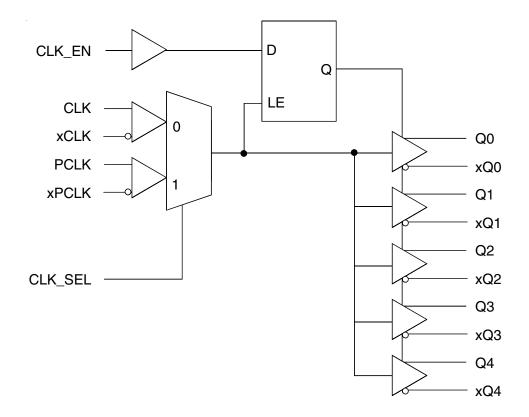


LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER

FEATURES:

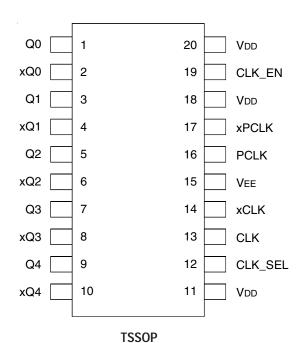

- Five differential 3.3V LVPECL outputs
- Selectable differential CLK, xCLK, or LVPECL clock inputs
- CLK, xCLK pair can accept the following differential input levels: LVDS, LVPECL, LVHSTL, SSTL, and HCSL
- PCLK, xPCLK supports the following input types: LVPECL, CML, and SSTL
- · Maximum output frequency: 650MHz
- Translates any single-ended input signal to 3.3V LVPECL levels with resistor bias on xCLK input
- · Output skew: 35ps (max.)
- · Part-to-part skew: as low as 150ps
- Propagation delay: 2.1ns (max.)
- 3.3V operating supply
- · Available in TSSOP package

DESCRIPTION:

The IDT85304-01 is a low skew, high performance 1-to-5 differential-to-3.3V LVPECL clock generator-divider. It has two selectable clock inputs. The CLK/xCLK pair can accept most standard differential input levels. The PCLK/xPCLK pair can accept LVPECL, CML, or SSTL input levels. The clock enable is internally synchronized to eliminate runt pulses on the outputs during asynchronous assertion/deassertion of the clock enable pin.

Guaranteed output and part-to-part skew characteristics make the IDT85304-01 ideal for those applications that demand well-defined performance and repeatability.

FUNCTIONAL BLOCK DIAGRAM



The IDT logo is a registered trademark of Integrated Device Technology, Inc.

COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES

FEBRUARY 2009

PIN CONFIGURATION

TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VDD	Power Supply Voltage	4.6	V
Vı	Input Voltage	-0.5 to VDD+0.5	V
Vo	Output Voltage	-0.5 to VDD+0.5	V
θЈΑ	Package Thermal Impedance (0 Ifpm)	92.6	°C/W
Tstg	Storage Temperature	-65 to +150	°C

NOTE:

Stresses beyond those listed under ABSOLUTE MAXIMUM RATINGS may cause
permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions above those indicated in the
operational sections of this specification is not implied. Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability.

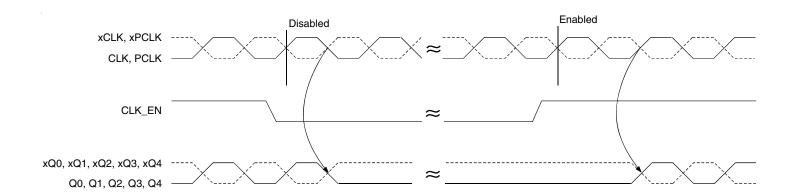
CAPACITANCE(TA = +25°C, f = 1MHz, VIN = 0V)

Parameter	Description	Тур.	Max.	Unit
CIN	Input Capacitance		4	pF
RPULLUP	Input Pullup Resistor	51	_	ΚΩ
RPULLDOWN	Input Pulldown Resistor	51	_	ΚΩ

PIN DESCRIPTION(1)

Symbol	Number	Ту	pe	Description
xQ0, Q0	1, 2	Output		Differential Output Pair. LVPECL interface levels.
xQ1, Q1	3, 4	Output		Differential Output Pair. LVPECL interface levels.
xQ2, Q2	5, 6	Output		Differential Output Pair. LVPECL interface levels.
xQ3, Q3	7,8	Output		Differential Output Pair. LVPECL interface levels.
xQ4, Q4	9, 10	Output		Differential Output Pair. LVPECL interface levels.
VDD	11, 18, 20	Power		Positive Supply Pins
CLK_SEL	12	Input	Pulldown	Clock Select Input. When HIGH, selects PCLK/xPCLK inputs. When LOW, selects
				CLK / xCLK inputs. LVTTL / LVCMOS interface levels.
CLK	13	Input	Pulldown	Non-Inverting Differential Clock Input
xCLK	14	Input	Pullup	Inverting Differential Clock Input
VEE	15	Power		Negative Supply Pin
PCLK	16	Input	Pulldown	Non-Inverting Differential LVPECL Clock Input
xPCLK	17	Input	Pullup	Inverting Differential LVPECL Clock Input
CLK_EN	19	Input	Pullup	Synchronizing Clock Enable. When HIGH, clock outputs follow clock input. When
				LOW, Qoutputs are forced LOW, xQ outputs are forced HIGH. LVTTL/LVCMOS
				interface levels.

NOTE:


1. Pullup and Pulldown refer to internal input resistors. See Capacitance table for typical values.

CONTROL INPUT FUNCTION TABLE(1,2)

Inputs			Outputs		
CLK_EN	CLK_SEL	Selected Source	Q0:Q4	хQ0:хQ4	
0	0	CLK, xCLK	Disabled; LOW	Disabled; HIGH	
0	1	PCLK, xPCLK	Disabled; LOW	Disabled; HIGH	
1	0	CLK, xCLK	Enabled	Enabled	
1	1	PCLK, xPCLK	Enabled	Enabled	

NOTES:

- 1. After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as shown in the CLK_EN Timing Diagram below.
- 2. In active mode, the state of the outputs is a function of the CLK / xCLK and PCLK / xPCLK inputs as described in the Clock Input Function table.

CLK_EN Timing Diagram

CLOCK INPUT FUNCTION TABLE(1)

Inp	outs	Out	puts		
CLK or PCLK	xCLK or xPCLK	Q0:Q4	xQ0:xQ4	Input to Output Mode	Polarity
0	1	L	Н	Differential to Differential	Non-Inverting
1	0	Н	L	Differential to Differential	Non-Inverting
0	Biased ⁽²⁾	L	Н	Single-Ended to Differential	Non-Inverting
1	Biased ⁽²⁾	Н	L	Single-Ended to Differential	Non-Inverting
Biased ⁽²⁾	0	Н	L	Single-Ended to Differential	Inverting
Biased ⁽²⁾	1	L	Н	Single-Ended to Differential	Inverting

NOTES:

- 1. H = HIGH
 - L = LOW
- 2. See Single-Ended Signal diagram under Application Information at the end of this datasheet.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vdd	Positive Supply Voltage		3.135	3.3	3.465	V
lee	Power Supply Current		_	_	55	mA

DC ELECTRICAL CHARACTERISTICS, LVCMOS/LVTTL

Symbol	Parameter		Test Conditions	Min.	Тур.	Max.	Unit
VIH	Input Voltage, HIGH	CLK_EN,		2		VDD + 0.3	V
		CLK_SEL					
VIL	Input Voltage, LOW	CLK_EN,		-0.3		0.8	V
		CLK_SEL					
Iн	Input Current HIGH	CLK_EN	VIN = VDD = 3.465V			5	μΑ
		CLK_SEL	VIN = VDD = 3.465V			150	
lıL	Input Current LOW	CLK_EN	VIN = 0V, VDD = 3.465V	-150			μΑ
		CLK_SEL	VIN = 0V, VDD = 3.465V	-5			

DC ELECTRICAL CHARACTERISTICS, DIFFERENTIAL

Symbol	Parameter		Test Conditions	Min.	Тур.	Max.	Unit
VPP	Peak-to-Peak Input Volta	age		0.15		1.3	V
VCMR	Common Mode Input Voltage ^(1,2)			0.5		VDD-0.85	V
Іін	Input Current HIGH	xCLK	VIN = VDD = 3.465V			5	μΑ
		CLK	VIN = VDD = 3.465V			150	
lıL	Input Current LOW	xCLK	VIN = 0V, VDD = 3.465V	-150			μΑ
		CLK	$V_{IN} = 0V, V_{DD} = 3.465V$	-5			

NOTES:

- 1. For single-ended applications, the max. input voltage for CLK / xCLK is VDD + 0.3V.
- 2. Common mode voltage is defined as ViH.

DC ELECTRICAL CHARACTERISTICS, LVPECL

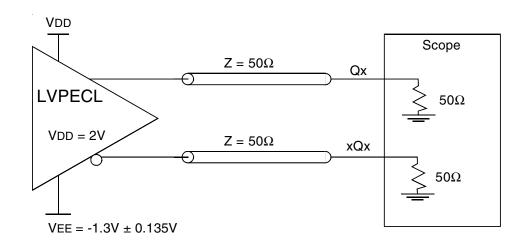
Symbol	Parameter		Test Conditions	Min.	Тур.	Max.	Unit
lін	Input Current HIGH	PCLK	$V_{IN} = V_{DD} = 3.465V$			150	μΑ
		xPCLK	VIN = VDD = 3.465V			5	
lıL	Input Current LOW	PCLK	$V_{IN} = 0V, V_{DD} = 3.465V$	-5			μΑ
		xPCLK	VIN = 0V, VDD = 3.465V	-150			
VPP	Peak-to-Peak Input Vol	tage		0.15		1.3	V
Vcmr	Common Mode Input V	oltage ^(1,2)		VEE + 1.5		Vdd	V
Voн	Output Voltage HIGH(3))		VDD - 1.4		V _{DD} - 1	V
Vol	Output Voltage LOW(3)			V _{DD} - 2		VDD - 1.7	V
Vswing	Peak-to-Peak Output V	oltage Swing		0.6		0.85	V

NOTES:

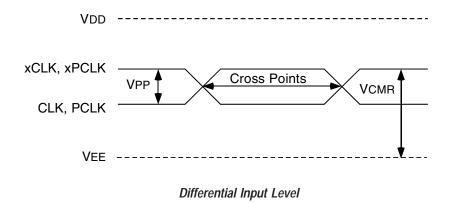
- 1. For single-ended applications, the max. input voltage for PCLK / xPCLK is V_{DD} + 0.3V.
- 2. Common mode voltage is defined as $\ensuremath{\text{V}\textsc{ii}}$.
- 3. Outputs terminated with 50Ω to V_{DD} 2V.

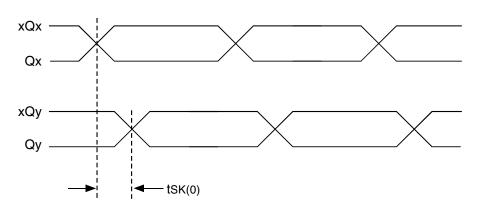
AC ELECTRICAL CHARACTERISTICS

All parameters measured at 500MHz unless noted otherwise;


Cycle-to-cycle jitter = jitter on output; the part does not add jitter

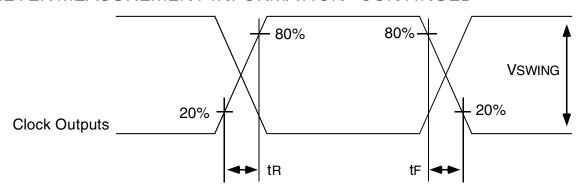
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
FMAX	Output Frequency				650	MHz
t PD	Propagation Delay ⁽¹⁾	f ≤ 650MHz	1		2.1	ns
tsk(o)	Output Skew ^(2,4)				35	ps
tsk(pp)	Part-to-Part Skew ^(3,4)				150	ps
tr	Output Rise Time	20 - 80% @ 50MHz	300		700	ps
tr	Output Fall Time	20 - 80% @ 50MHz	300		700	ps
odc	Output Duty Cycle		48	50	52	%

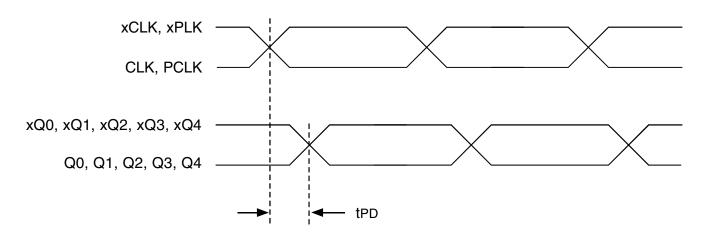

NOTES:


- 1. Measured from the differential input crossingpoint to the differential output crossingpoint.
- 2. Defined as skew between outputs as the same supply voltage and with equal load conditions. Measured at the output differential crosspoints
- 3. Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential crosspoints.
- 4. This parameter is defined in accordance with JEDEC Standard 65.

PARAMETER MEASUREMENT INFORMATION

Output Load Test Circuit

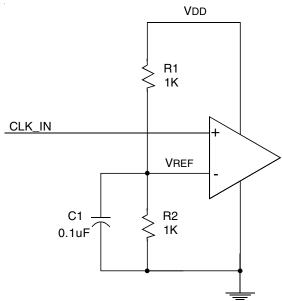



Output Skew

LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL

PARAMETER MEASUREMENT INFORMATION - CONTINUED

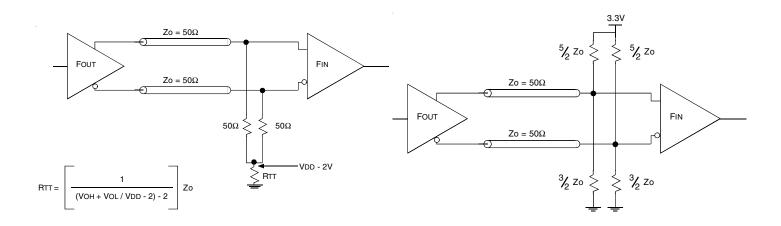
Input and Output Rise and Fall Time



Propagation Delay

APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE-ENDED LEVELS


The diagram below shows how the differential input can be wired to accept single-ended levels. The reference voltage $V_{REF} \simeq V_{DD}/2$ is generated by the bias resistors R1, R2, and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_{REF} in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD} = 3.3V$, V_{REF} should be 1.25V and R2/R1 = 0.609.

Single-Ended Signal Driving Differential Input

TERMINATION FOR LVPECL OUTPUTS

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines. Four and xFour are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. The diagrams below show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist. It is recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

LVPECL Output Termination, layout A

LVPECL Output Termination, layout B

POWER CONSIDERATIONS

This section provides information on power dissipation and junction temperature for the IDT85304-01. Equations and example calculations are also provided.

POWER DISSIPATION:

The total power dissipation for the IDT85304-01 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for the $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results. Please refer to the following section, **Calculations and Equations**, for details on calculating power dissipated in the load.

Power (core)MAX = VDD_MAX * IEE_MAX = 3.465 * 55mA = 190.57mW Power (outputs)MAX = 30.2mW/Loaded Output Pair If all outputs are loaded, the total power is 5 * 30.2mW = 151mW

Total Power_max (3.465V, with all outputs switching) = 190.57mW + 151mW = 341.57mW

JUNCTION TEMPERATURE:

Junction temperature (t₁) is the temperature at the junction of the bond wire and bond pad. It directly affects the reliability of the device. The maximum recommended junction temperature for this device is 125°C.

The equation for is as follows: $t_J = \theta_{JA} * Pd_{total} + T_{AB}$

t_J = Junction Temperature

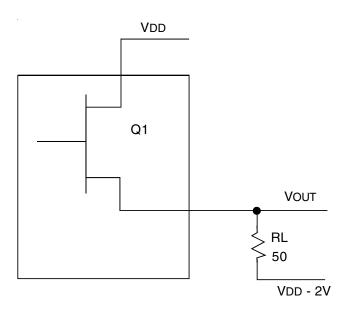
θJA = Junction-to-Ambient Thermal Resistance

Pd total = Total Device Power Dissipation (example calculation is in **Power Dissipation**, above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance (θ JA) must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 77.6 °C/W per the following **Thermal Resistance** table. Therefore, to for an ambient temperature of 85 °C with all its outputs switching is:

 $85^{\circ}\text{C} + 0.341\text{W} * 77.6^{\circ}\text{C/W} = 111.5^{\circ}\text{C}$. This is well below the limit of 125°C .


This calculation is only an example. to will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single-layer or multi-layer).

THERMAL RESISTANCE

 Θ JA for 20-pin TSSOP, forced convection

θJA by Velocity (Linear Feet per mlnute)						
	0	200	400	Unit		
Multi-Layer PCB, JEDEC Standard Test boards	92.6	77.6	70.9	°C/W		

CALCULATIONS AND EQUATIONS

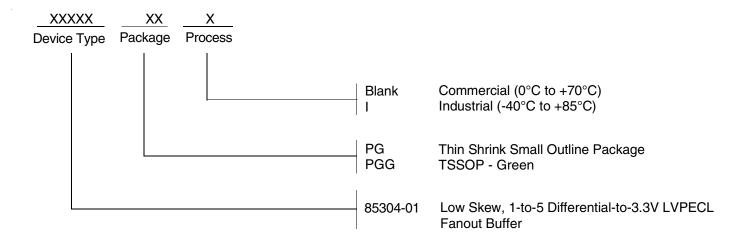
LVPECL Output Driver Circuit and Termination

To calculate worst case power dissipation into the load, use the following equations, which assume a 50Ω load and a termination voltage of V_{DD} – 2V.

For Logic HIGH: Vout = Voh_max = Vdd_max - 1V. (Vdd_max - Voh_max) = 1V

For Logic LOW: Vout = Vol_max = Vdd_max - 1.7V. (Vdd_max - Vol_max) = 1.7V

 $\label{pd_Hispower} \textit{Pd_H} \ is \ power \ dissipation \ when \ the \ output \ drives \ HIGH.$


Pd_L is power dissipation when the output drives LOW.

 $Pd_{H} = \{ [Voh_{MAX} - (Vdd_{MAX} - 2V)] / RL \}^* (Vdd_{MAX} - Voh_{MAX}) = \{ [2V - (Vdd_{MAX} - Voh_{MAX})] / RL \}^* (Vdd_{MAX} - Voh_{MAX}) = [(2V - 1V) / 50\Omega]^* + 1V = 20mW.$

 $Pd_L = \{[Vol_{MAX} - (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX} - Vol_{MAX})] / RL\}^* (Vdd_{MAX} - Vol_{MAX}) = \{[2V - (Vdd_{MAX}$

Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW

ORDERING INFORMATION

