FPNH₁₀ # **NPN RF Transistor** This device is designed for use in low noise UHF/VHF amplifiers, with collector currents in the 100 μA to 20 mA range in common emitter or common base mode of operations, and in low frequency drift, high output UHF oscillators. Sourced from Process 42. ### **Absolute Maximum Ratings*** TA = 25°C unless otherwise noted | Symbol | Parameter | Value | Units | |-----------------------------------|--|-------------|-------| | V_{CEO} | Collector-Emitter Voltage | 25 | V | | V _{CBO} | Collector-Base Voltage | 30 | V | | V _{EBO} | Emitter-Base Voltage | 3.0 | V | | Ic | Collector Current - Continuous | 50 | mA | | T _J , T _{stg} | Operating and Storage Junction Temperature Range | -55 to +150 | °C | ^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. 1) These ratings are based on a maximum junction temperature of 150 degrees C. 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations. #### Thermal Characteristics TA = 25°C unless otherwise noted | Symbol | Characteristic | Max | Units | |-----------------|---|--------|-------| | | | FPNH10 | | | P _D | Total Device Dissipation | 350 | mW | | | Derate above 25°C | 2.8 | mW/°C | | $R_{\theta JC}$ | Thermal Resistance, Junction to Case | 125 | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | 357 | °C/W | ^{*}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06." 9.0 ps (continued) # **Electrical Characteristics** TA = 25°C unless otherwise noted | Symbol | Parameter | Test Conditions | Min | Max | Units | |----------------------|---------------------------------------|--|------|-------|-------| | OFF CHA | RACTERISTICS | | | | | | $V_{(BR)CEO}$ | Collector-Emitter Sustaining Voltage* | $I_C = 1.0 \text{ mA}, I_B = 0$ | 25 | | V | | V _{(BR)CBO} | Collector-Base Breakdown Voltage | $I_C = 100 \mu A, I_E = 0$ | 30 | | V | | V _{(BR)EBO} | Emitter-Base Breakdown Voltage | $I_E = 10 \mu\text{A}, I_C = 0$ | 3.0 | | V | | I _{CBO} | Collector Cutoff Current | $V_{CB} = 25 \text{ V}, I_{E} = 0$ | | 100 | nA | | I _{EBO} | Emitter Cutoff Current | $V_{EB} = 2.0 \text{ V}, I_{C} = 0$ | | 100 | nA | | h _{FE} | DC Current Gain | $I_C = 4.0 \text{ mA}, V_{CE} = 10 \text{ V}$ | 60 | | | | | RACTERISTICS DC Current Gain | $I_{c} = 4.0 \text{ mA}$. $V_{ce} = 10 \text{ V}$ | 60 | | | | V _{CE(sat)} | Collector-Emitter Saturation Voltage | $I_C = 4.0 \text{ mA}, I_B = 0.4 \text{ mA}$ | | 0.5 | V | | V _{BE(on)} | Base-Emitter On Voltage | $I_C = 4.0 \text{ mA}, V_{CE} = 10 \text{ V}$ | | 0.95 | V | | SMALL S | IGNAL CHARACTERISTICS | - | | | | | f⊤ | Current Gain - Bandwidth Product | $I_C = 4.0 \text{ mA}, V_{CE} = 10 \text{ V},$
f = 100 MHz | 650 | | MHz | | C _{cb} | Collector-Base Capacitance | V _{CB} = 10 V, I _E = 0, f = 1.0 MHz | | 0.720 | pF | | C _{rb} | Common-Base Feedback
Capacitance | V _{CB} = 10 V, I _E = 0, f = 1.0 MHz | 0.34 | 0.65 | pF | | -1-10 | Callagian Daga Tima Canatant | 1 40 1 1/ 40 1/ | | 0.0 | | ^{*}Pulse Test: Pulse Width $\leq 300~\mu\text{s},~\text{Duty Cycle} \leq 2.0\%$ Collector Base Time Constant # **Spice Model** rb'Cc NPN (Is=69.28E-18 Xti=3 Eg=1.11 Vaf=100 Bf=308.6 Ne=1.197 Ise=69.28E-18 Ikf=22.83m Xtb=1.5 Br=1.11 Nc=2 Isc=0 Ikr=0 Rc=4 Cjc=1.042p Mjc=.2468 Vjc=.75 Fc=.5 Cje=1.52p Mje=.3223 Vje=.75 Tr=1.558n Tf=135.8p Itf=.27 Vtf=10 Xtf=30 Rb=10) $I_C = 4.0 \text{ mA}, V_{CB} = 10 \text{ V},$ f = 31.8 MHz (continued) ### **Typical Characteristics** (continued) # **Common Base Y Parameters vs. Frequency** (continued) # **Common Emitter Y Parameters vs. Frequency** (continued) ### **Test Circuits** FIGURE 1: Neutralized 200 MHz pF and NF Circuit FIGURE 2: 500 MHz Oscillator Circuit #### **TRADEMARKS** The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. $ACEx^{TM}$ FASTr™ PowerTrench® SyncFET™ Bottomless™ QFET™ TinyLogic™ GlobalOptoisolator™ QSTM UHC™ CoolFET™ GTO™ **VCX**TM $CROSSVOLT^{TM}$ QT Optoelectronics™ HiSeC™ DOME™ ISOPLANAR™ Quiet Series™ #### **DISCLAIMER** FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. #### PRODUCT STATUS DEFINITIONS #### **Definition of Terms** | Datasheet Identification | Product Status | Definition | |--------------------------|---------------------------|---| | Advance Information | Formative or
In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | Obsolete | Not In Production | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. |