
 

 

 

 

Keybow Mini Mechanical Keyboard 
Kit 

 PIM420 

Keybow is an easy-to-build, solderless, DIY mini mechanical 
keyboard. It's Raspberry Pi-powered, with twelve illuminated 
keys, hot-swap clicky or linear switches, clear keycaps, and 
awesome customisable layouts and macros. It's the ultimate 
macro pad. 

This kit has everything you need* to build your own mini mechanical keyboard. It's a fun, 

affordable, first step into the world of mechanical keyboards, with high-quality clicky 

(Gold) or linear (Silver) Kailh Speed switches and clear DSA-profile key caps that look 

incredible when lit up with the per-key RGB lighting. The fancy hot-swap Kailh sockets 

mean that there's absolutely no soldering required! 



Kit includes* 

 Raspberry Pi Zero WH 

 Keybow PCB 

 Switch plate 

 Twelve Kailh Speed switches (Gold or Silver) 

 Twelve clear DSA-profile key caps 

 Acrylic baseplate 

 Fixings and feet 

 Micro-USB cable 

 Comes in a reusable kit box 
*Just add your own micro-SD card 

Use Keybow as a hotkey pad for your favourite program like Adobe Lightroom, a 

custom games controller, to trigger clips, tracks, or effects in Ableton Live, or to paste 

frequently-used text or code snippets. So, if you want to open your web browser and 

search for cat GIFs all with a single keypress, we've got you covered. Because all your 

key and lighting customisation is stored on the device, it's completely portable too, 

meaning you can switch your setups between any machine you like. 

Keybow is powered by a Raspberry Pi Zero WH (with pre-soldered header), and uses 

the Zero's USB HID gadget mode so that it appears as a real keyboard when plugged 

into your computer with the included USB cable. We've built a completely custom, 

stripped-down, RAM-disk-based Keybow OSwith a Lua interface to customise the layout 

and lighting on your Keybow. It's Windows, Mac, and Linux-compatible. 

Keybow features 

 Per-key RGB LEDs (APA102) 

 Kailh hot-swap switch sockets (for Cherry MX-compatible switches) 

 40-pin female header 

 I2C breakout header for add-ons 

 Custom Keybow OS 

 Compatible with Raspberry Pi 3B+, 3, 2, B+, A+, Zero, and Zero W 

 Assembled size: 85x56.5x38mm 

Here's a little video of us using Keybow to control Ableton Live, muting tracks and 

effects, and switching between plugins. 



Construction 

The Keybow PCB has a 40-pin female header, like a regular Pi HAT, that plugs onto the 

40-pin male header on the included Raspberry Pi Zero WH. The Pi is attached to the 

acrylic baseplate and shim, and the whole thing is rigidly held together by metal 

standoffs. Rubber feet on the baseplate stop Keybow from slipping around on your 

desk. 

We've got a full tutorial on how to assemble your Keybow here. 

Assembling	Keybow	
In this tutorial, you'll learn how to assemble your Keybow mini mechanical keyboard. 
Assembly should take 15 to 20 minutes, and the only tool you'll need is a Phillips 
screwdriver. We'll fit the Raspberry Pi Zero WH to the acrylic baseplate first, then fit the 
Keybow PCB, and last of all fit the switches and key caps. 

 



Attaching	the	Raspberry	Pi	Zero	WH	to	the	
baseplate	

We'll begin by attaching the rubber feet to the thicker acrylic plate. 

Peel the protective film off the two acrylic pieces very carefully. The thinner piece is 
especially fragile, so be really careful when peeling the film off this one. Take the thicker 
piece and turn it so that you can read the Keybow text. Stick the four rubber, self-
adhesive feet to the acrylic where the four outlined circles are. 

 

Next, we'll attach the Raspberry Pi Zero WH to the acrylic baseplate. 

Remove the Zero WH from its antistatic bag. Flip the baseplate over, so that the rubber 
feet are now sitting on the surface on which you're working, and the outline of the Zero 
WH is at the top left corner. Sit the Zero WH on this space, with the GPIO pins towards 
the top of the acrylic baseplate (the solder joints underneath the Zero WH's header 
should sit neatly in the cutout at the top). Use two of the M2.5 metal screws and two of 
the plastic nuts to attach the Zero WH using the bottom pair of mounting holes (the ones 
further away from the Zero WH's GPIO pins). 



 

The thinner acrylic piece is a shim layer that levels up the metal standoffs that attach 
the Keybow PCB to the baseplate and Zero WH, so that they all sit at the same height. 
We'll fit it now, using one of the standoffs. 

Slot the shim layer next to the Zero WH on the baseplate; it'll only fit one way. Take one 
of the metal standoffs and one of the metal M2.5 screws. Push the screw through the 
hole at the bottom right corner of the baseplate and shim layer, from below, then screw 
the female end of the metal standoff onto the screw. 

Take care not to overtighten any of the metal screws, as you'll risk cracking the acrylic. 

Lastly, screw the remaining plastic nut all the way onto the male thread on the top of the 
standoff that you just fitted. This will sit in the mounting hole on the Keybow PCB that 
doesn't have a threaded metal post and keep that corner level. 

 

Don't fit any of the other standoffs to the acrylic baseplate yet! 



Attaching	the	Keybow	PCB	

The three other mounting holes on the Keybow PCB have threaded metal posts. We'll 
be screwing the male-threaded ends of the metal standoffs into these metal posts. Peel 
off the little amber pieces of protective film off the posts and screw in the standoffs. 

You can now push your Keybow PCB's female GPIO header down onto the male GPIO 
pins on the Zero WH. Make sure that all the pins are lined up correctly. There will be a 
little gap left between the headers, but don't worry because they'll still be making good 
electrical contact. 

Use the remaining three metal M2.5 screws to attach the standoffs to the acrylic 
baseplate, again taking care not to overtighten them and crack the acrylic. 

 



Mounting	the	switches	and	key	caps	

The switches push tightly into the PCB switch plate, and then the whole plate with 
switches mounted pushes down onto the Keybow PCB, with the pins on the switches 
being gripped in the hot-swap sockets. 

It's important that you orient the switches the right way round when pushing them into 
the plate. If you look carefully at the switches, you'll see they have a little cavity 
underneath on one edge. If you turn the switch plate so that the black and gold side is 
facing upwards, and the KEYBOW text is at the right hand side, then the cavities on the 
switches should all be at the top. 

Push each switch into the plate, so that they sit flush. They're quite a tight fit, but they 
should click in when they're properly fitted. 

 

Next, we'll mount the key caps. It doesn't matter which way round they go, as they're 
completely symmetrical. Push them all the way down onto the stems on the switches. 

 



Flip the switch plate with switches and key caps mounted and take a look at all of the 
pins on the switches. Sometimes, they can get bent slightly in transit, but they all need 
to be straight to fit correctly into the hot-swap sockets. You can gently bend them back 
into position if you need to. 

 

Turn your Keybow PCB assembly and switch plate so that the KEYBOW logos are both 
at the same side. Align the two pieces with each other, and gently sit the switch plate 
and switches in the correct location with the pins on the switches in the sockets on the 
PCB. Once you're happy that they're all correctly aligned, then push the switches down 
into the sockets. It's best to hold the whole thing at both sides and apply even pressure, 
so that they all go in straight. The bottoms of all of the switches should sit flush with the 
Keybow PCB. 

Next	steps	

The next step is to set up the Keybow software and customise your key mappings. We'll 
cover all of that in the Setting up the Keybow OS tutorial. 



Setting	up	the	Keybow	Operating	System	
(OS)	
In this tutorial, we'll look a little at how the Keybow OS works (you don't really need to 
worry about this bit too much, but you might find it interesting and useful), then we'll get 
onto how to set up a micro-SD card with the software. Last, we'll look at simple 
examples of how to customise the keys and lights on your Keybow. 

 

How	it	all	works	

The Keybow OS is a custom OS that runs on the Raspberry Pi Zero WH that's included 
in your Keybow kit. It consists of a few different unique parts: 

1. A stripped-down OS based on Raspbian 
2. A ramdisk, into which the entire OS is loaded at boot 
3. Lua files for setting the key mappings, layouts, and lighting 
4. Some C code behind the scenes that sets up and controls the USB HID that Keybow 

uses to act as a keyboard 



The ramdisk means that once the OS is loaded into it during boot, the SD card is no 
longer accessed or required. This avoids any problems with SD card corruption that can 
occur when you unplug your Raspberry Pi without safely shutting down first. 

Lua is a basic but powerful programming language that works really well on embedded 
and low-power devices. It has a clean, simple syntax and is ideal for the interface to 
Keybows layouts and lighting. 

Each of the twelve keys on Keybow is linked to a single GPIO pin on the Pi Zero W, and 
the APA102 LEDs to another two pins (the SPI pins). When a key is pressed, the 
change on that GPIO pin is detected, translated to a HID keycode by the Lua and C 
code, then sent out through the USB on-the-go port on the Pi Zero W and to the 
connected computer. 

The LEDs under each key are addressable and in a single chain, so they can be 
individually controlled. We've got two different ways of setting the LEDs: individually in 
the keys.lua file, or by creating a 24-bit PNG file that will be animated across the keys 
(more on that later). 

 



Setting	up	your	Keybow	OS	micro‐SD	card	

Because the Keybow OS is so stripped-down and small, you can get away with using a 
fairly low capacity micro-SD card; anything bigger than 1GB will be plenty. 

Pop your micro-SD card into your computer, and format it in FAT32 format. We 
recommend using the SD Association's SD Memory Card Formatter app, which is 
cross-platform and generally very reliable. You can choose "quick format", and call the 
card whatever you like, e.g. "keybow". 

Download the zip file with the Keybow OS on by clicking here. Unzip it, then drag all of 
the files inside the "sdcard" folder (i.e. not the folder itself) across to the micro-SD card. 

Booting	your	Keybow	for	the	first	time!	

Eject the prepared micro-SD card and pop it into the micro-SD card slot on the Pi Zero 
WH. Plug the micro-B end of the USB cable into the on-the-go port on the Pi Zero WH; 
it's the one that lines up with the cut-out in the Keybow baseplate. 

Assuming you've prepared your SD card properly, after about 10-15 seconds, you 
should see the lights on your Keybow animating through some blue, pink, and orange 
hues. You might see a few LEDs light randomly when you first plug the power in; this is 
normal and will disappear once it's fully booted. 

If you don't see the keys lighting up and animating, then something has gone wrong! Try 
the following troubleshooting tips: 

 Did you definitely format your micro-SD card with a single FAT32 partition? 
 Make sure that the files on the SD card aren't inside a folder 
 Make sure that you copied all of the files across from the unzipped folder 
 Is the micro-SD card plugged in fully, and is the micro-USB cable plugged in fully? 
 Is the Keybow PCB pushed onto the Pi's pins as far as it will go? It should look like the 

picture below 
 Is the green activity LED blinking on your Pi Zero WH? If not, then it should be! 
 Try a different micro-SD card, if you have one 
 Remove the baseplate, and plug a mini HDMI cable in. When you plug the power into 

the Pi Zero WH, you should see a bunch of text appearing on the screen. 

If, after all of those steps, your Keybow is still not working, then pop a post on our 
forums at https://forums.pimoroni.com and we'll do our best to get it working! 



How	the	key	mappings	work	

By default, Keybow is set up as a number pad with the numbers 0-9, full stop, and 
enter, but you can easily customise the twelve keys on Keybow to be whatever key you 
like. To do this, you'll need to unplug the USB cable from your Keybow and pop the 
micro-SD card out and into your computer. 

For most users, the only files you'll need to worry about are the keys.lua file and the 
layout files in the layouts folder. The layouts folder contains some example layouts, 
with the default.lua layout being the default numberpad. 

You'll see that there's a line that says require "layouts/default" towards the top of 
the keys.lua file. This is linking and enabling the default mapping 
in layouts/default.lua. Let's look at that default.lua file: 

require "keybow" 

 

‐‐ Standard number pad mapping ‐‐ 

 

‐‐ Key mappings ‐‐ 

 

function handle_key_00(pressed) 

    keybow.set_key("0", pressed) 

end 

 

function handle_key_01(pressed) 

    keybow.set_key(".", pressed) 

end 

 

function handle_key_02(pressed) 

    keybow.set_key(keybow.ENTER, pressed) 

end 

 

function handle_key_03(pressed) 

    keybow.set_key("1", pressed) 

end 



 

function handle_key_04(pressed) 

    keybow.set_key("2", pressed) 

end 

 

function handle_key_05(pressed) 

    keybow.set_key("3", pressed) 

end 

 

function handle_key_06(pressed) 

    keybow.set_key("4", pressed) 

end 

 

function handle_key_07(pressed) 

    keybow.set_key("5", pressed) 

end 

 

function handle_key_08(pressed) 

    keybow.set_key("6", pressed) 

end 

 

function handle_key_09(pressed) 

    keybow.set_key("7", pressed) 

end 

 

function handle_key_10(pressed) 

    keybow.set_key("8", pressed) 

end 

 

function handle_key_11(pressed) 

    keybow.set_key("9", pressed) 

end 



You'll see that there are twelve functions, one for each key on Keybow. They're 
numbered 00, 01, and so on, up to 11. The numberings go from bottom left to top right, 
and start at the bottom left key when Keybow is in portrait orientation with the USB 
cable at the right hand side. 

Each function has a single line inside saying e.g. keybow.set_key("0", pressed), 
which means "set this key to send 0 when pressed". You can change this to any 
number, letter, punctuation mark, or other character on a standard keyboard (we'll get to 
special keys like space, control, tab, enter, and so on, in a moment). 

Changing the pressed at the end of those lines to not pressed, as 
follows: keybow.set_key("0", not pressed), will cause the 0 to be sent when the key is 
released rather than pressed. You can have a pressed and not pressed sent by a 
single key, just by putting two lines within the function, like this, which will send 0 when 
the key is pressed and 1 when it is released again: 

function handle_key_00(pressed) 

    keybow.set_key("0", pressed) 

    keybow.set_key("1", not pressed) 

end 

Take a look at the handle_key_02 function now. You'll see that, rather than having a 
character like "0" in quote marks, it has keybow.ENTER. There are a number of special 
keys defined as variables in the keybow.lua file, that you can map to keys on Keybow: 

keybow.LEFT_CTRL 

keybow.LEFT_SHIFT 

keybow.LEFT_ALT 

keybow.LEFT_META 

 

keybow.RIGHT_CTRL 

keybow.RIGHT_SHIFT 

keybow.RIGHT_ALT 

keybow.RIGHT_META 

 

keybow.ENTER 

keybow.ESC 

keybow.BACKSPACE 



keybow.TAB 

keybow.SPACE 

keybow.CAPSLOCK 

 

keybow.LEFT_ARROW 

keybow.RIGHT_ARROW 

keybow.UP_ARROW 

keybow.DOWN_ARROW 

 

keybow.F1 

keybow.F2 

keybow.F3 

keybow.F4 

keybow.F5 

keybow.F6 

keybow.F7 

keybow.F8 

keybow.F9 

keybow.F10 

keybow.F11 

keybow.F12 

Note that you don't need quote marks around these, as they're variables. 

Creating	a	custom	key	layout	

Our recommended way of creating your own custom layout is to create a new lua file 
inside the layouts folder, for instance mylayout.lua, and then link that layout in 
the keys.lua, so your keys.lua file would look like this: 

require "keybow" 

 

‐‐ require "layouts/default" ‐‐ Numberpad 

 

‐‐ Custom layouts (uncomment to enable) ‐‐ 



 

‐‐ require "layouts/boilerplate" ‐‐ Handy bits of boilerplate text like Lorem Ipsum 

‐‐ require "layouts/lightroom" ‐‐ Handy hotkeys for Adobe Lightroom Classic CC 

‐‐ require "layouts/pico8" ‐‐ Controls for Pico‐8 

 

require "layouts/mylayout" ‐‐ My custom layout 

Notice that we've commented out the line that was linking the default layout by adding 
two hyphens at the beginning of the line, and that we've left off the .luafrom the end of 
the mylayout.lua filename when linking it on the require...line. 

It's important that you only have one layout file linked (i.e. uncommented) in 
your keys.lua file at any one time, or things will get crazy! 

To see some examples of custom layouts, you can look at the other layout files in 
the layouts folder, like lightroom.lua and pico8.lua. There's also a blank 
layout, blank.lua, that you can use as a template. 

Here are the ready-made layouts that we've included with Keybow OS: 

 Default numberpad - numbers 0-9, full stop, and enter 
 Boilerplate - example of how to enter whole strings of text like Lorem Ipsum placeholder 

text, or frequently-used code like the Python shebang 
 Lightroom - hotkeys for Adobe Lightroom Classic CC 
 Pico-8 - a Pico-8 gamepad with directional, action, and various function keys 

Customising	the	lighting	on	Keybow	

There are two ways to customise the lighting on Keybow. 

Using	a	PNG	image	

The first, and easiest, way to customise the lighting is with a 24-bit PNG file. If you 
create a PNG file that is 12 pixels wide, then the colours of those 12 pixels will be 
mapped to each of the 12 LEDs under Keybow's keys. If you make the PNG file taller 
than 1 pixel, then this will create an animation on each LED, cycling through the colours 
in each column of the image from top to bottom, then looping back to the top. The 
animations are displayed at 60fps. 



If you create an image that is just 1 pixel wide and several pixels tall, then the animation 
will be duplicated to all of the LEDs on Keybow. 

The pattern that is used by default is default.png on the Keybow micro-SD card, so 
you can change the pattern simply by replacing that file with another calleddefault.png. 
We've put a bunch of example patterns in the patterns folder. 

 

Note that if you want your animation to loop smoothly, then you'll have to make the 
pixels at the very bottom of you PNG match up with those at the very top. 

Manually	setting	each	LED	

The second method of customising the LEDs on your Keybow is by setting them 
manually is the setup function of your layout file. Here's an example from our Pico-8 
controller layout: 

function setup() ‐‐ Set custom lights up 

    keybow.auto_lights(false) 

    keybow.clear_lights() 

    keybow.set_pixel(0, 255, 255, 0) ‐‐ Green 

    keybow.set_pixel(1, 255, 255, 0) ‐‐ Green 

    keybow.set_pixel(2, 0, 255, 255) ‐‐ Cyan 

    keybow.set_pixel(3, 255, 0, 255) ‐‐ Magenta 



    keybow.set_pixel(4, 0, 255, 255) ‐‐ Cyan 

    keybow.set_pixel(5, 0, 255, 255) ‐‐ Cyan 

    keybow.set_pixel(6, 255, 0, 255) ‐‐ Magenta 

    keybow.set_pixel(7, 255, 0, 255) ‐‐ Magenta 

    keybow.set_pixel(8, 0, 255, 255) ‐‐ Cyan 

    keybow.set_pixel(9, 255, 0, 255) ‐‐ Magenta 

    keybow.set_pixel(10, 0, 255, 255) ‐‐ Cyan 

    keybow.set_pixel(11, 0, 255, 255) ‐‐ Cyan 

end 

The setup function is run when the keys.lua file is first loaded. 
The keybow.auto_lights(false) and keybow.clear_lights() lines disable the PNG 
animation and clear any LEDs that are lit. 

The other lines set each of the twelve pixels using keybow.set_pixel(pixel, r, g, 
b) where pixel is the pixel number and r, g, and b are RGB colour values from 0 to 
255. The LED are numbered in the same order as the keys, from bottom left to top right, 
and start at the bottom left key when Keybow is in portrait orientation. 

Rather than setting these pixels in the setup function, you can set them in 
the handle_key function for the keys themselves, meaning that you can have them 
come on, or change colour, when the keys are pressed and/or released. Here's an 
example where key 0 is red normally, but changes to green when pressed: 

function setup() ‐‐ Set custom lights up 

    keybow.auto_lights(false) 

    keybow.clear_lights() 

end 

 

function handle_key_00(pressed) 

    if pressed then 

        keybow.set_key("0", pressed) 

        keybow.set_pixel(0, 0, 255, 0) 

    else 

        keybow.set_pixel(0, 255, 0, 0) 

    end 

end 



Advanced	customisation	

We'll cover advanced customisation of Keybow with snippets and macros in a further 
tutorial: Using macros and snippets with Keybow. 

That tutorial covers binding multiple keypresses to a single key to form macros and the 
use of our ready-made Windows and Mac snippets. This is where Keybow starts to get 
really powerful! 

Using	macros	and	snippets	with	Keybow	
The real power of Keybow is in its ability to become a macro keyboard, triggering a 
whole series of keypresses from just a single key, for example "control-alt-delete" or 
typing "The quick brown fox jumps over the lazy dog". This is great for setting up actions 
that you can never quite remember, like the shortcut to import photos to Lightroom 
(command/control-shift-I), by just linking them to a single key. 

 

You could also create a Keybow layout that stored all your frequently-used bits of text, 
like code snippets, email templates, or even complex sets of actions like opening a web 
browser, then entering an URL or search term and hitting enter. The world is your 
lobster! 

As well as these custom actions, we've put together a couple of files full of handy 
snippets for Windows and Mac; these are common actions like peeking the desktop, 
snapping windows to one side or the other, a Spotlight search on Mac, and lots more. 
You can link these straight to keypresses in your layout files. 



We'll assume that you've followed the first two Keybow tutorials already, but if you 
haven't then go back over them before this one: 

 Assembling Keybow 
 Setting up the Keybow OS 

Creating	a	simple	macro	

We'll create a simple Windows-R (opens the run menu on Windows; if you're on Mac 
then these keys will refresh your browser page) macro as an example of how to put 
them together, and how to use modifier keys and the tap key function. 

Unplug the USB cable from your Keybow and pop the micro-SD card out and put it in 
your computer. In the the layouts folder, create a new layout called macros.lua and 
add the following to it: 

require "keybow" 

 

function handle_key_00(pressed) 

    if pressed then 

        keybow.set_modifier(keybow.LEFT_META, keybow.KEY_DOWN) 

        keybow.tap_key("r", pressed) 

        keybow.set_modifier(keybow.LEFT_META, keybow.KEY_UP) 

    end 

end 

Let's break down what the code does. 

The macro is bound to key 0, that is the bottom left key when Keybow is in portrait 
orientation with the USB cable at the right hand side. 

We're running this macro when the key is pressed (as opposed to when it's released), 
hence the if pressed then. 

The line keybow.set_modifier(keybow.LEFT_META, keybow.KEY_DOWN) uses 
the set_modifier function that allows you to keep a modifier key held down while you 
press another key or keys, and tells Keybow to keep the key held down 
- keybow.KEY_DOWN. keybow.LEFT_META represents the Windows key on Windows or the 
command key on Mac. 



Next, we use the tap_key function, which simulates a quick press and release of a key, 
to tap the "r" key - keybow.tap_key("r", pressed). 

Last of all, we use the set_modifier function again to release 
the keybow.LEFT_META (Windows) key - keybow.set_modifier(keybow.LEFT_META, 
keybow.KEY_UP), before closing both the if statement and the handle_keyfunction 
with end. 

Save your new macros.lua file in the layouts folder, and then open the keys.lua file 
and link and enable your new layout. The file should look something like this: 

```lua 

require "keybow" 

 

‐‐ require "layouts/default" ‐‐ Numberpad 

 

‐‐ Custom layouts (uncomment to enable) ‐‐ 

 

‐‐ require "layouts/boilerplate" ‐‐ Handy bits of boilerplate text like Lorem Ipsum 

‐‐ require "layouts/lightroom" ‐‐ Handy hotkeys for Adobe Lightroom Classic CC 

‐‐ require "layouts/pico8" ‐‐ Controls for Pico‐8 

 

require "layouts/macros" ‐‐ Macros layout 

Save the keys.lua filem, eject and pop the micro-SD card out and into your Keybow, 
then plug it in with its USB cable. Once booted, give your new macro a try! 

Entering	strings	of	text	

Entering strings of text can be really handy. It might be a snippet of text that you use 
frequently, like an address or some Lorem Ipsum placeholder text, or it could be a 
search term that gets entered once you've opened your web browser with a macro. 

Here, we'll extend our Windows-R run menu macro that we made and type "cmd" to 
open the command prompt, and then tap enter to open it. We'll also use 
the keybow.sleep() function to introduce a couple of short pauses between the parts of 
the macro. 



Disconnect your Keybow, remove the micro-SD card again, and pop it into your 
computer. Open the macros.lua file. 

Within the handle_key_00 function that we added our macro to, add 
a keybow.sleep(500) straight after the keybow.set_modifier(keybow.LEFT_META, 
keybow.KEY_UP) line. This will introduce a half-second (500 milliseconds) pause before 
the next line in our macro. 

Next, we'll use the keybow.text() function to type our "cmd" text. Add the 
line keybow.text("cmd") below the keybow.sleep(500) line. 

You can use the keybow.text() function with any of the text characters on your 
keyboard, including shifted characters (uppercase letters, !, @, £, etc.), and also 
spaces, and even tabs and new lines with \t and \n respectively. 

Add another keybow.sleep(500) below that last line to introduce another small pause. 

Last of all, we'll add the line keybow.tap_enter() to tap the enter key. There 
are keybow.tap_ functions for several of the most commonly used keys like enter, 
space, and tab, as well as the tap_key() function that we used earlier, to which you can 
pass any key to tap it. You can see them all towards the bottom of the keybow.lua file. 

Your whole macros.lua file should now look like this: 

require "keybow" 

 

function handle_key_00(pressed) 

    if pressed then 

        keybow.set_modifier(keybow.LEFT_META, keybow.KEY_DOWN) 

        keybow.tap_key("r", pressed) 

        keybow.set_modifier(keybow.LEFT_META, keybow.KEY_UP) 

        keybow.sleep(500) 

        keybow.text("cmd") 

        keybow.sleep(500) 

        keybow.tap_enter() 

    end 

end 



Save that file, eject the micro-SD card, and pop it into your Keybow. Does the macro 
work, and open the command prompt? 

If you're using a Mac, then you can change this macro example to hold command, 
tap space, and then type something like "chrome" to open Google Chrome. 

Using	the	ready‐made	snippets	for	
Windows	and	Mac	

We've included a folder called snippets with two files 
in, windows_snippets and mac_snippets. These files have a whole bunch of ready made 
functions - hotkeys and macros - that you can use directly in your layouts. They cover 
basic things like switching between app windows, snapping windows, opening spotlight 
or Windows search, and a lot more. 

We'll put together an example that uses a couple of the Mac snippets to do something 
that you probably do several times a day, but now you can do it with just a single 
keypress - search for cat GIFs! 

Let's add this new macro to our 'macros.lua' file that we've been using, and assign it to 
key 1 (the middle bottom key). Think about the steps involved in doing our cat gifs 
search. We have to: 

1. Open Spotlight 
2. Get Spotlight to open Safari 
3. Focus on the smart search field 
4. Type in "cat gifs" and press enter 

Luckily, there are snippets we can use to do the trickier steps of a Spotlight search and 
the Safari search, so it's just a case of adding two lines rather than a whole bunch. 

Disconnect your Keybow, remove the micro-SD card, and pop it into your computer. 
Open the macros.lua file. 

At the top of the file, just below the require "keybow" line, add require 
"snippets/mac_snippets". This will let us use functions from the mac_snippets.lua file 
in the snippets folder. 

Create a new handle_key function at the bottom of your macros file, that looks like this: 



function handle_key_01(pressed) 

    if pressed then 

        mac_snippets.spotlight("safari") 

        mac_snippets.safari_search("cat gifs") 

    end 

end 

Remarkably easy, huh? The spotlight and safari_search snippets take a string as 
input and handle the other parts of the process, i.e. the keyboard shortcut, entering the 
text, and then pressing enter. 

Your whole macros.lua file should now look like this: 

require "keybow" 

require "snippets/mac_snippets" 

 

function handle_key_00(pressed) 

    if pressed then 

        keybow.set_modifier(keybow.LEFT_META, keybow.KEY_DOWN) 

        keybow.tap_key("r", pressed) 

        keybow.set_modifier(keybow.LEFT_META, keybow.KEY_UP) 

        keybow.sleep(500) 

        keybow.text("cmd") 

        keybow.sleep(500) 

        keybow.tap_enter() 

    end 

end 

 

function handle_key_01(pressed) 

    if pressed then 

        mac_snippets.spotlight("safari") 

        mac_snippets.safari_search("cat gifs") 

    end 

end 



Eject the micro-SD card, put it into your Keybow, then plug it into your computer. Press 
key 1 and... SHAZAM... cat GIFs! 

Take a look though the windows_snippets and mac_snippets files in the snippets folder 
to see all of the functionality included, everything from general navigation shortcuts, to 
screenshots, to specific app shortcuts for Safari, Chrome, and email. 

Mechanical switches 

Keybow comes with your choice of Kailh Speed Gold (clicky) or Silver (linear, non-

clicky) switches. Both switches are light and smooth, and the gold switches have a 

satisying click when pressed. 

We've chosen clear DSA key caps for Keybow, as they show off the per-key RGB LEDs 

really well. The slightly frosted finish on the clear key caps diffuses the light beautifully. 

Being DSA, the caps have a flat profile that suits small size of Keybow. 

The switches slot into the PCB switch plate to hold them securely, and then push into 

the Kailh hot-swap sockets on the Keybow PCB. This means that there's no soldering 

required, and you can easily change out the switches in the future, if you wish. 

Note that if you want to use different switches with Keybow, then you'll need to 

ensure that they have a recess on the underside for surface-mount LEDs. 

Lighting 

We've used the same tiny APA102 RGB LEDs that we use on our Picade Plasma 

PCBs, and there's one under each of the twelve keys. The LEDs sit in the cavity on the 

underside of the switch and shine up through, into the key cap. 

There's a nifty way to light and animate the LEDs on Keybow. You can create a PNG 

file with a coloured gradient or pattern, and it will be animated across the LEDs from the 

top of the image to the bottom. The width of the PNG determines how it's displayed. 

You can also manually set the LEDs on one or more keys, overriding the animation, or 

have them only light up when pressed. 



There's a bunch of example animations to use, or you can create your own in your 

favourite graphics program. 

Key mappings and layouts 

The power of Keybow is in how customisable it is. You can map each of the twelve keys 

to whichever keyboard keys you want, or even have them trigger a whole series of 

keypresses or strings of text to be entered. 

Our Keybow software uses the on-the-go micro-USB port on the Raspberry Pi Zero WH 

and USB HID gadget mode, so that it appears as a regular USB keyboard device when 

plugged into a computer. 

The custom, stripped-down OS runs on a RAM-disk, meaning that it boots and runs 

quickly, it's robust against being unplugged, and there's no risk of SD card corruption. 

To customise your Keybow layout and lighting, just pop the micro-SD card out and edit 

the keys.lua file on your computer. 

We've included a bunch of useful code snippets and helper functions for Windows and 

Mac that can be used in your Keybow layouts, as well as whole example layouts to turn 

your Keybow into things like an Adobe Lightroom hotkey pad, a Pico-8 games 

controller, or just a regular numberpad. 

You can read how to set up the Keybow OS and how to create your own macros and 

key layouts here on our learning portal. 

 

 

 

 

 

 

                              https://shop.pimoroni.com/products/keybow?variant=21246333419603/2‐5‐19 




