse or inappropriate modification. Return of any Products by
Buyer must be approved in writing by Omron before shipment. Omron Compa-
nies shall not be liable for the suitability or unsuitability or the results from the
use of Products in combination with any electrical or electronic components,
circuits, system assemblies or any other materials or substances or environ-
ments. Any advice, recommendations or information given orally or in writing,
are not to be construed as an amendment or addition to the above warranty.
See http://www.omron247.com or contact your Omron representative for pub-
lished information.

14. Limitation on Liability; Etc. OMRON COMPANIES SHALL NOT BE LIABLE
FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY
WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS
BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.
Further, in no event shall liability of Omron Companies exceed the individual
price of the Product on which liability is asserted.

15. Indemnities. Buyer shall indemnify and hold harmless Omron Companies and
their employees from and against all liabilities, losses, claims, costs and
expenses (including attorney's fees and expenses) related to any claim, inves-
tigation, litigation or proceeding (whether or not Omron is a party) which arises
or is alleged to arise from Buyer's acts or omissions under these Terms or in
any way with respect to the Products. Without limiting the foregoing, Buyer (at
its own expense) shall indemnify and hold harmless Omron and defend or set-
tle any action brought against such Companies to the extent based on a claim
that any Product made to Buyer specifications infringed intellectual property
rights of another party.

16. Property; Confidentiality. Any intellectual property in the Products is the exclu-
sive property of Omron Companies and Buyer shall not attempt to duplicate it
in any way without the written permission of Omron. Notwithstanding any
charges to Buyer for engineering or tooling, all engineering and tooling shall
remain the exclusive property of Omron. All information and materials supplied
by Omron to Buyer relating to the Products are confidential and proprietary,
and Buyer shall limit distribution thereof to its trusted employees and strictly
prevent disclosure to any third party.

17. Export Controls. Buyer shall comply with all applicable laws, regulations and
licenses regarding (i) export of products or information; (iii) sale of products to
“forbidden” or other proscribed persons; and (ii) disclosure to non-citizens of
regulated technology or information.

18. Miscellaneous. (a) Waiver. No failure or delay by Omron in exercising any right
and no course of dealing between Buyer and Omron shall operate as a waiver
of rights by Omron. (b) Assignment. Buyer may not assign its rights hereunder
without Omron's written consent. (c) Law. These Terms are governed by the
law of the jurisdiction of the home office of the Omron company from which
Buyer is purchasing the Products (without regard to conflict of law princi-
ples). (d) Amendment. These Terms constitute the entire agreement between
Buyer and Omron relating to the Products, and no provision may be changed
or waived unless in writing signed by the parties. (e) Severability. If any provi-
sion hereof is rendered ineffective or invalid, such provision shall not invalidate
any other provision. (f) Setoff. Buyer shall have no right to set off any amounts
against the amount owing in respect of this invoice. (g) Definitions. As used
herein, “including” means “including without limitation”; and “Omron Compa-
nies” (or similar words) mean Omron Corporation and any direct or indirect
subsidiary or affiliate thereof.

Certain Precautions on Specifications and Use
1. Suitability of Use. Omron Companies shall not be responsible for conformity

with any standards, codes or regulations which apply to the combination of the
Product in the Buyer’s application or use of the Product. At Buyer’s request,
Omron will provide applicable third party certification documents identifying
ratings and limitations of use which apply to the Product. This information by
itself is not sufficient for a complete determination of the suitability of the Prod-
uct in combination with the end product, machine, system, or other application
or use. Buyer shall be solely responsible for determining appropriateness of
the particular Product with respect to Buyer’s application, product or system.
Buyer shall take application responsibility in all cases but the following is a
non-exhaustive list of applications for which particular attention must be given:
(i) Outdoor use, uses involving potential chemical contamination or electrical
interference, or conditions or uses not described in this document.
(ii) Use in consumer products or any use in significant quantities.
(iii) Energy control systems, combustion systems, railroad systems, aviation
systems, medical equipment, amusement machines, vehicles, safety equip-
ment, and installations subject to separate industry or government regulations.
(iv) Systems, machines and equipment that could present a risk to life or prop-
erty. Please know and observe all prohibitions of use applicable to this Prod-
uct.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS
RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT
ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO

ADDRESS THE RISKS, AND THAT THE OMRON’S PRODUCT IS PROP-
ERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE
OVERALL EQUIPMENT OR SYSTEM.

