

Applications

- IEEE802.11b DSSS WLAN
- IEEE802.11g,n OFDM WLAN
- Access Points, PCMCIA, PC cards

Features

- Dual Mode IEEE802.11b, IEEE802.11g, IEEE802.11n
- Integrated PA, TX Filter, Diversity switch
- Integrated Positive Slope Power Detector
- 20 dBm Output Power, 802.11b, 11 Mbps
- 17 dBm @ 3.0 % EVM, 802.11g, 3.3V
- Lead free, halogen free and RoHS compliant
- Small plated package, 3 mm x 4 mm x 0.9 mm, MSL 1

Ordering Information

Part No.	Package	Remark
SE2603L	24 pin QFN	Samples
SE2603L-R	24 pin QFN	Tape & Reel
SE2603L-EK1	N/A	Evaluation kit

Product Description

The SE2603L is a complete 802.11bgn WLAN RF front-end module providing all the functionality of the power amplifier, power detector, diversity switch and 50 ohm matching on all RF ports in an ultra compact form factor.

The SE2603L is designed for ease of use, with all the critical matching and harmonic filtering and integrated transmit/receive DPDT switch providing a 50 Ω interface to the antenna. The SE2603L also includes a transmitter power detector with 20 dB of dynamic range and a digital enable control for transmitter power ramp on/off control. The power ramp rise/fall time is 0.5 μs typical.

3

DATA SHEET SE2603L: 2.4 GHz High Efficiency Wireless LAN Front-End Preliminary

Functional Block Diagram

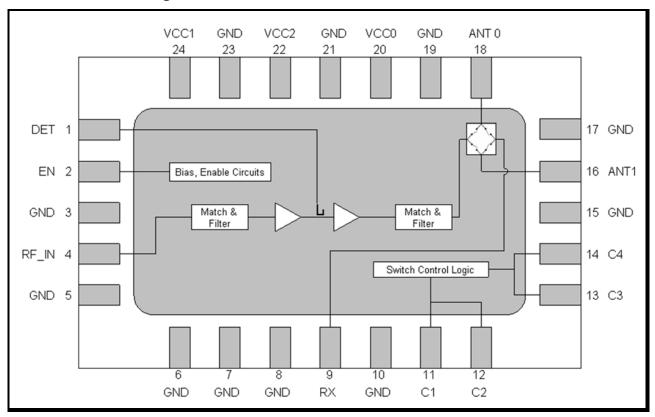


Figure 1: Functional Block Diagram

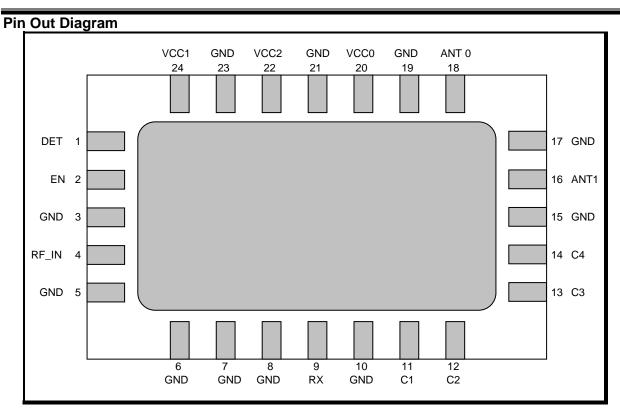


Figure 2: SE2603L Pin Out (Top View Through Package)

Pin Out Description

Pin No.	Name	Description
1	Det	Power Detector Output
2	EN	Power Amplifier Enable
3	GND	Ground
4	RF_IN	Transmit RF Input
5	GND	Ground
6	GND	Ground
7	GND	Ground
8	GND	Ground
9	RX	Receive RF Output
10	GND	Ground
11	C1	Switch Control Logic
12	C2	Switch Control Logic
13	C3	Switch Control Logic

Pin No.	Name	Description
14	C4	Switch Control Logic
15	GND	Ground
16	ANT1	Antenna 1
17	GND	Ground
18	ANT0	Antenna 0
19	GND	Ground
20	VCC0	Supply Voltage
21	GND	Ground
22	VCC2	Supply Voltage
23	GND	Ground
24	VCC1	Supply Voltage
Paddle	GND	Ground

Absolute Maximum Ratings

These are stress ratings only. Exposure to stresses beyond these maximum ratings may cause permanent damage to, or affect the reliability of the device. Avoid operating the device outside the recommended operating conditions defined below. This device is ESD sensitive. Handling and assembly of this device should be at ESD protected workstations.

Symbol	Definition	Min.	Max.	Unit
VCC	Supply Voltage on VCC	-0.3	3.6	V
Vin	DC input on EN, C1, C2, C3, C4	-0.3	3.6	V
TX	RF Input Power. ANT0 and ANT1 terminated in 50Ω match	-	12.0	dBm
TA	Operating Temperature Range	0	85	°C
Тѕтс	Storage Temperature Range	-40	150	°C

Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
TA	Ambient temperature	-30	25	85	°C
VCC	VCC0, VCC1, VCC2 supply voltage	3.0	3.3	3.6	V

DC Electrical Characteristics

Conditions: VCC = EN = 3.3 V, T_A = 25 °C, as measured on Skyworks Solutions' SE2603L-EK1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Icc-g	Total Supply Current	POUT = 17 dBm, 54 Mbps OFDM signal, 64QAM	-	145		mA
Ісс-в	Total Supply Current	P _{OUT} = 19 dBm, 11 Mbps CCK signal, BT = 0.45	-	180		mA
Icq	Total Supply Current	No RF	-	90	-	mA
Icntl	Control Line Current	C1, C2, C3 or C4 = 3.3V		1	10	μA
Icc0	Supply Current on VCC0	No RF, VCC0 = 3.3V	-	70	100	μΑ
		No RF Applied, EN = R0 = T0 = T1 = R1 = VCC0 = 0 V	-	1	10	μΑ
Icc_off	Total Supply Current	No RF Applied, EN = R0 = T0 = T1 = R1 = 0 V; VCC0 = 3.3V	-	71	110	μΑ

PA Logic Characteristics

Conditions: VCC = EN = 3.3 V, T_A = 25 °C, as measured on Skyworks Solutions' SE2603L-EK1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
VENH	Logic High Voltage (Module On)	-	1.8	3.3	3.6	V
VENL	Logic Low Voltage (Module Off)	-	0	-	0.4	V
lenh	Input Current Logic High Voltage	-	-	2	10	μΑ
lenl	Input Current Logic Low Voltage	-	-	2	10	μA

Switch Logic Characteristics

Conditions: VCC = EN = 3.3 V, T_A = 25 °C, as measured on Skyworks Solutions' SE2603L-EK1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Vctl_on	Control Voltage (On State)	-	3.0	-	3.6	V
Vctl_off	Control Voltage (OFF State)	-	0.0	-	0.2	V
ON	Low Loss Switch Control Voltage	High State = VCTL_ON - VCTL_OFF	2.7	-	3.6	V
OFF	High Loss Switch Control Voltage	Low State = Vctl_off - Vctl_off	0	-	0.3	V
Ссть	Control Input Capacitance	-	-	-	100	pF

Switch Control Logic Table

Switch Logic Operational M					nal Mode		
C1	C2	C3	C4	TX – ANTO	TX – ANT1	RX – ANTO	RX – ANT1
ON	ON	ON	ON	ON	OFF	OFF	OFF
OFF	ON	ON	ON	OFF	OFF	ON	OFF
ON	ON	ON	OFF	OFF	ON	OFF	OFF
OFF	ON	ON	OFF	OFF	OFF	OFF	ON
ON	OFF	OFF	OFF	ON	OFF	OFF	OFF
OFF	ON	OFF	OFF	OFF	OFF	OFF	ON
OFF	OFF	ON	OFF	OFF	ON	OFF	OFF
OFF	OFF	OFF	ON	OFF	OFF	ON	OFF
ON	ON	OFF	OFF	ON	OFF	OFF	ON
OFF	OFF	ON	ON	OFF	ON	ON	OFF
	All other co	onfiguration	S	All switches set to OFF			

AC Electrical Characteristics

802.11g/n Transmit Characteristics

Conditions: VCC = EN = 3.3 V, T_A = 25 °C, as measured on Skyworks Solutions' SE2603L-EK1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit	
Fin	Frequency Range	-	2400	-	2500	MHz	
POUT	Output Power	54 Mbps OFDM signal, 64 QAM, 3% EVM	-	17	-	dBm	
ACPR, IEEE Mask	Spectral Mask	Pout = 20 dBm, 11 Mbps CCK, BT = 0.45 11 - 22 MHz 22 - 33 MHz	-	-35 -55	1	dBc	
P _{1dB}	P1dB	-	-	23.0	1	dBm	
S 21	Small Signal Gain	-	24	27	30	dB	
Δ\$21	Small Signal Gain Variation	Gain variation over single 40MHz channel Gain Variation over band	-	0.5	1.0	dB	
S ₂₁ 3.2	Gain @ limit at Ref- vco spur frequency	3206 to 3312 MHz	-	-	15	dB	
2f	Hammaniaa	Роит = 19 dBm, 1 Mbps,	-	-50	-45	dBm/MHz	
3f	Harmonics	CCK	-	-50	-45	dBm/MHz	
tdr, tdf	Delay and rise/fall Time	50 % of VEN edge and 90/10 % of final output power level	-	0.7	-	μs	
S ₁₁	Input Return Loss	-	10	14	-	dB	
STAB	Stability	CW, Pout = 20 dBm 0.1 GHz - 20 GHz Load VSWR = 6:1	All non-harmonically related outputs less than -42 dBm/MHz				
RU	Ruggedness	P _{IN} = 12dBm, Load VSWR = 6:1	No perma	nent damaç	ge		

Receive Characteristics

Conditions: VCC = 3.3 V, EN = 0 V, T_A = 25 °C, as measured on Skyworks Solutions' SE2603L-EK1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fouт	Frequency Range	-	2400	-	2500	MHz
RXIL	Insertion Loss	-	-	0.9	1.2	dB
RX _{RL}	Return Loss	-	10	15	-	dB
Delta Rx	Delta between Rx paths	ANT0 to RX or ANT1 to RX	-	-	0.5	dB
T _{on/off}	T/R on/off switching speed	Switching speed between T/R modes. V _{CC0} =3.3V.		100	250	nSec
TRiso	Tx to Rx Leakage	Device transmitting (EN = 3.3 V) with 17.0 dBm. @ ANT0 or ANT1, Power measured @ RX TX ↔ ANT0 or ANT1 = ON, RX ↔ ANT0 or ANT1= OFF	-	-3	0	dBm
ANTR _{ISOL}	Isolation between ANT0 and ANT1	Difference in transmitted signal level on ANT1 or ANT0 while transmistting from ANT0 or ANT1. TX ↔ ANT0 or ANT1 = ON, Rx and opposite ANT port terminated in 50ohm.	18	25	-	dB

Power Detector Characteristics

Conditions: VCC = EN = 3.3 V, T_A = 25 °C, as measured on Skyworks Solutions' SE2603L-EK1 evaluation board, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fouт	Frequency Range	-	2400	-	2500	MHz
PDR	Power detect range, CW	Measured at ANT0 or ANT1	0	-	21	dBm
PDZsrc	DC source impedance on PD_OUT	-	-	1	-	kΩ
PDV _{NoRF}	Output Voltage, Pout = No RF	Measured into 1MΩ	-	0.12	-	٧
PDV _{p18}	Output Voltage, Pout = 17 dBm CW	Measured into 1MΩ	-	0.45	-	٧
PDV _{p21}	Output Voltage, Pout = 21 dBm CW	Measured into 1MΩ	-	0.75	-	V
LPF-3dB	Power detect low pass filter -3dB corner frequency	PDCLOAD = 390 pF	270	290	400	kHz

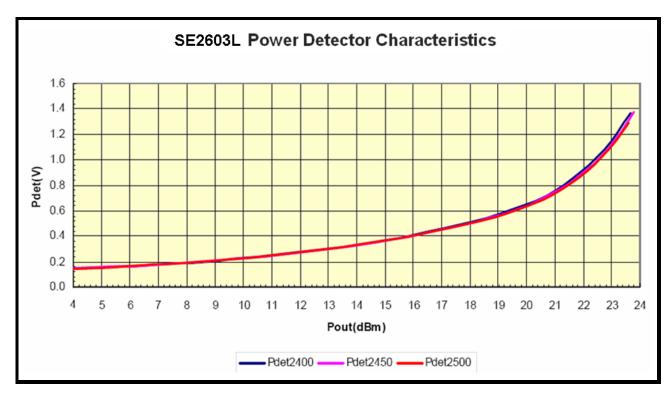


Figure 3: SE2603L Power Detector Characteristics

Package Diagram

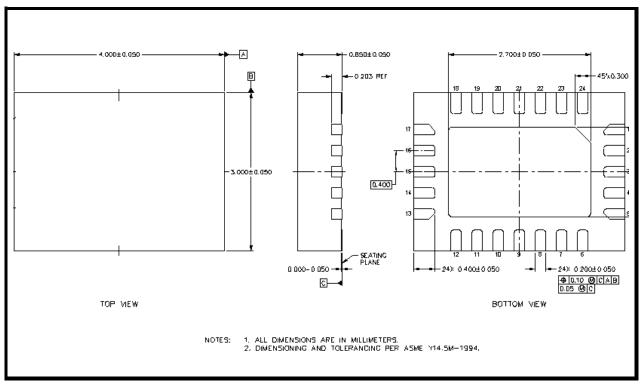
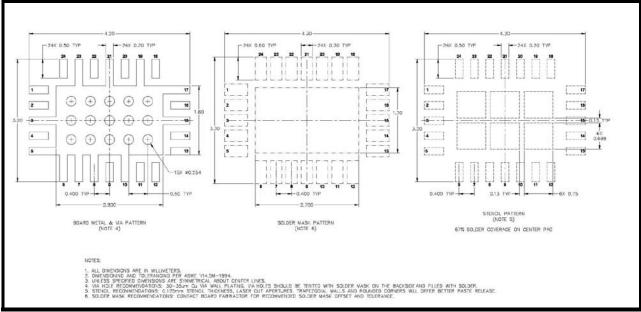
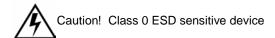


Figure 4: SE2603L Package Outline Drawing

Recommended Land and Solder Patterns




Figure 5: Recommended Land and Solder Patterns

Package Handling Information

Because of its sensitivity to moisture absorption, instructions on the shipping container label must be followed regarding exposure to moisture after the container seal is broken, otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly. The SE2603L is capable of withstanding a Pb free solder reflow. Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. If the part is manually attached, precaution should be taken to insure that the device is not subjected to temperatures above its rated peak temperature for an extended period of time. For details on both attachment techniques, precautions, and handling procedures recommended, please refer to:

- "Quad Flat No-Lead Module Solder Reflow & Rework Information", Document Number QAD-00045
- "Handling, Packing, Shipping and Use of Moisture Sensitive QFN", Document Number QAD-00044
- SiGe's Application Note: "Class 0 ESD Device Handling", Document Number QAD-00163

Branding Information

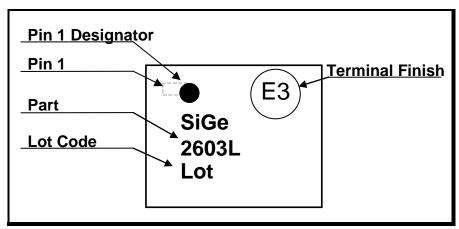


Figure 6: SE2603L Branding and Pin 1 Location

Tape and Reel Information

Parameter	Value
Devices Per Reel	3000
Reel Diameter	13 inches
Tape Width	12 millimeters

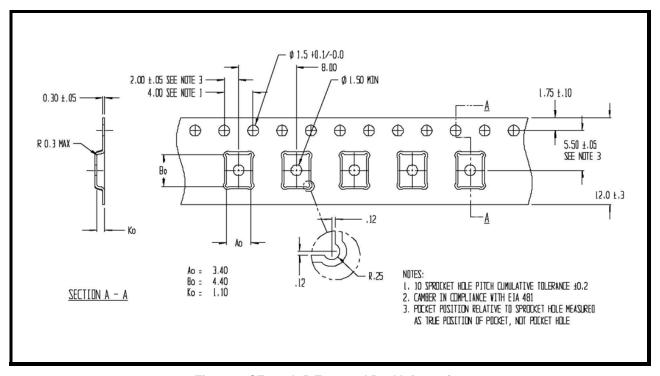


Figure 7: SE2603L-R Tape and Reel Information

Document Change History

Revision	Date	Notes
1.0	Sep 18, 2009	Created
1.1	Sep 23, 2009	Corrected operating voltage, Updated current consumption
1.2	Sep 29, 2009	Remove reference to pull down resistor. Updated leakage current.
1.3	Oct 12, 2009	Updated package outline drawing
1.4	Jan 20, 2010	Updated for ESD
1.5	Jan 29, 2010	Removed reference to the incorrect part number
1.6	Jun 9, 2010	Updated MSL rating to MSL 1
1.7	Apr 10, 2012	Updated with Skyworks logo and disclaimer statement

Copyright © 2012 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, and "Breakthrough Simplicity" are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.