
INTEGRATED CIRCUITS

Product specification Supersedes data of December 1990 File under Integrated Circuits, IC06

1997 Nov 25

Product specification

Dual JK flip-flop with set and reset; positive-edge trigger

FEATURES

- J, \overline{K} inputs for easy D-type flip-flop
- Toggle flip-flop or "do nothing" mode
- Output capability: standard
- I_{CC} category: flip-flops

GENERAL DESCRIPTION

The 74HC/HCT109 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT109 are dual positive-edge triggered, $J\overline{K}$ flip-flops with individual J, \overline{K} inputs, clock (CP) inputs, set

 (\overline{S}_D) and reset (\overline{R}_D) inputs; also complementary Q and \overline{Q} outputs.

The set and reset are asynchronous active LOW inputs and operate independently of the clock input.

The J and \overline{K} inputs control the state changes of the flip-flops as described in the mode select function table.

The J and \overline{K} inputs must be stable one set-up time prior to the LOW-to-HIGH clock transition for predictable operation.

The J \overline{K} design allows operation as a D-type flip-flop by tying the J and \overline{K} inputs together.

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	ТҮ	TYPICAL		
STWBUL	PARAMETER	CONDITIONS	НС	нст		
t _{PHL} / t _{PLH}	propagation delay					
	nCP to nQ, $n\overline{Q}$		15	17	ns	
	$n\overline{S}_{D}$ to nQ, $n\overline{Q}$	C _L = 15 pF; V _{CC} = 5 V	12	14	ns	
	$n\overline{R}_{D}$ to nQ, $n\overline{Q}$	$v_{CC} = 5 v$	12	15	ns	
f _{max}	maximum clock frequency		75	61	MHz	
CI	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per flip-flop	notes 1 and 2	20	22	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz

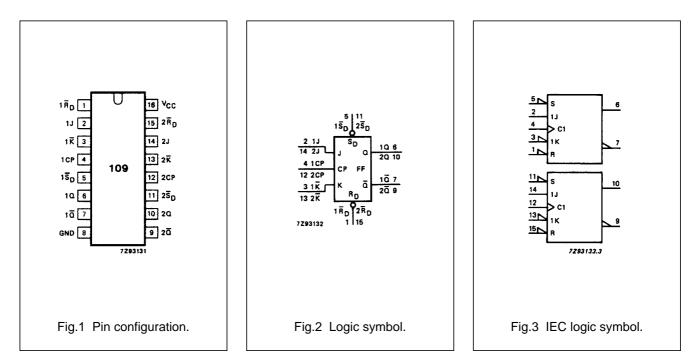
 f_o = output frequency in MHz

 $\Sigma (C_L \times V_{CC}^2 \times f_o) = sum of outputs$

 C_L = output load capacitance in pF

 V_{CC} = supply voltage in V

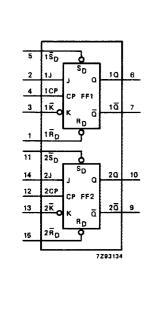
2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V.


ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT109

PIN DESCRIPTION


PIN NO. SYMBOL		NAME AND FUNCTION
1, 15	$1\overline{R}_{D}, 2\overline{R}_{D}$	asynchronous reset-direct input (active LOW)
2, 14, 3, 13	1J, 2J, 1 K , 2 K	synchronous inputs; flip-flops 1 and 2
4, 12	1CP, 2CP	clock input (LOW-to-HIGH, edge-triggered)
5, 11	$1\overline{S}_{D}, 2\overline{S}_{D}$	asynchronous set-direct input (active LOW)
6, 10	1Q, 2Q	true flip-flop outputs
7, 9	1 <u>Q</u> , 2 <u>Q</u>	complement flip-flop outputs
8	GND	ground (0 V)
16	V _{CC}	positive supply voltage

74HC/HCT109

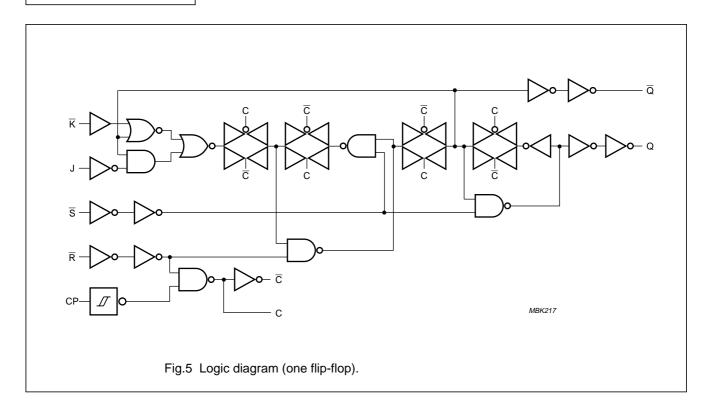
Product specification

74HC/HCT109

FUNCTION TABLE

OPERATING				OUTPUTS			
MODE	$\overline{\mathbf{S}}_{D}$	R _D	СР	J	ĸ	Q	Q
asynchronous set	L	Н	Х	Х	Х	Н	L
asynchronous reset	Н	L	X	X	X	L	н
undetermined	L	L	X	X	X	н	н
toggle	Н	Н	↑	h	I	q	q
load "0" (reset)	Н	н	1	1	I	L	н
load "1" (set)	Н	н	↑	h	h	н	L
hold "no change"	Н	н	1		h	q	q

Notes


1. H = HIGH voltage level

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition L = LOW voltage level

 $\label{eq:I} I = LOW \mbox{ voltage level one set-up time prior to the LOW-to-HIGH CP transition} \\ q = lower \mbox{ case letters indicate the state of the referenced output one set-up time prior to the LOW-to-HIGH CP transition} \\$

Fig.4 Functional diagram. X = don't care

 \uparrow = LOW-to-HIGH CP transition

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

74HC/HCT109

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: flip-flops

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

					T _{amb} (°	°C)				TEST CONDITIONS	
CYMDOL					74HC	;					
SYMBOL	PARAMETER	+25		-40	to +85	-40 t	o +125	UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(-)	
	propagation delay		50	175		220		265		2.0	
t _{PHL} / t _{PLH}	nCP to nQ, $n\overline{Q}$		18	35		44		53	ns	4.5	Fig.6
			14	30		37		45		6.0	
	propagation delay		30	120		150		180		2.0	
t _{PLH}	nS _D to nQ		11 9	24 20		30 26		36 31	ns	4.5 6.0	Fig.7
			9 41	155		195		235		2.0	
tour	propagation delay		41 15	31		39		235 47	ns	2.0 4.5	Fig.7
t _{PHL}	$n\overline{S}_{D}$ to $n\overline{Q}$		12	26		33		40	115	6.0	1 ig.7
	a ann a na Chur Alalana		41	185		230		280		2.0	
t _{PHL}	propagation delay		15	37		46		56	ns	4.5	Fig.7
	nR _D to nQ		12	31		39		48		6.0	
	propagation delay		39	170		215		255		2.0	
t _{PLH} nR _D to nQ			14	34		43		51	ns	4.5	Fig.7
			11	29		37		43		6.0	
	output transition		19	75		95		110		2.0	
t _{THL} / t _{TLH}	time		7	15		19		22	ns	4.5	Fig.6
			6	13		16		19		6.0	
	clock pulse width	80	19		100		120			2.0	F ' 0
tw	HIGH or LOW	16 14	7 6		20 17		24 20		ns	4.5 6.0	Fig.6
t	set or reset pulse	80 16	14 5		100 20		120 24		ns	2.0 4.5	Fig.7
t _W	width HIGH or LOW	14	4		17		24		115	6.0	Fig.7
		70	19		90		105			2.0	
t _{rem}	removal time	14	7		18		21		ns	4.5	Fig.7
-ieili	$n\overline{S}_{D}$, $n\overline{R}_{D}$ to nCP	12	6		15		18			6.0	
		70	17		90		105			2.0	
t _{su}	set-up time nJ, nK to nCP	14	6		18		21		ns	4.5	Fig.6
		12	5		15		18			6.0	
	hold time	5	0		5		5			2.0	
t _h	hold time nJ, nK to nCP	5	0		5		5		ns	4.5	Fig.6
		5	0		5		5			6.0	
	maximum clock	6.0	22		5.0		4.0			2.0	
f _{max}	pulse frequency	30	68		24		20		MHz	4.5	Fig.6
	,	35	81		28		24			6.0	

74HC/HCT109

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: flip-flops

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 \text{ V}; t_r = t_f = 6 \text{ ns}; C_L = 50 \text{ pF}$

			T _{amb} (°C)							TEST CONDITIONS		
SYMBOL	PARAMETER				74HC	Т						
STMBOL	FARAMETER		+25		-40	-40 to +85 -40 t		o +125		V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	propagation delay nCP to nQ, n \overline{Q}		20	35		44		53	ns	4.5	Fig.6	
t _{PLH}	propagation delay nS _D to nQ		13	26		33		39	ns	4.5	Fig.7	
t _{PHL}	propagation delay $n\overline{S}_{D}$ to $n\overline{Q}$		19	35		44		53	ns	4.5	Fig.7	
t _{PHL}	propagation delay $n\overline{R}_D$ to nQ		19	35		44		53	ns	4.5	Fig.7	
t _{PLH}	propagation delay $n\overline{R}_{D}$ to $n\overline{Q}$		16	32		40		48	ns	4.5	Fig.7	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6	
t _W	clock pulse width HIGH or LOW	18	9		23		27		ns	4.5	Fig.6	
t _W	set or reset pulse width HIGH or LOW	16	8		20		24		ns	4.5	Fig.7	
t _{rem}	removal time $n\overline{S}_{D}, n\overline{R}_{D}$ to nCP	16	8		20		24		ns	4.5	Fig.7	
t _{su}	set-up time nJ, nK to nCP	18	8		23		27		ns	4.5	Fig.6	
t _h	hold time nJ, nK to nCP	3	-3		3		3		ns	4.5	Fig.6	
f _{max}	maximum clock pulse frequency	27	55		22		18		MHz	4.5	Fig.6	

74HC/HCT109

AC WAVEFORMS

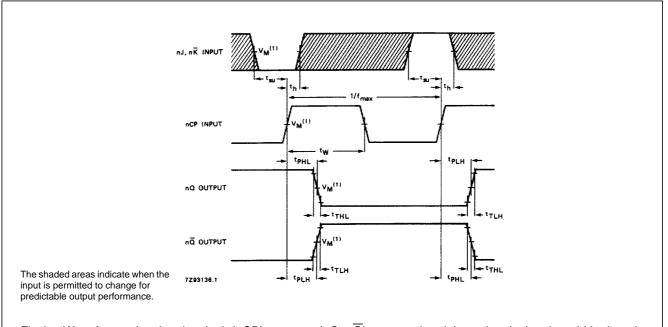


Fig.6 Waveforms showing the clock (nCP) to output (nQ, $n\overline{Q}$) propagation delays, the clock pulse width, the nJ, $n\overline{K}$ to nCP set-up, the nCP to nJ, $n\overline{K}$ hold times, the output transition times and the maximum clock pulse frequency.

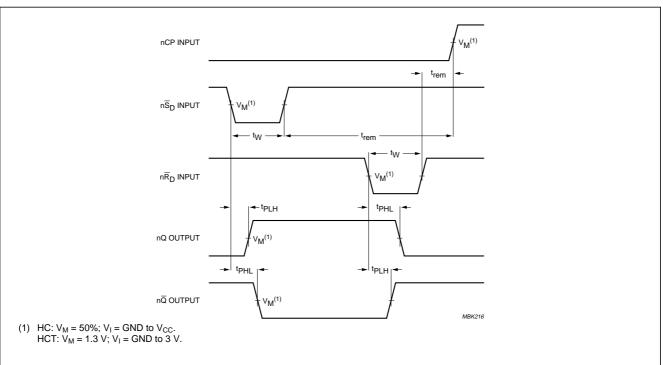


Fig.7 Waveforms showing the set $(n\overline{S}_D)$ and reset $(n\overline{R}_D)$ input to output $(nQ, n\overline{Q})$ propagation delays, the set and reset pulse widths and the $n\overline{R}_D$, $n\overline{S}_D$ to nCP removal time.

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

DIP

SOLDERING BY DIPPING OR BY WAVE

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

REPAIRING SOLDERED JOINTS

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300 \,^{\circ}$ C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 $^{\circ}$ C, contact may be up to 5 seconds.

SO, SSOP and TSSOP

REFLOW SOLDERING

Reflow soldering techniques are suitable for all SO, SSOP and TSSOP packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C. Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

WAVE SOLDERING

Wave soldering can be used for all SO packages. Wave soldering is **not** recommended for SSOP and TSSOP packages, because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.

If wave soldering is used - and cannot be avoided for SSOP and TSSOP packages - the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow and must incorporate solder thieves at the downstream end.

Even with these conditions:

- Only consider wave soldering SSOP packages that have a body width of 4.4 mm, that is SSOP16 (SOT369-1) or SSOP20 (SOT266-1).
- Do not consider wave soldering TSSOP packages with 48 leads or more, that is TSSOP48 (SOT362-1) and TSSOP56 (SOT364-1).

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

REPAIRING SOLDERED JOINTS

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

1997 Nov 25

74HC/HCT109

Product specification

74HC/HCT109

DEFINITIONS

Data sheet status									
Objective specification This data sheet contains target or goal specifications for product development.									
Preliminary specification This data sheet contains preliminary data; supplementary data may be published later.									
Product specification This data sheet contains final product specifications.									
Limiting values									
more of the limiting values of the device at these or at	Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.								
Application information									
	en is sized. It is advised, and deep not form part of the second fortion								

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Philips Semiconductors Home

Products

MultiMarket

Function

 Packages End of Life

Here! Models

information

Distributors Go

Catalog by System

Cross-reference

Produ Buy MySe Conta Product Information

Information as of 2003-04-22 74HC/HCT109; Dual JK flip-flop with set and reset; positive-Please register now ! Stay informed **edge trigger**

My.Semiconductors.COM. Your personal service from Use right mouse button to Philips Semiconductors. download datasheet Download datasheet

		General description	• Features	• Applications	Datasheet
 Product Selector 	ш	Block diagram	Buy online	Support & tools	Email/translate
Catalog by		Products & packages	Parametrics	 Similar products 	·U ·

General description

The 74HC/HCT109 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT109 are dual positive-edge triggered, JK flip-flops with individual J, K inputs, clock (CP) inputs, set (SD) and reset (RD) inputs; also complementary Q and Q outputs.

The set and reset are asynchronous active LOW inputs and operate independently of the clock input.

ш The J and K inputs control the state changes of the flip-flops as described in the mode select function table. SoC solutions

> The J and K inputs must be stable one set-up time prior to the LOW-to-HIGH clock transition for predictable operation.

The JK design allows operation as a D-type flip-flop by tying the J and K inputs together.

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

Features

- J, K inputs for easy D-type flip-flop
- Toggle flip-flop or "do nothing" mode
- Output capability: standard
- I_{CC} category: flip-flops

Datasheet

<u>Type number</u>	<u>Title</u>	Publication release date	Datasheet status	Page count	File size (kB)	Datasheet
74HC/HCT109	Dual JK flip- flop with set and reset; positive-edge trigger	11/25/1997	Product specification	9	59	Download

Additional datasheet info

To complete the device datasheet with package and family information, also download the following PDF files. The "Logic Package Information" document is required to determine in which package(s) this device is available.

Document	Description
	HC/T Family Specifications, The IC06 74HC/HCT/HCMOS Logic Family Specifications
	HC/T Package Info, The IC06 74HC/HCT/HCMOS Logic Package Information
	HC/T Package Outlines, The IC06 74HC/HCT/HCMOS Logic Package Outlines

Blockdiagram(s)

Block diagram of 74HC109N

Parametrics

Type number	Package	Description	Propagation Delay(ns)	Voltage	of	Power Dissipation Considerations	Logic Switching Levels	Output Drive Capability
74HC109D	<u>SOT109</u> (SO16)	Dual J-/K Flip-Flop with Set and Reset; Positive- Edge Trigger	15	5 Volts +	16	Low Power or Battery Applications	CMOS	Low
74HC109DB	<u>SOT338-1</u> (SSOP16)	Dual J-/K Flip-Flop with Set and Reset; Positive- Edge Trigger	15	5 Volts +	16	Low Power or Battery Applications	CMOS	Low

74HC109N	<u>SOT38-1</u> (DIP16)	Dual J-/K Flip-Flop with Set and Reset; Positive- Edge Trigger	15	5 Volts +	16	Low Power or Battery Applications	CMOS	Low
74HCT109D	<u>SOT109</u> (SO16)	Dual J-/K Flip-Flop with Set and Reset; Positive- Edge Trigger; TTL Enabled	15	5 Volts +	16	Low Power or Battery Applications	TTL	Low
74HCT109DB	<u>SOT338-1</u> (SSOP16)	Dual J-/K Flip-Flop with Set and Reset; Positive- Edge Trigger; TTL Enabled	15	5 Volts +	16	Low Power or Battery Applications	TTL	Low
74HCT109N	<u>SOT38-1</u> (DIP16)	Dual J-/K Flip-Flop with Set and Reset; Positive- Edge Trigger; TTL Enabled	15	5 Volts +	16	Low Power or Battery Applications	TTL	Low
74HCT109PW	<u>SOT403-1</u> (TSSOP16)	Dual J-/K Flip-Flop with Set and Reset; Positive- Edge Trigger; TTL Enabled	15	5 Volts +	16	Low Power or Battery Applications	TTL	Low

Products, packages, availability and ordering

<u>Type number</u>	<u>North</u> <u>American type</u> <u>number</u>	Ordering code (12NC)	Marking/Packing	Package	Device status	Buy online
74HC109D	74HC109D	9337 144 80652	Standard Marking * Bulk Pack, CECC	<u>SOT109</u> (SO16)	Full production	order this -
	74HC109D-T	9337 144 80653	Standard Marking * Reel Pack, SMD, 13", CECC	<u>SOT109</u> (SO16)	Full production	order this -

74HC109DB	74HC109DB	9351 863 40112	Standard Marking * Bulk Pack	<u>SOT338-1</u> (SSOP16)	Full production	order this -
	74HC109DB- T	9351 863 40118	Standard Marking * Reel Pack, SMD, 13"	<u>SOT338-1</u> (SSOP16)	Full production	order this -
74HC109N	74HC109N	9336 692 60652	Standard Marking * Bulk Pack, CECC	<u>SOT38-1</u> (DIP16)	Full production	order this -
74HCT109D	74HCT109D	9337 149 60652	Standard Marking * Bulk Pack, CECC	<u>SOT109</u> (SO16)	Full production	order this -
	74HCT109D- T	9337 149 60653	Standard Marking * Reel Pack, SMD, 13", CECC	<u>SOT109</u> (SO16)	Full production	order this -
74HCT109DB	74HCT109DB	9351 863 20112	Standard Marking * Bulk Pack	SOT338-1 (SSOP16)	Full production	order this -
	74HCT109DB- T	9351 863 20118	Standard Marking * Reel Pack, SMD, 13"	<u>SOT338-1</u> (SSOP16)	Full production	order this -
74HCT109N	74HCT109N	9336 698 90652	Standard Marking * Bulk Pack, CECC	<u>SOT38-1</u> (DIP16)	Full production	order this -
74HCT109PW	74HCT109PW	9351 863 30112	Standard Marking * Bulk Pack	<u>SOT403-1</u> (TSSOP16)	Full production	order this -
	74HCT109PW- T	9351 863 30118	Standard Marking * Reel Pack, SMD, 13"		Full production	order this -

Products in the above table are all in production. Some variants are discontinued; <u>click here</u> for information on these variants.

Similar products

<u>74HC/HCT109</u> links to the similar products page containing an overview of products that are similar in function or related to the type number(s) as listed on this page. The similar products page includes products from the same catalog tree(s), relevant selection guides and products from the same functional category.

Support & tools

HC/T Family Specifications, The IC06 74HC/HCT/HCMOS Logic Family Specifications(date 01-Mar-98) HC/T User Guide(date 01-Nov-97)

Email/translate this product information

- Email this product information.
- Translate this product information page from English to:

The English language is the official language used at the semiconductors.philips.com website and webpages. All translations on this website are created through the use of <u>Google Language Tools</u> and are provided for convenience purposes only. No rights can be derived from any translation on this website.

About this Web Site

Copyright © 2003 Koninklijke Philips N.V. All rights reserved. | Privacy Policy |

|Koninklijke Philips N.V. | Access to and use of this Web Site is subject to the following Terms of Use. |