

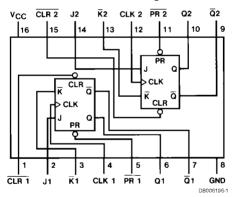
DM74ALS109A Dual J-K Positive-Edge-Triggered Flip-Flop with Preset and Clear

General Description

The DM54ALS109A is a dual edge-triggered flip-flop. Each flip-flop has individual J, \overline{K} , clock, clear and preset inputs, and also complementary Q and \overline{Q} outputs.

Information at input J or \overline{K} is transferred to the Q output on the positive going edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive going pulse. When the clock input is at either the high or low level, the J, \overline{K} input signal has no effect.

Asynchronous preset and clear inputs will set or clear Q output respectively upon the application of low level signal.


The J- \overline{K} design allows operation as a D flip-flop by tying the J and \overline{K} inputs together.

Features

- Switching specifications at 50 pF
- \blacksquare Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL process
- Functionally and pin for pin compatible with Schottky and LS TTL counterpart
- Improved AC performance over LS109 at approximately half the power

Connection Diagram

Dual-In-Line Package

Order Number DM74ALS109AM or DM74ALS109AN See Package Number M16A or N16A

Function Table

Inputs					Outputs			
PR	CLR	СК	J	ĸ	Q	ā		
L	Н	Х	Х	Х	Н	L		
Н	L	Χ	Χ	Χ	L	Н		
L	L	Χ	Χ	Χ	H (Note 1)	H (Note 1)		
Н	Н	1	L	L	L	Н		
Н	Н	\uparrow	Н	L	TOGGLE			
Н	Н	1	L	Н	Q_0	\overline{Q}_{o}		
Н	Н	\uparrow	Н	Н	Н	L		
Н	Н	L	Χ	Χ	Q_0	\overline{Q}_{o}		

Note 1: This condition is nonstable; it will not persist when present and clear inputs return to their inactive (high) level. The output levels in this condition are not guaranteed to meet the V_{OH} specification.

L = Low State, H = High State, X = Don't Care

↑ = Positive Edge Transition, Q₀ = Previous Condition of Q

Absolute Maximum Ratings (Note 2)

Storage Temperature Range

Typical θ_{JA}

N Package

M Package

-65°C to +150°C

Supply Voltage Input Voltage 7V 7V

82.5°C/**W** 111.5°C/**W**

Operating Free Air Temperature Range

DM74ALS

0°C to +70°C

Recommended Operating Conditions

Symbol	Parameter		DM74ALS109A			
			Min	Nom	Max	1
V _{cc}	Supply Voltage		4.5	5	5.5	V
V _{IH}	High Level Input Voltage	High Level Input Voltage				V
V _{IL}	Low Level Input Voltage			8.0	٧	
I _{OH}	High Level Output Current				-0.4	mA
l _{OL}	Low Level Output Current				8	mA
f _{CLK}	Clock Frequency		0		34	MHz
t _{w(CLK)}	Pulse Width	Clock High	14.5			ns
		Clock Low	14.5			ns
t _w	Pulse Width (Note 3)	Preset and Clear	15			ns
t _{su}	Data Setup Time	J or \overline{K}	15↑			ns
	(Note 3)	PRE or CLR inactive	10↑			
t _H	Data Hold Time		01			ns
TA	Free Air Operating Temperature		0		70	°C

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

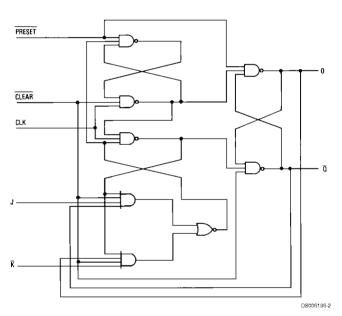
Electrical Characteristics

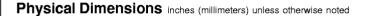
over recommended operating free-air temperature range. All typical values are measured at V_{CC} = 5V, T_A = 25°C.

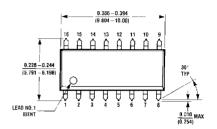
Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V$, $I_I = -18 \text{ mA}$				-1.5	٧
V _{OH}	High Level Output	$I_{OH} = -400 \mu\text{A}$ $V_{CC} = 4.5 \text{V to } 5.5 \text{V}$		V _{CC} - 2			V
	Voltage						
V _{OL}	Low Level Output	V _{CC} = 4.5V	54/74 A LS		0.25	0.4	V
	Voltage	$V_{IH} = 2V$	I _{OL} = 4 mA				
			74ALS		0.35	0.5	V
			I _{OL} = 8 mA				
-I ₁	Input Current at Max	$V_{CC} = 5.5V$,	Clock, J, K			0.1	mA
	Input Voltage	V _{IH} = 7V	Preset, Clear			0.2	
JiH	High Level	$V_{CC} = 5.5V,$	Clock, J, K			20	μA
	Input Current	$V_{1H} = 2.7V$	Preset, Clear			40	
J _{IL}	Low Level	$V_{CC} = 5.5V$,	Clock, J, K			-0.2	mA
	Input Current	$V_{IL} = 0.4V$	Preset, Clear			-0.4	
I _O (Note 5)	Output Drive Current	$V_{CC} = 5.5V, V_{O} = 2.25V$		-30		-112	mA
lcc	Supply Current V _{CC} = 5.5V (Note 4)		te 4)		2.4	4	mA

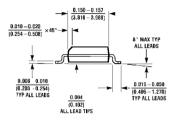
 $\textbf{Note 4: } \textbf{I}_{CC} \textbf{ is measured with J, } \overline{\textbf{K}}, \textbf{CLK and } \overline{\textbf{PRESET}} \textbf{ grounded, then with J, } \overline{\textbf{K}}, \textbf{CLK and } \overline{\textbf{CLEAR}} \textbf{ grounded.}$

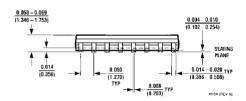
Note 5: The output conditions have been chosen to produce a current that closely approximates one half of the true short circuit output current, IOS-

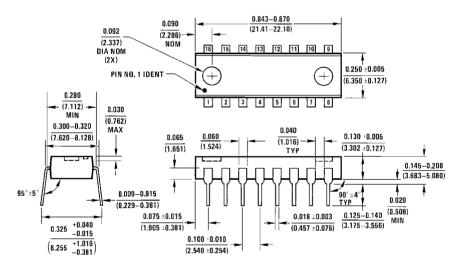

Note 3: The (\uparrow) arrow indicates the positive edge of the Clock is used for reference.


Switching Characteristicsover recommended operating free air temperature range (Note 6)


Symbol	Parameter	Conditions	From	То	DM74ALS109A		Units
					Min	Max	
f _{MAX}	Maximum Clock Frequency	$V_{CC} = 4.5V \text{ to } 5.5V$			34		MHz
t _{PLH}	Propagation Delay Time	$R_L = 500\Omega$	Preset	Q or $\overline{\mathbf{Q}}$	3	13	ns
	Low to High Level Output	$C_L = 50 pF$	or Clear				
t _{PHL}	Propagation Delay Time		Preset	Q or Q	5	15	ns
	High to Low Level Output		or Clear				
t _{PLH}	Propagation Delay Time		Clock	Q or Q	5	16	ns
	Low to High Level Output						
t _{PHL}	Propagation Delay Time		Clock	Q or Q	5	18	ns
	High to Low Level Output						


Note 6: See Section 1 for test waveforms and output load.


Logic Diagram



S.O. Package (M)
Order Number DM74ALS109AM
Package Number M16A

N16A (REV E)

Molded Dual-in-Line Package (N) Order Number DM74ALS109AN Package Number N16A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas Customer Response Center

Tel: 1-888-522-5372

Fairchild Semiconductor Europe

Europe
Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 8 141-35-0
English Tel: +44 (0) 1 793-85-68-56
Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061 National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179