| LTR | | | | | | | | F | REVISI | ONS | | | | | | | | | | | |---|--|--|----------|----------------------------------|-------------------------|---|-------------------------------------|--------------------|-----------|--------------|----------|----------|-------------------|------------|-----------------|------------------------|------------------------|----------------|---------------|------| | | DESCRIPTION | | | | | | | DA | TE (Y | R-MO-[| DA) | | APPR | ROVED | | | | | | | | Α | Add vendor CAGE F8859. Add device class V criteria. Editorial changes throughout gap | | | | | 00-01-05 | | Raymond Monnin | | | | | | | | | | | | | | В | Add | case o | utline X | . Add | delta lir | mits, ta | ble III. | Update | e boiler | plate | cfs | | | 00-0 |)9-18 | | Monica L. Poelking | | | | | С | Add o | case o | utline Z | Upda | te boile | rplate | to MIL- | PRF-38 | 3535 re | quirem | ents | jak | | 01-0 | 08-07 | | Т | homas | M. He | SS | | D | case | outline | X lead | ires, se
d tempe
ate to in | rature | in sect | ion 1.3 | . Corre | ect the v | wavefo | rms in | figure | | 05-0 |)5-27 | | Т | Thomas M. Hess | | | | E | section | on 1.5 | and SE | type 01
EP test
88535 re | limits ta | able IB. | Upda | | | | | | | 10-1 | 11-24 | | Thomas M. Hess | REV
SHEET
REV | E | E | E | E | E | E | E | E | E | E | | | | | | | | | | | | SHEET | E 15 | E 16 | E 17 | E 18 | E 19 | E 20 | E 21 | E 22 | E 23 | E 24 | | | | | | | | | | | | SHEET | | | | | 19 | | | | | | E | E | E | E | E | E | E | E | E | E | | SHEET
REV
SHEET | | | | 18 | 19 | | 21 | 22 | 23 | 24 | E 5 | E 6 | E 7 | E 8 | E 9 | E 10 | E 11 | E 12 | E 13 | E 14 | | SHEET REV SHEET REV STATUS | | | | 18
REV | 19
,
EET | 20 | 21
E | 22
E
2 | 23
E | 24
E | | 6 | 7 | 8
LAND | 9
AND | 10 MAF | 11 | 12
E | | | | SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAN MICRO | 15 | 16 | | 18 REV SHE | 19 r EET PAREC | 20
D BY
Marcia I | 21
E
1 | 22
E
2 | 23
E | 24
E | | 6 | 7
DLA I | 8
LAND | 9
AND | 10
MAF
O 432 | 11
RITIMI
218-39 | 12
E | | | | SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAN MICRO | 15 NDAR OCIRC WING G IS A BE BY A RTMEN CIES C | 16 RD CUIT G VAILA ALL ITS DF THE | 17 | 18 REV SHE PREI | 19 PAREC N CKED V ROVEC | 20 D BY Marcia I BY William D BY Michae APPR(| 21
E
1
B. Kelle
J. Johr | 22 E 2 Peher Inson | 23
E | 24
E
4 | 5
CRO | CIRC OCT | 7 DLA I DLUM http | BLANDIBUS, | 9 AND, OHIO | 10 MAF 0 432 cc.dla | 11
RITIMI
218-39 | E
990 | 13
)
TH | | DSCC FORM 2233 APR 97 5962-E034-11 #### 1. SCOPE - 1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels is reflected in the PIN. - 1.2 PIN. The PIN is as shown in the following examples. For device classes M and Q: 01 Device type (see 1.2.2) Case outline (see 1.2.4) Lead finish (see 1.2.5) For device class V: Device type (see 1.2.2) Device class designator (see 1.2.3) Case outline (see 1.2.4) Lead finish (see 1.2.5) - 1.2.1 <u>RHA designator</u>. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device. - 1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows: | Device type | Generic number | Circuit function | |-------------|----------------|--| | 01 | 54AC273 | Octal D-type flip-flop with master reset | 1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows: Device class Device requirements documentation Μ Vendor self-certification to the requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A Q or V Certification and qualification to MIL-PRF-38535 | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 2 | | 124 | Case outline(s) | The case outline(s) are as | IIM in betanaises | -STD-1835 and as follows: | |-------|-------------------|----------------------------|----------------------|-----------------------------| | 1.2.4 | Case outilite(s). | THE Case outline(s) are as | o designated in will | 3 I D- 1033 and as idilows. | | <u>Descriptive designator</u> | <u>Terminals</u> | Package style | |-------------------------------|---|---| | GDIP1-T20 or CDIP2-T20 | 20 | Dual-in-line | | GDFP2-F20 or CDFP3-F20 | 20 | Flat pack | | See figure 1 | 20 | Flat pack | | GDFP1-G20 | 20 | Flat pack with gull-wing | | CQCC1-N20 | 20 | Square leadless chip carrier | | | GDIP1-T20 or CDIP2-T20
GDFP2-F20 or CDFP3-F20
See figure 1
GDFP1-G20 | GDIP1-T20 or CDIP2-T20 20
GDFP2-F20 or CDFP3-F20 20
See figure 1 20
GDFP1-G20 20 | 1.2.5 <u>Lead finish</u>. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M. # 1.3 Absolute maximum ratings. 1/, 2/, 3/ | Supply voltage range (V _{CC}) | 0.5 V dc to +7.0 V dc | |--|---| | DC input voltage range (V _{IN}) | $\cdot \cdot \cdot -0.5$ V dc to V _{CC} + 0.5 V dc | | DC output voltage range (V _{OUT}) | $\cdot \cdot \cdot -0.5 \text{ V dc to V}_{\text{CC}} + 0.5 \text{ V dc}$ | | DC input clamp current (I _{IK} , I _{OK}) | ±20 mA | | DC output current (per pin) (I _{OUT}) | ±50 mA | | DC V _{CC} or GND current (per output pin) (I _{CC} , I _{GND}) | ±50 mA | | Maximum power dissipation (P _D) | 500 mW | | Storage temperature range (T _{STG}) | 65°C to +150°C | | Lead temperature (soldering, 10 seconds): | | | Case outline X | +260°C | | All other case outlines except case X | +300°C | | Thermal resistance, junction-to-case (θ _{JC}) | See MIL-STD-1835 | | Junction temperature (T _J) | +175°C <u>4</u> / | | | | # 1.4 Recommended operating conditions. 2/, 3/, 5/ | Supply voltage range (V _{CC}) | +2.0 V dc to +6.0 V dc | |--|------------------------------| | Input voltage range (V _{IN}) | +0.0 V dc to V _{CC} | | Output voltage range (V _{OUT}) | +0.0 V dc to V _{CC} | | Case operating temperature range (T _C) | -55°C to +125°C | | Maximum input rise or fall time rate $(\Delta t/\Delta V)$: | | | V _{CC} = 3.6 V to 5.5 V | 0 to 8 ns/V | | Minimum setup time, Dn to CP (t _s): | | | $T_C = +25^{\circ}C, V_{CC} = 3.0 \text{ V}$ | | | $T_C = +25^{\circ}C$, $V_{CC} = 4.5 V$ | | | $T_C = -55^{\circ}C$ to +125°C, $V_{CC} = 3.0 \text{ V}$ | | | $T_C = -55^{\circ}C$ to +125°C, $V_{CC} = 4.5 \text{ V}$ | 5.0 ns | | Minimum hold time, Dn to CP (th): | | | $T_C = +25^{\circ}C, V_{CC} = 3.0 \text{ V}$ | | | $T_C = +25^{\circ}C, V_{CC} = 4.5 \text{ V}$ | | | $T_C = -55^{\circ}C \text{ to } +125^{\circ}C, V_{CC} = 3.0 \text{ V}$ | | | $T_{\rm C}$ = -55°C to +125°C. $V_{\rm CC}$ = 4.5 V | 1.0 ns | | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 3 | # 1.4 Recommended operating conditions - Continued. 2/, 3/, 5/ Minimum pulse width, CP (tw): $T_C = +25^{\circ}C$, $V_{CC} = 3.0 \text{ V}$ 5.5 ns $T_C = +25^{\circ}C$, $V_{CC} = 4.5 \text{ V}$ 5.0 ns $T_C = -55^{\circ}\text{C to } + 125^{\circ}\text{C}, \ V_{CC} = 3.0 \text{ V}$ 6.5 ns $T_C = -55^{\circ}\text{C to } + 125^{\circ}\text{C}, \ V_{CC} = 4.5 \text{ V}$ 5.0 ns Maximum frequency (f_{max}): Minimum pulse width, MR (tw): $T_C = +25^{\circ}C$, $V_{CC} = 3.0 \text{ V}$ 8.0 ns $T_C = +25^{\circ}C$, $V_{CC} = 4.5 \text{ V}$ 5.0 ns Minimum recovery time, MR to CP (trec): 1.5 Radiation features. Device type 01: Single Event Latch-up (SEL) at LET (see 4.4.4.2).....≥ 93 MeV-cm²/mg | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 4 | Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability. Unless otherwise noted, all voltages are referenced to GND. $[\]underline{3}$ / The limits for the parameters specified herein shall apply over the full specified V_{CC} range and case temperature range of -55°C to +125°C. ^{4/} Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with method 5004 of MIL-STD-883. ^{5/2} Operation
from 2.0 V dc to 3.0 V dc is provided for compatibility with data retention and battery back-up systems. Data retention implies no input transition and no stored data loss with the following conditions: V_{IH} ≥ 70% of V_{CC}, V_{IL} ≤ 30% of V_{CC}, V_{OH} ≥ 70% of V_{CC} @ -20μA, V_{OL} ≤ 30% of V_{CC} @ 20 μA. #### 2. APPLICABLE DOCUMENTS 2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract. #### DEPARTMENT OF DEFENSE SPECIFICATION MIL-PRF-38535 - Integrated Circuits Manufacturing, General Specification for. #### DEPARTMENT OF DEFENSE STANDARDS MIL-STD-883 - Test Method Standard Microcircuits. MIL-STD-1835 - Interface Standard Electronic Component Case Outlines. #### DEPARTMENT OF DEFENSE HANDBOOKS MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings. (Copies of these documents are available online at https://assist.daps.dla.mil/quicksearch/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.) 2.2 <u>Non-Government publications</u>. The following document(s) form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract. #### ELECTRONIC INDUSTRIES ALLIANCE (EIA) JEDEC Standard No. 20 - Standardized for Description of 54/74ACXXXX and 54/74ACTXXXX Advanced High-Speed CMOS Devices (Copies of these documents are available online at http://www.jedec.org or from the Electronic Industries Alliance, 2500 Wilson Boulevard, Arlington VA 22201-3834.) 2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. #### 3. REQUIREMENTS - 3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. - 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M. - 3.2.1 Case outlines. The case outlines shall be in accordance with 1.2.4 and figure 1 herein. - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 2. - 3.2.3 Truth table. The truth table shall be as specified on figure 3. - 3.2.4 Logic diagram. The logic diagram shall be as specified on figure 4. - 3.2.5 Switching waveforms and test circuit. The switching waveforms and test circuit shall be as specified on figure 5. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 5 | - 3.2.6 <u>Radiation exposure circuit</u>. The radiation exposure circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. - 3.3 <u>Electrical performance characteristics and post-irradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and post-irradiation parameter limits are as specified in table I and shall apply over the full case operating temperature range. - 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I. - 3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A. - 3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A. - 3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DLA Land and Maritime-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein. - 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing. - 3.8 <u>Notification of change for device class M.</u> For device class M, notification to DLA Land and Maritime-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-PRF-38535, appendix A. - 3.9 <u>Verification and review for device class M</u>. For device class M, DLA Land and Maritime, DLA Land and Maritime's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer. - 3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 38 (see MIL-PRF-38535, appendix A). | STANDARD | | | | | |----------------------|--|--|--|--| | MICROCIRCUIT DRAWING | | | | | DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 | SIZE
A | | 5962-87756 | |------------------|---------------------|------------| | | REVISION LEVEL
E | SHEET 6 | | | | TABLE I. Electrical perfo | ormance charac | teristics. | | | | | |-----------------------------------|----------------------------|---|-------------------------|-----------------|-----------|------|----------------|----------| | Test and | Combal | Test conditions $\underline{2}/\underline{3}/$
-55°C \leq T _C \leq +125°C | Device type and | W | Group A | Limi | its <u>5</u> / | Linit | | MIL-STD-883 test method 1/ | Symbol | $+3.0 \text{ V} \le \text{V}_{\text{CC}} \le +5.5 \text{ V}$ unless otherwise specified | device class <u>4</u> / | V _{CC} | subgroups | Min | Max | Unit | | Positive input clamp voltage 3022 | V _{IC+} | For input under test,
I _{IN} = 1.0 mA | All
V | 0.0 V | 1 | 0.4 | 1.5 | V | | Negative input clamp voltage 3022 | V _{IC} - | For input under test, I _{IN} = -1.0 mA | All
V | Open | 1 | -0.4 | -1.5 | V | | High level output voltage | V _{OH} 6/ | $V_{IN} = V_{IH}$ (min) or V_{IL} (max).
$I_{OH} = -50 \mu A$ | AII
AII | 3.0 V | 1, 2, 3 | 2.9 | | V | | 3006 | = | | All
All | 4.5 V | 1, 2, 3 | 4.4 | | | | | | | All
All | 5.5 V | 1, 2, 3 | 5.4 | | | | | | $V_{IN} = V_{IH}$ (min) or V_{IL} (max). | All | 3.0 V | 1 | 2.56 | | | | | | I _{OH} = -12 mA | All | | 2, 3 | 2.40 | | | | | | $V_{IN} = V_{IH}$ (min) or V_{IL} (max). | All | 4.5 V | 1 | 3.86 | | | | | | I _{OH} = -24 mA | All | | 2, 3 | 3.70 | | | | | | | All | 5.5 V | 1 | 4.86 | <u> </u> | | | | | | All | | 2, 3 | 4.70 | | 1 | | | | $V_{IN} = V_{IH}$ (min) or V_{IL} (max).
$I_{OH} = -50$ mA | All
All | 5.5 V | 1, 2, 3 | 3.85 | | | | Low level output voltage | V _{OL} <u>6</u> / | $V_{IN} = V_{IH}$ (min) or V_{IL} (max).
$I_{OL} = 50 \mu A$ | AII
AII | 3.0 V | 1, 2, 3 | | 0.1 | V | | 3007 | <u> </u> | [62] | All
All | 4.5 V | 1, 2, 3 | | 0.1 | 1 | | | | | All
All | 5.5 V | 1, 2, 3 | | 0.1 | | | | | $V_{IN} = V_{IH}$ (min) or V_{IL} (max). | All | 3.0 V | 1 | | 0.36 | | | | | I _{OL} = 12 mA | All | | 2, 3 | | 0.50 | | | | | $V_{IN} = V_{IH}$ (min) or V_{IL} (max). | All | 4.5 V | 1 | | 0.36 | | | | | I _{OL} = 24 mA | All | | 2, 3 | | 0.50 | | | | | ! | All | 5.5 V | 1 | | 0.36 | | | | | | All | | 2, 3 | | 0.50 | | | | | $V_{IN} = V_{IH}$ (min) or V_{IL} (max).
$I_{OL} = 50$ mA | All
All | 5.5 V | 1, 2, 3 | | 1.65 | <u> </u> | | High level input voltage | V _{IH} <u>7</u> / | | All
All | 3.0 V | 1, 2, 3 | 2.1 | | V | | Ü | | | All
All | 4.5 V | 1, 2, 3 | 3.15 | | | | | | · · | All
All | 5.5 V | 1, 2, 3 | 3.85 | | | | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------
---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 7 | | | | TABLE I. <u>Electrical performance</u> | <u>characteristics</u> - | - Continu | ed. | | | | |------------------------------------|-----------------------|---|--------------------------|-----------------|-----------|------|---------------|----------| | Test and | Or mark to all | Test conditions $\underline{2}/\underline{3}/$
-55°C \leq T _C \leq +125°C | Device type and | ., | Group A | Limi | ts <u>5</u> / | 11.20 | | MIL-STD-883 test method <u>1</u> / | Symbol | $+3.0 \text{ V} \le V_{CC} \le +5.5 \text{ V}$ unless otherwise specified | device class <u>4</u> / | V _{CC} | subgroups | Min | Max | Unit | | Low level input | V _{IL} | | All | 3.0 V | 1, 2, 3 | | 0.9 | V | | voltage | <u>7</u> / | | All | 4.5 V | 1, 2, 3 | | 1.35 | | | | | | | 5.5 V | 1, 2, 3 | | 1.65 | | | Input leakage | I _{IL} | For input under test, $V_{IN} = GND$ | All | 5.5 V | 1 | | -0.1 | μΑ | | current low
3009 | | For all other inputs, $V_{IN} = V_{CC}$ or GND | All | | 2, 3 | | -1.0 | | | Input leakage | I _{IH} | For input under test, V _{IN} = 5.5 V | All | 5.5 V | 1 | | 0.1 | μΑ | | current high
3010 | | For all other inputs, $V_{IN} = V_{CC}$ or GND | All | | 2, 3 | | 1.0 | | | Quiescent supply | I _{CCH} | V _{IN} = V _{CC} or GND | All | 5.5 V | 1 | | 4 | μА | | current, output | | Output open | All | | 2, 3 | | 80 | | | high
3005 | | M, D, P, L, R, F <u>8</u> / | 01
Q, V | | 1 | | 50 | | | Quiescent supply | Iccl | V _{IN} = V _{CC} or GND | All | 5.5 V | 1 | | 4 | μА | | current, output | | Output open | All | | 2, 3 | | 80 | | | low
3005 | | M, D, P, L, R, F <u>8</u> / | 01
Q, V | | 1 | | 50 | | | Input capacitance 3012 | C _{IN} | See 4.4.1c
T _C = +25°C | All
All | GND | 4 | | 10 | pF | | Power dissipation capacitance | C _{PD}
9/ | See 4.4.1c
T _C = +25°C, f = 1 MHz | All
All | 5.0 V | 4 | | 80 | pF | | Functional tests
3014 | 10/ | V _{IN} = V _{IH} or V _{IL} ,
Verify output V _{OUT} | AII
AII | 3.0 V | 7, 8 | L | Н | | | 3014 | | See 4.4.1b | All | 5.5 V | 7, 8 | L | Н | | | Propagation delay | t _{PHL1} | C _L = 50 pF minimum | All | 3.0 V | 9 | 1.0 | 13.0 | ns | | time, CP to Qn | <u>11</u> / | $R_L = 500\Omega$ | All | | 10, 11 | 1.0 | 16.0 | | | 3003 | | See figure 5 | | 4.5 V | 9 | 1.5 | 10.0 | | | | | | | | 10, 11 | 1.5 | 11.5 | | | | t _{PLH1} | | | 3.0 V | 9 | 1.0 | 12.5 | | | | <u>11</u> / | | | | 10, 11 | 1.0 | 15.0 | | | | | | | 4.5 V | 9 | 1.5 | 9.0 | | | | | | | | 10, 11 | 1.5 | 11.0 | <u> </u> | | Propagation delay | t _{PHL2} | C _L = 50 pF minimum | All | 3.0 V | 9 | 1.0 | 13.0 | ns | | time, \overline{MR} to Qn | <u>11</u> / | $R_L = 500\Omega$
See figure 5 | All | | 10, 11 | 1.0 | 16.0 | 1 | | 3003 | | Gee ligure 5 | | 4.5 V | 9 | 1.5 | 10.0 | 1 | | | | | | | 10, 11 | 1.5 | 11.5 | <u></u> | - For tests not listed in the referenced MIL-STD-883, [e.g. V_{IH} , V_{IL}], utilize the general test procedure under the conditions <u>1</u>/ listed herein. - Each input/output, as applicable, shall be tested at the specified temperature, for the specified limits, to the tests in table I herein. Output terminals not designated shall be high level logic, low level logic, or open, except as follows: a. V_{IC} (pos) tests, the GND terminal can be open. T_{C} = +25°C. b. V_{IC} (neg) tests, the V_{CC} terminal shall be open. T_{C} = +25°C. c. All I_{CC} tests, the output terminal shall be open. When performing these tests, the current meter shall be - placed in the circuit such that all current flows through the meter. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 8 | #### TABLE I. Electrical performance characteristics - Continued. - 3/ RHA parts for device type 01 meet all levels M, D, P, L, R, and F of irradiation. However, these parts are only tested at the "F" level. Pre and post irradiation values are identical unless otherwise specified in table I. When performing post irradiation electrical measurements for any RHA level, T_A = 25°C - 4/ The word "All" in the device type and device class column means non-RHA limits for all device types and classes. - 5/ For negative and positive voltage and current values, the sign designates the potential difference in reference to GND and the direction of current flow, respectively; and the absolute value of the magnitude, not the sign, is relative to the minimum and maximum limits, as applicable, listed herein. All devices shall meet or exceed the limits specified in table I, as applicable, at $3.0 \text{ V} \le \text{V}_{\text{CC}} \le 3.6 \text{ V}$ and $4.5 \text{ V} \le \text{V}_{\text{CC}} \le 5.5 \text{ V}$. - The V_{OH} and V_{OL} tests shall be tested at V_{CC} = 3.0 V, 4.5 V and 5.5 V. The V_{OH} and V_{OL} tests are guaranteed, if not tested, for other values of V_{CC} . Limits shown apply to operation at V_{CC} = 3.3 V \pm 0.3 V and V_{CC} = 5.0 V \pm 0.5 V. Tests with output current at +50 mA or -50 mA are performed on only one output at a time with duration not to exceed 10 ms. Transmission driving tests may be performed using $V_{IN} = V_{CC}$ or GND. When $V_{IN} = V_{CC}$ or GND is used, the test is guaranteed for $V_{IN} = V_{IH}$ minimum and V_{IL} maximum. Values for subgroup 1 shall be guaranteed, if not tested, to the limits specified in table I except class V products. - \overline{I} / The V_{IH} and V_{IL} tests are not required if applied as forcing functions for V_{OH} and V_{OL} tests. - 8/ The maximum limit for this parameter at 100 krads(Si) is 4.0 μA. - 9/ Power dissipation capacitance (C_{PD}) determines both the power consumption (P_D) and dynamic current consumption (I_S). Where: $$\begin{aligned} P_{D} &= (C_{PD} + C_{L}) (V_{CC} x V_{CC}) f + (I_{CC} x V_{CC}) \\ I_{S} &= (C_{PD} + C_{L}) V_{CC} f + I_{CC} \end{aligned}$$ f is the frequency of the input signal and C_L is the external output load capacitance. - Tests shall be performed in sequence, attributes data only. Functional tests shall include the truth table and other logic patterns used for fault detection. The test vectors used to verify the truth table shall, at a minimum, test all functions of each input and output. All possible input to output logic patterns per function shall be guaranteed, if not tested, to the truth table in figure 3 herein. Functional tests shall be performed in sequence as approved by the qualifying activity on qualified devices. Allowable tolerances in accordance with MIL-STD-883 for the input voltage levels may be incorporated. For V_{OUT} measurements, L ≤ 0.3V_{CC} and H ≥ 0.7V_{CC}. - $\underline{11}$ / AC limits at V_{CC} = 5.5 V are equal to the limits at V_{CC} = 4.5 V and guaranteed by testing at V_{CC} = 4.5 V. AC limits at V_{CC} = 3.6 V are equal to limits at V_{CC} = 3.0 V and guaranteed by testing at V_{CC} = 3.0 V. Minimum ac limits for V_{CC} = 5.5 V are 1.0 ns and guaranteed by guardbanding the V_{CC} = 4.5 V minimum limits to 1.5 ns. For propagation delay tests, all paths must be tested. # TABLE IB. SEP test limits. 1/ 2/ | Device
type | Bias for Single event latch-up (SEL) test $V_{\rm CC}$ = 4.5 V No SEL at effective LET = $\underline{3}/\underline{4}/$ | |----------------|---| | 01 | LET ≤ 93 [MeV/(mg/cm²)] | - 1/ For SEP test conditions, see 4.4.4.2 herein. - Technology characterization and model verification supplemented by in-line data may be used in lieu of end-of-line testing. Test plan must be approved by TRB and qualifying activity. - 3// Tested for SEL at operating temperature, $T_A = +125$ °C ± 10 °C - $\underline{4}$ / Tested to an effective LET \leq 93 MeV/(mg/cm²) and no SEL occur . | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 9 | # Case outline X. | | Dimensions | | | | | | |--------|------------|------|--------|-------|--|--| | Symbol | Inches | | Millim | eters | | | | | Min | Max | Min | Max | | | | Α | .045 | .085 | 1.14 | 2.16 | | | | b | .015 | .019 | 0.38 | 0.48 | | | | С | .003 | .006 | 0.076 | 0.152 | | | | D | .505 | .515 | 12.83 | 13.08 | | | | Ш | .275 | .285 | 6.99 | 7.24 | | | | е | .045 | .055 | 1.14 | 1.40 | | | | L | .250 | .370 | 6.35 | 9.39 | | | | Q | .010 | | 0.25 | | | | | N | 2 | .0 | 20 |) | | | FIGURE 1. Case outline. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 10 | | Device type | 01 | |--|---| | Case outlines | R, S, X, Z, and 2 | | Terminal
number | Terminal
symbol | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | MR Q ₀ D ₀ D ₁ Q ₁ Q ₂ D ₂ D ₃ Q ₃ GND CP Q ₄ D ₄ D ₅ Q ₅ Q ₆ D ₆ | | 19
20 | D ₇
Q ₇
V _{CC} | FIGURE 2. <u>Terminal connections</u>. | | Inputs | | Outputs | Operating | |----|---------|----|---------|---------------| | MR | СР | Dn | Qn | mode | | L | Х | Х | L | Reset (Clear) | | Н | | h | Н | Load '1' | | Н |
 | Ι | L | Load '0' | H = High voltage level L = Low voltage level I = Low one setup time prior to clock pulse h = High one setup time prior to clock pulse X = Immaterial ↑ = Low-to-high clock transition FIGURE 3. Truth table. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 11 | FIGURE 4. Logic diagram. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 12 | FIGURE 5. Switching waveforms and test circuit. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 13 | #### NOTES: - 1. $C_L = 50$ pF minimum or equivalent, (includes test jig and probe capacitance). - 2. R_T = 50 Ω or equivalent, R_L = 500 Ω or equivalent. - 3. Input signal from pulse generator: V_{IN} = 0.0 V to V_{CC} ; PRR \leq 1 MHz; Z_O = 50 Ω ; $t_r \leq$ 3.0 ns; $t_r \leq$ 3.0 ns; t_r and t_f shall be measured from 10% of V_{CC} to 90% of V_{CC} and from 90% of V_{CC} to 10% of V_{CC} , respectively; duty cycle = 50 percent. - 4. Timing parameters shall be tested at a minimum input frequency of 1 MHz. - 5. The outputs are measured one at a time with one transition per measurement. FIGURE 5. Switching waveforms and test circuit - Continued. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 14 | # TABLE II. Electrical test requirements. | Test requirements | Subgroups
(in accordance with
MIL-STD-883,
method 5005, table I) | Subgroups
(in accordance with
MIL-PRF-38535, table III) | | |---|---|---|---| | | Device
class M | Device
class Q | Device
class V | | Interim electrical parameters (see 4.2) | | | 1 | | Final electrical parameters (see 4.2) | <u>1</u> / 1, 2, 3, 7,
8, 9 | <u>1</u> / 1, 2, 3, 7,
8, 9 | <u>2</u> / <u>3</u> / 1, 2, 3, 7,
8, 9, 10, 11 | | Group A test requirements (see 4.4) | 1, 2, 3, 4, 7,
8, 9, 10, 11 | 1, 2, 3, 4, 7,
8, 9, 10, 11 | 1, 2, 3, 4, 7,
8, 9, 10, 11 | | Group C end-point electrical parameters (see 4.4) | 1, 2, 3 | 1, 2, 3 | <u>3</u> / 1, 2, 3, 7,
8, 9, 10, 11 | | Group D end-point electrical parameters (see 4.4) | 1, 2, 3 | 1, 2, 3 | 1, 2, 3, 7, 9 | | Group E end-point electrical parameters (see 4.4) | 1, 7, 9 | 1, 7, 9 | 1, 7, 9 | ^{1/} PDA applies to subgroup 1. TABLE III. Burn-in and operating life test, delta parameters (+25°C). 1/ | Parameter <u>2</u> / | Symbol | Delta limits | |---|-------------------------------------|--------------| | Supply current | I _{CCH} , I _{CCL} | ±300 nA | | Input current low level | I _{IL} | ±20 nA | | Input current high level | I _{IH} | ±20 nA | | Output voltage low level | V_{OL} | ±0.04 V | | $(V_{CC} = 5.5 \text{ V}, I_{OL} = 24 \text{ mA})$ | | | | Output voltage high level | V_{OH} | ±0.20 V | | $(V_{CC} = 5.5 \text{ V}, I_{OH} = -24 \text{ mA})$ | | | $[\]underline{1}/$ This table is a representation of what vendor CAGE F8859 has experienced and is guaranteed and not meant to be construed as a quality assurance requirement for any other vendor. | <u>2</u> / | These parameters shall be recorded before and after the required | |------------|--| | | Burn-in and life tests to determine the delta limits. | | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 15 | ^{2/} PDA applies to subgroups 1, 7, and deltas. 3/ Delta limits, as specified in table III shall be required, and the delta limits shall be completed with reference to the zero hour electrical parameters. # 4. VERIFICATION - 4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A. - 4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. #### 4.2.1 Additional criteria for device class M. - a. Burn-in test, method 1015 of MIL-STD-883. - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883. - (2) $T_A = +125^{\circ}C$, minimum. - Interim and final electrical test parameters shall be as specified in table II herein. #### 4.2.2 Additional criteria for device classes Q and V. - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883. - b. Interim and final electrical test parameters shall be as specified in table II herein. - Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B. - 4.3 <u>Qualification inspection for device classes Q and V.</u> Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). - 4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4). #### 4.4.1 Group A inspection - a. Tests shall be as specified in table II herein. - b. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the truth table in figure 3 herein. The test vectors used to verify the truth table shall, at a minimum, test all functions of each input and output. All possible input to output logic patterns per function shall be guaranteed, if not tested, to the truth table in figure 3, herein. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device. - c. C_{IN} and C_{PD} shall be measured only for initial qualification and after process or design changes which may affect capacitance. C_{IN} shall be measured between the designated terminal and GND at a frequency of 1 MHz. C_{PD} shall be tested in accordance with the latest revision of JEDEC Standard No. 20 and table I herein. For C_{IN} and C_{PD}, test all applicable pins on five devices with zero failures. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 16 | - 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table II herein. - 4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883: - a. Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883. - b. $T_A = +125^{\circ}C$, minimum. - c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883. - 4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition
and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883. - 4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table II herein. - 4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). - a. End-point electrical parameters shall be as specified in table II herein. - b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the post-irradiation end-point electrical parameter limits as defined in table I at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table II herein. - c. RHA tests for device classes M, Q, and V for levels M, D, P, L, R, and F shall be performed through each level to determine at what levels the devices meet the RHA requirements. These RHA tests shall be performed for initial qualification and after design or process changes which may affect the RHA performance of the device. - d. Prior to irradiation, each selected sample shall be assembled in its qualified package. It shall pass the specified group A electrical parameters in table I for subgroups specified in table II herein. - 4.4.4.1 <u>Total dose irradiation testing</u>. Total dose irradiation testing shall be performed in accordance with MIL-STD-883, method 1019, condition A, and as specified herein. Prior to and during total dose irradiation characterization and testing, the devices for characterization shall be biased so that 50 percent are at inputs high and 50 percent are at inputs low, and the devices for testing shall be biased to the worst case condition established during characterization. Devices shall be biased as follows: - a. Inputs tested high, V_{CC} = 5.5 V dc ±5%, V_{IN} = 5.0 V dc +10%, R_{IN} = 1 k Ω ±20%, and all outputs are open. - b. Inputs tested low, V_{CC} = 5.5 V dc ±5%, V_{IN} = 0.0 V dc, R_{IN} = 1 k Ω ±20%, and all outputs are open. - 4.4.4.1.1 Accelerated anneal test. Accelerated anneal test shall be performed on classes M, Q, and V devices requiring an RHA level greater than 5K rads (Si). The post-anneal end-point electrical parameter limits shall be as specified in table I herein and shall be the pre-irradiation end-point electrical parameter limit at $25^{\circ}C \pm 5^{\circ}C$. Testing shall be performed at initial qualification and after any design or process changes which may affect the RHA response of the device. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 17 | - 4.4.4.2 <u>Single event phenomena (SEP)</u>. SEP testing shall be required on class V devices (see 1.4 herein). SEP testing shall be performed on a technology process on the Standard Evaluation Circuit (SEC) or alternate SEP test vehicle as approved by the qualifying activity at initial qualification and after any design or process changes which may affect the upset or latch-up characteristics. The recommended test conditions for SEP are as follows: - a. The ion beam angle of incidence shall be between normal to the die surface and 60° to the normal, inclusive (i.e. $0^{\circ} \le \text{angle} \le 60^{\circ}$). No shadowing of the ion beam due to fixturing or package related effects are allowed. - b. The fluence shall be ≥ 100 errors or $\geq 10^7$ ions/cm². - c. The flux shall be between 10² and 10⁵ ions/cm²/s. The cross-section shall be verified to be flux independent by measuring the cross-section at two flux rates that differ by at least an order of magnitude. - d. The particle range shall be \geq 20 microns in silicon. - e. The test temperature shall be +25°C and the maximum rated operating temperature ±10°C. - f. Bias conditions shall be defined by the manufacturer for the latch-up measurements. - g. Test four devices with zero failures. - 4.5 Methods of inspection. Methods of inspection shall be specified as follows: - 4.5.1 <u>Voltage and current</u>. Unless otherwise specified, all voltages given are referenced to the microcircuit GND terminal. Currents given are conventional current and positive when flowing into the referenced terminal. - 5. PACKAGING - 5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M. - 6. NOTES - 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes. - 6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing. - 6.1.2 Substitutability. Device class Q devices will replace device class M devices. - 6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal. - 6.3 <u>Record of users</u>. Military and industrial users should inform DLA Land and Maritime, Columbus when a system application requires configuration control and which SMD's are applicable to that system. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DLA Land and Maritime -VA, telephone (614) 692-0544. - 6.4 <u>Comments</u>. Comments on this drawing should be directed to DLA Land and Maritime -VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0547. - 6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331. - 6.6 Sources of supply. - 6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DLA Land and Maritime -VA and have agreed to this drawing. - 6.6.2 <u>Approved sources of supply for device class M.</u> Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DLA Land and Maritime -VA. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 18 | #### A.1 SCOPE A.1.1 <u>Scope</u>. This appendix establishes minimum requirements for microcircuit die to be supplied under the Qualified Manufacturers List (QML) Program. QML microcircuit die meeting the requirements of MIL-PRF-38535 and the manufacturers approved QM plan for use in monolithic microcircuits, multichip modules (MCMs), hybrids, electronic modules, or devices using chip and wire designs in accordance with MIL-PRF-38534 are specified herein. Two product assurance classes consisting of military high reliability (device class Q) and space application (device class V) are reflected in the Part or Identification Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels is reflected in the PIN. A.1.2 PIN. The PIN shall be as shown in the following example: A.1.2.1 <u>RHA designator</u>. Device classes Q and V RHA identified die meet the MIL-PRF-38535 specified RHA levels. A dash (-) indicates a non-RHA die. A.1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows: | Device type | Generic number | <u>Circuit function</u> | |-------------|----------------|--| | 01 | AC273 | Octal D-type flip-flop with master reset | A.1.2.3 Device class designator. Device class Q or V Certification and qualification to the die requirements of MIL-PRF-38535. A.1.2.4 <u>Die details</u>. The die details designation is a unique letter which designates the die's physical dimensions, bonding pad location(s) and related electrical function(s), interface materials, and other assembly related information, for each product and variant supplied to this appendix. A.1.2.4.1 Die physical dimensions. Die type Figure number 01 A-1 A.1.2.4.2 Die bonding pad locations and electrical functions. Die type Figure number 01 A-1 | STANDARD MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 19 | A.1.2.4.3 Interface materials. Die type Figure number 01 A-1 A.1.2.4.4 Assembly related information. Die type Figure number 01 A-1 - A.1.3 Absolute maximum ratings. See paragraph 1.3 herein for details. - A.1.4
Recommended operating conditions. See paragraph 1.4 herein for details. # A.2. APPLICABLE DOCUMENTS A.2.1 Government specifications, standards, and handbooks. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract. DEPARTMENT OF DEFENSE SPECIFICATION MIL-PRF-38535 - Integrated Circuits Manufacturing, General Specification for. DEPARTMENT OF DEFENSE STANDARDS MIL-STD-883 - Test Method Standard Microcircuits. DEPARTMENT OF DEFENSE HANDBOOKS MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings. (Copies of these documents are available online at https://assist.daps.dla.mil/quicksearch/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.) A.2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. #### A.3 REQUIREMENTS - A.3.1 Item requirements. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. - A.3.2 Design, construction and physical dimensions. The design, construction and physical dimensions shall be as specified in MIL-PRF-38535 and the manufacturer's QM plan, for device classes Q and V and herein. | STANDARD MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 20 | - A.3.2.1 Die physical dimensions. The die physical dimensions shall be as specified in A.1.2.4.1 and on figures A-1. - A.3.2.2 <u>Die bonding pad locations and electrical functions</u>. The die bonding pad locations and electrical functions shall be as specified in A.1.2.4.2 and on figures A-1. - A.3.2.3 Interface materials. The interface materials for the die shall be as specified in A.1.2.4.3 and on figures A-1. - A.3.2.4 <u>Assembly related information</u>. The assembly related information shall be as specified in A.1.2.4.4 and on figures A-1. - A.3.2.5 <u>Truth table(s)</u>. The truth table(s) shall be as defined in paragraph 3.2.3 herein. - A.3.2.6 <u>Irradiation test connections</u>. The irradiation test connections shall be as defined within paragraph 3.2.6 herein. - A.3.3 <u>Electrical performance characteristics and post-irradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and post-irradiation parameter limits are as specified in table IA of the body of this document. - A.3.4 <u>Electrical test requirements</u>. The wafer probe test requirements shall include functional and parametric testing sufficient to make the packaged die capable of meeting the electrical performance requirements in table IA. - A.3.5 <u>Marking</u>. As a minimum, each unique lot of die, loaded in single or multiple stack of carriers, for shipment to a customer, shall be identified with the wafer lot number, the certification mark, the manufacturer's identification and the PIN listed in A.1.2 herein. The certification mark shall be a "QML" or "Q" as required by MIL-PRF-38535. - A.3.6 <u>Certification of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see A.6.4 herein). The certificate of compliance submitted to DLA Land and Maritime -VA prior to listing as an approved source of supply for this appendix shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and the requirements - A.3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 shall be provided with each lot of microcircuit die delivered to this drawing. # A.4. VERIFICATION - A.4.1 <u>Sampling and inspection</u>. For device classes Q and V, die sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modifications in the QM plan shall not affect the form, fit, or function as described herein. - A.4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and as defined in the manufacturer's QM plan. As a minimum, it shall consist of: - a. Wafer Lot acceptance for class V product using the criteria defined in MIL-STD-883, method 5007. - b. 100% wafer probe (see paragraph A.3.4 herein). - c. 100% internal visual inspection to the applicable class Q or V criteria defined in MIL-STD-883, method 2010 or the alternate procedures allowed in MIL-STD-883, method 5004. - A.4.3 Conformance inspection. - A.4.3.1 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be identified as radiation assured (see A.3.5 herein). RHA levels for device classes Q and V shall be as specified in MIL-PRF-38535. End point electrical testing of packaged die shall be as specified in table IIA herein. Group E tests and conditions are as specified in paragraphs 4.4.4 herein. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 21 | #### A.5. DIE CARRIER A.5.1 <u>Die carrier requirements</u>. The requirements for the die carrier shall be in accordance with the manufacturer's QM plan or as specified in the purchase order by the acquiring activity. The die carrier shall provide adequate physical, mechanical and electrostatic protection. # A.6. NOTES - A.6.1 <u>Intended use</u>. Microcircuit die conforming to this drawing are intended for use in microcircuits built in accordance with MIL-PRF-38535 or MIL-PRF-38534 for government microcircuit applications (original equipment), design applications, and logistics purposes. - A.6.2 <u>Comments</u>. Comments on this appendix should be directed to DLA Land and Maritime-VA, P.O. Box 3990, Columbus, Ohio 43218-3990 or telephone (614) 692-0547. - A.6.3 <u>Abbreviations, symbols and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331. - A.6.4 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed within QML-38535 have submitted a certificate of compliance (see A.3.6 herein) to DLA Land and Maritime -VA and have agreed to this drawing. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 22 | FIGURE A-1. Die bonding pad locations and electrical functions. FIGURE A-1. <u>Die bonding pad locations and electrical functions</u>-continued. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 23 | # o DIE PHYSICAL DIMENSIONS Die size: $X = 2529 \mu m$ $Y = 2357 \mu m$ Gross die per wafer: 650 Pad size1: $100 \ X \ 100 \ \mu m$ Pad size 2: $100 \ X \ 280 \ \mu m$ Sawing street: $90 \mu m(X)$; 76 $\mu m(Y)$ Wafer dia = 6 inch Wafer thickness. 285µm ± 25µm Die finish back. Lapped Si Die finish front. Pvapox 5000 Å + Nitride 7000 Å Metallization: 1= Al (98.5%)/Si (1%)/Cu (0.5%) and thickness: 0.53 μm 2= Al (98.5%)/Si (1%)/Cu (0.5%) and thickness: 0.85 μm FIGURE A-1. Die technical and mechanical characteristics-continued. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-87756 | |--|------------------|---------------------|------------| | DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990 | | REVISION LEVEL
E | SHEET 24 | #### STANDARD MICROCIRCUIT DRAWING BULLETIN DATE: 10-11-24 Approved sources of supply for SMD 5962-87756 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.dscc.dla.mil/Programs/Smcr/. | Standard | Vendor | Vendor | |----------------------|------------|----------------| | microcircuit drawing | CAGE | similar | | PIN <u>1</u> / | number | PIN <u>2</u> / | | 5962-8775601RA | 0C7V7 | 54AC273DMQB | | 5962-87756012A | 0C7V7 | 54AC273LMQB | | 5962-8775601SA | 0C7V7 | 54AC273FMQB | | 5962-8775601ZA | 0C7V7 | 54AC273WG-QML | | 5962-8775601VSA | <u>3</u> / | 54AC273 | | 5962-8775601XA | <u>3</u> / | 54AC273K02Q | | 5962-8775601XC | <u>3</u> / | 54AC273K01Q | | 5962-8775601VXA | <u>3</u> / | 54AC273K02V | | 5962-8775601VXC | <u>3</u> / | 54AC273K01V | | 5962F8775601RA | F8859 |
RHFAC273D04Q | | 5962F8775601RC | F8859 | RHFAC273D03Q | | 5962F8775601VRA | F8859 | RHFAC273D04V | | 5962F8775601VRC | F8859 | RHFAC273D03V | | 5962F8775601VXA | F8859 | RHFAC273K02V | | 5962F8775601VXC | F8859 | RHFAC273K01V | | 5962F8775601XA | F8859 | RHFAC273K02Q | | 5962F8775601XC | F8859 | RHFAC273K01Q | | 5962F8775601V9A | F8859 | AC273DIE2V | - 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed, contact the vendor to determine its availability. - <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing. - 3/ Not available from an approved source of supply. Vendor CAGE
numberVendor name
and address0C7V7QP Semiconductor 2945 Oakmead Village Court Santa Clara, CA 95051 F8859 STMicroelectronics 3 rue de Suisse CS 60816 35208 RENNES cedex2-FRANCE The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.