General purpose transistor (isolated transistors) ### **EMD29** DTB513Z \square and DTC114E \square A are housed independently in a EMT6 package. #### Applications DC / DC converter Motor driver #### Features 1) DTr₁: PNP digital transistor DTr₂: NPN digital transistor 2) Mounting possible with EMT3 automatic mounting machines. #### Structure PNP / NPN Silicon epitaxial planar digital transistor The following characteristics apply to both DTr1 and DTr2. #### ●Equivalent circuit #### Packaging specifications | Туре | EMD29 | |------------------------------|-------| | Package | EMT6 | | Marking | D29 | | Code | T2R | | Basic ordering unit (pieces) | 8000 | #### ●External dimensions (Unit : mm) #### ● Absolute maximum ratings (Ta=25°C) #### DTr1 | Parameter | Symbol | DTr1 | Unit | |----------------------|-----------|-------------|------| | Supply voltage | Vcc | -12 | V | | Input voltage | Vin | -10 to +5 | V | | Output current | Ic (MAX.) | -500 | mA | | Power dissipation | Pd | 120 | mW * | | Junction temperature | Tj | 150 | °C | | Storage temperature | Tstg | -55 to +150 | °C | ^{*} Each terminal mounted on a recommended. #### DTr2 | Parameter | Symbol | Symbol DTr2 | | | |----------------------|-----------|----------------|------|--| | Supply voltage | Vcc 50 | | V | | | Input voltage | Vin | Vin -10 to +40 | | | | Output current | lo | 50 | mA | | | Output current | Ic (MAX.) | 100 | | | | Power dissipation | Pd | 120 | mW * | | | Junction temperature | Tj | 150 | °C | | | Storage temperature | Tstg | -55 to +150 | °C | | ^{*} Each terminal mounted on a recommended. #### DTr1/DTr2 | Parameter | Symbol | Limits | Unit | |---------------------|--------|-------------|------| | Power dissipation | Pd | 150(TOTAL) | mW * | | Storage temperature | Tstg | -55 to +125 | °C | ^{*} Each terminal mounted on a recommended. ## ●Electrical characteristics (Ta=25°C) DTr1 | Parameter | Symbol | Min. | Тур. | Max. | Unit | Conditions | |------------------------|---------------------|------|------|------|------|---------------------------| | Input voltage | VI(off) | _ | _ | -0.3 | V | Vcc= -5V / Io= -100uA | | | VI(on) | -2.5 | _ | _ | V | Vo= -0.3V / Io= -20mA | | Output voltage | Vo(on) | _ | -60 | -300 | mV | lo= −100mA, l= −5mA | | Input current | lı | _ | _ | -6.4 | mA | V⊫-5V | | Output current | I _{O(off)} | _ | _ | -0.5 | μΑ | Vcc=-12V / V=0V | | DC current gain | Gı | 140 | _ | _ | _ | Vo= -2V / Io= -100mA | | Transition frequency * | f⊤ | _ | 260 | _ | MHz | Vc=-10V / I=5mA, f=100MHz | | Input resistance | R ₁ | 0.7 | 1.0 | 1.3 | kΩ | _ | | Resistance ratio | R2/R1 | 8 | 10 | 12 | _ | - | ^{*} Characteristics of built-in transistor. #### DTr2 | Parameter | Symbol | Min. | Тур. | Max. | Unit | Conditions | |------------------------|--------------------------------|------|------|------|------|---------------------------| | lanut valtage | VI(off) | _ | _ | 0.5 | V | Vcc=5V / Io=100uA | | Input voltage | VI(on) | 3 | _ | _ | V | Vo=0.3V / Io=2mA | | Output voltage | Vo(on) | _ | 100 | 300 | mV | Io=10mA, Ii=0.5mA | | Input current | lı | _ | _ | 880 | μΑ | Vi=5V | | Output current | IO(off) | _ | _ | 0.5 | μΑ | Vcc=50V / V⊫0V | | DC current gain | Gı | 30 | _ | _ | - | Vo=5V / Io=5mA | | Transition frequency * | fτ | _ | 250 | _ | MHz | Vc=10V / I=-5mA, f=100MHz | | Input resistance | R ₁ | 7 | 10 | 13 | kΩ | _ | | Resistance ratio | R ₂ /R ₁ | 0.8 | 1 | 1.2 | _ | _ | ^{*} Characteristics of built-in transistor. #### •Electrical characteristic curves DTr1 Fig.1 Output current vs. input voltage (OFF characteristics) Fig.2 Input voltage vs. output current (ON characteristics) I Fig3 Input voltage vs. output current (ON characteristics) II Fig.4 Output voltage vs. output current I Fig.5 Output voltage vs. output current ${\rm II}$ Fig.6 DC current gain vs. output currer #### DTr2 Fig.7 Output current vs. input voltage (OFF characteristics) Fig.8 Input voltage vs. output current (ON characteristics) Fig.9 Output voltage vs. output Fig.10 DC current gain vs. output current #### Notes - No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. - The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. - Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. - Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. - Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by - ROHM CO., LTD. is granted to any such buyer. - Products listed in this document are no antiradiation design. The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. #### About Export Control Order in Japan Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan. In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.