SKN 2F50

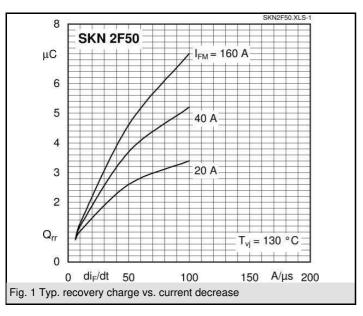
Stud Diode

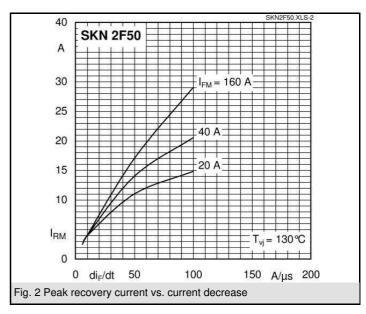
Fast Recovery Rectifier Diode

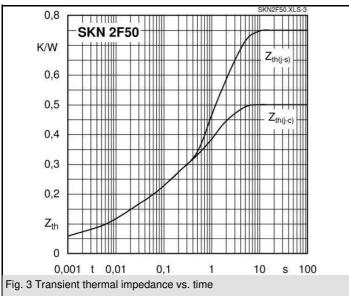
SKN 2F50

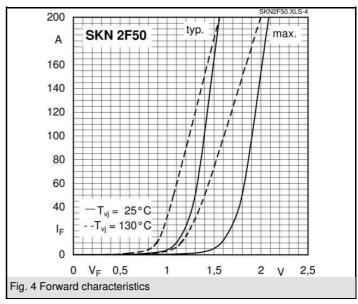
Features

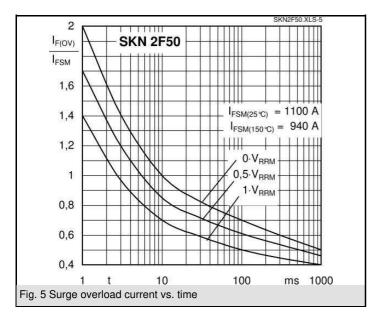
- Small recovered charge
- Soft recovery
- Up to 1000 V reverse voltage
- Hermetic metal case with glass insulator
- Threaded stud ISO M6 or 1/4-28 UNF
- SKN: anode to stud

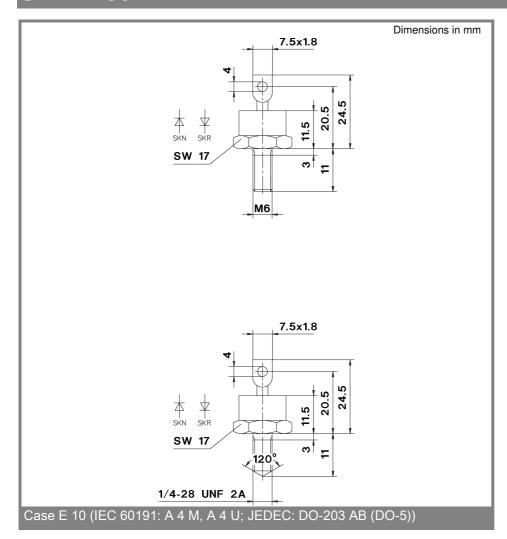

Typical Applications*


- Inverse diodes for power transistors, GTO thyristors, asymmetric thyristors
- SMPS, inverters, choppers
- For severe ambient conditions


V_{RSM}	V_{RRM}	I _{FRMS} = 100 A (maximum value for continuous operation)		
V	V	$I_{FAV} = 50 \text{ A (sin. } 180; 5000 \text{ Hz; T}_{c} = 105 ^{\circ}\text{C})$		
400	400	SKN 2F50/04		
400	400	SKN 2F50/04UNF		
600	600	SKN 2F50/06		
600	600	SKN 2F50/06UNF		
800	800	SKN 2F50/08		
800	800	SKN 2F50/08UNF		
1000	1000	SKN 2F50/10		
1000	1000	SKN 2F50/10UNF		


Symbol	Conditions	Values	Units
I_{FAV}	sin. 180; T _c = 85 (100) °C	69 (57)	Α
I_{FAV}	K3; T _a = 45 °C; sin. 180; 5000 Hz	18	
I _{FSM}	T _{vi} = 25 °C; 10 ms	1100	Α
	$T_{vj} = 150 ^{\circ}\text{C}; 10 \text{ms}$	940	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	6000	A²s
	T _{vj} = 150 °C; 8,3 10 ms	4400	A²s
V_{F}	T _{vi} = 25 °C; I _F = 50 A	max. 1,8	V
$V_{(TO)}$	T _{vi} = 150 °C	max. 1,2	V
r _T	T _{vi} = 150 °C	max. 4	mΩ
I_{RD}	$T_{vj} = 25 ^{\circ}\text{C}; V_{RD} = V_{RRM}$	max. 0,4	mA
I_{RD}	T_{vj} = 130 °C; $V_{RD} = V_{RRM}$	max. 50	mA
Q _{rr}	T _{vi} = 130 °C, I _F = 100 A,	3	μC
I _{RM}	-di/dt = 30 A/μs, V _R = 30 V	10	Α
t _{rr}		600	ns
E _{rr}		-	mJ
R _{th(j-c)}		0,5	K/W
R _{th(c-s)}		0,25	K/W
T _{vj}		- 40 + 150	°C
T _{stg}		- 55 + 150	°C
V _{isol}		-	V~
M_s	to heatsink	2,5	Nm
а		5 * 9,81	m/s²
m	approx.	20	g
Case		E 10	





^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.