2. Programmable Products. Omron Companies shall not be responsible for the
user’s programming of a programmable Product, or any consequence thereof.

3. Performance Data. Data presented in Omron Company websites, catalogs
and other materials is provided as a guide for the user in determining suitabil-
ity and does not constitute a warranty. It may represent the result of Omron’s
test conditions, and the user must correlate it to actual application require-
ments. Actual performance is subject to the Omron’s Warranty and Limitations
of Liability.

4. Change in Specifications. Product specifications and accessories may be
changed at any time based on improvements and other reasons. It is our prac-
tice to change part numbers when published ratings or features are changed,
or when significant construction changes are made. However, some specifica-
tions of the Product may be changed without any notice. When in doubt, spe-
cial part numbers may be assigned to fix or establish key specifications for
your application. Please consult with your Omron’s representative at any time
to confirm actual specifications of purchased Product.

5. Errors and Omissions. Information presented by Omron Companies has been
checked and is believed to be accurate; however, no responsibility is assumed
for clerical, typographical or proofreading errors or omissions.

 Note: Specifications are subject to change. © 2008 Omron Electronics LLC Printed in U.S.A.

OMRON ELECTRONICS LLC • THE AMERICAS HEADQUARTERS

Schaumburg, IL USA • 847.843.7900 • 800.556.6766 • www.omron247.com

OMRON CANADA, INC. • HEAD OFFICE
Toronto, ON, Canada • 416.286.6465 • 866.986.6766 • www.omron.ca

OMRON ELETRÔNICA DO BRASIL LTDA • HEAD OFFICE
São Paulo, SP, Brasil • 55.11.2101.6300 • www.omron.com.br

OMRON ELECTRONICS MEXICO SA DE CV • HEAD OFFICE
Apodaca, N.L. • 52.811.156.99.10 • mela@omron.com

OMRON ARGENTINA • SALES OFFICE
Cono Sur • 54.11.4787.1129

OMRON CHILE • SALES OFFICE
Santiago 56.2206.4592

OTHER OMRON LATIN AMERICA SALES
56.2206.4592

Z918-E1-01

	NE01-CCPC1-_ NE Programmer Ver. 2.0
	Notice:
	Version Upgrade Guide
	About this Manual:
	Read and Understand this Manual
	PRECAUTIONS
	1 Intended Audience
	2 General Precautions
	3 Safety Precautions
	4 Application Precautions

	SECTION 1 Introduction
	1-1 NE Programmer Introduction
	1-1-1 What Is the NE Programmer?
	1-1-2 NE Programmer Features

	1-2 Specifications
	1-2-1 NE Programmer Specifications

	1-3 Basic Operating Procedure
	1-4 Differences and Restrictions between NE1S-series CPU Units and CJ2 CPU Units
	1-4-1 Improvements in CJ2 CPU Units Compared with NE1S-series CPU Units
	1-4-2 Restrictions for CJ2 CPU Units Compared with NE1S-series CPU Units

	SECTION 2 Program Structure
	2-1 Outline of the NE Programmer
	2-1-1 Project Structure
	2-1-2 Logical POU (Program Organization Unit)
	2-1-3 Variables
	2-1-4 Programming Languages
	2-1-5 Libraries

	2-2 Variables
	2-2-1 Naming Variables
	2-2-2 Types of Variable
	2-2-3 Variable Properties
	2-2-4 Data Type
	2-2-5 Array Elements (Array Specification)
	2-2-6 Initial Value (NE1S-series CPU Units Only) (See note.)
	2-2-7 Address (Direct Allocation of a Physical Address)
	2-2-8 Retain/Nonretain
	2-2-9 Local Variable Properties and Types of Local Variables
	2-2-10 Details on Local Variables
	2-2-11 Creating Variables in NE Programmer
	2-2-12 Grouping Variables
	2-2-13 Importing and Exporting Variables

	2-3 Function Blocks
	2-3-1 Function Block Features and Operation
	2-3-2 Restrictions in Variables in Function Blocks
	2-3-3 Function Block Specifications
	2-3-4 Instance Specifications
	2-3-5 Restrictions on Function Blocks

	SECTION 3 Installation
	3-1 Installation Preparations
	3-1-1 System Requirements
	3-1-2 Installation Types

	3-2 Installing the NE Programmer
	3-2-1 Installation Procedure
	3-2-2 Uninstallation Procedure
	3-2-3 Upgrading Software Versions

	3-3 Installing the USB Driver

	SECTION 4 Outline of Operations and Functions of the NE Programmer
	4-1 Starting the NE Programmer
	4-2 Main Window
	4-3 Project Window
	4-4 Menu Item Lists
	4-4-1 File Menu
	4-4-2 Edit Menu
	4-4-3 View Menu
	4-4-4 Ladder Menu
	4-4-5 ST Menu
	4-4-6 Mnemonic Menu (Displayed in Mnemonic Editor Only)
	4-4-7 Variable Menu
	4-4-8 Data Type Menu
	4-4-9 Build Menu
	4-4-10 Controller Menu
	4-4-11 Library Menu
	4-4-12 Tool Menu
	4-4-13 Window Menu
	4-4-14 Help Menu

	4-5 Shortcut Keys
	4-5-1 Window/View Operations
	4-5-2 File Operations
	4-5-3 Edit Operations
	4-5-4 Offline/Programming Operations
	4-5-5 Variable Operations
	4-5-6 Build Operations
	4-5-7 Online/Controller Operations

	4-6 Option Settings
	4-6-1 General Window
	4-6-2 Outline
	4-6-3 Variable Window
	4-6-4 Ladder Window
	4-6-5 Mnemonic Window
	4-6-6 ST Window
	4-6-7 Library Window
	4-6-8 Program Check Window
	4-6-9 Data Trace Window

	SECTION 5 Programming
	5-1 Overview
	5-1-1 Basic Flow of Programming

	5-2 Creating Projects and Logical POUs
	5-2-1 Creating Projects
	5-2-2 Creating Logical POUs (Programs or Function Blocks)
	5-2-3 Saving Edited Data in the Project
	5-2-4 Saving the Project
	5-2-5 Changing the Controller Series

	5-3 Programming Methods
	5-3-1 Ladder Diagrams
	5-3-2 List of Inputs for Instructions
	5-3-3 Inputting Bit and Word Addresses
	5-3-4 Inputting Constants
	5-3-5 Inputting Operand Numbers
	5-3-6 Converting Specified Physical Addresses to Variables
	5-3-7 Support for Converting to Physical Addresses
	5-3-8 Programming in Standard Text Language

	5-4 Creating Function Blocks and Pasting Them into Programs
	5-4-1 Creating Function Blocks
	5-4-2 Programming a Function Block
	5-4-3 Pasting Function Blocks into Programs
	5-4-4 Editing the Function Block Body after Pasting
	5-4-5 Moving to the Function Block Body (Internal)

	5-5 Read Protection for Logical POUs
	5-6 Creating Configurations and Assigning Programs to Tasks
	5-6-1 Creating a Configuration
	5-6-2 Creating and Editing Global Variables
	5-6-3 Pasting Programs into Tasks
	5-6-4 Checking External Variables for Consistency

	5-7 Editing Comments
	5-7-1 Overview
	5-7-2 Inputting Variable Comments
	5-7-3 Inputting Instruction Comments
	5-7-4 Inputting Line Comments

	5-8 Search/Replace Function
	5-8-1 Overview
	5-8-2 Searching Programs
	5-8-3 Search/Replace/Jump Operations in the Ladder Editor
	5-8-4 Search/Replace Operations in the Variable Editor

	5-9 Cross Reference Function
	5-9-1 Overview
	5-9-2 Cross Reference Pop-up Window Displays and Operations

	5-10 Using the Library
	5-10-1 Overview
	5-10-2 Displaying the Library Window
	5-10-3 Registering Logical POUs in the Library
	5-10-4 Registering Rung Groups in the Library
	5-10-5 Registering Folders in the Library
	5-10-6 Using the Library
	5-10-7 Transferring Library Items for the NE1S to CJ2

	5-11 Outline Window
	5-11-1 Outline Window
	5-11-2 Displaying the Outline Window

	5-12 Building and Compiling Programs
	5-12-1 Building and Compiling
	5-12-2 Building
	5-12-3 Compiling
	5-12-4 Level Settings for Program Check
	5-12-5 Detailed Build Information

	5-13 Importing and Exporting
	5-13-1 Overview
	5-13-2 Importing Mnemonics
	5-13-3 Importing and Exporting Variables

	5-14 Printing
	5-14-1 Page Setup
	5-14-2 Printing
	5-14-3 Print Preview

	SECTION 6 PLC System Configuration
	6-1 Overview
	6-1-1 Settings
	6-1-2 Displaying the Setup Window for the System Configuration

	6-2 PLC Setup (PLC Setup Area Tab Page)
	6-3 Ethernet Setup (Ethernet Tab Page)
	6-4 Build Settings (Build Tab Page)
	6-4-1 Build Settings

	6-5 I/O Table Settings (I/O Table Tab Page)
	6-5-1 Online Operations: Creating, Deleting, Comparing
	6-5-2 Offline Operations: Editing I/O Tables

	SECTION 7 Online Operation
	7-1 Connecting via Serial Communications (USB/RS-232C)
	7-1-1 Installing the USB Driver
	7-1-2 Connecting Online via USB or RS-232C

	7-2 Connecting Online via Ethernet
	7-2-1 Connecting Online via Ethernet
	7-2-2 Connecting Online via Ethernet
	7-2-3 Ethernet Setup
	7-2-4 Downloading Ethernet Settings

	7-3 Automatic Upload Function
	7-3-1 Overview
	7-3-2 Executing the Automatic Upload Function

	7-4 Changing the CPU Unit That Is Connected
	7-4-1 Overview
	7-4-2 Changing to a CPU Unit on the Same Ethernet Network
	7-4-3 Changing to a CPU Unit on a Different Network

	7-5 Online Operations for I/O Tables
	7-5-1 I/O Tables
	7-5-2 Real I/O Tables and Registered I/O Tables
	7-5-3 Creating I/O Tables
	7-5-4 Deleting I/O Tables
	7-5-5 Verifying I/O Tables

	7-6 Uploading, Downloading, and Comparing Programs and Other Data
	7-6-1 Overview
	7-6-2 Uploading
	7-6-3 Downloading
	7-6-4 Comparing

	7-7 Changing the Operating Mode
	7-8 Monitoring
	7-8-1 Overview
	7-8-2 Starting Monitoring Functions
	7-8-3 Monitoring in the Ladder Editor
	7-8-4 Monitoring in the Watch Window

	7-9 Saving and Restoring Variable PVs
	7-9-1 Function
	7-9-2 Procedure

	7-10 Forcing Bits ON and OFF (Force-set and Force-reset)
	7-10-1 Overview
	7-10-2 Turning Bits ON/OFF, Forcing Bits ON/OFF, and Clearing Forced Status
	7-10-3 Forced Status Display

	7-11 Changing the PVs of Variables
	7-12 Changing Timer/Counter Set Values
	7-13 Differential Monitor
	7-14 Online Editing
	7-14-1 Online Editing
	7-14-2 Online Editing Procedures
	7-14-3 Adding Global Variables
	7-14-4 Editing Function Block Parameters Online

	7-15 Clearing Errors
	7-16 Clearing Memory
	7-17 Restarting Services
	7-18 Displaying Errors and the Error Log
	7-18-1 Displaying Current Errors
	7-18-2 Displaying the Error log
	7-18-3 Displaying Messages
	7-18-4 Displaying Ethernet Errors

	7-19 Change Log
	7-19-1 Overview (NE1S CPU Units Only)
	7-19-2 Enabling/Disabling the Change Log
	7-19-3 Change Log Input Examples
	7-19-4 Change Log Display

	7-20 Displaying the Cycle Time
	7-21 Data Tracing
	7-21-1 Data Tracing
	7-21-2 Opening and Closing the Data Trace Window
	7-21-3 Setting Data Trace Parameters
	7-21-4 Setting Data Trace Display Colors
	7-21-5 Executing the Data Trace Monitor Function

	7-22 Variable Reference List
	7-22-1 Variable Usage List
	7-22-2 Cross Reference Report

	7-23 Setting the CPU Unit Clock
	7-24 Forcibly Releasing the Access Right

	Appendix A Variable Applications Guidelines
	Appendix B Structured Text Keywords
	Appendix C External Variables
	Appendix D CIP Message Communications
	Appendix E PLC Setup for CJ2 CPU Units
	Appendix F Ethernet Settings for CJ2 CPU Units
	Index
	Revision History

