2.5/3.3V 1:4 PECL Clock Driver with 2:1 Input MUX

Product Discontinuance Notice – Last Time Buy Expires on (12/7/2013)

DATASHEET

The MC100ES6130 is a 2.5 GHz differential PECL 1:4 fanout buffer. The ES6130 offers a wide operating range of 2.5 V and 3.3 V and also features a 2:1 input MUX which is ideal for redundant clock switchover applications. This device also includes a synchronous enable pin that forces the outputs into a fixed logic state. Enable or disable state is initiated only after the outputs are in a LOW state to eliminate the possibility of a runt clock pulse.

Features

- 2 GHz maximum output frequency
- 25 ps maximum output-to-output skew
- 150 ps part-to-part skew
- 350 ps typical propagation delay
- 2:1 differential MUX input
- 2.5 / 3.3 V operating range
- LVPECL and HSTL input compatible
- 16-lead TSSOP package
- Temperature range -40°C to +85°C
- 16-lead Pb-free package available

ORDERING INFORMATION						
Device Package						
MC100ES6130DT	TSSOP-16					
MC100ES6130DTR2	TSSOP-16					
MC100ES6130EJ	TSSOP-16 (Pb-Free)					
MC100ES6130EJR2	TSSOP-16 (Pb-Free)					

Figure 1. 16-Lead Pinout (Top View) and Logic Diagram

MC100ES6130 REVISION 4 DECEMBER 19, 2012

Table 1. Pin Description

Number	Name	Description
1, 2, 3, 4, 5, 6, 7, 8	$\frac{Q0}{Q0} \text{ to } \frac{Q3}{Q3}$	LVPECL differential outputs: Terminate with 50 Ω to V _{CC} – 2 V. For single-ended applications, terminate the unused output with 50 Ω to V _{CC} – 2 V.
9	V_{EE}	Negative power supply: For LVPECL applications, connect to GND.
10	IN_SEL	LVPECL compatible 2:1 mux input signal select: When IN_SEL is LOW, the IN0 input pair is selected. When IN_SEL is HIGH, the IN1 input pair is selected. Includes a 75 k Ω pulldown. Default state is LOW and IN0 is selected.
11, 12, 13, 14	IN0, <u>IN0</u> IN1, IN1	LVPECL, HSTL clock or data inputs. Internal 75 k Ω pulldown resistors on IN0 and IN1. Internal 75 k Ω pullup and 75 k Ω pulldown resistors on IN0, IN1. IN0, IN1 default condition is V _{CC} /2 when left floating. IN0, IN1 default condition is LOW when left floating.
15	EN	LVPECL compatible synchronous enable: When $\overline{\text{EN}}$ goes HIGH, Q_{OUT} will go LOW and $\overline{Q}_{\text{OUT}}$ will go HIGH on the next LOW input clock transition. Includes a 75 k Ω pulldown. Default state is LOW when left floating. The internal latch is clocked on the falling edge of the input (IN0, IN1).
16	V _{CC}	Positive power supply: Bypass with 0.1 μ F//0.01 μ F low ESR capacitors.

Table 2. Truth Table⁽¹⁾

IN0	IN1	IN_SEL	EN	Q
L	Х	L	L	L
Н	Х	L	L	Н
Х	L	Н	L	L
х	Н	Н	L	Н
Z	х	L	Н	L
Х	Z	Н	Н	L

1. Z = HIGH to LOW Transition

X = Don't Care

Table 3. General Specifications

Characteri	Value	
Internal Input Pulldown Resistor	75 kΩ	
Internal Input Pullup Resistor	75 kΩ	
ESD Protection	Human Body Model Machine Model Charged Device Model	> 2000 V > 200 V > 1500 V
θ_{JA} Thermal Resistance (Junction-to-Ambient)	0 LFPM, 16 TSSOP 500 LFPM, 16 TSSOP	138°C/W 108°C/W

Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test

Table 4. Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Conditions	Rating	Units
V _{SUPPLY}	Power Supply Voltage	Difference between V _{CC} & V _{EE}	3.9	V
V _{IN}	Input Voltage	$V_{CC} - V_{EE} \le 3.6 \text{ V}$	V _{CC} + 0.3 V _{EE} – 0.3	V V
l _{out}	Output Current	Continuous Surge	50 100	mA mA
Τ _Α	Operating Temperature Range		-40 to +85	°C
T _{STG}	Storage Temperature Range		–65 to +150	°C

1. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not implied.

Table 5. DC Characteristics	s (V _{CC} = 0 V, V _{EE} = -2	-2.5 V ±5% or V _{CC} = 2.5 V ±5%, V	′ _{EE} = 0 V)
-----------------------------	--	--	------------------------

Symbol	Characteristic		–40°C			Unit		
Symbol	Characteristic	Min	Тур	Мах	Min	Тур	Мах	Unit
I _{EE}	Power Supply Current		45	70		45	70	mA
V _{OH}	Output HIGH Voltage ⁽¹⁾	V _{CC} – 1250	V _{CC} - 990	V _{CC} -800	V _{CC} – 1200	V _{CC} - 960	V _{CC} – 750	mV
V _{OL}	Output LOW Voltage ⁽¹⁾	$V_{CC} - 2000$	V _{CC} – 1550	V _{CC} – 1150	V _{CC} – 1925	V _{CC} – 1630	$V_{CC} - 1200$	mV
V _{outPP}	Output Peak-to-Peak Voltage	200			200			mV
V _{IH}	Input HIGH Voltage	V _{CC} – 1165		V _{CC} - 880	V _{CC} – 1165		V _{CC} – 880	mV
V _{IL}	Input LOW Voltage	V _{CC} – 1810		V _{CC} – 1475	V _{CC} – 1810		V _{CC} – 1475	mV
V _{PP}	Differential Input Voltage ⁽²⁾	0.12		1.3	0.12		1.3	V
V _{CMR}	Differential Cross Point Voltage ⁽³⁾	V _{EE} + 0.2		V _{CC} – 1.0	V _{EE} + 0.2		V _{CC} – 1.0	V
I _{IN}	Input Current			±150			±150	μA

1. Output termination voltage V_{TT} = 0 V for V_{CC} = 2.5 V operation is supported but the power consumption of the device will increase.

2. V_{PP} (DC) is the minimum differential input voltage swing required to maintain device functionality.

3. V_{CMR} (DC) is the cross point of the differential input signal. Functional operation is obtained when the cross point is within the V_{CMR} (DC) range and the input swing lies within the V_{PP} (DC) specification.

Table 6. DC Characteristics (V_{CC} = 0 V, V_{EE} = -3.8 to 3.135 V or V_{CC} = 3.135 to 3.8 V, V_{EE} = 0 V)

Symbol	Characteristic		–40°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Мах	Unit
I _{EE}	Power Supply Current		48	70		48	70	mA
V _{OH}	Output HIGH Voltage ⁽¹⁾	V _{CC} – 1150	V _{CC} – 1020	V _{CC} - 800	V _{CC} – 1200	V _{CC} - 970	V _{CC} – 750	mV
V _{OL}	Output LOW Voltage ⁽¹⁾	V _{CC} - 1950	V _{CC} – 1620	V _{CC} – 1250	$V_{CC} - 2000$	V _{CC} – 1680	V _{CC} – 1300	mV
V _{outPP}	Output Peak-to-Peak Voltage	200			200			mV
V _{IH}	Input HIGH Voltage	V _{CC} – 1165		V _{CC} -880	V _{CC} – 1165		V _{CC} – 880	mV
V _{IL}	Input LOW Voltage	V _{CC} – 1810		V _{CC} – 1475	V _{CC} – 1810		V _{CC} – 1475	mV
V _{PP}	Differential Input Voltage ⁽²⁾	0.12		1.3	0.12		1.3	V
V _{CMR}	Differential Cross Point Voltage ⁽³⁾	V _{EE} + 0.2		V _{CC} - 1.1	V _{EE} + 0.2		V _{CC} – 1.1	V
I _{IN}	Input Current			±150			±150	μA

1. Output termination voltage V_{TT} = 0 V for V_{CC} = 2.5 V operation is supported but the power consumption of the device will increase.

2. V_{PP} (DC) is the minimum differential input voltage swing required to maintain device functionality.

3. V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} (DC) range and the input swing lies within the V_{PP} (DC) specification.

Ourseland	Chana stanistic		–40°C		25°C			85°C			11
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency	2			2			2			GHz
t _{PLH /} t _{PHL}	Propagation Delay to Output Differential CLK to Q, Q	300	340	450	300	350	450	300	350	475	ps
t _{SKEW}	Skew ⁽²⁾ output-to-output part-to-part		15	25 125		15	25 150		15	25 150	ps ps
t _{JITTER}	Cycle-to-Cycle Jitter RMS (1σ)			1			1			1	ps
V _{PP}	Minimum Input Swing	200		1200	200		1200	200		1200	mV
V _{CMR}	Differential Cross Point Voltage	V _{EE} + 0.2		V _{CC} – 1.2	V _{EE} + 0.2		V _{CC} – 1.2	V _{EE} + 0.2		V _{CC} - 1.2	V
t _r / t _f	Output Rise/Fall Times (20% – 80% @ 50 MHz)	70		225	70		250	70		275	ps

Table 7. AC Characteristics (V_{CC} = 0 V, V_{EE} = -3.8 V to -2.375 V; V_{CC} = 2.375 to 3.8 V, V_{EE} = 0 V)⁽¹⁾

1. Measured using a 750 mV source, 50% Duty Cycle clock source. All loading with 50 ohms to V_{CC} – 2.0 V.

2. Skew is measured between outputs under identical transitions.

Figure 2. Typical Termination for Output Driver and Device Evaluation

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.			OUTLINE PRINT VERSION N	
TITLE:		DOCUMENT NE	: 98ASH70247A	RE∨: B
16 LD TSSOP, PITCH 0.65	CASE NUMBER	2: 948F-01	19 MAY 2005	
	STANDARD: JE	DEC		

PAGE 1 OF 3

CASE 948F-01 ISSUE B 16-LEAD TSSOP PACKAGE

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		L OUTLINE	PRINT VERSION NE	IT TO SCALE
TITLE:		DOCUMENT NE	1: 98ASH70247A	RE∨: B
16 LD TSSOP, PITCH 0.	CASE NUMBER	2: 948F-01	19 MAY 2005	
	STANDARD: JE	DEC		

PAGE 2 OF 3

CASE 948F-01 ISSUE B 16-LEAD TSSOP PACKAGE

PACKAGE DIMENSIONS

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER
- 2. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M-1982.
- 3 DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.
- _____ DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE.

5 DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

/7 dimensions are to be determined at datum plane [-W-].

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NE	IT TO SCALE
TITLE:	DOCUMENT NE]: 98ASH70247A	RE∨: B	
16 LD TSSOP, PITCH 0.6	CASE NUMBER	2: 948F-01	19 MAY 2005	
	STANDARD: JE	DEC		

PAGE 3 OF 3

CASE 948F-01 ISSUE B 16-LEAD TSSOP PACKAGE

Revision History Sheet

Rev	Table	Page	Description of Change	Date
4		1	Product Discontinuance Notice – Last Time Buy Expires on (12/7/2013)	12/19/12

We've Got Your Timing Solution

6024 Silver Creek Valley Road San Jose, California 95138 Sales 800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT **Technical Support**

netcom@idt.com +480-763-2056

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.