

SCBS144P-MAY 1992-REVISED NOVEMBER 2006

FEATURES

	AIURES	SN54LVTH16373 WD PACKAGE
•	Members of the Texas Instruments Widebus™ Family	SN74LVTH16373 DGG OR DL PACKAGE (TOP VIEW)
•	State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low Static-Power Dissipation	10E 1 48 1LE 1Q1 2 47 1D1
•	Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC})	1Q2 [] 3 46 [] 1D2 GND [] 4 45 [] GND 1Q3 [] 5 44 [] 1D3
•	Support Unregulated Battery Operation Down to 2.7 V	$1Q3 [13 + 44] [103 + 103 + 104] 1Q4 [16 + 43] 1D4 V_{CC} [17 + 42] V_{CC}$
•	Typical V _{OLP} (Output Ground Bounce) <0.8 V at V _{CC} = 3.3 V, T _A = 25°C	1Q5 [8 41] 1D5 1Q6 [9 40] 1D6
•	I _{off} and Power-Up 3-State Support Hot Insertion	GND 10 39 GND 1Q7 11 38 107
•	Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors	1Q8 [] 12 37 [] 1D8 2Q1 [] 13 36 [] 2D1
•	Distributed V _{CC} and GND Pins Minimize High-Speed Switching Noise	2Q2 14 35 2D2 GND 15 34 GND
•	Flow-Through Architecture Optimizes PCB Layout	2Q3 [] 16 33 [] 2D3 2Q4 [] 17 32 [] 2D4
•	Latch-Up Performance Exceeds 500 mA Per JESD 17	V _{CC}
•	ESD Protection Exceeds JESD 22	GND [21 28] GND
	 2000-V Human-Body Model (A114-A) 	2Q7 🛛 22 27 🗍 2D7
	 200-V Machine Model (A115-A) 	
		2 0E 24 25 2LE

DESCRIPTION/ORDERING INFORMATION

The 'LVTH16373 devices are 16-bit transparent D-type latches with 3-state outputs designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

T _A	PACKAG	E ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	FBGA – GRD	Reel of 1000	SN74LVTH16373GRDR	- LL373
	FBGA – ZRD (Pb-free)	Reel 01 1000	SN74LVTH16373ZRDR	- LL373
		Tube of 25	SN74LVTH16373DL	
			SN74LVTH16373DLG4	
–40°C to 85°C	SSOP – DL	Reel of 1000	SN74LVTH16373DLR	– LVTH16373
			SN74LVTH16373DLRG4	
	TSSOP – DGG	Reel of 2000	SN74LVTH16373DGGR	LVTH16373
	VFBGA – GQL	Deal of 1000	SN74LVTH16373GQLR	11.070
	VFBGA – ZQL (Pb-free)	Reel of 1000	SN74LVTH16373ZQLR	– LL373

ORDERING INFORMATION

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments.

SCBS144P-MAY 1992-REVISED NOVEMBER 2006

ORDERING INFORMATION (continued)

T _A	PACKAGE	(1)	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–55°C to 125°C	CFP – WD	Tube	SNJ54LVTH16373WD	SNJ54LVTH16373WD
-55°C 10 125°C			5962-9681001QXA	3NJ34LV1H103/3WD

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

These devices can be used as two 8-bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without interface or pullup components.

OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

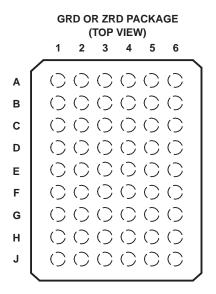
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

These devices are fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

G	GQL OR ZQL PACKAGE (TOP VIEW)										
	_1	2	3	4	5	6	_				
Α	C	()	()	()	()	()					
в	C	()	()	()	()	()					
С	C	()	()	()	()	()					
D	C	()	()	()	()	()					
Е	C	()			()	()					
F	C	()			()	()					
G	C	()	()	()	()	()					
н	C	()	()	()	()	()					
J	C	()	()	()	()	()					
κ	C	()	()	0	0	0	J				

TERMINAL ASSIGNMENTS⁽¹⁾ (56-Ball GQL/ZQL Package)


	1	2	3	4	5	6
Α	1 0E	NC	NC	NC	NC	1CLK
В	1Q2	1Q1	GND GND		1D1	1D2
С	1Q4	1Q3	V _{CC}	V _{CC}	1D3	1D4
D	1Q6	1Q5	GND	GND	1D5	1D6
Е	1Q8	1Q7			1D7	1D8
F	2Q1	2Q2			2D2	2D1
G	2Q3	2Q4	GND	GND	2D4	2D3
Н	2Q5	2Q6	V _{CC}	V _{CC}	2D6	2D5
J	2Q7	2Q8	GND	GND	2D8	2D7
Κ	2 <mark>0E</mark>	NC	NC	NC	NC	2CLK

(1) NC – No internal connection

TEXAS INSTRUMENTS www.ti.com

SN54LVTH16373, SN74LVTH16373 3.3-V ABT 16-BIT TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS

SCBS144P-MAY 1992-REVISED NOVEMBER 2006

TERMINAL ASSIGNMENTS⁽¹⁾ (54-Ball GRD/ZRD Package)

	1	2	3	4	5	6
Α	1Q1	NC	1 0E	1LE	1LE NC	
В	1Q3	1Q2	NC	NC	1D2	1D3
С	1Q5	1Q4	V _{CC}	V _{CC}	1D4	1D5
D	1Q7	1Q6	GND	GND	1D6	1D7
Е	2Q1	1Q8	GND	GND	1D8	2D1
F	2Q3	2Q2	GND	GND	2D2	2D3
G	2Q5	2Q4	V _{CC}	V _{CC}	2D4	2D5
н	2Q7	2Q6	NC	NC	2D6	2D7
J	2Q8	NC	2 <mark>0E</mark>	2LE	NC	2D8

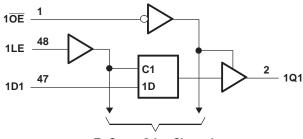
(1) NC - No internal connection

FUNCTION TABLE (8-BIT SECTION)

	INPUTS		OUTPUT
OE	CLK	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	Х	Q ₀
н	Х	х	Z

LOGIC DIAGRAM (POSITIVE LOGIC)

24


25

36

2<u>0</u>E –

2LE

2D1 -

To Seven Other Channels

C1

1D

Pin numbers shown are for the DGG, DL, and WD packages.

13 2Q1

SCBS144P-MAY 1992-REVISED NOVEMBER 2006

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
V _{CC}	Supply voltage range		-0.5	4.6	V	
VI	Input voltage range ⁽²⁾		-0.5	7	V	
Vo	Voltage range applied to any output in the high-ir	npedance or power-off state ⁽²⁾	-0.5	7	V	
Vo	Voltage range applied to any output in the high s	tate ⁽²⁾	-0.5	V _{CC} + 0.5	V	
	Comment into any output in the law state	SN54LVTH16373		96		
I _O	Current into any output in the low state	SN74LVTH16373		128	mA	
	Querrant in the birth state (3)	Current into any output in the high state ⁽³⁾ SN54LVTH16373		48	m (
I _O	Current into any output in the high state ⁽³⁾	SN74LVTH16373		64	mA	
I _{IK}	Input clamp current	V ₁ < 0		-50	mA	
I _{OK}	Output clamp current	V _O < 0		-50	mA	
		DGG package		70		
0	$\mathbf{D}_{\mathbf{a}}$ also as the mapping isometry (4)	DL package		63	°C	
θ_{JA}	Package thermal impedance ⁽⁴⁾	GQL/ZQL package		42		
		GRD/ZRD package		36		
T _{stg}	Storage temperature range	·	-65	150	°C	

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. (3) This current flows only when the output is in the high state and $V_0 > V_{CC}$.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

			SN54LVTH	116373	SN74LVTH	16373	
			MIN	MAX	MIN	MAX	UNIT
V _{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
V _{IH}	High-level input voltage		2		2		V
V _{IL}	Low-level input voltage			0.8		0.8	V
VI	Input voltage			5.5		5.5	V
I _{OH}	High-level output current			-24		-32	mA
I _{OL}	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outpts enabled		10		10	ns/V
$\Delta t / \Delta V_{CC}$	Power-up ramp rate		200		200		μs/V
T _A	Operating free-air temperature		-55	125	-40	85	°C

All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCBS144P-MAY 1992-REVISED NOVEMBER 2006

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	METER	TEST CONDITIONS		SN54LVTH	16373	SN74LV			
PARA	METER	TEST CO	DITIONS	MIN TYP	(1) MAX	MIN [·]	TYP ⁽¹⁾ MAX	UNIT	
V _{IK}		V _{CC} = 2.7 V,	I _I = -18 mA		-1.2		-1.2	V	
		$V_{CC} = 2.7 V \text{ to } 3.6 V,$	I _{OH} = −100 μA	V _{CC} - 0.2		$V_{CC} - 0.2$			
,		V _{CC} = 2.7 V,	I _{OH} = -8 mA	2.4		2.4			
V _{ОН}		V 2.V	I _{OH} = -24 mA	2				V	
		$V_{CC} = 3 V$	I _{OH} = -32 mA			2			
			I _{OL} = 100 μA		0.2		0.2		
		$V_{CC} = 2.7 V$	I _{OL} = 24 mA		0.5		0.5		
,			I _{OL} = 16 mA		0.4		0.4	v	
V _{OL}		N 0.V	I _{OL} = 32 mA		0.5		0.5	V	
		$V_{CC} = 3 V$	I _{OL} = 48 mA		0.55				
			I _{OL} = 64 mA				0.55		
		$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	V _I = 5.5 V		10		10		
I,	Control inputs	V _{CC} = 3.6 V,	$V_I = V_{CC}$ or GND		±1		±1	μA	
1	Data		$V_{I} = V_{CC}$		1		1		
	inputs	V _{CC} = 3.6 V	$V_{I} = 0$		-5		-5		
I _{off}		$V_{CC} = 0,$	$V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5 \text{ V}$				±100	μA	
		V - 2V	V _I = 0.8 V	75		75			
I(hold)	Data inputs	$V_{CC} = 3 V$	V ₁ = 2 V	-75		-75		μA	
	inputs	V _{CC} = 3.6 V, ⁽²⁾	V _I = 0 to 3.6 V				±500		
OZH		V _{CC} = 3.6 V,	V _O = 3 V		5		5	μA	
OZL		V _{CC} = 3.6 V,	V _O = 0.5 V		-5		-5	μA	
OZPU		$\frac{V_{CC}}{OE}$ = 0 to 1.5 V, V _O = \overline{OE} = don't care	0.5 V to 3 V,		±100 ⁽³⁾		±100	μA	
I _{OZPD}		$\frac{V_{CC}}{OE}$ = 1.5 V to 0, V _O = OE = don't care	0.5 V to 3 V,		±100 ⁽³⁾		±100	μA	
		V _{CC} = 3.6 V,	Outputs high		0.19		0.19		
сс		$I_{O} = 0,$	Outputs low		5		5	mA	
		$V_{I} = V_{CC}$ or GND	Outputs disabled		0.19		0.19		
۵I _{CC} ⁽⁴⁾		V_{CC} = 3 V to 3.6 V, On Other inputs at V _{CC} or	e input at V _{CC} – 0.6 V, GND		0.2		0.2	mA	
Ci		V _I = 3 V or 0			3		3	pF	
Co		$V_0 = 3 V \text{ or } 0$			9		9	pF	

(1) All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. (2) This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

On products compliant to MIL-PRF-38535, this parameter is not production tested. (3)

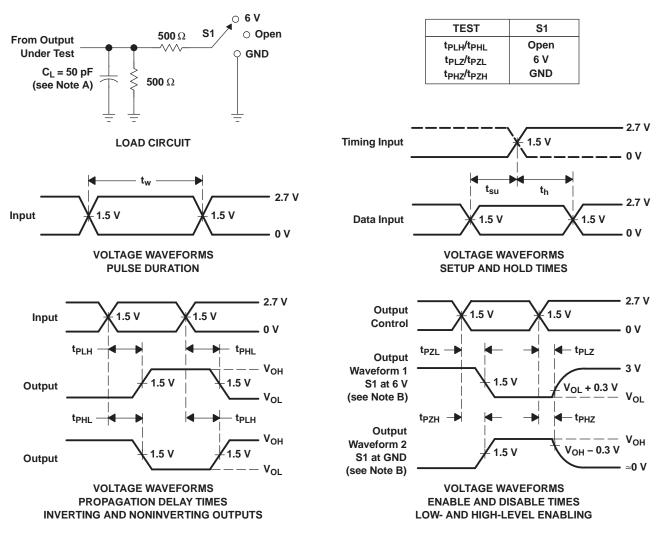
(4) This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

SN54LVTH16373, SN74LVTH16373 3.3-V ABT 16-BIT TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS SCB5144P-MAY 1992-REVISED NOVEMBER 2006

Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		SI	N54LV	TH1637	3	SN74LVTH16373				UNIT
		V _{CC} = 3 ± 0.3	V_{CC} = 3.3 V ± 0.3 V		8.3 V V V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _w	Pulse duration, LE high	3		3		3		3		ns
t _{su}	Setup time, data before LE \downarrow	2		2		1		0.6		ns
t _h	Hold time, data after LE \downarrow	3		3.3		1		1.1		ns


Switching Characteristics

over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

			SN54LVTH16373			SN74LVTH16373						
PARAMETER	FROM (INPUT)					V _{CC} = 3.3 V ± 0.3 V			V _{CC} = 2.7 V		UNIT	
			MIN	MAX	MIN	MAX	MIN	TYP ⁽¹⁾	MAX	MIN	MAX	
t _{PLH}	D	Q	1.4	4.5		5.2	1.5	2.7	3.8		4.2	20
t _{PHL}		Q	1.4	4.4		4.8	1.5	2.5	3.6		4	ns
t _{PLH}	LE	Q	1.8	5.5		5.8	2.1	3	4.3		4.8	ns
t _{PHL}		Q	1.8	5.2		5.6	2.1	2.9	4		4	115
t _{PZH}	OE	Q	1.4	5.7		6.7	1.5	2.8	4.3		5.1	20
t _{PZL}	UE		1.4	5.5		6	1.5	2.8	4.3		4.7	ns
t _{PHZ}	OE	0	2	6		6.2	2.4	3.5	5		5.4	20
t _{PLZ}	OE	Q	1.4	5.2		5.6	2	3.2	4.7		4.8	ns
t _{sk(LH)}									0.5			20
t _{sk(HL)}									0.5			ns

(1) All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

SCBS144P-MAY 1992-REVISED NOVEMBER 2006

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
5962-9681001QXA	ACTIVE	CFP	WD	48	1	TBD	Call TI	Call TI	
74LVTH16373DGGRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
74LVTH16373DLRG4	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LVTH16373DGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LVTH16373DL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LVTH16373DLG4	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LVTH16373DLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LVTH16373GQLR	LIFEBUY	BGA MICROSTAR JUNIOR	GQL	56	1000	TBD	SNPB	Level-1-240C-UNLIM	
SN74LVTH16373GRDR	LIFEBUY	BGA MICROSTAR JUNIOR	GRD	54	1000	TBD	SNPB	Level-1-240C-UNLIM	
SN74LVTH16373ZQLR	ACTIVE	BGA MICROSTAR JUNIOR	ZQL	56	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	
SN74LVTH16373ZRDR	ACTIVE	BGA MICROSTAR JUNIOR	ZRD	54	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	
SNJ54LVTH16373WD	ACTIVE	CFP	WD	48	1	TBD	A42	N / A for Pkg Type	

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

4-May-2012

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54LVTH16373, SN74LVTH16373 :

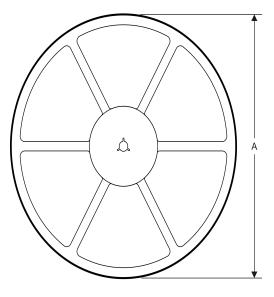
• Catalog: SN74LVTH16373

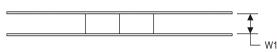
• Enhanced Product: SN74LVTH16373-EP, SN74LVTH16373-EP

• Military: SN54LVTH16373

NOTE: Qualified Version Definitions:

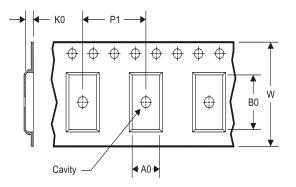
- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION

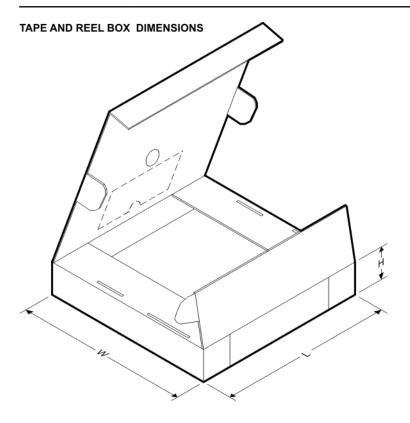
REEL DIMENSIONS


Texas Instruments

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVTH16373DGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	15.8	1.8	12.0	24.0	Q1
SN74LVTH16373DLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1
SN74LVTH16373GQLR	BGA MI CROSTA R JUNI OR	GQL	56	1000	330.0	16.4	4.8	7.3	1.45	8.0	16.0	Q1
SN74LVTH16373GRDR	BGA MI CROSTA R JUNI OR	GRD	54	1000	330.0	16.4	5.8	8.3	1.55	8.0	16.0	Q1
SN74LVTH16373ZQLR	BGA MI CROSTA R JUNI OR	ZQL	56	1000	330.0	16.4	4.8	7.3	1.5	8.0	16.0	Q1
SN74LVTH16373ZRDR	BGA MI CROSTA R JUNI OR	ZRD	54	1000	330.0	16.4	5.8	8.3	1.55	8.0	16.0	Q1

TEXAS INSTRUMENTS

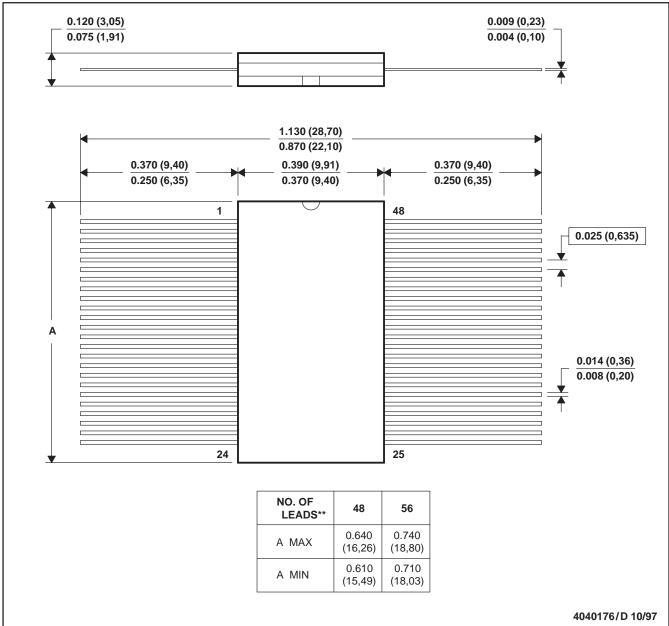
www.ti.com

PACKAGE MATERIALS INFORMATION

9-Jul-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVTH16373DGGR	TSSOP	DGG	48	2000	346.0	346.0	41.0
SN74LVTH16373DLR	SSOP	DL	48	1000	346.0	346.0	49.0
SN74LVTH16373GQLR	BGA MICROSTAR JUNIOR	GQL	56	1000	333.2	345.9	28.6
SN74LVTH16373GRDR	BGA MICROSTAR JUNIOR	GRD	54	1000	333.2	345.9	28.6
SN74LVTH16373ZQLR	BGA MICROSTAR JUNIOR	ZQL	56	1000	333.2	345.9	28.6
SN74LVTH16373ZRDR	BGA MICROSTAR JUNIOR	ZRD	54	1000	333.2	345.9	28.6

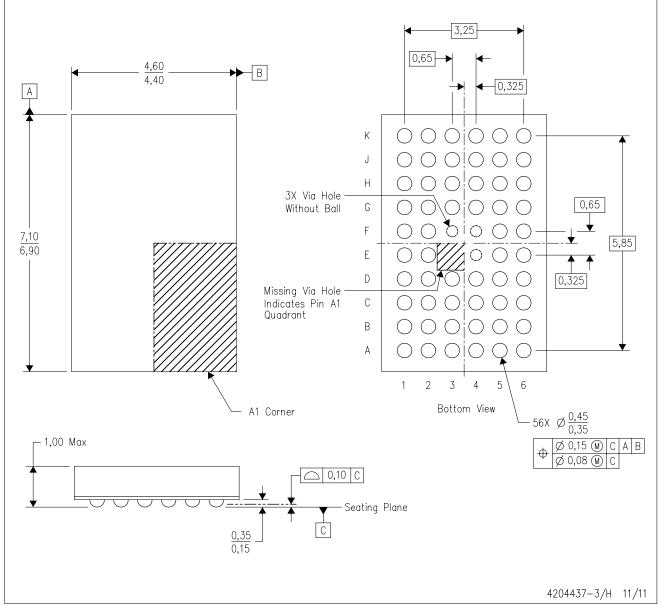

MECHANICAL DATA

MCFP010B - JANUARY 1995 - REVISED NOVEMBER 1997

CERAMIC DUAL FLATPACK

WD (R-GDFP-F**)

48 LEADS SHOWN

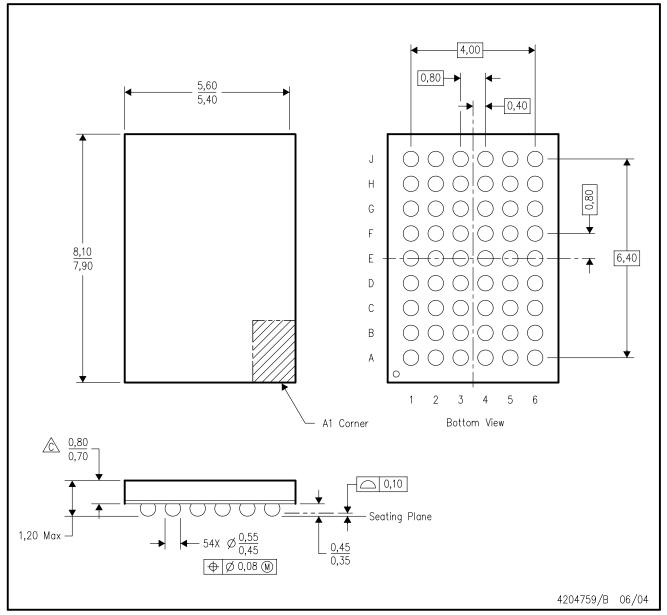


- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only
 - E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO-146AA
 - GDFP1-F56 and JEDEC MO-146AB

ZQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-285 variation BA-2.
- D. This package is Pb-free. Refer to the 56 GQL package (drawing 4200583) for tin-lead (SnPb).

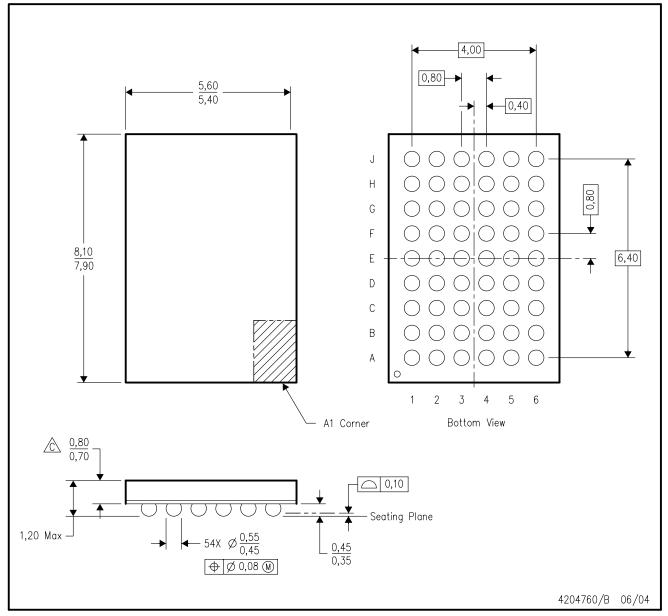
MicroStar Junior is a trademark of Texas Instruments

GRD (R-PBGA-N54)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


Falls within JEDEC MO-205 variation DD.

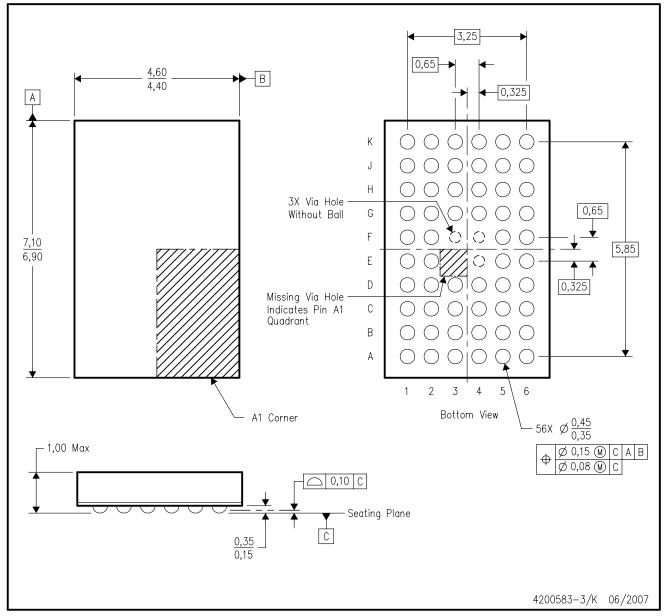
D. This package is tin-lead (SnPb). Refer to the 54 ZRD package (drawing 4204760) for lead-free.

ZRD (R-PBGA-N54)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


Falls within JEDEC MO-205 variation DD.

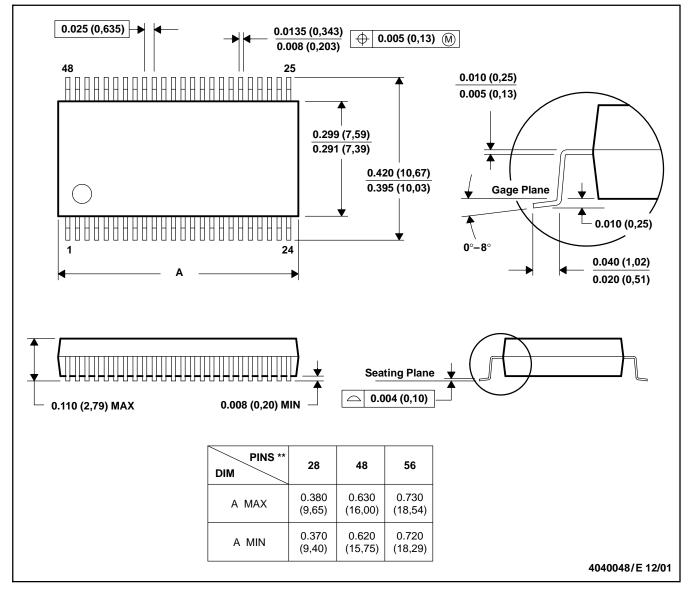
D. This package is lead-free. Refer to the 54 GRD package (drawing 4204759) for tin-lead (SnPb).

GQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-285 variation BA-2.
- D. This package is tin-lead (SnPb). Refer to the 56 ZQL package (drawing 4204437) for lead-free.


MECHANICAL DATA

MSSO001C - JANUARY 1995 - REVISED DECEMBER 2001

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

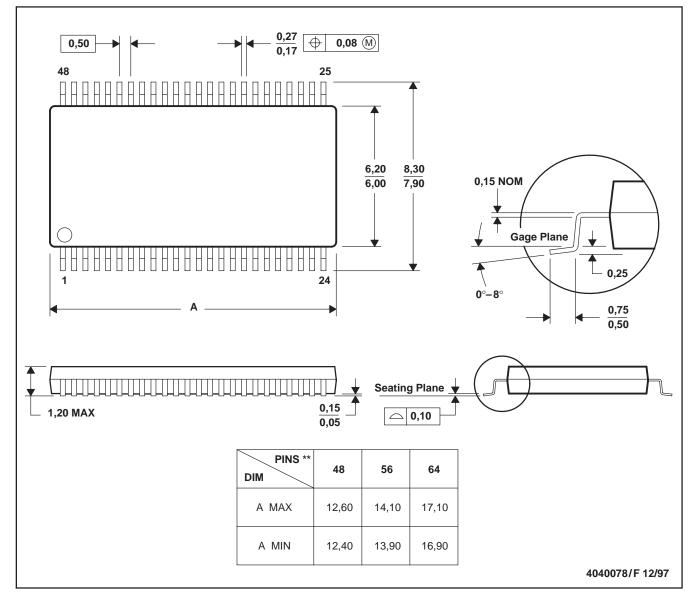
DL (R-PDSO-G**)

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-118


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
	TI 505 0		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated