

R3116x-Y Series

0.8% Low Voltage Detector with Output Delay for Industrial Applications

NO.EA-347-170203

OUTLINE

The R3116x is a CMOS-based voltage detector IC with high detector threshold accuracy and ultra-low supply current, which can be operated at an extremely low voltage and is used for system reset as an example.

This IC consists of a voltage reference unit, a comparator, resistors for detector threshold setting, an output driver, a hysteresis circuit and an output delay circuit. The detector threshold is internally fixed with high accuracy and does not require any adjustment.

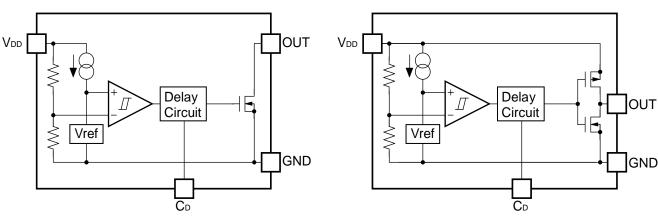
Two output types, Nch open drain type and CMOS type are available.

R3116x is offered in a 5-pin SOT-23-5 package and an ultra-small 4-pin DFN(PLP)1010-4 package which can achieve the smallest possible footprint solution on boards where area is limited.

This is a high-reliability semiconductor device for industrial applications (-Y) that has passed both the screening at high temperature and the reliability test with extended hours. This line of products operate in a wide temperature range from low temperature to high temperature to support harsh environment applications.

FEATURES

Operating Voltage Range (Maximum Rating)	0.5V to 6.0V (7.0V)
Operating Temperature Range	50°C to 105°C
Supply Current	Typ. $0.35\mu A$ (-Vdet=1.5V, Vdd=-Vdet+1V)
Detector Threshold Range	0.7V to 5.0V (0.1V steps)
Detector Threshold Accuracy	$\pm 0.8\%$ (-VDET ≥ 1.5 V)
Temperature-Drift Coefficient of Detector Threshold	Typ. ±30ppm/°C
Built-in Output Delay Circuit	Typ. 100ms with an external capacitor: 0.022μF
Output Delay Time Accuracy	±15% (-Vdet ≥ 1.5V)
Output Types	Nch Open Drain and CMOS
Packages	DFN(PLP)1010-4, SOT-23-5


APPLICATIONS

- Industrial equipments such as FAs and smart meters
- Equipments used under high-temperature conditions such as surveillance camera and vending machine
- Equipments accompanied by self-heating such as motor and lighting

BLOCK DIAGRAMS

Nch Open Drain Output (R3116xxx1A)

CMOS Output (R3116xxx1C)

SELECTION GUIDE

The package type, the detector threshold, the output type and the taping type for the ICs can be selected at the users' request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R3116Kxx1*-TR-Y	DFN(PLP)1010-4	10,000 pcs	Yes	Yes
R3116Nxx1*-TR-YE	SOT-23-5	3,000 pcs	Yes	Yes

xx: The set detector threshold (-V_{SET}) can be designated in the range from 0.7V(07) to 5.0V(50) in 0.1V steps.

- * : Designation of Output Type
 - (A) Nch Open Drain
 - (C) CMOS

PIN DESCRIPTIONS

• DFN(PLP)1010-4 • SOT-23-5 Top View Bottom View (mark side)

• DFN(PLP)1010-4

Pin No.	Symbol	Description
1	OUT	Output Pin ("L" at detection)
2	С	Pin for External Capacitor (for setting output delay)
3	GND	Ground Pin
4	V _{DD}	Input Pin

^{*)} The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left open.

• SOT-23-5

Pin No.	Symbol	Description
1	OUT	Output Pin ("L" at detection)
2	V_{DD}	Input Pin
3	GND	Ground Pin
4	NC	No Connection
5	Сь	Pin for External Capacitor (for setting output delay)

NO.EA-347-170203

ABSOLUTE MAXIMUM RATINGS

Symbol	Item		Rating	Unit
V_{DD}	Supply Voltage		7.0	V
V	Output Voltage (Nch Open Drain Output)		V _{SS} -0.3 to 7.0	V
Vouт	Output Voltage (CMOS Output)	V _{SS} -0.3 to V _{DD} +0.3	V	
Іоит	Output Current	20	mA	
D-	Power Dissipation (DFN(PLP)1010-4)*	400	mW	
P _D	Power Dissipation (SOT-23-5) *	420	IIIVV	
Tj	Junction Temperature	-50 to 125	°C	
Tstg	Storage Temperature Range		-55 to 125	°C

^{*} Please refer to PACKAGE INFORMATION for detailed information.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured.

RECOMMENDED OPERATING CONDITIONS

Symbol	ltem	Rating	Unit
V_{DD}	Operating Voltage	0.60 to 6.0	V
Та	Operating Temperature Range	-50 to 105	°C

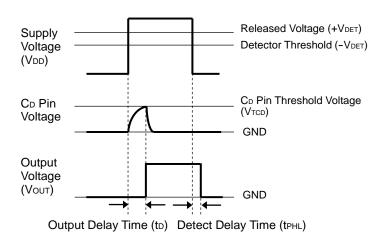
RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

The specifications surrounded by are guaranteed by design engineering at $-50^{\circ}\text{C} \le \text{Ta} \le 105^{\circ}\text{C}$.

• R3116xxx1A/C


Symbol	Item	Conditions				Min.	Тур.	Max.	Unit
		Ta=25°C		1.5V <	$-V_{DET} \le 5.0V$	$\begin{array}{c} -V_{DET} \\ \times \ 0.992 \end{array}$		-V _{DET} ×1.008	V
-V _{DET}	Detector Threshold			0.7V ≤	$-V_{\text{DET}} \leq 1.5 V$	-12		+12	mV
- V DET	Detector Threshold	-50°C ≤	Ta ≤ 105	1.5V <	$-V_{\text{DET}} \leq 5.0 V$	-V _{DET} ×0.985		-V _{DET} ×1.015	V
				0.7V ≤	$-V_{DET} \le 1.5V$	-22.5		+22.5	mV
V _{HYS}	Detector Threshold Hysteresis							$\begin{array}{c} -V_{DET} \\ \times \ 0.07 \end{array}$	V
				0.7V ≤	$-V_{DET} < 1.6V$			1.400	
		$V_{DD} = -V_{D}$	лет _0 1\	, 1.6V ≤	-V _{DET} < 3.1V			1.500	
		v uu— — v u	DET -0.1 V	, 3.1V ≤	$-V_{DET} < 4.1V$			1.600	
Iss	Supply Current			4.1V ≤	$-V_{\text{DET}} \leq 5.0 V$			1.700	μΑ
155	Supply Current			0.7V ≤	$-V_{DET} < 1.6V$			1.200	μΛ
		$V_{DD} = -V_{D}$.c. ±1 0\	, 1.6V ≤	$-V_{DET} < 3.1V$			1.200	
		v uu— — v u	EI TI.UV	, 3.1V ≤	$-V_{DET} < 4.1V$			1.300	
				4.1V ≤	$-V_{\text{DET}} \leq 5.0 V$			1.400	
	Misira a Ossariisa	Ta=25°C						0.50	V
V_{DDL}	Minimum Operating Voltage*1	-40°C ≤			0.55	v			
	. J	-50°C ≤	Ta ≤ 105	5°C				0.60	V
			V _{DD} =0.	55V, V _{DS} =0.05	V	7			μΑ
			0.7V ≤	-V _{DET} < 1.1V	V _{DD} =0.6V V _{DS} =0.5V	0.020			
		Nch	1.1V ≤	-V _{DET} < 1.6V	V _{DD} =1.0V V _{DS} =0.5V	0.400			mA
I _{OUT}	Output Current (Driver Output Pin)		1.6V ≤	-V _{DET} < 3.1V	V _{DD} =1.5V V _{DS} =0.5V	1.000			IIIA
	(2)	3.1V ≤		$V \le -V_{DET} \le 5.0V$ $V_{DD}=3.0V$ $V_{DS}=0.5V$		2.400			
		Dob*2	0.7V ≤	-V _{DET} < 4.0V	V _{DD} =4.5V V _{DS} =-2.1V	0.650			Λ
		Pch*2 4.0V		$4.0V \le -V_{DET} \le 5.0V$ $V_{DD}=6.0V_{VDS}=-2.1V$		0.900			mA
ILEAK	Nch Driver Leakage Current*3	V _{DD} =6.0V				80	nA		
				T2_25°C	0.7V≤ -V _{DET} < 1.5V	80	100	130	
		C _D =0.022		Ta=25°C	1.5V≤ -V _{DET} ≤5.0V	85	100	115	
t₀	Output Delay Time	$V_{DD}=-V_{DE}$ to $-V_{DET}x$		-50°C ≤ Ta ≤	0.7V≤ -VDET < 1.5V	70	100	150	ms
				105°C	1.5V≤ -V _{DET} ≤5.0V	75	100	135	

All of unit are tested and specified under load conditions such that Tj≈Ta=25°C

^{*1} Minimum operating voltage means the value of input voltage when output voltage maintains 0.1V or less. (In case of Nch Open Drain Output type, the output pin is pulled up with a resistance of $470 \text{k}\Omega$ to 5.0 V)

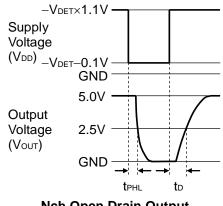
^{*2} In case of CMOS type *3 In case of Nch Open Drain type

TIMING CHART

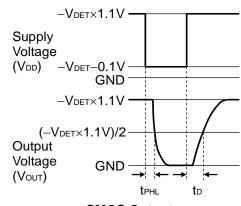
When the supply voltage, which is higher than released voltage, is forced to V_{DD} pin, charge to an external capacitor starts, then C_D pin voltage increases. Until the C_D pin voltage reaches to C_D pin threshold voltage, output voltage maintains "L". When the C_D pin voltage becomes higher than C_D pin threshold voltage, output voltage is reversed from "L" to "H". Where the time interval between the rising edge of supply voltage and output voltage reverse point means output delay time.

When the output voltage reverses from "L" to "H", the external capacitor starts to discharge. Therefore, when lower voltage than the detector threshold voltage is forced to VDD pin, the output voltage reverses from "H" to "L" thus the detect delay time is constant not being affected by the external capacitor.

Output Delay Time


Output Delay Time (t_D) can be calculated with the next formula using the external capacitor: $t_D(s) = 4.5 \times 10^6 \times C_D(F)$

DEFINITION OF OUTPUT DELAY TIME


Output Delay Time (to) is defined as follows:

- In the case of Nch Open Drain Output:
 Under the condition of the output pin (OUT) is pulled up through a resistor of 470kΩ to 5V, the time interval between the rising edge of V_{DD} pulse from (-V_{DET})-0.1V to (-V_{DET})×1.1V pulse voltage is supplied, the becoming of the output voltage to 2.5V.
- 2. In the case of CMOS Output:

The time interval between the rising edge of V_{DD} pulse from $(-V_{DET})-0.1V$ to $(-V_{DET})\times1.1V$ pulse voltage is supplied, the becoming of the output voltage to $((-V_{DET})\times1.1V)/2$.

Nch Open Drain Output (R3116xxx1A)

CMOS Output (R3116xxx1C)

ELECTRICAL CHARACTERISTICS BY DETECTOR THRESHOLD

• R3116x071A/C to R3116x501A/C

Bold values are checked and guaranteed by design engineering at −50°C ≤ Ta ≤ 105°C, unless otherwise noted.

(Ta=25°C)

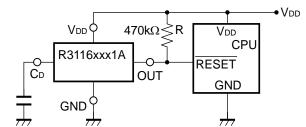
												(1a=25 C)
Part		ector shold1		Detector I Threshold2		Detector Threshold Hysteresis		Current1	Supply	Current2	Max. Op. Voltage	Min. Op. Voltage
Number	-VDE	T1 [V]	-VDE	T2 [V]	VHY	rs [V]	Iss1	[µA]	Iss2	[µA]	VDDH [V]	VDDL [V]
	Min.	Max.	Min.	Max.	Min.	Max.	Cond.	Max.	Cond.	Max.	Max.	Max.
R3116x071A/C	0.688	0.712	0.678	0.723	0.028	0.049						
R3116x081A/C	0.788	0.812	0.778	0.823	0.032	0.056						
R3116x091A/C	0.888	0.912	0.878	0.923	0.036	0.063						
R3116x101A/C	0.988	1.012	0.978	1.023	0.040	0.070						
R3116x111A/C	1.088	1.112	1.078	1.123	0.044	0.077		1.400				
R3116x121A/C	1.188	1.212	1.178	1.223	0.048	0.084						
R3116x131A/C	1.288	1.312	1.278	1.323	0.052	0.091						
R3116x141A/C	1.388	1.412	1.378	1.423	0.056	0.098						
R3116x151A/C	1.488	1.512	1.478	1.523	0.060	0.105						
R3116x161A/C	1.587	1.613	1.576	1.624	0.064	0.112						
R3116x171A/C	1.686	1.714	1.675	1.726	0.068	0.119						
R3116x181A/C	1.786	1.814	1.773	1.827	0.072	0.126				1.200		
R3116x191A/C	1.885	1.915	1.872	1.929	0.076	0.133				1.200		
R3116x201A/C	1.984	2.016	1.970	2.030	0.080	0.140						
R3116x211A/C	2.083	2.117	2.069	2.132	0.084	0.147						
R3116x221A/C	2.182	2.218	2.167	2.233	0.088	0.154						
R3116x231A/C	2.282	2.318	2.266	2.335	0.092	0.161		1.500				
R3116x241A/C	2.381	2.419	2.364	2.436	0.096	0.168						
R3116x251A/C	2.480	2.520	2.463	2.538	0.100	0.175						0.50
R3116x261A/C	2.579	2.621	2.561	2.639	0.104	0.182						0.50
R3116x271A/C	2.678	2.722	2.660	2.741	0.108	0.189	VDD=		VDD=			
R3116x281A/C	2.778	2.822	2.758	2.842	0.112	0.196	-VDD=		-VDD=		6	0.60
R3116x291A/C	2.877	2.923	2.857	2.944	0.116	0.203	-0.1V		+1.0V		U	0.00
R3116x301A/C	2.976	3.024	2.955	3.045	0.120	0.210	0.10		11.00			
R3116x311A/C	3.075	3.125	3.054	3.147	0.124	0.217						*Note1
R3116x321A/C	3.174	3.226	3.152	3.248	0.128	0.224						140101
R3116x331A/C	3.274	3.326	3.251	3.350	0.132	0.231						
R3116x341A/C	3.373	3.427	3.349	3.451	0.136	0.238						
R3116x351A/C	3.472	3.528	3.448	3.553	0.140	0.245		1.600		1.300		
R3116x361A/C	3.571	3.629	3.546	3.654	0.144	0.252		1.000		1.500		
R3116x371A/C	3.670	3.730	3.645	3.756	0.148	0.259						
R3116x381A/C	3.770	3.830	3.743	3.857	0.152	0.266						
R3116x391A/C	3.869	3.931	3.842	3.959	0.156	0.273						
R3116x401A/C	3.968	4.032	3.940	4.060	0.160	0.280						
R3116x411A/C	4.067	4.133	4.039	4.162	0.164	0.287						
R3116x421A/C	4.166	4.234	4.137	4.263	0.168	0.294						
R3116x431A/C	4.266	4.334	4.236	4.365	0.172	0.301						
R3116x441A/C	4.365	4.435	4.334	4.466	0.176	0.308						
R3116x451A/C	4.464	4.536	4.433	4.568	0.180	0.315		1.700		1.400		
R3116x461A/C	4.563	4.637	4.531	4.669	0.184	0.322		1.700		1.400		
R3116x471A/C	4.662	4.738	4.630	4.771	0.188	0.329						
R3116x481A/C	4.762	4.838	4.728	4.872	0.192	0.336						
R3116x491A/C	4.861	4.939	4.827	4.974	0.196	0.343						
R3116x501A/C	4.960	5.040	4.925	5.075	0.200	0.350						

^{*}Note1) V_{DD} value when output voltage is equal or less than 0.1V. In the case of Nch Open Drain output type, the output pin is pulled up to 5.0V through 470kΩ resistor.

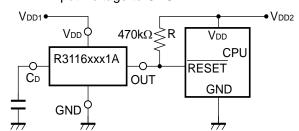
Nch Driver Output Current1		Nch Driver Output Current2		Pch Driver Output Current		Current	Detector Threshold Temperature Coefficient		Time	lay
Wiln.	VDD= 0.6V VDS= 0.5V	0.020	Cond.	Min.	Cond.	wax.	тур.	Cona.	80	Max. 130
	V _{DD} = 1.0V V _{DS} = 0.5V	0.400							70	150
VDD= 1.5V VDS= 0.5V 1.000 VDS= -2.1V VDD= 6.0V VDD= 6.0V VDS= 7.0V		80	80 ±30							
	V _{DD} = 3.0V V _{DS} = 0.5V	2.400	VDD= 6.0V VDS=	0.900				×1.1V *Note2	85 75	115 135
	rent1 [µA] Min.	Tent1 Curr [μΑ] Iout2 Min. Cond. VDD=	Tent1 Current2 I [μA] Iouτ2 [mA] Min. Cond. Min. VDD= 0.6V VDS= 0.5V VDD= 1.0V VDS= 0.5V VDS= 0.5V T VDD= 1.5V VDS= 0.5V T VDD= 1.000 VDS= 0.5V 2.400 VDS=	Current2 Current3 IouT3 IouT3	Current Current Current Current	Current Current Current Current Leakage Current Leakage Current Leakage Current Leakage Current Current Leakage Current Curr	Current Current Current Leakage Current [µA]	Temperature Courrent Current Coefficient Current Current Coefficient Current Current Current Coefficient Current Current		Table

*Note2) 1. In the case of CMOS output type:

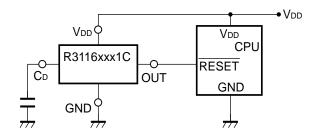
When the voltage is forced from $(-V_{DET})-0.1V$ to $(-V_{DET})\times1.1V$ pulse voltage is added to V_{DD} , time interval that the output voltage reaches $((-V_{DET})\times1.1V)/2$.

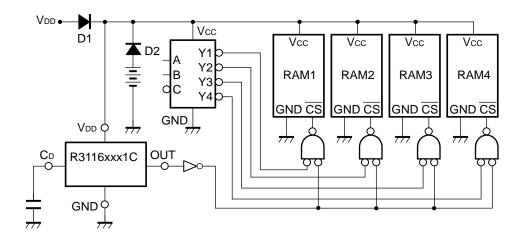

2. In the case of Nch Open Drain output type:

The output pin is pulled up to 5.0V through $470k\Omega$, and when the voltage is forced from (-VDET)-0.1V to (-VDET) $\times 1.1V$ pulse voltage is added to VDD, time interval that the output voltage reaches 2.5V.

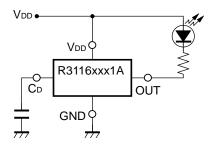

TYPICAL APPLICATION

R3116xxx1A CPU Reset Circuit 1 (Nch Open Drain Output)

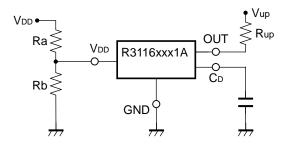

Case1. Input Voltage to R3116xxx1A is equal to Input Voltage to CPU


Case2. Input Voltage to R3116xxx1A is unequal to Input Voltage to CPU

• R3116xxx1C CPU Reset Circuit 2 (CMOS Output)



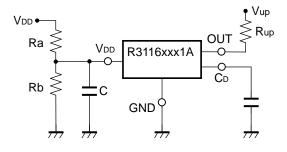
Memory Back-up Circuit



NO.EA-347-170203

Voltage level Indicator Circuit (lighted when the power runs out) (Nch Open Drain Output)

Detector Threshold Adjustable Circuit 1 (Nch Open Drain Output)

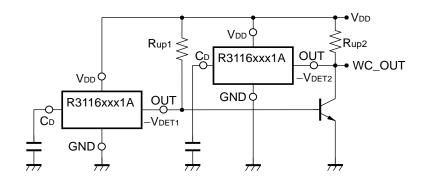


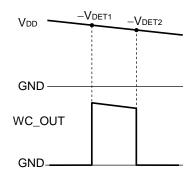
Adjustable Detector Threshold=(-VDET)×(Ra+Rb)/Rb

Hysteresis Voltage=(VHYS)×(Ra+Rb)/Rb

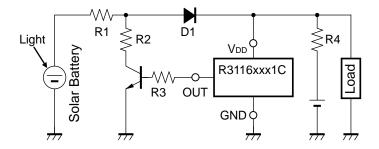
- *1) To prevent oscillation, set Ra $\leq 1k\Omega$, Rb $\leq 100\Omega$.
- *2) If the value of Ra is set excessively large, voltage drop may occur caused by the supply current of IC itself, and detector threshold and hysteresis voltage may vary.
- *3) If Vup and VDD are connected, the voltage dropdown caused by Rup, may cause difference in the hysteresis voltage.

Detector Threshold Adjustable Circuit 2 (Nch Open Drain Output)



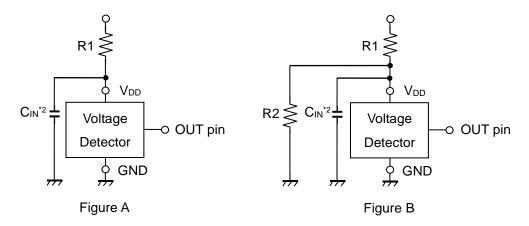

Adjustable Detector Threshold=(-VDET)×(Ra+Rb)/Rb

Hysteresis Voltage=(VHYS)×(Ra+Rb)/Rb


- *1) To prevent oscillation, set Ra \leq 10k Ω , Rb \leq 1k Ω , C \geq 1 μ F.
- *2) If the value of Ra is set excessively large, voltage drop may occur caused by the supply current of IC itself, and detector threshold and hysteresis voltage may vary.
- *3) If Vup and VDD are connected, the voltage dropdown caused by Rup, may cause difference in the hysteresis voltage.
- *4) If the value of Ra, Rb and C are set excessively large, the delay of the start-up may become too long.

Window Comparator Circuit (Nch Open Drain Output)

• Over-charge Preventing Circuit

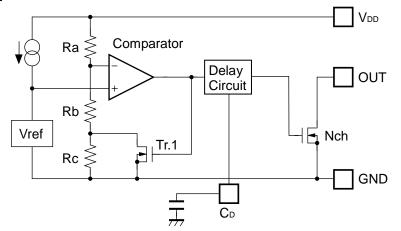

TECHNICAL NOTES

When connecting resistors to the device's input pin

When connecting a resistor (R1) to an input of this device, the input voltage decreases by [Device's Consumption Current] x [Resistance Value] only. And, the cross conduction current*1, which occurs when changing from the detecting state to the release state, is decreased the input voltage by [Cross Conduction Current] x [Resistance Value] only. And then, this device will enter the re-detecting state if the input voltage reduction is larger than the difference between the detector voltage and the released voltage.

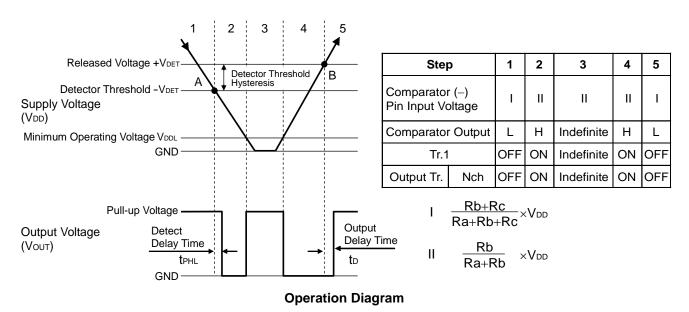
When the input resistance value is large and the VDD is gone up at mildly in the vicinity of the released voltage, repeating the above operation may result in the occurrence of output.

As shown in Figure A/B, set R1 to become $100k\Omega$ or less as a guide, and connect C_{IN} of $0.1\mu F$ and more to between the input pin and GND. Besides, make evaluations including temperature properties under the actual usage condition, with using the evaluation board like this way. As result, make sure that the cross conduction current has no problem.



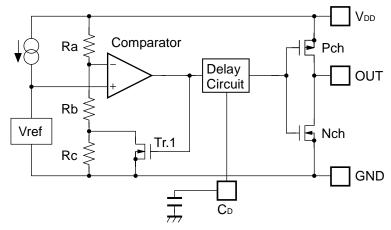
^{*1} In the CMOS output type, a charging current for OUT pin is included.

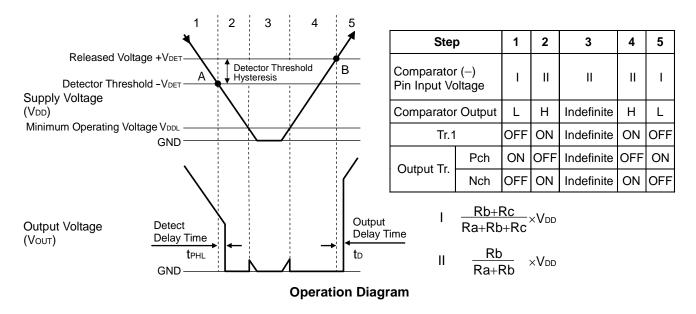
^{*2} Note the bias dependence of capacitors.


OPERATION

Operation of R3116xxx1A

OUT pin should be pulled-up to V_{DD} or an external voltage level.

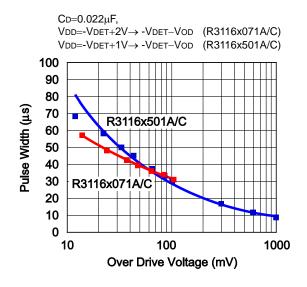

Block Diagram (R3116xxx1A)

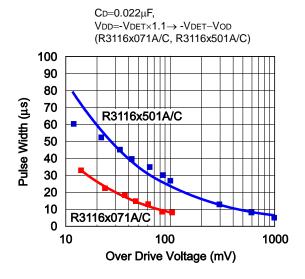

Explanation of operation

- Step 1. The output voltage is equal to the pull-up voltage.
- Step 2. At Point "A", Vref ≥ V_{DD×}(Rb+Rc)/(Ra+Rb+Rc) is true, as a result, the output of comparator is reversed from "L" to "H", therefore the output voltage becomes the GND level. The voltage level of Point A means a detector threshold voltage (-V_{DET}).
- Step 3. When the supply voltage is lower than the minimum operating voltage, the operation of the output transistor becomes indefinite. The output voltage is equal to the pull-up voltage.
- Step 4. The output voltage is equal to the GND level.
- Step 5. At Point "B", Vref ≤ V_{DD×}Rb/(Ra+Rb) is true, as a result, the output of comparator is reversed from "H" to "L", then the output voltage is equal to the pull-up voltage. The voltage level of Point B means a released voltage (+V_{DET}).
- *) The difference between a released voltage and a detector threshold voltage is a detector threshold hysteresis.

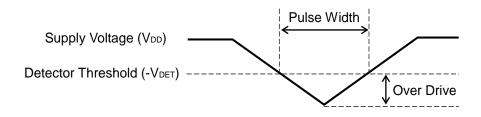
Operation of R3116xxx1C

Block Diagram (R3116xxx1C)




Explanation of operation

- Step 1. The output voltage is equal to the supply voltage (VDD).
- Step 2. At Point "A", Vref ≥ V_{DD}×(Rb+Rc)/(Ra+Rb+Rc) is true, as a result, the output of comparator is reversed from "L" to "H", therefore the output voltage becomes the GND level. The voltage level of Point A means a detector threshold voltage (-V_{DET}).
- Step 3. When the supply voltage is lower than the minimum operating voltage, the operation of the output transistor becomes indefinite.
- Step 4. The output voltage is equal to the GND level.
- Step 5. At Point "B", Vref ≤ VDD×Rb/(Ra+Rb) is true, as a result, the output of comparator is reversed from "H" to "L", then the output voltage is equal to the supply voltage (VDD). The voltage level of Point B means a released voltage (+VDET).
- st) The difference between a released voltage and a detector threshold voltage is a detector threshold hysteresis.


DETECTOR OPERATION VS. GLITCH INPUT VOLTAGE TO THE VDD PIN

When the R3116x is at released, if the pulse voltage which the detector threshold or lower voltage, the graph below means that the relation between pulse width and the amplitude of the swing to keep the released state for the R3116x.

*Vop: Over Drive Voltage

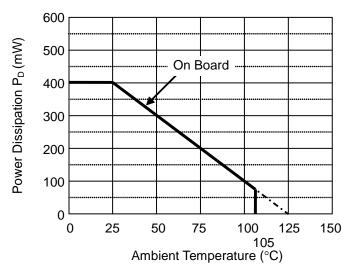
VDD Input Waveform

This graph shows the maximum pulse conditions to keep the released voltage. If the pulse with larger amplitude or wider width than the graph above is input to V_{DD} pin, the reset signal may be output.

PACKAGE INFORMATION

POWER DISSIPATION (DFN(PLP)1010-4)

Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

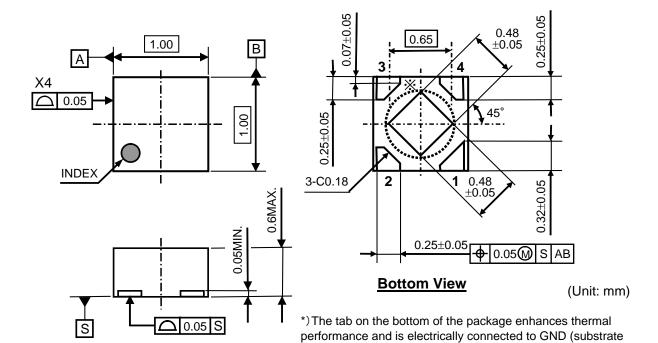

Measurement Conditions

Standard Test Land Pattern
Mounting on Board (Wind velocity=0m/s)
Glass cloth epoxy plastic (Double sided)
40mm×40mm×1.6mm
Top side: Approx. 50%, Back side: Approx. 50%
φ 0.54mm×24pcs

Measurement Result:

(Ta=25°C, Tjmax=125°C)

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	Standard Test Land Pattern		
Power Dissipation	400mW		
The amount Desciote and	θja = (125-25°C)/0.4W = 250°C/W		
Thermal Resistance	θjc = 67°C/W		

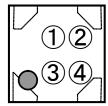

40

Power Dissipation

Measurement Board Pattern

IC Mount Area (Unit : mm)

PACKAGE DIMENSIONS (DFN(PLP)1010-4)



level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.

MARK SPECIFICATION (DFN(PLP)1010-4)

①②: Product Code ... Refer to MARK SPECIFICATION TABLE

34: Lot Number ... Alphanumeric Serial Number

NO.EA-347-170203

MARK SPECIFICATION TABLE (DFN(PLP)1010-4)

R3116Kxx1A

Product Name	02	V _{SET}
R3116K071A	HA	0.7V
R3116K081A	HB	0.8V
R3116K091A	HC	0.8V 0.9V
R3116K101A	HD	1.0V
R3116K111A	HE	1.1V
R3116K121A	HF	1.2V
		1.3V
R3116K131A R3116K141A	HG HH	1.4V
R3116K151A	HJ	
		1.5V
R3116K161A	HK	1.6V
R3116K171A R3116K181A	HL	1.7V
	HM	1.8V
R3116K191A	HN	1.9V
R3116K201A	HP	2.0V
R3116K211A	HQ	2.1V
R3116K221A	HR	2.2V
R3116K231A	HS	2.3V
R3116K241A	HT	2.4V
R3116K251A	HU	2.5V
R3116K261A	HV	2.6V
R3116K271A	HW	2.7V
R3116K281A	HX	2.8V
R3116K291A	HY	2.9V
R3116K301A	HZ	3.0V
R3116K311A	<u>JA</u>	3.1V
R3116K321A	JB	3.2V
R3116K331A	JC	3.3V
R3116K341A	JD	3.4V
R3116K351A	JE	3.5V
R3116K361A	JF	3.6V
R3116K371A	JG	3.7V
R3116K381A	JH · ·	3.8V
R3116K391A	JJ	3.9V
R3116K401A	JK	4.0V
R3116K411A	JL	4.1V
R3116K421A	JM	4.2V
R3116K431A	JN	4.3V
R3116K441A	JP	4.4V
R3116K451A	JQ	4.5V
R3116K461A	JR	4.6V
R3116K471A	JS	4.7V
R3116K481A	JT	4.8V
R3116K491A	JU	4.9V
R3116K501A	JV	5.0V

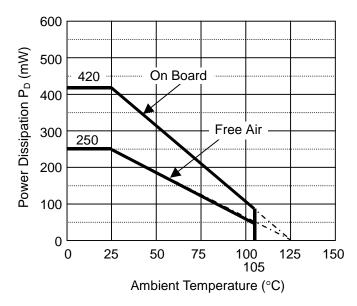
R3116Kxx1C

Product Name	02	V _{SET}
R3116K071C	KA	0.7V
R3116K081C	KB	0.8V
R3116K091C	KC	0.9V
R3116K101C	KD	1.0V
R3116K111C	KE	1.1V
R3116K121C	KF	1.2V
R3116K131C	KG	1.3V
R3116K141C	KH	1.4V
R3116K151C	KJ	1.5V
R3116K161C	KK	1.6V
R3116K171C	KL	1.7V
R3116K181C	KM	1.8V
R3116K191C	KN	1.9V
R3116K201C	KP	2.0V
R3116K211C	KQ	2.1V
R3116K221C	KR	2.2V
R3116K231C	KS	2.3V
R3116K241C	KT	2.4V
R3116K251C	KU	2.5V
R3116K261C	KV	2.6V
R3116K271C	KW	2.7V
R3116K281C	KX	2.8V
R3116K291C	KY	2.9V
R3116K301C	KZ	3.0V
R3116K311C	LA	3.1V
R3116K321C	LB	3.2V
R3116K331C	LC	3.3V
R3116K341C	LD	3.4V
R3116K351C	LE	3.5V
R3116K361C	LF	3.6V
R3116K371C	LG	3.7V
R3116K381C	LH	3.8V
R3116K391C	LJ	3.9V
R3116K401C	LK	4.0V
R3116K411C	LL	4.1V
R3116K421C	LM	4.2V
R3116K431C	LN	4.3V
R3116K441C	LP	4.4V
R3116K451C	LQ	4.5V
R3116K461C	LR	4.6V
R3116K471C	LS	4.7V
R3116K481C	LT	4.8V
R3116K491C	LU	4.9V
R3116K501C	LV	5.0V

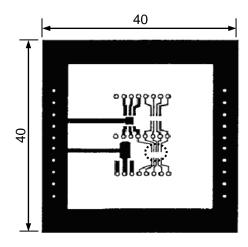
POWER DISSIPATION (SOT-23-5)

Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

(Power Dissipation (SOT-23-5) is substitution of SOT-23-6.)

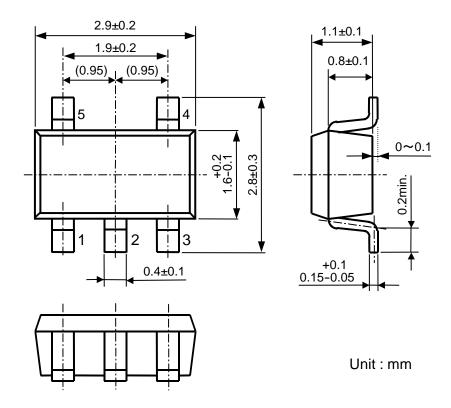

* Measurement Conditions

	Standard Test Land Pattern	
Environment	Mounting on Board (Wind velocity=0m/s)	
Board Material	Glass cloth epoxy plastic (Double sided)	
Board Dimensions	40mm*40mm*1.6mm	
Copper Ratio	Top side: Approx. 50%, Back side: Approx. 50%	
Through-holes	φ 0.5mm * 44pcs	


* Measurement Result:

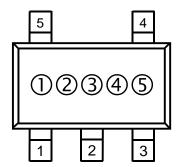
(Ta=25°C, Tjmax=125°C)

	Standard Land Pattern	Free Air
Power Dissipation	420mW	250mW
Thermal Resistance	θja = (125-25°C)/0.42W= 238°C/W	400°C/W


Power Dissipation

Measurement Board Pattern

IC Mount Area (Unit: mm)


PACKAGE DIMENSIONS (SOT-23-5)

MARK SPECIFICATION (SOT-23-5)

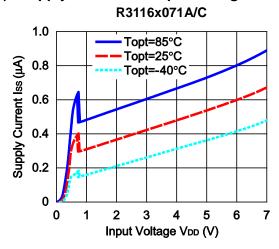
①②③: Product Code ... Refer to MARK SPECIFICATION TABLE

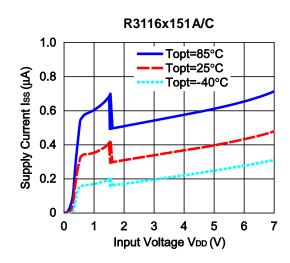
 $\textcircled{3} : \textbf{Lot Number} \ ... \ \textbf{Alphanumeric Serial Number}$

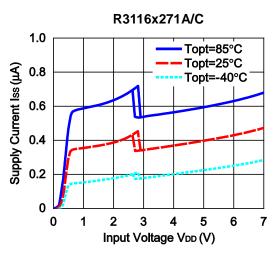
MARK SPECIFICATION TABLE (SOT-23-5)

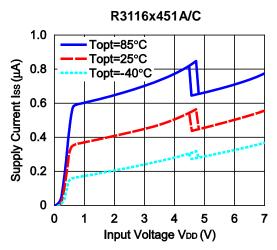
R3116Nxx1A

Product Name	023	V _{SET}
R3116N071A	D 0 A	0.7V
R3116N081A	D 0 B	0.8V
R3116N091A	DOC	0.9V
R3116N101A	DOD	1.0V
R3116N111A	DOE	1.1V
R3116N121A	DOF	1.2V
R3116N131A	DOG	1.3V
R3116N141A	DOH	1.4V
R3116N151A	DOJ	1.5V
R3116N161A	DOK	1.6V
R3116N171A	DOL	1.7V
R3116N181A	DOM	1.8V
R3116N191A	DON	1.9V
R3116N201A	DOP	2.0V
R3116N211A	DOQ	2.1V
R3116N221A	D 0 R	2.2V
R3116N231A	DOS	2.3V
R3116N241A	DOT	
R3116N251A	DOU	2.4V 2.5V
R3116N261A	DOV	2.6V
R3116N271A	DOV	
R3116N281A	DOX	2.7V 2.8V
R3116N291A		
R3116N301A	D 0 Y D 0 Z	2.9V
R3116N311A		3.0V 3.1V
	E O A	
R3116N321A	E 0 B	3.2V
R3116N331A	EOC	3.3V
R3116N341A	E 0 D	3.4V
R3116N351A	EOE	3.5V
R3116N361A	EOF	3.6V
R3116N371A	E 0 G	3.7V
R3116N381A	EOH	3.8V
R3116N391A	EOJ	3.9V
R3116N401A	EOK	4.0V
R3116N411A	EOL	4.1V
R3116N421A	E 0 M	4.2V
R3116N431A	EON	4.3V
R3116N441A	EOP	4.4V
R3116N451A	E O Q	4.5V
R3116N461A	EOR	4.6V
R3116N471A	EOS	4.7V
R3116N481A	E 0 T	4.8V
R3116N491A	E 0 U	4.9V
R3116N501A	E 0 V	5.0V

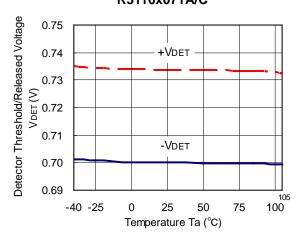

R3116Nxx1C

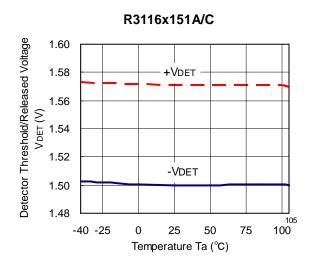

Drawlest Name	000	
Product Name	003	V _{SET}
R3116N071C	D1A	0.7V
R3116N081C	D1B	0.8V
R3116N091C	D1C	0.9V
R3116N101C	D1D	1.0V
R3116N111C	D1E	1.1V
R3116N121C	D1F	1.2V
R3116N131C	D1G	1.3V
R3116N141C	D1H	1.4V
R3116N151C	D1J	1.4V 1.5V
R3116N161C	D1K	1.6V
R3116N171C	D1L	1.7V
R3116N181C	D 1 M	1.8V
R3116N191C	D1N	1.9V
R3116N201C	D1P	2.0V
R3116N211C	D1Q	2.1V
R3116N221C	D1R	2.2V
R3116N231C	D1S	2.3V
R3116N241C	D1T	2.4V
R3116N251C	D1U	2.5V
R3116N261C	D 1 V	2.6V
R3116N271C	D1W	2.7V
R3116N281C	D1X	2.8V
R3116N291C	D1Y	2.9V
R3116N301C	D1Z	3.0V
R3116N311C	E1A	3.1V
R3116N321C	E1B	3.2V
R3116N331C	E1C	3.3V
R3116N341C	E1D	3.4V
R3116N351C	E1E	3.5V
R3116N361C	E1F	3.6V
R3116N371C	E1G	3.7V
R3116N381C	E1H	3.8V
R3116N391C	E1J	3.9V
R3116N401C	E1K	4.0V
R3116N411C	E1L	4.1V 4.2V
R3116N421C	E 1 M	4.2V
R3116N431C	E1N	4.3V
R3116N441C	E1P	4.4V
R3116N451C	E1Q	4.5V
R3116N461C	E1R	4.6V
R3116N471C	E1S	4.7V
R3116N481C	E1T	4.8V
R3116N491C	E1U	4.9V
R3116N501C	E1V	5.0V

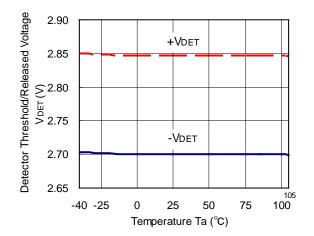

TYPICAL CHARACTERISTICS

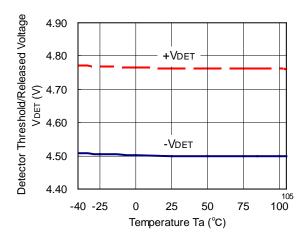

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

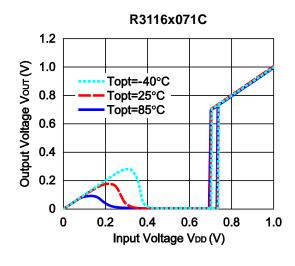
1) Supply Current vs. Input Voltage

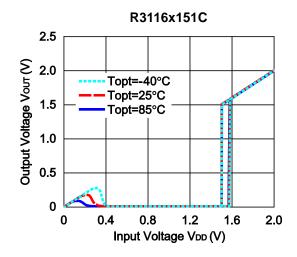


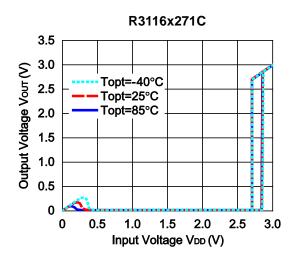


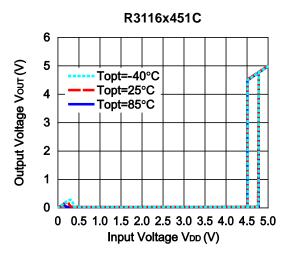


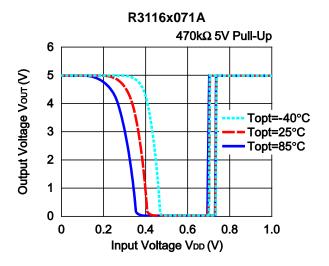

2) Detector Threshold vs. Temperature R3116x071A/C

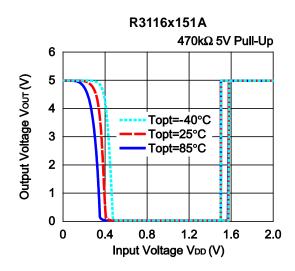


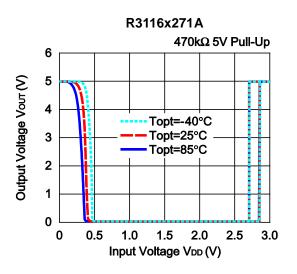

R3116x271A/C R3116x451A/C

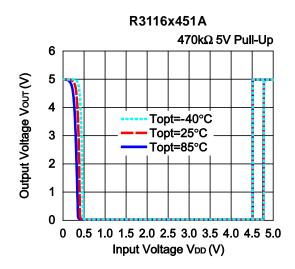


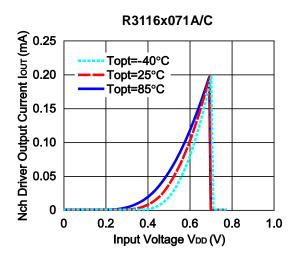


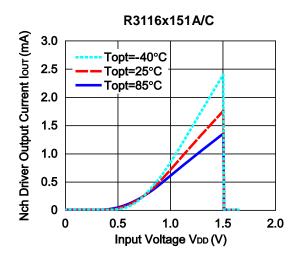

3) Output Voltage vs. Input Voltage

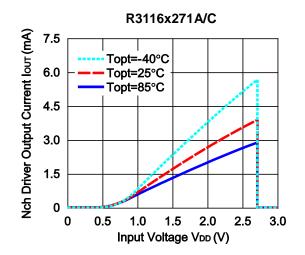


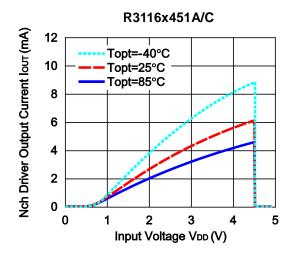




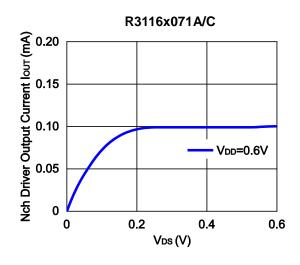


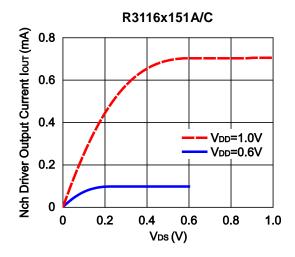


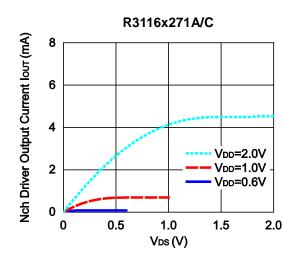


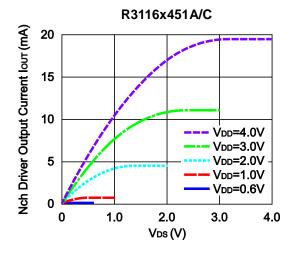


4) Nch Driver Output Current vs. Input Voltage (VDS=0.5V)

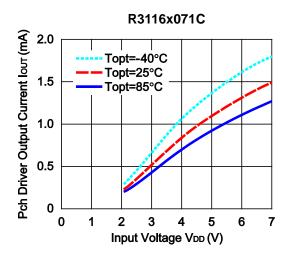


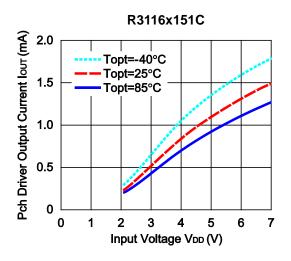


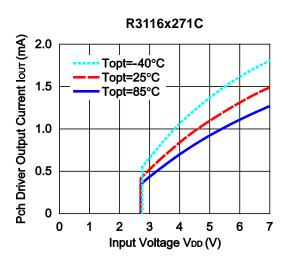


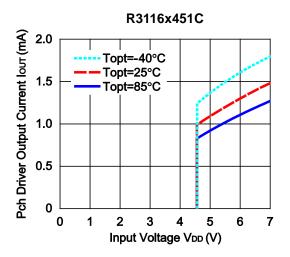


5) Nch Driver Output Current vs. VDS

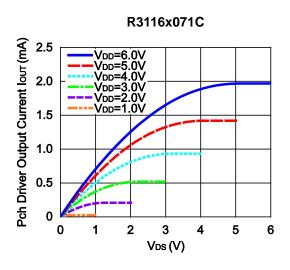


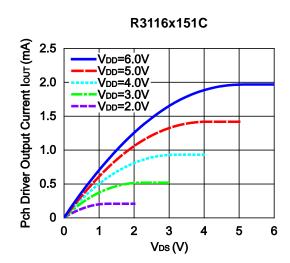


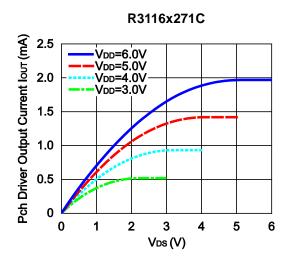


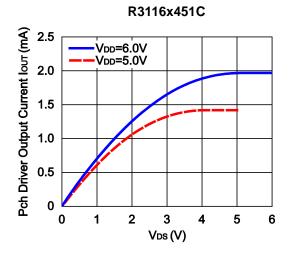


6) Pch Driver Output Current vs. Input Voltage (VDS=-2.1V)

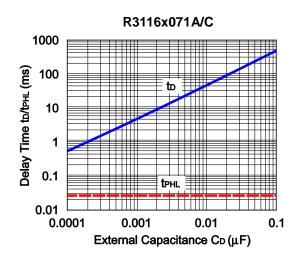


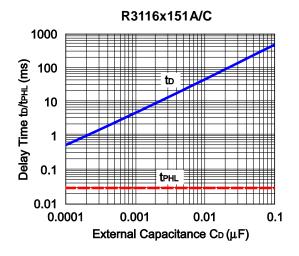


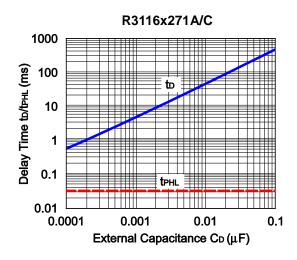


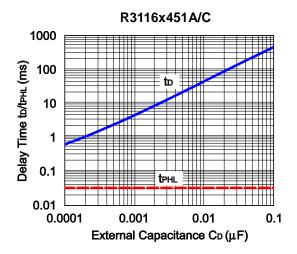


7) Pch Driver Output Current vs. VDs

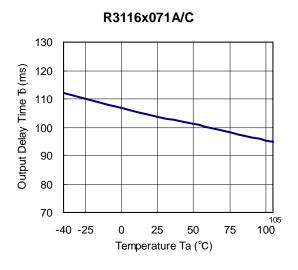


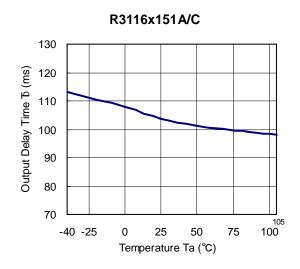


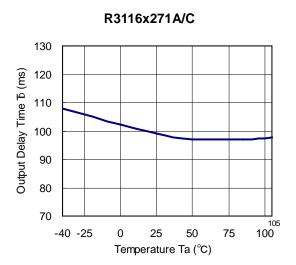


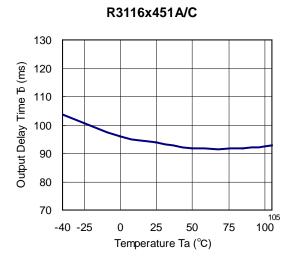


8) Output Delay Time vs. External Capacitance









9) Output Delay Time vs. Temperature (CD=22nF)

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.

Halogen Free

Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

https://www.e-devices.ricoh.co.jp/en/

Sales & Support Offices

Ricoh Electronic Devices Co., Ltd.

Shin-Yokohama Office (International Sales)
2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan
Phone: +81-50-3814-7687 Fax: +81-45-474-0074

Ricoh Americas Holdings, Inc

(way, Suite 200 Campbell, CA 95008, U.S.A. 675 Campbell Technology Park Phone: +1-408-610-3105

Ricoh Europe (Netherlands) B.V.

Semiconductor Support Centre
Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands
Phone: +31-20-5474-309

Ricoh International B.V. - German Branch

Semiconductor Sales and Support Centre Oberrather Strasse 6, 40472 Düsseldorf, Germany Phone: +49-211-6546-0

Ricoh Electronic Devices Korea Co., Ltd.

3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713

Ricoh Electronic Devices Shanghai Co., Ltd.

Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203, People's Republic of China

Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

Ricoh Electronic Devices Shanghai Co., Ltd. Shenzhen Branch

1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District, Shenzhen, China Phone: +86-755-8348-7600 Ext 225

Ricoh Electronic Devices Co., Ltd.

Taipei officeRoom 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623