

ON Semiconductor®

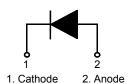
RURD660S9A-F085 Ultrafast Power Rectifier, 6A 600V

Features

- High Speed Switching (t_{rr}=63ns(Typ.) @ I_F=6A)
- Low Forward Voltage(V_F=1.26V(Typ.) @ I_F=6A)
- · Avalanche Energy Rated
- · AEC-Q101 Qualified

Applications

- · General Purpose
- · Switching Mode Power Supply
- · Power switching circuits


6A, 600V Ultrafast Rectifier

The RURD660S9A-F085 is an ultrafast diode with soft recovery characteristics (trr< 83ns). It has a low forward voltage drop and is of silicon nitride passivated ionimplanted epitaxial planar construction. This device is intended for use as a freewheeling/clamping diode and rectifier in a variety of switching power supplies and other power switching applications. Its low stored charge and ultrafast soft recovery minimize ringing and electrical noise in many power switching circuits, thus reducing powerloss in the switching transistors.

Pin Assignments

1. Cathode 2. Anode

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units	
V_{RRM}	Peak Repetitive Reverse Voltage	600	V	
V _{RWM}	Working Peak Reverse Voltage	600	V	
V _R	DC Blocking Voltage	600	V	
I _{F(AV)}	Average Rectified Forward Current @ T _C = 25°C	6	Α	
I _{FSM}	Non-repetitive Peak Surge Current	60	А	
T _{J,} T _{STG}	Operating Junction and Storage Temperature	- 55 to +175	°C	

Thermal Characteristics T_C = 25°C unless otherwise noted

Symbol	Parameter	Max	Units
$R_{\theta JC}$	Maximum Thermal Resistance, Junction to Case	3	°C/W
R _{0JA} 1	Maximum Thermal Resistance, Junction to Ambient	140	°C/W
R _{0.IA} ²	Maximum Thermal Resistance, Junction to Ambient	50	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Tube	Quantity
RUR660	RURD660S9A-F085	TO-252-2L	-	60

Notes:

- 1. Mounted on a minimum pad follow by JEDEC standard.
- 2. Mounted on a 1 in 2 pad of 2 oz copper follow by JEDEC standard.

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Conditions		Min.	Тур.	Max	Units
I _R	Instantaneous Reverse Current	V _R = 600V	T _C = 25 °C	-	-	100	uA
			T _C = 175 °C	-	-	500	uA
V _{FM} ³	Instantaneous Forward Voltage	I _F = 6A	T _C = 25 °C T _C = 175 °C	-	1.26 1.04	1.5 -	V V
t _{rr} ⁴	Reverse Recovery Time	I _F =1A, di/dt = 200A/μs, V _{CC} = 390V	T _C = 25 °C	-	25	33	ns
		I_F =6A, di/dt = 200A/ μ s, V_{CC} = 390V	T _C = 25 °C T _C = 175 °C	-	63 119	83	ns ns
t _a t _b Q _{rr}	Reverse Recovery Time Reverse Recovery Charge	I_F =6A, di/dt = 200A/ μ s, V _{CC} = 390V	T _C = 25 °C	- - -	23 40 151	- - -	ns ns nC
W_{AVL}		Avalanche Energy (L = 20mH)		10	-	-	mJ

Notes:

- 3. Pulse : Test Pulse width = 300μ s, Duty Cycle = 2%
- 4. Guaranteed by design

Test Circuit and Waveforms

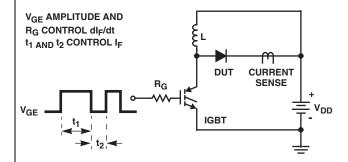


FIGURE 8. trTEST CIRCUIT

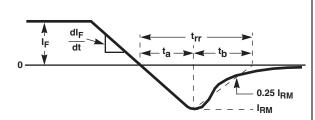


FIGURE 9. ‡r WAVEFORMS AND DEFINITIONS

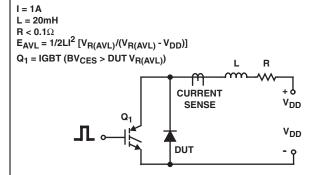


FIGURE 10. AVALANCHE ENERGY TEST CIRCUIT

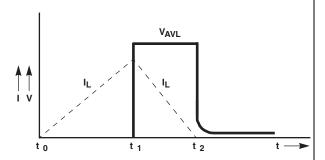


FIGURE 11. AVALANCHE CURRENT AND VOLTAGE WAVEFORMS

Typical Performance Characteristics

Figure 1. Typical Forward Voltage Drop vs. Forward Current

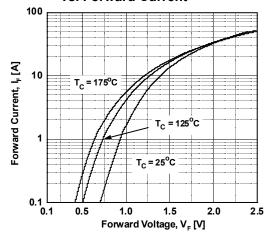


Figure 3. Typical Junction Capacitance

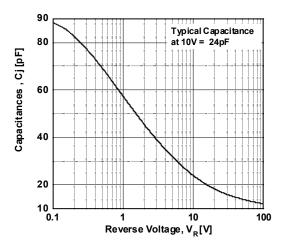


Figure 5. Typical Reverse Recovery Current vs. di/dt

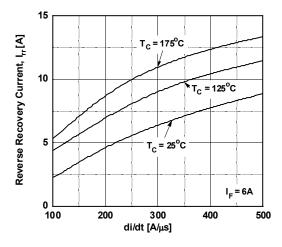


Figure 2. Typical Reverse Current vs.

Reverse Voltage

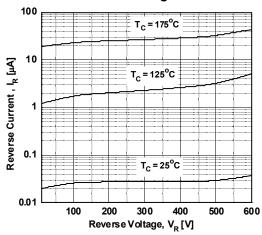


Figure 4. Typical Reverse Recovery Time vs. di/dt

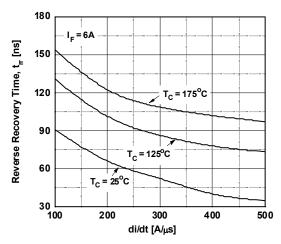
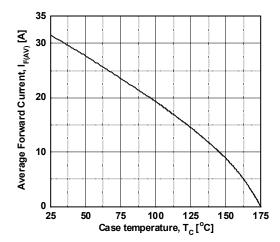
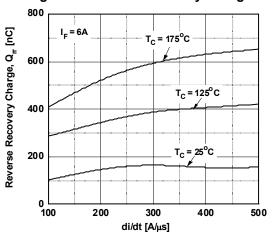
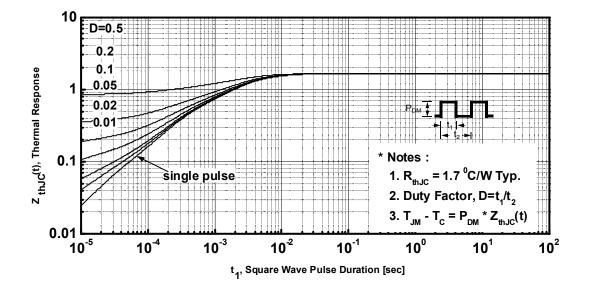
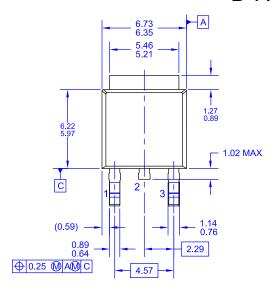
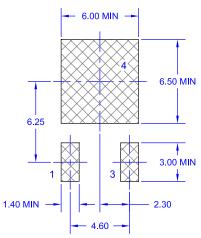



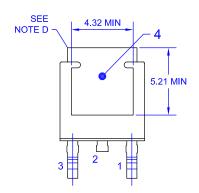
Figure 6. Forward Current Derating Curve

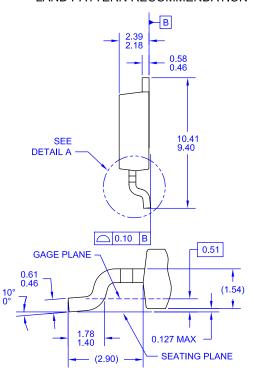
Typical Performance Characteristics (Continued)

Figure 7. Reverse Recovery Charge


Figure 8. Transient Thermal Response Curve


Mechanical Dimensions


D-PAK

LAND PATTERN RECOMMENDATION

- NOTES: UNLESS OTHERWISE SPECIFIED
 A) THIS PACKAGE CONFORMS TO JEDEC, TO-252, ISSUE C, VARIATION AA.
 B) ALL DIMENSIONS ARE IN MILLIMETERS.
 C) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
 D) HEAT SINK TOP EDGE COULD BE IN CHAMFERED CORNERS OR EDGE PROTRUSION.
 E) PRESENCE OF TRIMMED CENTER LEAD IS OPTIONAL
- E) PRESENCE OF TRIMMED CENTER LEAD IS OPTIONAL.

 F) DIMENSIONS ARE EXCLUSSIVE OF BURSS, MOLD FLASH AND TIE BAR EXTRUSIONS.

 G) LAND PATTERN RECOMENDATION IS BASED ON IPC7351A STD TO220P1003X238-3N.

 H) DRAWING NUMBER AND REVISION: MKT-TO252A03REV8

Dimensions in Millimeters

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative