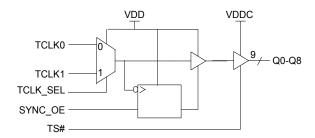


2.5 V or 3.3 V, 200 MHz, 1:9 Clock Distribution Buffer

Features


- 2.5 V or 3.3 V operation
- 200 MHz clock support
- LVCMOS-/LVTTL-compatible inputs
- 9 clock outputs: drive up to 18 clock lines
- Synchronous Output Enable
- Output three-state control
- 250 ps max. output-to-output skew
- Pin compatible with MPC947, MPC9447
- Available in Industrial and Commercial temp. range
- 32-pin TQFP package

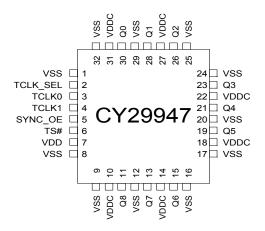
Description

The CY29947 is a low-voltage 200 MHz clock distribution buffer with the capability to select one of two LVCMOS/LVTTL compatible clock inputs. The two clock sources can be used to provide for a test clock as well as the primary system clock. All other control inputs are LVCMOS/LVTTL compatible. The 9 outputs are LVCMOS or LVTTL compatible and can drive 50 Ω series or parallel terminated transmission lines.For series terminated transmission lines, each output can drive one or two traces giving the device an effective fanout of 1:18. The outputs can also be three-stated via the three-state input TS#. Low output-to-output skews make the CY29947 an ideal clock distribution buffer for nested clock trees in the most demanding of synchronous systems.

The CY29947 also provides a synchronous output enable input for enabling or disabling the output clocks. Since this input is internally synchronized to the input clock, potential output glitching or runt pulse generation is eliminated.

Block Diagram

Contents


Pinouts	3
Pin Definitions [1]	3
Output Enable/Disable	4
Maximum Ratings	5
DC Parameters	
AC Parameters	6
Ordering Information	8
Ordering Code Definitions	8
Package Drawing and Dimension	9
Acronyms	

10
10
11
12
12
12
12
12
12

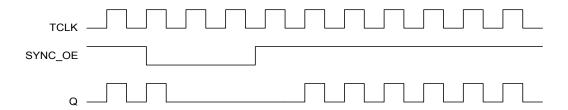
Pinouts

Figure 1. 32-pin TQFP pinout

Pin Definitions [1]

Pin	Name	PWR	I/O	Description
3	TCLK0		I, PU	Test Clock Input
4	TCLK1		I, PU	Test Clock Input
2	TCLK_SEL		I, PU	Test Clock Select Input. When LOW, TCLK0 is selected. When asserted HIGH, TCLK1 is selected.
11, 13, 15, 19, 21, 23, 26, 28, 30	Q(8:0)	VDDC	0	Clock Outputs
5	SYNC_OE		I, PU	Output Enable Input. When asserted HIGH, the outputs are enabled and when set LOW the outputs are disabled in a LOW state.
6	TS#		I, PU	Three-state Control Input. When asserted LOW, the output buffers are three-stated. When set HIGH, the output buffers are enabled.
10, 14, 18, 22, 27, 31	VDDC			3.3 V or 2.5 V Power Supply for Output Clock Buffers
7	VDD			3.3 V or 2.5 V Power Supply
1, 8, 9, 12, 16, 17, 20, 24, 25, 29, 32	VSS			Common Ground

Note


PD = internal pull-down, PU = internal pull-up.

Output Enable/Disable

The CY29947 features a control input to enable or disable the outputs. This data is latched on the falling edge of the input clock. When SYNC_OE is asserted LOW, the outputs are disabled in a LOW state. When SYNC_OE is set HIGH, the outputs are enabled as shown in Figure 2.

Figure 2. SYNC_OE Timing Diagram

Maximum Ratings

Exceeding maximum ratings [2] may shorten the useful life of the device. User guidelines are not tested.

Maximum Input Voltage Relative to $V_{SS}\colon$ V_{SS} – 0.3 V
Maximum Input Voltage Relative to V_{DD} : V_{DD} + 0.3 V
Storage Temperature:65 °C to + 150 °C
Operating Temperature:40 °C to +85 °C
Maximum ESD protection

Maximum Power Supply	:5.5 V
Maximum Input Current:	±20 mA

This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation, V_{in} and V_{out} should be constrained to the range:

$$V_{SS} < (V_{in} \text{ or } V_{out}) < V_{DD}$$

Unused inputs must always be tied to an appropriate logic voltage level (either V_{SS} or V_{DD}).

DC Parameters

 V_{DD} = V_{DDC} = 3.3 V ± 10% or 2.5 V ± 5%, Over the specified temperature range

Parameter	Description	Conditions	Min	Тур	Max	Unit
V _{IL}	Input Low Voltage		V _{SS}	-	0.8	V
V _{IH}	Input High Voltage		2.0	_	V_{DD}	V
I _{IL}	Input Low Current ^[3]		_	_	-100	μA
I _{IH}	Input High Current ^[3]		_	_	10	μA
V _{OL}	Output Low Voltage ^[4]	I _{OL} = 20 mA	_	_	0.4	V
V _{OH}	Output High Voltage ^[4]	I _{OH} = -20 mA, V _{DD} = 3.3 V	2.5	_	_	V
		$I_{OH} = -20 \text{ mA}, V_{DD} = 2.5 \text{ V}$	1.8	_	_	
I _{DDQ}	Quiescent Supply Current		_	5	7	mA
I _{DD}	Dynamic Supply Current	V _{DD} = 3.3 V, Outputs @ 100 MHz, CL = 30 pF	_	120	_	mA
		V _{DD} = 3.3 V, Outputs @ 160 MHz, CL = 30 pF	_	200	_	
		V _{DD} = 2.5 V, Outputs @ 100 MHz, CL = 30 pF	_	85	_	
		V _{DD} = 2.5 V, Outputs @ 160 MHz, CL = 30 pF	_	140	_	
Zout	Output Impedance	V _{DD} = 3.3 V	12	15	18	Ω
		V _{DD} = 2.5 V	14	18	22	
C _{in}	Input Capacitance		_	4	_	pF

Notes

- 2. **Multiple Supplies:** The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.

 3. Inputs have pull-up/pull-down resistors that effect input current.
- 4. Driving series or parallel terminated 50 Ω (or 50 Ω to $V_{DD}/2$) transmission lines.

AC Parameters

 V_{DD} = V_{DDC} = 3.3 V ± 10% or 2.5 V ± 5%, Over the specified temperature range

Parameter [5]	Description	Conditions	Min	Тур	Max	Unit
Fmax	Input Frequency ^[6]	V _{DD} = 3.3 V	_	_	200	MHz
		V _{DD} = 2.5 V	-	-	170	
Tpd	TCLK To Q Delay ^[6]	V _{DD} = 3.3 V	4.75	-	9.25	ns
		V _{DD} = 2.5 V	6.50	-	10.50	
FoutDC	Output Duty Cycle ^[6, 7]	Measured at V _{DD} /2	45	-	55	%
tpZL, tpZH	Output Enable Time (all outputs)		2	-	10	ns
tpLZ, tpHZ	Output Disable Time (all outputs)		2	-	10	ns
Tskew	Output-to-Output Skew ^[6, 8]		_	150	250	ps
Tskew(pp)	Part-to-Part Skew ^[9]		-	-	2.0	ns
Ts	Set-up Time ^[6, 10]	SYNC_OE to TCLK	0.0	-	_	ps
Th	Hold Time ^[6, 10]	TCLK to SYNC_OE	1.0	-	_	ps
Tr/Tf	Output Clocks Rise/Fall Time ^[8]	0.8 V to 2.0 V, V _{DD} = 3.3 V	0.20	-	1.0	ns
		0.6 V to 1.8 V, V _{DD} = 2.5 V	0.20	-	1.3	

<sup>Notes
Parameters are guaranteed by design and characterization. Not 100% tested in production. All parameters specified with loaded outputs.
Outputs driving 50 Ω transmission lines.
50% input duty cycle.
See Figure 3 on page 7.
Part-to-Part skew at a given temperature and voltage.</sup>

^{10.} Set-up and hold times are relative to the falling edge of the input clock.

Figure 3. LVCMOS_CLK CY29947 Test Reference for V_{CC} = 3.3 V and V_{CC} = 2.5 V

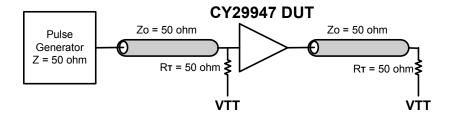


Figure 4. LVCMOS Propagation Delay (TPD) Test Reference

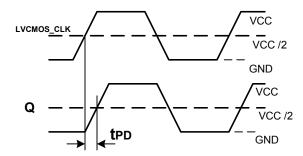


Figure 5. Output Duty Cycle (FoutDC)

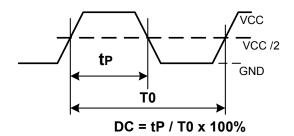
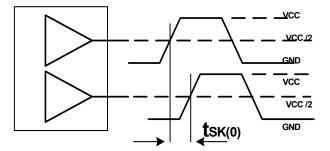
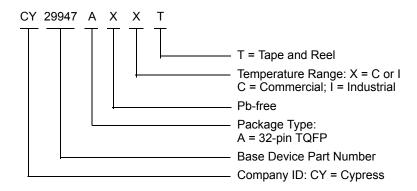
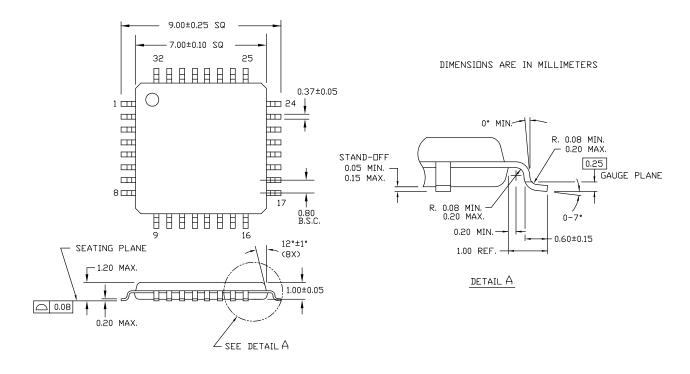



Figure 6. Output-to-Output Skew tsk(0)



Ordering Information

Part Number	Package Type	Production Flow
CY29947AXI	32-pin TQFP	Industrial, –40 °C to +85 °C
CY29947AXIT	32-pin TQFP – Tape and Reel	Industrial, –40 °C to +85 °C
CY29947AXC	32-pin TQFP	Commercial, 0 °C to +70 °C
CY29947AXCT	32-pin TQFP – Tape and Reel	Commercial, 0 °C to +70 °C


Ordering Code Definitions

Package Drawing and Dimension

Figure 7. 32-pin TQFP (7 × 7 × 1.0 mm) Package Outline, 51-85063

51-85063 *D

Acronyms

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
ESD	Electrostatic Discharge
I/O	Input/Output
LVCMOS	Low Voltage Complementary Metal Oxide Semiconductor
LVTTL	Low Voltage Transistor-Transistor Logic
PLL	Phase Locked Loop
TQFP	Thin Quad Flat Pack
VCO	Voltage-Controlled Oscillator

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
Hz	hertz
kHz	kilohertz
kV	kilovolt
MHz	megahertz
μA	microampere
mA	milliampere
ms	millisecond
mV	millivolt
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
ps	picosecond
V	volt
W	watt

Revision History

	Document Title: CY29947, 2.5 V or 3.3 V, 200 MHz, 1:9 Clock Distribution Buffer Document Number: 38-07287				
Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change	
**	111098	02/07/02	BRK	New data sheet	
*A	116781	08/14/02	HWT	Added Commercial Temperature Range in the ordering information	
*B	118462	09/09/02	HWT	Corrected the Package Drawing and Dimension in page 6 from 32 LQFP to 32 TQFP	
*C	122879	12/22/02	RBI	Added power up requirements to Maximum Ratings	
*D	2899714	03/26/10	BASH	Removed inactive parts from the ordering table. Replaced with active parts. Updated package diagram	
*E	3163585	02/05/2011	CXQ	Added Ordering Code Definitions. Added Acronyms and Units of Measure. Updated in new template.	
*F	4311272	03/17/2014	CINM	Updated Package Drawing and Dimension: spec 51-85063 – Changed revision from *C to *D.	
				Updated in new template.	
				Completing Sunset Review.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive Clocks & Buffers Interface

Lighting & Power Control

Memory
PSoC
Touch Sensing
USB Controllers
Wireless/RF

cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

© Cypress Semiconductor Corporation, 2002-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.