N-Channel Power MOSFET

24 V, 9 A, 16 mΩ, Dual ECH8

Features

- Low ON-resistance
- 2.5 V Drive
- Common-drain Type
- Protection Diode in
- Built-in Gate Protection Resistor
- Best Suited for LiB Charging and Discharging Switch
- This Device is Pb-Free and are RoHS Compliant

Product & Package Information

• Package:

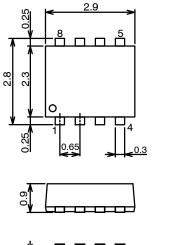
- ECH8
- JEITA, JEDEC:
- Minimum Packing Quantity: 3,000 Pcs./Reel

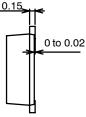
TopView

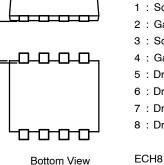
ON Semiconductor®

www.onsemi.com

SOT-28FL / ECH8 CASE 318BF

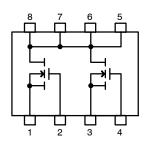

GENERIC MARKING DIAGRAM





0.07

ECH8655R-R-TL-H


5 : Drain 6 : Drain

7 : Drain

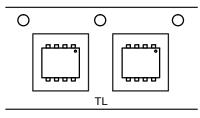

8 : Drain

Figure 1. Package Dimensions

ELECTRICAL CONNECTION

PACKING TYPE: TL

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS at $T_A = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Drain-to-Source Voltage	V _{DSS}		24	V
Gate-to-Source Voltage	V _{GSS}		±12	V
Drain Current (DC)	I _D		9	А
Drain Current (Pulse)	I _{DP}	$PW \le 10 \ \mu s, \ duty \ cycle \le 1\%$	60	А
Allowable Power Dissipation	P _D	When mounted on ceramic substrate (900 mm ² \times 0.8 mm) 1 unit	1.4	W
Total Dissipation	PT	When mounted on ceramic substrate (900 mm ² \times 0.8 mm)	1.5	W
Channel Temperature	T _{ch}		150	°C
Storage Temperature	T _{stg}		–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS at $T_A = 25^{\circ}C$

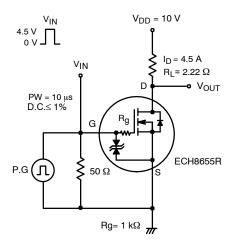
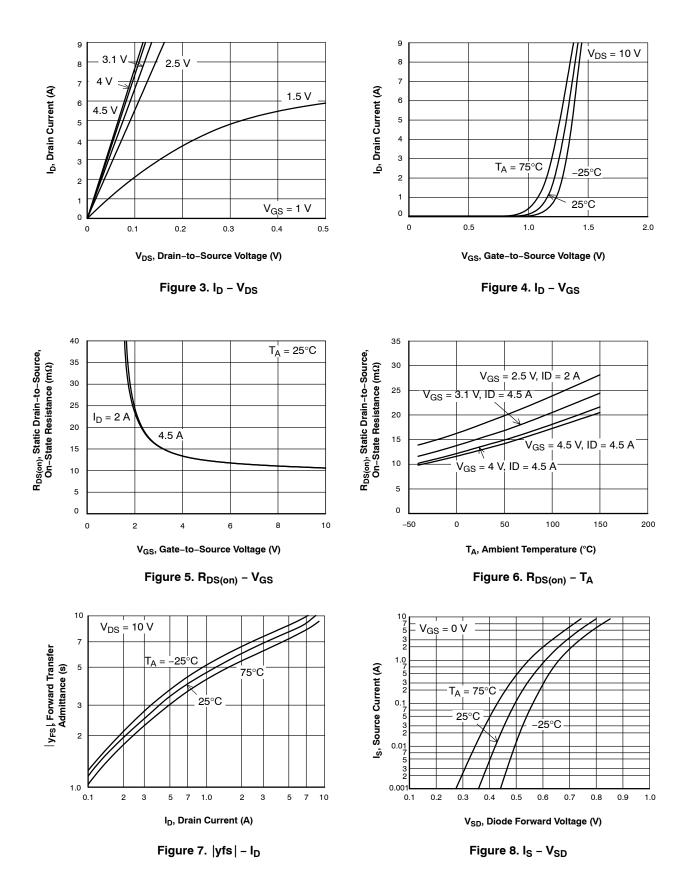
	Symbol	Conditions	Ratings			
Parameter			Min	Тур	Max	Unit
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	I _D = 1 mA, V _{GS} = 0 V	24			V
Zero-Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 20 V,$ $V_{GS} = 0V$			1	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{GS} = \pm 8 \text{ V},$ $V_{DS} = 0 \text{ V}$			±10	μΑ
Cutoff Voltage	V _{GS} (off)	V _{DS} = 10 V, I _D = 1 mA	0.5		1.3	V
Forward Transfer Admittance	yfs	V _{DS} = 10 V, I _D = 4.5 A	4.8	8		S
Static Drain-to-Source On-State Resistance	R _{DS} (on)1	I _D = 4.5 A, V _{GS} = 4.5 V	10	13	16	mΩ
	R _{DS} (on)2	I _D = 4.5 A, V _{GS} = 4.0 V	10.5	13.5	16.5	mΩ
	R _{DS} (on)3	I _D = 4.5 A, V _{GS} = 3.1 V	11	15	20	mΩ
	R _{DS} (on)4	I _D = 2 A, V _{GS} = 2.5 V	13	18	24	mΩ
Turn-ON Delay Time	t _d (on)	See specified Test Circuit.		320		ns
Rise Time	t _r			1100		ns
Turn-OFF Delay Time	t _d (off)	1 [2400		ns
Fall Time	t _f	1 [2100		ns

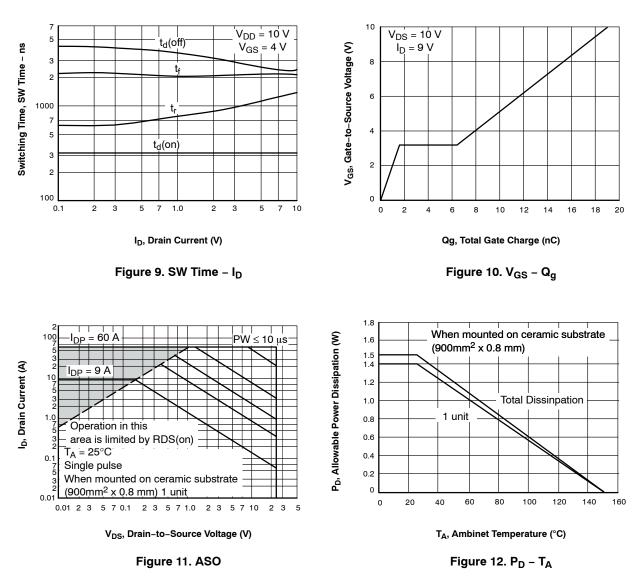
ELECTRICAL CHARACTERISTICS at $T_A = 25^{\circ}C$

			Ratings			
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Total Gate Charge	Qg	V _{DS} = 10 V, V _{GS} = 10 V,		16.8		nC
Gate-to-Source Charge	Qgs	$I_D = 9 A$		1.6		nC
Gate-to-Drain "Miller" Charge	Qgd	1		4.8		nC
Diode Forward Voltage	V _{SD}	I _S = 9 A, V _{GS} = 0 V		0.8	1.2	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Switching Time Test Circuit

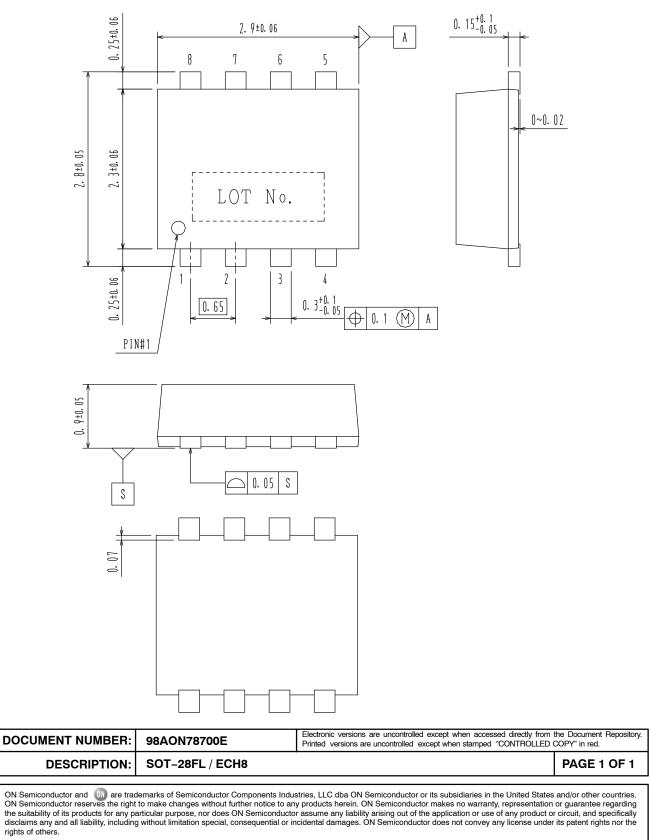




Figure 2. Switching Time Test Circuit

ORDERING INFORMATION

Device	Package	Shipping	Мето	
ECH8655R-R-TL-H	ECH8	3,000 pcs./reel	Pb Free and Halogen Free	

TYPICAL CHARACTERISTICS



Since the ECH8655R-R-TL-H is a MOSFET product, please avoid using this device in the vicinity of highly charged objects.

SOT-28FL / ECH8 CASE 318BF ISSUE O

DATE 31 MAR 2012

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative