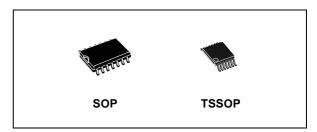


LOW VOLTAGE CMOS QUAD 2-INPUT NAND GATE (OPEN DRAIN) WITH 5V TOLERANT INPUTS


- HIGH SPEED: t_{PD} = 4.8ns (TYP.) at V_{CC} = 3.3V
- 5V TOLERANT INPUTS
- INPUT VOLTAGE LEVEL: V_{IL}=0.8V, V_{IH}=2V at V_{CC}=3V
- LOW POWER DISSIPATION: $I_{CC} = 2 \mu A \text{ (MAX.)}$ at $T_A=25^{\circ}\text{C}$
- LOW NOISE: $V_{OLP} = 0.3V$ (TYP.) at $V_{CC} = 3.3V$
- OPERATING VOLTAGE RANGE: V_{CC}(OPR) = 2V to 3.6V (1.2V Data Retention)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 03
- IMPROVED LATCH-UP IMMUNITY
- POWER DOWN PROTECTION ON INPUTS

DESCRIPTION

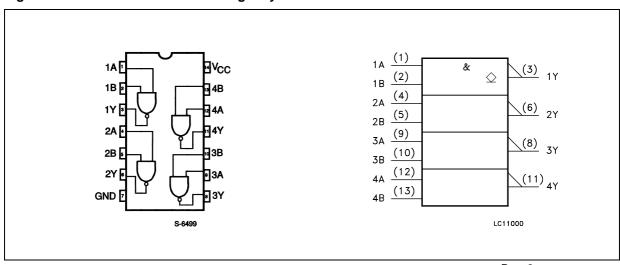
The 74LVX03 is a low voltage CMOS OPEN DRAIN HEX INVERTER fabricated with sub-micron silicon gate and double-layer metal wiring C^2MOS technology. It is ideal for low power, battery operated and low noise 3.3V applications.

The internal circuit is composed of 3 stages including buffer output, which provides high noise immunity and stable output.

This device can, with an external pull-up resistor, be used in wired AND configuration. This device

Table 1: Order Codes

PACKAGE	T & R
SOP	74LVX03MTR
TSSOP	74LVX03TTR


can also be used as a led driver and in any other application requiring a current sink.

Power down protection is provided on all inputs and 0 to 7V can be accepted on inputs with no regard to the supply voltage.

This device can be used to interface 5V to 3V system. It combines high speed performance with the true CMOS low power consumption.

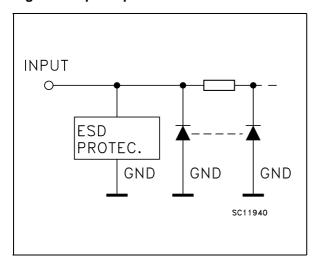

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

Figure 1: Pin Connection And IEC Logic Symbols

August 2004 Rev. 2

Figure 2: Input Equivalent Circuit

Table 2: Pin Description

PIN N°	SYMBOL	NAME AND FUNCTION
1, 4, 9, 12	1A to 4A	Data Inputs
2, 5, 10, 13	1B to 4B	Data Inputs
3, 6, 8, 11	1Y to 4Y	Data Outputs
7	GND	Ground (0V)
14	V _{CC}	Positive Supply Voltage

Table 3: Truth Table

Α	В	Y
L	L	Z
L	Н	Z
Н	L	Z
Н	Н	Ĺ

Z: High Impedance

Table 4: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7.0	V
V _I	DC Input Voltage	-0.5 to +7.0	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	- 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
lo	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
T _{stg}	Storage Temperature	-65 to +150	°C
T_L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is

Table 5: Recommended Operating Conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage (note 1)	2 to 3.6	V
VI	Input Voltage	0 to 5.5	V
V _O	Output Voltage	0 to V _{CC}	V
T _{op}	Operating Temperature	-55 to 125	°C
dt/dv	Input Rise and Fall Time (note 2) (V _{CC} = 3.3V)	0 to 100	ns/V

1) Truth Table guaranteed: 1.2V to 3.6V 2) $V_{\mbox{\footnotesize IN}}$ from 0.8V to 2.0V

Table 6: DC Specifications

		1	est Condition	Value							
Symbol	Parameter	V _{CC}		Т	$T_A = 25^{\circ}C$		-40 to 85°C		-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5		
	Voltage	3.0		2.0			2.0		2.0		V
		3.6		2.4			2.4		2.4		
V_{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	3.0				0.8		0.8		0.8	V
		3.6				0.8		0.8		0.8	
V _{OL}	Low Level Output	2.0	I _O =50 μA		0.0	0.1		0.1		0.1	
	Voltage	3.0	I _O =50 μA		0.0	0.1		0.1		0.1	V
		3.0	I _O =4 mA			0.36		0.44		0.55	
I _I	Input Leakage Current	3.6	V _I = 5V or GND			± 0.1		± 1		± 1	μΑ
I _{OZ}	High Impedance Output Leakage Current	3.6	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			±0.25		± 2.5		± 5.0	μΑ
I _{CC}	Quiescent Supply Current	3.6	$V_I = V_{CC}$ or GND			2		20		20	μΑ

Table 7: Dynamic Switching Characteristics

		1	Test Condition		Value						
Symbol Pa	Parameter	v _{cc}		Т	T _A = 25°C		-40 to 85°C		-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	1
V _{OLP}	Dynamic Low				0.3	0.5					
V _{OLV}	Voltage Quiet Output (note 1, 2)	3.3		-0.5	-0.3						
V _{IHD}	Dynamic High Voltage Input (note 1, 3)	3.3	C _L = 50 pF	2							V
V _{ILD}	Dynamic Low Voltage Input (note 1, 3)	3.3				0.8					

¹⁾ Worst case package.
2) Max number of outputs defined as (n). Data inputs are driven 0V to 3.3V, (n-1) outputs switching and one output at GND.
3) Max number of data inputs (n) switching. (n-1) switching 0V to 3.3V. Inputs under test switching: 3.3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}), f=1MHz.

Table 8: AC Electrical Characteristics (Input $t_r = t_f = 3ns$)

		Test Condition			Value							
Symbol	Parameter	v _{cc}	C _L (pF)		Т	$T_A = 25^{\circ}C$			85°C	-55 to	-55 to 125°C	
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
t _{PZL} Propagation Delay Time	2.7	15			5.4	7.7		9.0		9.5		
	2.7	50			6.0	8.7		10.0		11.0		
	3.3 ^(*)	15			4.8	7.0		8.1		8.5	ns	
		3.3 ^(*)	50			5.3	7.6		8.8		9.5	
t _{PLZ}	Propagation Delay	2.7	50			10.5	14.7	1.0	15.0	1.0	17.0	
	Time	3.3 ^(*)	50			9.6	13.5	1.0	14.0	1.0	15.0	ns
toslh	t _{OSLH} Output To Output Skew Time (note1, 2)	2.7	50			0.5	1.0		1.5		1.5	
toshl		3.3 ^(*)	50			0.5	1.0		1.5		1.5	ns

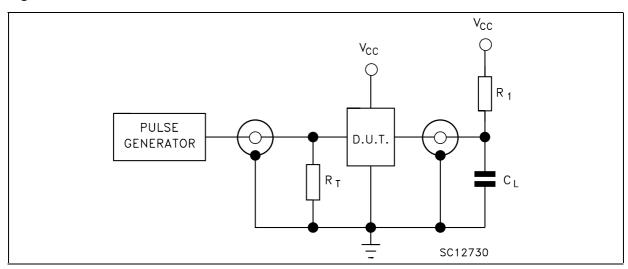

¹⁾ Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW 2) Parameter guaranteed by design (*) Voltage range is $3.3V \pm 0.3V$

Table 9: Capacitive Characteristics

	Parameter	Test Condition		Value							
Symbol		v _{cc}	T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit	
		(V))	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance	3.3			5.4	10		10		10	pF
C _{OUT}	Output Capacitance	3.3			7.3						pF
C _{PD}	Power Dissipation Capacitance (note 1)	3.3			2.6						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/6$ (per gate)

Figure 3: Test Circuit

 C_L = 15/50pF or equivalent (includes jig and probe capacitance) R_L = R1 = 1K Ω or equivalent R_T = Z_{OUT} of pulse generator (typically 50 Ω)

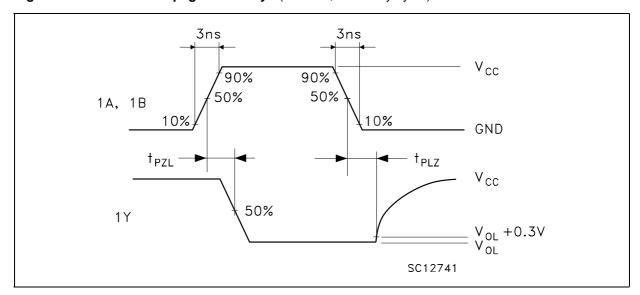
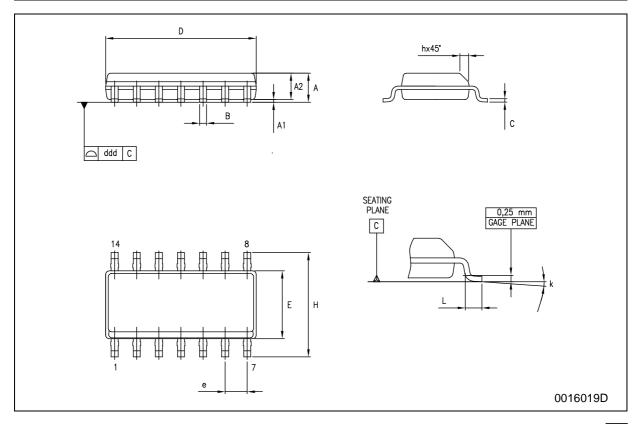
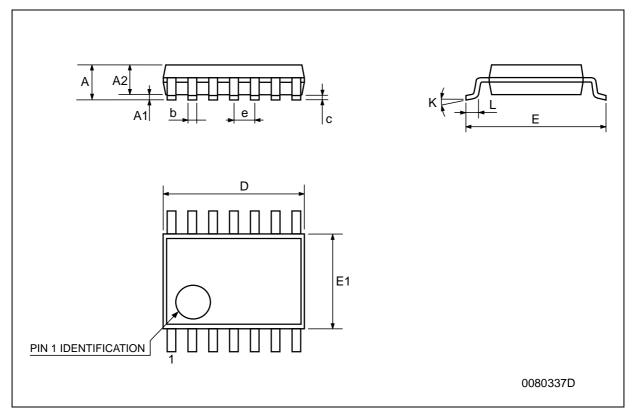
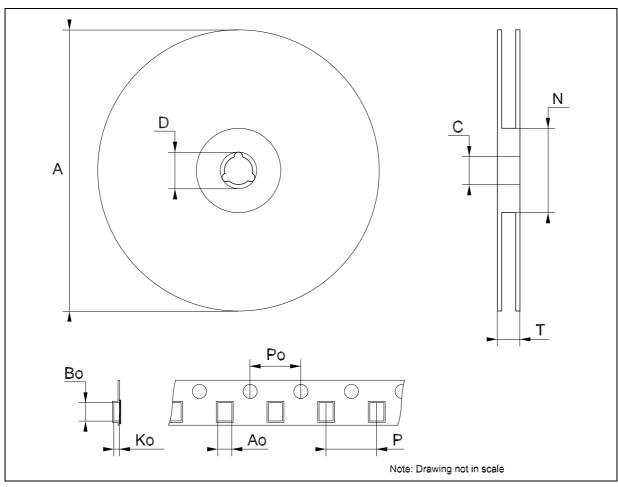



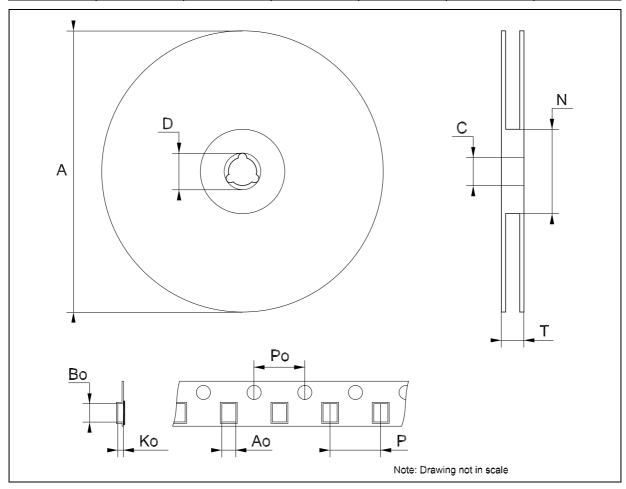
Figure 4: Waveform - Propagation Delays (f=1MHz; 50% duty cycle)


SO-14 MECHANICAL DATA

DIM.		mm.			inch	
DIIVI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	1.35		1.75	0.053		0.069
A1	0.1		0.25	0.004		0.010
A2	1.10		1.65	0.043		0.065
В	0.33		0.51	0.013		0.020
С	0.19		0.25	0.007		0.010
D	8.55		8.75	0.337		0.344
Е	3.8		4.0	0.150		0.157
е		1.27			0.050	
Н	5.8		6.2	0.228		0.244
h	0.25		0.50	0.010		0.020
L	0.4		1.27	0.016		0.050
k	0°		8°	0°		8°
ddd			0.100			0.004


TSSOP14 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			1.2			0.047		
A1	0.05		0.15	0.002	0.004	0.006		
A2	0.8	1	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.0089		
D	4.9	5	5.1	0.193	0.197	0.201		
E	6.2	6.4	6.6	0.244	0.252	0.260		
E1	4.3	4.4	4.48	0.169	0.173	0.176		
е		0.65 BSC			0.0256 BSC			
К	0°		8°	0°		8°		
L	0.45	0.60	0.75	0.018	0.024	0.030		


Tape &	Reel	SO-14	MECHA	NICAL	DATA
--------	------	--------------	--------------	-------	------

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.4		6.6	0.252		0.260
Во	9		9.2	0.354		0.362
Ko	2.1		2.3	0.082		0.090
Ро	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319

Tape & Reel TSSOP14 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.7		6.9	0.264		0.272
Во	5.3		5.5	0.209		0.217
Ko	1.6		1.8	0.063		0.071
Ро	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319

74LVX03

Table 10: Revision History

Date	Revision	Description of Changes
27-Aug-2004	2	Ordering Codes Revision - pag. 1.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com