SN54LS240, SN54LS241, SN54LS244, SN54S240, SN54S241, SN54S244 SN74LS240, SN74LS241, SN74LS244, SN74S240, SN74S241, SN74S244 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS SDLS144B – APRIL 1985 – REVISED FEBRUARY 2002

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- PNP Inputs Reduce DC Loading
- Hysteresis at Inputs Improves Noise Margins

description

These octal buffers and line drivers are designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The designer has a choice of selected combinations of inverting and noninverting outputs, symmetrical, active-low output-control (\overline{G}) inputs, and complementary output-control (\overline{G} and \overline{G}) inputs. These devices feature high fan-out, improved fan-in, and 400-mV noise margin. The SN74LS' and SN74S' devices can be used to drive terminated lines down to 133 Ω .

1A2 [4	17] 2A4
2Y3 [5] 1Y2
1A3 [] 2A3
2Y2 [] 1Y3
1A4 [] 2A2
2Y1 [12] 1Y4
GND [10	11] 2A1

† 2G for 'LS241 and 'S241 or 2G for all other drivers.

[†] 2G for 'LS241 and 'S241 or $2\overline{G}$ for all other drivers.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2002, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

SDLS144B - APRIL 1985 - REVISED FEBRUARY 2002

T _A	PA	CKAGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
			SN74LS240N	SN74LS240N
			SN74LS241N	SN74LS241N
	PDIP – N	Tube	SN74LS244N	SN74LS244N
	PDIP = N	edur	SN74S240N	SN74S240N
			SN74S241N	SN74S241N
			SN74S244N	SN74S244N
		Tube	SN74LS240DW	1.0040
		Tape and reel	SN74LS240DWR	LS240
		Tube	SN74LS241DW	1.0044
		Tape and reel	SN74LS241DWR	LS241
		Tube	SN74LS244DW	1.0044
0°C to 70°C	SOIC - DW	Tape and reel	SN74LS244DWR	LS244
	SOIC - DW	Tube	SN74S240DW	
		Tape and reel	SN74S240DWR	S 240
		Tube	SN74S241DW	S241
		Tape and reel	SN74S241DWR	5241
		Tube	SN74S244DW	
		Tape and reel	SN74S244DWR	3244
			SN74LS240NSR	74LS240
	SOP – NS	Tube	SN74LS241NSR	74LS241
			SN74LS244NSR	74LS244
	SSOP – DB	Tape and reel	SN74LS240DBR	LS240
	330F - DB	Tape and reel	SN74LS244DBR	LS244

ORDERING INFORMATION

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

SDLS144B - APRIL 1985 - REVISED FEBRUARY 2002

тд	PACK	AGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
			SN54LS240J	SN54LS240J
			SNJ54LS240J	SNJ54LS240J
			SN54LS241J	SN54LS241J
			SNJ54LS241J	SNJ54LS241J
			SN54LS244J	SN54LS244J
	CDIP – J	Tube	SNJ54LS244J	SNJ54LS244J
	CDIP – J	edur	SN54S240J	SN54S240J
			SNJ54S240J	SNJ54S240J
			SN54S241J	SN54S241J
			SNJ54S241J	SNJ54S241J
			SN54S244J	SN54S244J
–55°C to 125°C			SNJ54S244J	SNJ54S244J
-55°C 10 125°C			SNJ54LS240W	SNJ54LS240W
			SNJ54LS241W	SNJ54LS241W
	CFP – W	Tube	SNJ54LS244W	SNJ54LS244W
		edur	SNJ54S240W	SNJ54S240W
			SNJ54S241W	SNJ54S241W
			SNJ54S244W	SNJ54S244W
			SNJ54LS240FK	SNJ54LS240FK
			SNJ54LS241FK	SNJ54LS241FK
	LCCC – FK	Tube	SNJ54LS244FK	SNJ54LS244FK
		Tube	SNJ54S240FK	SNJ54S240FK
			SNJ54S241FK	SNJ54S241FK
			SNJ54S244FK	SNJ54S244FK

ORDERING INFORMATION (CONTINUED)

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

SDLS144B - APRIL 1985 - REVISED FEBRUARY 2002

schematics of inputs and outputs

'LS240, 'LS241, 'LS244

'S240, 'S241, 'S244

SN54LS240, SN54LS241, SN54LS244, SN54S240, SN54S241, SN54S244 SN74LS240, SN74LS241, SN74LS244, SN74S240, SN74S241, SN74S244 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS SDLS144B - APRIL 1985 - REVISED FEBRUARY 2002

'LS241, 'S241

Г

Г

18 1Y1

<u>16</u> 1Y2

<u>14</u> 1Y3

12 1Y4

9 2Y1

7 2Y2

5 2Y3

3 2Y4

) D

logic diagram

Pin numbers shown are for DB, DW, J, N, NS, and W packages.

SDLS144B - APRIL 1985 - REVISED FEBRUARY 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC} (see Note 1)		7 V
Input voltage, VI: LS		7 V
'S		5.5 V
Off-state output voltage		5.5 V
Package thermal impedance, θ_{JA} (see Note 2)	: DB package	70°C/W
	DW package	58°C/W
	N package	69°C/W
	NS package	60°C/W
Storage temperature range, T _{stg}		. −65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Voltage values are with respect to network ground terminal.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

		SN54LS' SN74LS'				UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage (see Note 1)	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.7			0.8	V
ЮН	High-level output current			-12			-15	mA
IOL	Low-level output current			12			24	mA
Τ _Α	Operating free-air temperature	-55		125	0		70	°C

NOTE 1: Voltage values are with respect to network ground terminal.

SDLS144B - APRIL 1985 - REVISED FEBRUARY 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEAT CONDITIONAL				SN54LS'		ę	UNIT		
PARAMETER		TEST CONDITION	SI	MIN	түр‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	$V_{CC} = MIN,$	lı = -18 mA				-1.5			-1.5	V
Hysteresis (V _{T+} – V _{T–})	V _{CC} = MIN			0.2	0.4		0.2	0.4		V
Vou	$V_{CC} = MIN,$ $I_{OH} = -3 mA$	V _{IH} = 2 V,	V _{IL} = MAX,	2.4	3.4		2.4	3.4		V
VOH	V _{CC} = MIN, I _{OH} = MAX	V _{IH} = 2 V,	V _{IL} = 0.5 V,	2			2			V
Vei	V _{CC} = MIN,	V _{IH} = 2 V,	I _{OL} = 12 mA			0.4			0.4	V
VOL	$V_{IL} = MAX$		I _{OL} = 24 mA						0.5	v
IOZH	V _{CC} = MAX, V _{IL} = MAX	V _{IH} = 2 V,	V _O = 2.7 V			20			20	μΑ
IOZL	V _{CC} = MAX, V _{IL} = MAX	V _{IH} = 2 V,	V _O = 0.4 V			-20			-20	μΑ
l	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
Iн	$V_{CC} = MAX,$	VI = 2.7 V				20			20	μA
١ _{IL}	V _{CC} = MAX,	$V_{IL} = 0.4 V$				-0.2			-0.2	mA
los§	$V_{CC} = MAX,$			-40		-225	-40		-225	mA
		Outputs high	All		17	27		17	27	
			'LS240		26	44		26	44	
	V _{CC} = MAX, Output open	Outputs low	'LS241, 'LS244		27	46		27	46	mA
	Carpar opon	Outputs disabled	'LS240		29	50		29	50	
		Outputs disabled	'LS241, 'LS244		32	54		32	54	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

⁴ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. § Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Figure 1)

PARAMETER TEST CONDITIONS			'LS240		'LS2	41, 'LS2	244	UNIT	
PARAMETER	TEST CO	NDITION3	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
^t PLH	PL = 667 O	0 45 -5		9	14		12	18	ns
^t PHL	RL = 667 Ω,	C _L = 45 pF		12	18		12	18	115
^t PZL	R _L = 667 Ω,	0. 45 -5		20	30		20	30	ns
^t PZH	$N_{L} = 007.52,$	C _L = 45 pF		15	23		15	23	115
^t PLZ	R _I = 667 Ω,	C1 = 5 pF		10	20		10	20	ns
^t PHZ	$N_{L} = 007.52,$	0L = 5 pr		15	25		15	25	115

SDLS144B - APRIL 1985 - REVISED FEBRUARY 2002

recommended operating conditions

		SN54S'				UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage (see Note 1)	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
ЮН	High-level output current			-12			-15	mA
IOL	Low-level output current			48			64	mA
	External resistance between any input and V_{CC} or ground			40			40	kΩ
Т _А	Operating free-air temperature (see Note 3)	-55		125	0		70	°C

NOTES: 1. Voltage values are with respect to network ground terminal.

 An SN54S241J operating at free-air temperature above 116°C requires a heat sink that provides a thermal resistance from case to free air, R_{6CA}, of not more that 40°C/W.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			- 4		SN54S'			SN74S'		
PARAMETER	TEST CONDITIONS [†]			MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	V _{CC} = MIN,	lı = –18 mA				-1.2			-1.2	V
Hysteresis (V _{T+} – V _{T–})	V _{CC} = MIN			0.2	0.4		0.2	0.4		V
	$V_{CC} = MIN$ $I_{OH} = -1 mA$	V _{IH} = 2 V,	$V_{IL} = 0.8 V,$				2.7			
V _{OH}	$V_{CC} = MIN,$ $I_{OH} = -3 mA$	V _{IH} = 2 V,	V _{IL} = 0.8 V,	2.4	3.4		2.4	3.4		V
	V _{CC} = MIN, I _{OH} = MAX	V _{IH} = 2 V,	V _{IL} = 0.5 V,	2			2			
VOL	V _{CC} = MIN, I _{OL} = MAX	V _{IH} = 2 V,	V _{IL} = 0.8 V,			0.55			0.55	V
IOZH	V _{CC} = MAX, V _{IL} = 0.8 V	V _{IH} = 2 V,	V _O = 2.4 V			50			50	μΑ
IOZL	V _{CC} = MAX, V _{IL} = 0.8 V	V _{IH} = 2 V,	V _O = 0.5 V			-50			-50	μΑ
lj	V _{CC} = MAX,	VI = 5.5 V				1			1	mA
IIН	V _{CC} = MAX,	V _I = 2.7 V	-			50			50	μΑ
١ _{IL}	V _{CC} = MAX,	V ₁ = 0.5 V	Any A			-400			-400	μA
	VCC = 111/0(,	v] = 0.0 v	Any G			-2			-2	mA
IOS§	$V_{CC} = MAX$	_		-50		-225	-50		-225	mA
		Outputs high	'S240		80	123		80	135	
		Outputs high	'S241,'S244		95	147		95	160	
	V _{CC} = MAX,	Outputs low	'S240		100	145		100	150	mΑ
ICC	Output open		'S241, 'S244		120	170		120	180	mA
		Outputs disabled	'S240		100	145		100	150	
			'S241, 'S244		120	170		120	180	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

SDLS144B - APRIL 1985 - REVISED FEBRUARY 2002

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see Figure 2)

DADAMETED	PARAMETER TEST CONDITIONS			'S240		'S2	41, 'S24	14	UNIT
PARAMETER	1231 00	NDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
^t PLH	R _L = 90 Ω,	0 50 - 5		4.5	7		6	9	ns
^t PHL	KL = 90 32,	C _L = 50 pF		4.5	7		6	9	115
^t PZL	R _L = 90 Ω,	0 50 - 5		10	15		10	15	ns
^t PZH	KL = 90 32,	C _L = 50 pF		6.5	10		8	12	115
^t PLZ	Pi = 00 0			10	15		10	15	ns
^t PHZ	R _L = 90 Ω,	C _L = 5 pF		6	9		6	9	115

SDLS144B - APRIL 1985 - REVISED FEBRUARY 2002

PARAMETER MEASUREMENT INFORMATION SERIES 54LS/74LS DEVICES

- B. All diodes are 1N3064 or equivalent.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. S1 and S2 are closed for tPLH, tPHZ, and tPLZ; S1 is open and S2 is closed for tPZH; S1 is closed and S2 is open for tPZL. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples. Ε.
- All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O \approx 50 Ω , t_f \leq 15 ns, t_f \leq 6 ns. F.
- G. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

SN54LS240, SN54LS241, SN54LS244, SN54S240, SN54S241, SN54S244 SN74LS240, SN74LS241, SN74LS244, SN74S240, SN74S241, SN74S244 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS SDLS144B - APRIL 1985 - REVISED FEBRUARY 2002

PARAMETER MEASUREMENT INFORMATION SERIES 54S/74S DEVICES Vcc O $(\land \land$ Test RL Test Point **S**1 Vcc Point From Output Vcc Under Test (see Note B) С RL Cı From Output (see Note A) **1 k**Ω RL **Under Test** (see Note B) From Output Test **Under Test** Point CL (see Note A) CL (see Note A) S2 LOAD CIRCUIT LOAD CIRCUIT LOAD CIRCUIT FOR 2-STATE TOTEM-POLE OUTPUTS FOR OPEN-COLLECTOR OUTPUTS FOR 3-STATE OUTPUTS - 3 V **High-Level** Timing 1.5 V 1.5 V 1.5 V Input Pulse 0 V th tsu 3 V Low-Level Data .5 V 1.5 V 1.5 V 15 ν Pulse Input 0 V **VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS** PULSE DURATIONS SETUP AND HOLD TIMES 3 V Output Control .5 V 1.5 V (low-level 3 V enabling) Input .5 V 1.5 V 0 V 0 V ^tPZL ^tPLZ ^tPLH ^tPHL Waveform 1 1.5 V In-Phase 1.5 V VOH (see Notes C V_{OL} + 0.5 V Output 1.5 V .5 V and D) Vol (see Note D) VOL tPZH -- tPHZ ^tPHL ^tPLH V_{OH} – 0.5 V Waveform 2 Out-of-Phase Vон 1.5 V (see Notes C Output 1.5 V 1.5 V 1.5 V and D) (see Note D) VOL **VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS** NOTES: A. C₁ includes probe and jig capacitance. B. All diodes are 1N3064 or equivalent.

- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. S1 and S2 are closed for tPLH, tPHL, tPHZ, and tPLZ; S1 is open and S2 is closed for tPZH; S1 is closed and S2 is open for tPZL.
- E. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O \approx 50 Ω ; t_f and t_f \leq 7 ns for Series 54/74 devices and t_f and t_f \leq 2.5 ns for Series 54S/74S devices.
- F. The outputs are measured one at a time with one input transition per measurement.

SDLS144B - APRIL 1985 - REVISED FEBRUARY 2002

APPLICATION INFORMATION

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated