3-Input OR Gate The NLX1G332 is an advanced high-speed 3-input CMOS OR gate in ultra-small footprint. The NLX1G332 input structures provide protection when voltages up to 7.0 V are applied, regardless of the supply voltage. #### **Features** - High Speed: $t_{PD} = 2.4 \text{ ns (Typ)} @ V_{CC} = 5.0 \text{ V}$ - Designed for 1.65 V to 5.5 V V_{CC} Operation - Low Power Dissipation: $I_{CC} = 1 \mu A \text{ (Max)}$ at $T_A = 25^{\circ}\text{C}$ - 24 mA Balanced Output Source and Sink Capability - Balanced Propagation Delays - Overvoltage Tolerant (OVT) Input Pins - Ultra-Small Packages - These are Pb-Free Devices Figure 1. Pinout (Top View) Figure 2. Logic Symbol | Pin | Function | |-----|-----------------| | 1 | Α | | 2 | GND | | 3 | В | | 4 | Υ | | 5 | V _{CC} | | 6 | С | | | | **PIN ASSIGNMENT** #### **FUNCTION TABLE** | | Output | | | |---|--------|---|---| | Α | В | С | Υ | | Н | Х | Х | Н | | X | Н | X | Н | | X | X | Н | Н | | L | L | L | L | H - HIGH Logic Level L – LOW Logic Level X = Either LOW or HIGH Logic Level # ON Semiconductor® www.onsemi.com ### MARKING DIAGRAMS ULLGA6 1.0 x 1.0 CASE 613AD ULLGA6 1.2 x 1.0 CASE 613AE ULLGA6 1.45 x 1.0 CASE 613AF UDFN6 1.0 x 1.0 CASE 517BX UDFN6 1.2 x 1.0 CASE 517AA UDFN6 1.45 x 1.0 CASE 517AQ X = Device MarkingM = Date Code = Pb-Free Package #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. #### **MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | |----------------------|---|----------------------|------| | V _{CC} | DC Supply Voltage | −0.5 to +7.0 | V | | V _{IN} | DC Input Voltage | −0.5 to +7.0 | V | | V _{OUT} | DC Output Voltage | −0.5 to +7.0 | V | | I _{IK} | DC Input Diode Current V _{IN} < GND | -50 | mA | | I _{OK} | DC Output Diode Current V _{OUT} < GND | -50 | mA | | Io | DC Output Source/Sink Current | ±50 | mA | | Icc | DC Supply Current Per Supply Pin | ±100 | mA | | I _{GND} | DC Ground Current per Ground Pin | ±100 | mA | | T _{STG} | Storage Temperature Range | -65 to +150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 Seconds | 260 | °C | | TJ | Junction Temperature Under Bias | 150 | °C | | θ_{JA} | Thermal Resistance (Note 1) | 496 | °C/W | | P _D | Power Dissipation in Still Air @ 85°C | 252 | mW | | MSL | Moisture Sensitivity | Level 1 | | | F _R | Flammability Rating Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | | | V _{ESD} | ESD Withstand Voltage Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4) | >2000
>200
N/A | V | | I _{LATCHUP} | Latchup Performance Above V _{CC} and Below GND at 125 °C (Note 5) | ±500 | mA | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow. Tested to EIA/JESD22-A114-A. - 3. Tested to EIA/JESD22-A115-A. - Tested to JESD22-C101-A. Tested to EIA / JESD78. #### RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | | Min | Max | Unit | |------------------|------------------------------------|--|------------------|---------------------|------| | V _{CC} | Positive DC Supply Voltage | Operating
Data Retention Only | 1.65
1.5 | 5.5
5.5 | V | | V _{IN} | Digital Input Voltage (Note 6) | 0 | 5.5 | V | | | V _{OUT} | Output Voltage | | 0 | 5.5 | V | | T _A | Operating Free-Air Temperature | | -55 | +125 | °C | | Δt/ΔV | Input Transition Rise or Fall Rate | $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$ $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$ $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ $V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$ | 0
0
0
0 | 20
20
10
5 | ns/V | 6. Unused inputs may not be left open. All inputs must be tied to a high or low-logic input voltage level. # DC ELECTRICAL CHARACTERISTICS | | | | V _{CC} | 1 | T _A = 25 °C | | T _A = -55°C | to +125°C | | |------------------|---|---|---|---|---|---|---|---|------| | Symbol | Parameter | Conditions | (V) | Min | Тур | Max | Min | Max | Unit | | V _{IH} | Low-Level | | 1.65 | 0.75 x V _{CC} | | | 0.75 x V _{CC} | | V | | | Input
Voltage | | 2.3 to 5.5 | 0.70 x V _{CC} | | | 0.70 x V _{CC} | | | | V _{IL} | Low-Level | | 1.65 | | | 0.25 x V _{CC} | | 0.25 x V _{CC} | V | | | Input
Voltage | | 2.3 – 5.5 | | | 0.30 x V _{CC} | | 0.30 x V _{CC} | | | V _{OH} | High–
Level
Output | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$I_{OH} = -100 \mu\text{A}$ | 1.65 – 5.5 | V _{CC} -0.1 | V _{CC} | | V _{CC} -0.1 | | V | | | Voltage | $\begin{aligned} &V_{IN} = V_{IH} \text{ or } V_{IL} \\ &I_{OH} = -4 \text{ mA} \\ &I_{OH} = -8 \text{ mA} \\ &I_{OH} = -12 \text{ mA} \\ &I_{OH} = -16 \text{ mA} \\ &I_{OH} = -24 \text{ mA} \\ &I_{OH} = -32 \text{ mA} \end{aligned}$ | 1.65
2.3
2.7
3.0
3.0
4.5 | 1.29
1.9
2.2
2.4
2.3
3.8 | 1.52
2.15
2.4
2.8
2.68
4.2 | | 1.29
1.9
2.2
2.4
2.3
3.8 | | | | V _{OL} | Low-Level
Output
Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$I_{OL} = 100 \mu A$ | 1.65 – 5.5 | | | 0.1 | | 0.1 | V | | | vollage | V _{IN} = V _{IH} or V _{IL}
I _{OH} = 4 mA
I _{OH} = 8 mA
I _{OH} = 12 mA
I _{OH} = 16 mA
I _{OH} = 24 mA
I _{OH} = 32 mA | 1.65
2.3
2.7
3.0
3.0
4.5 | | 0.08
0.1
0.12
0.15
0.22
0.22 | 0.24
0.3
0.4
0.4
0.55
0.55 | | 0.24
0.3
0.4
0.4
0.55
0.55 | | | I _{IN} | Input
Leakage
Current | $0 \le V_{IN} \le 5.5V$ | 0 to 5.5 | | | ±0.1 | | ±1.0 | μΑ | | I _{OFF} | Power-Off
Output
Leakage
Current | V _{IN} or V _{OUT} = 5.5 V | 0 | | | 1.0 | | 10 | μΑ | | Icc | Quiescent
Supply
Current | $0 \le V_{IN} \le V_{CC}$ | 5.5 | | | 1.0 | | 10 | μΑ | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. # AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 2.5 \text{ nS}$) | | | V _{CC} | Test | - | Γ _A = 25 °C | ; | T _A = -5
+12 | 55°C to
5°C | | |--------------------|---|-----------------|--|-----|------------------------|------|----------------------------|----------------|------| | Symbol | Parameter | (V) | Condition | Min | Тур | Max | Min | Max | Unit | | t _{PLH} , | Propagation Delay, | 1.65–1.95 | $R_L = 1 M\Omega$, $C_L = 15 pF$ | 2.0 | 5.5 | 18.5 | 2.0 | 19 | ns | | t _{PHL} | Input to Output | 2.3-2.7 | $R_L = 1 M\Omega$, $C_L = 15 pF$ | 0.8 | 3.0 | 11 | 0.8 | 11.5 | | | | | 3.0-3.6 | $R_L = 1 M\Omega$, $C_L = 15 pF$ | 0.5 | 2.6 | 7.5 | 0.5 | 8.0 | | | | | | $R_L = 500 \Omega, C_L = 50 pF$ | 1.5 | 3.0 | 8.5 | 1.5 | 9.0 | | | | | 4.5-5.5 | $R_L = 1 M\Omega$, $C_L = 15 pF$ | 0.5 | 2.2 | 5.5 | 0.5 | 6.0 | | | | | | $R_L = 500 \Omega, C_L = 50 pF$ | 0.8 | 2.4 | 7.0 | 0.8 | 7.5 | | | C _{IN} | Input Capacitance | 5.5 | V _{IN} = 0 V or V _{CC} | | 4.0 | | | | pF | | C _{PD} | Power Dissipation
Capacitance (Note 7) | 3.3
5.5 | 10 MHz
V _{IN} = 0 V or V _{CC} | | 20
26 | | | | pF | C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption: P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}. Figure 3. Switching Waveforms A 1 MHz square input wave is recommended for propagation delay tests Figure 4. Test Circuit ### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |---------------------------------|---------------------------------------|-----------------------| | NLX1G332AMX1TCG | ULLGA6, 1.45 x 1.0, 0.5P
(Pb-Free) | 3000 / Tape & Reel | | NLX1G332BMX1TCG | ULLGA6, 1.2 x 1.0, 0.4P
(Pb-Free) | 3000 / Tape & Reel | | NLX1G332CMX1TCG | ULLGA6, 1.0 x 1.0, 0.35P
(Pb-Free) | 3000 / Tape & Reel | | NLX1G332MUTCG
In Development | UDFN6, 1.2 x 1.0, 0.4P
(Pb-Free) | 3000 / Tape & Reel | | NLX1G332AMUTCG | UDFN6, 1.45 x 1.0, 0.5P
(Pb-Free) | 3000 / Tape & Reel | | NLX1G332CMUTCG | UDFN6, 1.0 x 1.0, 0.35P
(Pb-Free) | 3000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ### **PACKAGE DIMENSIONS** # UDFN6 1.2x1.0, 0.4P CASE 517AA ^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ### **PACKAGE DIMENSIONS** # UDFN6 1.45x1.0, 0.5P CASE 517AQ #### **PACKAGE DIMENSIONS** UDFN6 1.0x1.0, 0.35P CASE 517BX ISSUE O - NOTES: 1. DIMENSIONING AND TOLERANCING PER - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP. PACKAGE DIMENSIONS EXCLUSIVE OF BURRS AND MOLD FLASH. | | MILLIMETERS | | | | | |-----|-------------|------|--|--|--| | DIM | MIN | MAX | | | | | Α | 0.45 | 0.55 | | | | | A1 | 0.00 | 0.05 | | | | | A3 | 0.13 REF | | | | | | b | 0.12 | 0.22 | | | | | D | 1.00 BSC | | | | | | E | 1.00 BSC | | | | | | е | 0.35 BSC | | | | | | L | 0.25 | 0.35 | | | | | 11 | 0.30 | 0.40 | | | | #### **RECOMMENDED SOLDERING FOOTPRINT*** Mounting Techniques Reference Manual, SOLDERRM/D. *For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and #### **PACKAGE DIMENSIONS** #### ULLGA6 1.0x1.0, 0.35P CASE 613AD ISSUE A **BOTTOM VIEW** Ф 0.05 С NOTE 3 #### NOTES: - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP. 4. A MAXIMUM OF 0.05 PULL BACK OF THE PLATED TERMINAL FROM THE EDGE OF THE PACKAGE IS ALLOWED. | | MILLIMETERS | | | | | |-----|-------------|------|--|--|--| | DIM | MIN | MAX | | | | | Α | | 0.40 | | | | | A1 | 0.00 | 0.05 | | | | | b | 0.12 | 0.22 | | | | | D | 1.00 BSC | | | | | | E | 1.00 BSC | | | | | | е | 0.35 BSC | | | | | | L | 0.25 | 0.35 | | | | | 11 | 0.30 | 0.40 | | | | #### **MOUNTING FOOTPRINT SOLDERMASK DEFINED*** DIMENSIONS: MILLIMETERS ^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### **PACKAGE DIMENSIONS** ULLGA6 1.2x1.0, 0.4P CASE 613AE **ISSUE A** **BOTTOM VIEW** 0.05 C NOTE 3 - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP. 4. A MAXIMUM OF 0.05 PULL BACK OF THE PLATED TERMINAL FROM THE EDGE OF THE PACKAGE IS ALLOWED. | | MILLIMETERS | | | | | | |-----|-------------|------|--|--|--|--| | DIM | MIN | MAX | | | | | | Α | | 0.40 | | | | | | A1 | 0.00 | 0.05 | | | | | | b | 0.15 | 0.25 | | | | | | D | 1.20 BSC | | | | | | | Е | 1.00 | BSC | | | | | | е | 0.40 BSC | | | | | | | L | 0.25 | 0.35 | | | | | | L1 | 0.35 | 0.45 | | | | | #### **MOUNTING FOOTPRINT SOLDERMASK DEFINED*** DIMENSIONS: MILLIMETERS ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ### PACKAGE DIMENSIONS #### ULLGA6 1.45x1.0, 0.5P CASE 613AF ISSUE A #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER - ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. - DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP. A MAXIMUM OF 0.05 PULL BACK OF THE - A MAXIMUM OF 0.05 PULL BACK OF THE PLATED TERMINAL FROM THE EDGE OF THE PACKAGE IS ALLOWED. | | MILLIMETERS | | | | | |-----|-------------|------|--|--|--| | DIM | MIN | MAX | | | | | Α | - | 0.40 | | | | | A1 | 0.00 | 0.05 | | | | | b | 0.15 | 0.25 | | | | | D | 1.45 BSC | | | | | | E | 1.00 BSC | | | | | | е | 0.50 BSC | | | | | | Ĺ | 0.25 | 0.35 | | | | | L1 | 0.30 | 0.40 | | | | #### MOUNTING FOOTPRINT SOLDERMASK DEFINED* **DIMENSIONS: MILLIMETERS** *For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. MiniGate is a trademark of Semiconductor Components Industries, LLC (SCILLC). ON Semiconductor and the interpretability are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negl ### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303-675-2175 of 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Phone: 421 33 790 2910 **Japan Customer Focus Center** Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative