Power MOSFET # -20 V, -4.0 A, Dual P-Channel, ESD, 2x2 mm WDFN Package #### **Features** - WDFN 2x2 mm Package with Exposed Drain Pads for Excellent Thermal Conduction - Lowest R_{DS(on)} Solution in 2x2 mm Package - Footprint Same as SC-88 Package - Low Profile (< 0.8 mm) for Easy Fit in Thin Environments - ESD Protected - This is a Pb-Free Device #### **Applications** - Optimized for Battery and Load Management Applications in Portable Equipment - Li-Ion Battery Charging and Protection Circuits - High Side Load Switch #### **MAXIMUM RATINGS** (T_J = 25°C unless otherwise noted) | Parameter | | | Symbol | Value | Unit | |---|------------------------------------|-----------------------|-----------------------------------|---------------|------| | Drain-to-Source Voltage | | | V_{DSS} | -20 | V | | Gate-to-Source Voltage | | | V_{GS} | ±8.0 | V | | Continuous Drain | Oteday 71 | T _A = 25°C | I _D | -3.2 | Α | | Current (Note 1) | | T _A = 85°C | | -2.3 | | | | t ≤ 5 s | T _A = 25°C | | -4.0 | | | Power Dissipation (Note 1) | Steady State T _A = 25°C | | P _D | 1.5 | W | | | t ≤ 5 s | | | 2.3 | | | | | T _A = 25°C | I _D | -2.2 | Α | | Current (Note 2) | Steady | T _A = 85°C | | -1.6 | | | Power Dissipation (Note 2) | State | T _A = 25°C | P _D | 0.71 | W | | Pulsed Drain Current | t _p = 10 μs | | I _{DM} | -16 | Α | | Operating Junction and Storage Temperature | | | T _J , T _{STG} | –55 to
150 | °C | | Source Current (Body Diode) (Note 2) | | | I _S | -1.0 | Α | | Lead Temperature for Soldering Purposes (1/8" from case for 10 s) | | | TL | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces). - Surface Mounted on FR4 Board using the minimum recommended pad size of 30 mm², 2 oz Cu. #### ON Semiconductor® #### www.onsemi.com | V _{(BR)DSS} | R _{DS(on)} MAX | I _D MAX (Note 1) | |----------------------|-------------------------|-----------------------------| | | 100 mΩ @ -4.5 V | | | -20 V | 144 mΩ @ –2.5 V | -4.0 A | | | 200 mΩ @ –1.8 V | | **P-CHANNEL MOSFET** **P-CHANNEL MOSFET** JE = Specific Device Code M = Date Code ■ = Pb-Free Package (Note: Microdot may be in either location) #### **PIN CONNECTIONS** (Top View) #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |----------------|--------------------|-----------------------| | NTLJD3181PZTAG | WDFN6
(Pb-Free) | 3000/Tape & Reel | | NTLJD3181PZTBG | WDFN6
(Pb-Free) | 3000/Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. #### THERMAL RESISTANCE RATINGS | Parameter | Symbol | Max | Unit | |---|----------------|-----|------| | SINGLE OPERATION (SELF-HEATED) | | | • | | Junction-to-Ambient - Steady State (Note 3) | $R_{ hetaJA}$ | 83 | | | Junction-to-Ambient - Steady State Min Pad (Note 4) | $R_{ hetaJA}$ | 177 | °C/W | | Junction-to-Ambient - t ≤ 5 s (Note 3) | $R_{ hetaJA}$ | 54 | | | DUAL OPERATION (EQUALLY HEATED) | | | | | Junction-to-Ambient - Steady State (Note 3) | $R_{ hetaJA}$ | 58 | | | Junction-to-Ambient - Steady State Min Pad (Note 4) | $R_{ heta JA}$ | 133 | °C/W | | Junction-to-Ambient – t ≤ 5 s (Note 3) | $R_{ heta JA}$ | 40 | | Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces). Surface Mounted on FR4 Board using the minimum recommended pad size (30 mm², 2 oz Cu). ## $\textbf{MOSFET ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}\text{C unless otherwise noted})$ | Parameter | Symbol | Test Conditions | | Min | Тур | Max | Unit | |--|--------------------------------------|--|------------------------|------|-------|------|-------| | OFF CHARACTERISTICS | | | | | - | | - | | Drain-to-Source Breakdown Voltage | V _{(BR)DSS} | $V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$ | | -20 | | | V | | Drain-to-Source Breakdown Voltage
Temperature Coefficient | V _{(BR)DSS} /T _J | I _D = -250 μA, Ref to 25°C | | | 13 | | mV/°C | | Zero Gate Voltage Drain Current | I _{DSS} | ., | T _J = 25°C | | | -1.0 | μΑ | | | | $V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$ | T _J = 85°C | | | -10 | 1 | | Gate-to-Source Leakage Current | I _{GSS} | $V_{DS} = 0 \text{ V}, V_{GS} = \pm 8.0 \text{ V}$ | | | | ±10 | μΑ | | ON CHARACTERISTICS (Note 5) | • | | | | | | | | Gate Threshold Voltage | V _{GS(TH)} | $V_{GS} = V_{DS}$, $I_D = -2$ | 50 μΑ | -0.4 | | -1.0 | V | | Gate Threshold Temperature Coefficient | V _{GS(TH)} /T _J | go <i>por p</i> . | | | 2.0 | | mV/°C | | Drain-to-Source On-Resistance | R _{DS(on)} | $V_{GS} = -4.5 \text{ V}, I_D = -4.5 \text{ V}$ | -2.0 A | | 68 | 100 | mΩ | | | | $V_{GS} = -2.5 \text{ V}, I_D = -2.5 \text{ V}$ | -2.0 A | | 90 | 144 | 1 | | | | $V_{GS} = -1.8 \text{ V}, I_D = -1.8 \text{ V}$ | -1.7 A | | 125 | 200 | 1 | | Forward Transconductance | 9FS | $V_{DS} = -5.0 \text{ V}, I_{D} = -6.0 \text{ V}$ | -2.0 A | | 6.5 | | S | | CHARGES, CAPACITANCES AND GA | ATE RESISTAN | CE | | | | | • | | Input Capacitance | C _{ISS} | $V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$
$V_{DS} = -10 \text{ V}$ | | | 450 | | pF | | Output Capacitance | C _{OSS} | | | | 90 | | 1 | | Reverse Transfer Capacitance | C _{RSS} | | | | 62 | | 1 | | Total Gate Charge | Q _{G(TOT)} | $V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$ $I_D = -3.8 \text{ A}$ | | | 5.2 | 7.8 | nC | | Threshold Gate Charge | Q _{G(TH)} | | | | 0.3 | | 1 | | Gate-to-Source Charge | Q _{GS} | | | | 0.84 | | 1 | | Gate-to-Drain Charge | Q_{GD} | | | | 1.5 | | 1 | | SWITCHING CHARACTERISTICS (No | ote 6) | | | | | | · · | | Turn-On Delay Time | t _{d(ON)} | | | | 6.6 | | ns | | Rise Time | t _r | V _{GS} = -4.5 V, V _{DD} = | -5.0 V | | 9.0 | | 1 | | Turn-Off Delay Time | t _{d(OFF)} | $V_{GS} = -4.5 \text{ V}, V_{DD} = -5.0 \text{ V},$ $I_{D} = -2.0 \text{ A}, R_{G} = 2.0 \Omega$ | | | 14 | | 1 | | Fall Time | t _f | | | | 12.5 | | 1 | | DRAIN-SOURCE DIODE CHARACTE | RISTICS | | | | | | · · | | Forward Recovery Voltage | V_{SD} | | T _J = 25°C | | -0.73 | -1.0 | | | | | $V_{GS} = 0 \text{ V, IS} = -1.0 \text{ A}$ | T _J = 125°C | | -0.62 | | | | Reverse Recovery Time | t _{RR} | | • | | 23 | | 1 | | Charge Time | ta | V_{GS} = 0 V, d_{ISD}/d_t = 100 A/ μ s, I_S = -1.0 A | | | 13 | | ns | | Discharge Time | t _b | | | | 10 | | 1 | | Reverse Recovery Time | Q _{RR} | | | | 10 | | nC | ^{5.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%. 6. Switching characteristics are independent of operating junction temperatures. #### TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted) Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On-Resistance versus Drain Current Figure 4. On-Resistance versus Drain Current and Gate Voltage Figure 5. On–Resistance Variation with Temperature Figure 6. Drain-to-Source Leakage Current versus Voltage # TYPICAL PERFORMANCE CURVES ($T_J = 25^{\circ}C$ unless otherwise noted) Figure 7. Capacitance Variation Figure 8. Gate-To-Source and Drain-To-Source Voltage versus Total Charge Figure 9. Resistive Switching Time Variation versus Gate Resistance Figure 10. Diode Forward Voltage versus Current Figure 11. Maximum Rated Forward Biased Safe Operating Area # TYPICAL PERFORMANCE CURVES ($T_J = 25^{\circ}$ C unless otherwise noted) Figure 12. Thermal Response #### PACKAGE DIMENSIONS ### WDFN6 2x2, 0.65P CASE 506AN ⊕ | 0.10 | C | A | B 0.10 С Α В 0.05 С NOTE 3 Ф SIDE VIEW **BOTTOM VIEW** D₂ е DETAIL SEATING PLANE C ⊕ | 0.10 | C | A | - NOTES: 1. DIMENSIONING AND TOLERANCING PER - ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. - DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN - 0.15 AND 0.30 mm FROM THE TERMINAL TIP. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS | AD AO WELL AO THE TENN | | | | | |------------------------|-------------|------|--|--| | | MILLIMETERS | | | | | DIM | MIN | MAX | | | | Α | 0.70 | 0.80 | | | | A1 | 0.00 | 0.05 | | | | A3 | 0.20 REF | | | | | b | 0.25 | 0.35 | | | | D | 2.00 BSC | | | | | D2 | 0.57 | 0.77 | | | | E | 2.00 BSC | | | | | E2 | 0.90 | 1.10 | | | | е | 0.65 BSC | | | | | F | 0.95 BSC | | | | | K | 0.25 REF | | | | | L | 0.20 | 0.30 | | | | L1 | 0.10 | | | | | | | | | | #### **SOLDERMASK DEFINED MOUNTING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and the (III) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative