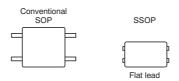


Super miniature SSOP Lower output capacitance and on resistance (C×R5) Load voltage 25V PhotoMOS Relays RF SSOP 1 Form A C×R5 (AQY221N3V)

FEATURES


1. Reduced package size

Lower surface has been reduced 60% and mounting space 40% compared to conventional SOP4-pin type.

2. Lower output capacitance and onresistance

Output capacitance (Cout): 1.0pF (typ.) ON resistance (Ron): 5.5Ω (typ.)

3. Mounting space has been reduced and output signals have been improved by using new flat lead terminals.

4. High speed switching

Turn on time: 0.02ms (typ.)
Turn off time: 0.02ms (typ.)

TYPICAL APPLICATIONS

1. Measuring and testing equipment IC tester, Liquid crystal driver tester,

Semiconductor performance tester, Board tester, etc.

2. Medical equipment

Ultrasonic wave diagnostic machine

3. Multi-point recorder

Warping, Thermo couple, etc.

4. Telecommunication and broadcasting equipment

TYPES

	Output	rating*1	Dookogo	Tape and reel packing style		Packing quantity	
	Load voltage	Load current	Package	Picked from the 1/4-pin side	Picked from the 2/3-pin side	in tape and reel*2	
AC/DC dual use	25 V	150 mA	SSOP	AQY221N3VY	AQY221N3VW	3,500 pcs.	

Notes: *1 Indicate the peak AC and DC values.

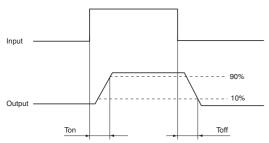
RATING

1. Absolute maximum ratings (Ambient temperature: 25°C 77°F)

	Item	Symbol	AQY221N3V	Remarks
	LED forward current	lF	50mA	
Input	LED reverse voltage	VR	5V	
	Peak forward current	IFP	1A	f=100 Hz, Duty factor=0.1%
	Power dissipation	P _{in} 75mW VL 25V II 0.15A		
Output	Load voltage (peak AC)	VL	25V	
	Continuous load current	l _L	0.15A	Peak AC, DC
	Peak load current	Ipeak	0.4A	100 ms (1 shot), V _L = DC
	Power dissipation	Pout	250mW	
Total power dissipation		Рт	300mW	
I/O isolation voltage		Viso	1,500V AC	
Temperature limits	Operating	Topr	-40°C to +85°C -40°F to +185°F	Non-condensing at low temperatures
	Storage	T _{stg}	-40°C to +100°C -40°F to +212°F	

^{*2} Tape and reel is the standard packing style for SSOP.

For space reasons, only "N3V" is marked on the product as the part number. The three initial letters of the part number "AQY", and the package (SSOP) indicator "V" and the packing style indicator "Y" or "W" are not marked on the relay.


RF SSOP 1 Form A C×R5 (AQY221N3V)

2. Electrical characteristics (Ambient temperature: 25°C 77°F)

	Item		Symbol	AQY221N3V	Condition
LED operate current LED turn off current LED dropout voltage	LED operate current	Typical	Fon	1.0 mA	IL = 80 mA
		Maximum	IFon	3.0 mA	
	LED turn off current	Minimum	Foff	0.2 mA	IL = 80 mA
		Typical	IFoff	0.9 mA	
	I ED days out walks as	Typical	VF	1.35 V (1.14 V at I _F = 5 mA)	IF = 50 mA
	LED dropout voltage	Maximum	VF	1.5 V	
Output Ou	On resistance	Typical	Ron	5.5Ω	I _F = 5 mA, I _L = 80 mA Within 1 s on time
		Maximum	Kon	7.5Ω	
	Output capacitance	Typical	Cout	1.0 pF	$I_F = 0 \text{ mA}, V_B = 0 \text{ V}$ $f = 1 \text{ MHz}$
		Maximum	Cout	1.5 pF	
	Off state leakage current	Typical	Leak	0.01 nA	I _F = 0 mA V _L = Max.
		Maximum	ILeak	10 nA	
Transfer characteristics	Turn on time*	Typical	Ton	0.02 ms	$I_F = 5 \text{ mA}, V_L = 10 \text{ V}$ $R_L = 125\Omega$
		Maximum	I on	0.2 ms	
	Turn off time*	Typical	Toff	0.02 ms	$I_F = 5 \text{ mA}, V_L = 10 \text{ V}$ $R_L = 125\Omega$
		Maximum	I off	0.2 ms	
	I/O capacitance	Typical	Ciso	0.8 pF	f = 1 MHz V _B = 0 V
		Maximum	Uiso	1.5 pF	
	Initial I/O isolation resistance	Minimum	Riso	1,000ΜΩ	500V DC

Note: Variation possible through combinations of output capacitance and on resistance. For more information, please contact our sales office in your area.

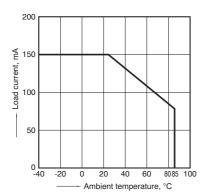
^{*}Turn on/Turn off time

RECOMMENDED OPERATING CONDITIONS

Please obey the following conditions to ensure proper relay operation and resetting.

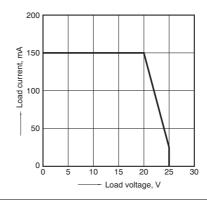
Item	Symbol	Recommended value	Unit
Input LED current	lF	5	mA

- Dimensions
- Schematic and Wiring Diagrams
- Cautions for Use
- These products are not designed for automotive use.

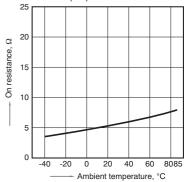

If you are considering to use these products for automotive applications, please contact your local Panasonic Electric Works technical representative.

Please refer to our information on PhotoMOS Relays for Automotive Applications.

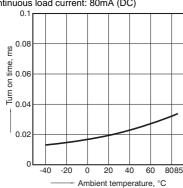
REFERENCE DATA


 Load current vs. ambient temperature characteristics

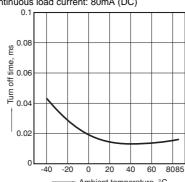
Allowable ambient temperature: -40°C to $+85^{\circ}\text{C}$ -40°F to $+185^{\circ}\text{F}$


Load current vs. Load voltage characteristics

Ambient temperature: 25°C 77°F

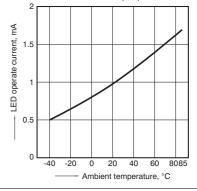

3. On resistance vs. ambient temperature characteristics

Measured portion: between terminals 3 and 4 LED current: 5 mA; Load voltage: 10V (DC); Load current: 80mA (DC)


4. Turn on time vs. ambient temperature characteristics

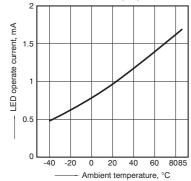
Measured portion: between terminals 3 and 4 LED current: 5 mA; Load voltage: 10V (DC); Continuous load current: 80mA (DC)

Turn off time vs. ambient temperature characteristics

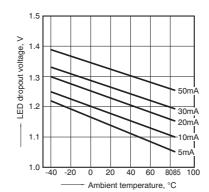

Measured portion: between terminals 3 and 4 LED current: 5 mA; Load voltage: 10V (DC); Continuous load current: 80mA (DC)

6. LED operate current vs. ambient temperature characteristics

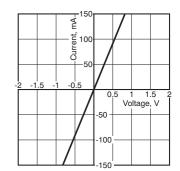
Measured portion: between terminals 3 and 4 Load voltage: 10V (DC);


Continuous load current: 80mA (DC)

7. LED turn off current vs. ambient temperature characteristics

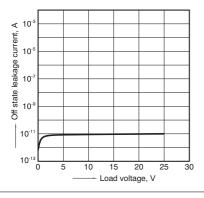

Measured portion: between terminals 3 and 4 Load voltage: 10V (DC);

Continuous load current: 80mA (DC)

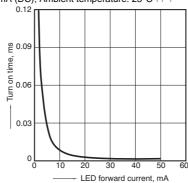

8. LED dropout voltage vs. ambient temperature characteristics

LED current: 5 to 50 mA

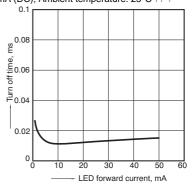
Current vs. voltage characteristics of output at MOS portion


Measured portion: between terminals 3 and 4 Ambient temperature: 25°C 77°F

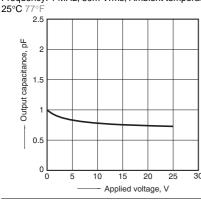
RF SSOP 1 Form A C×R5 (AQY221N3V)


10.Off state leakage current vs. load voltage characteristics

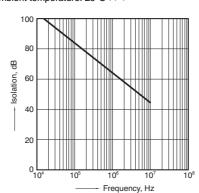
Measured portion: between terminals 3 and 4 Ambient temperature: 25°C 77°F


11.Turn on time vs. LED forward current characteristics

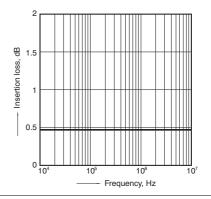
Measured portion: between terminals 3 and 4 Load voltage: 10V (DC); Continuous load current: 80mA (DC); Ambient temperature: 25°C 77°F


12.Turn off time vs. LED forward current characteristics

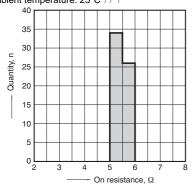
Measured portion: between terminals 3 and 4 Load voltage: 10V (DC); Continuous load current: 80mA (DC); Ambient temperature: 25°C 77°F


Output capacitance vs. applied voltage characteristics

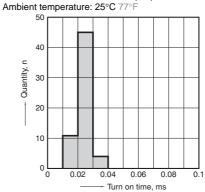
Measured portion: between terminals 3 and 4
Frequency: 1 MHz, 30m Vrms; Ambient temperature:


14. Isolation vs. frequency characteristics (50Ω impedance)

Measured portion: between terminals 3 and 4 Ambient temperature: 25°C 77°F


15.Insertion loss vs. frequency characteristics (50Ω impedance)

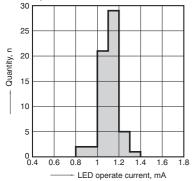
Measured portion: between terminals 3 and 4 Ambient temperature: 25°C 77°F



16.On resistance distribution

Measured portion: between terminals 3 and 4 Continuous load current: 80mA (DC)
Ambient temperature: 25°C 77°F

17.Turn on time distribution Load voltage: 10V (DC) Continuous load current: 80mA (DC)


18.Turn off time distribution Load voltage: 10V (DC) Continuous load current: 80mA (DC) Ambient temperature: 25°C 77°F

60 50 50 30 20 10 0 0.02 0.04 0.06 0.08 0.1

Turn on time, ms

19.LED operate current distribution Load voltage: 10V (DC)

Continuous load current: 80mA (DC) Ambient temperature: 25°C 77°F

