

Sample &

Buy

bq24187 SLUSBM0 – APRIL 2014

bq24187 2A, 30V Host-Controlled Single-Input, Single Cell Switchmode Li-Ion Battery Charger with Integrated Sense Element and 1A USB-OTG Support

Technical

Documents

1 Features

- Charge Time Optimizer (Enhanced CC/CV Transition) for Faster Charging
- Integrated FETs for Up to 2A Charge Rate at 5% Accuracy and 93% Peak Efficiency
- Boost Capability to Supply 5V at 1A at IN for USB OTG Supply
- Integrated Current Sense Resistor for Smallest Size and Cost
- 30V Input Rating with Over-Voltage Protection Supports 5V USB2.0/3.0 with 6.5V OVP
- Small Solution Size In a 2,4mm x 2,4mm 36-ball WCSP or 4mm x 4mm QFN-24 Package
- Safe and Accurate Battery Management Functions Programmed Using I²C Interface
 - Charge Voltage, Current, Termination Threshold, Input Current Limit, V_{IN_DPM} Threshold
 - Voltage-based, JEITA Compatible NTC Monitoring Input
 - Thermal Regulation Protection for Input Current Control
 - Thermal Shutdown and Protection

2 Applications

Tools &

Software

- Smartphones and Tablets
- Handheld Products
- Power Banks and External Battery Packs

Support &

Community

....

- Small Power Tools
- Portable Media Players and Gaming

3 Description

The bq24187 is a highly integrated single cell Li-Ion battery charger targeted for space-limited, portable applications with high capacity batteries. The single cell charger has a single input that supports operation from either a USB port or wall adapter supply for a versatile solution. The integrated sense element reduces solution size and external component count. The charge parameters are programmable using the I2C interface. To Support USB OTG applications, the bq24187 is configurable to boost the battery voltage to 5V at the input. In this mode, the bq24187 supplies up to 1A and operates with battery voltages down to 3.3V. A voltage-based, JEITA compatible battery pack thermistor monitoring input (TS) is included that monitors battery temperature for safe charging.

Device Information

ORDER NUMBER ⁽¹⁾	PACKAGE	BODY SIZE
bq24187YFFR	DSBGA (36)	2,4mm × 2,4mm
bq24187RGER ⁽²⁾	VQFN (24)	4mm × 4mm

- (1) For ordering information see the addendums at the end of the data sheet.
- (2) PREVIEW

4 **Typical Application**

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION DATA.

TEXAS INSTRUMENTS

www.ti.com

Table of Contents

1	Feat	tures 1
2	Арр	lications1
3	Des	cription1
4	Тур	ical Application 1
5	Rev	ision History 2
6	Terr	ninal Configuration and Functions
7	Spe	cifications5
	7.1	Absolute Maximum Ratings 5
	7.2	Handling Ratings5
	7.3	Recommended Operating Conditions5
	7.4	Thermal Information5
	7.5	Electrical Characteristics
	7.6	Timing Requirements
	7.7	Switching Characteristics
	7.8	Typical Characteristics 10
8	Deta	ailed Description 11
	8.1	Overview 11

	8.2	Functional Block Diagrams	12
	8.3	Feature Description	14
	8.4	Device Functional Modes	14
	8.5	Programming	23
	8.6	Register Maps	26
9	App	lications and Implementation	31
	9.1	Application Information	31
	9.2	Typical Application	31
10	Lay	out	34
	10.1	Layout Guidelines	34
	10.2	Layout Example	35
11	Dev	ice and Documentation Support	36
	11.1		
	11.2	Trademarks	36
		Electrostatic Discharge Caution	
	11.4	Glossary	36
12	Мес	hanical, Packaging, and Orderable	
		mation	36

5 Revision History

DATE	REVISION	NOTES
April 2014	*	Initial release.

6 Terminal Configuration and Functions

Terminal Functions

٦	FERMINAL		1/0	DESCRIPTION	
NAME	YFF	RGE	1/0	DESCRIPTION	
AGND	F1	12, 20		Analog Ground. Connect to the PGND TERMINALs and the ground plane of the circuit.	
BAT	F3-F6	8, 9	I/O	Battery Connection. Connect to the positive terminal of the battery. Additionally, bypass BAT to GND with a $1\mu F$ capacitor.	
BOOT	C6	2	I	High Side MOSFET Gate Driver Supply. Connect a 0.033μ F ceramic capacitor (voltage rating > 10V) from BOOT to SW to supply the gate drive for the high side MOSFETs.	
CD	C5	4	I	IC Hardware Disable Input. Drive CD high to place the bq24187 in Hi-Z mode. Drive CD low for normal operation.	

Copyright © 2014, Texas Instruments Incorporated

INSTRUMENTS

Texas

www.ti.com

Terminal Functions (continued)

TERMINAL					
NAME	YFF	RGE	I/O	DESCRIPTION	
DRV	D6	3	0	Gate Drive Supply. DRV is the bias supply for the gate drive of the internal MOSFETs. Bypass DRV to PGND with a 1µF ceramic capacitor. DRV may be used to drive external loads up to 10mA. DRV is active whenever the input is connected and $V_{IN} > V_{UVLO}$ and $V_{IN} > (V_{BAT} + V_{SLP})$.	
IN	C1-C4	18, 19	I	DC Input Power Supply. IN is connected to the external DC supply (AC adapter or USB port). Bypass IN to PGND with at least a 4.7μ F ceramic capacitor.	
INT	E2	10	0	Status Output. INT is an open-drain output that signals charging status and fault interrupts. INT pulls low during charging. INT is high impedance when charging is complete or the charger is disabled. When a fault occurs, a 128 μ s pulse is sent out as an interrupt for the host. INT is enabled /disabled using the EN_STAT bit in the control register. Connect INT to a logic rail through a 100k Ω resistor to communicate with the host processor.	
N.C.	D3, F2	11, 15		Connect to the ground plane of the circuit.	
PGND	A1-A6	21, 22		Ground terminal. Connect to the the ground plane of the circuit.	
PMID	B1	1	I	High Side Bypass Connection. Connect a $1\mu F$ capacitor from PMID to PGND as close to the PMID and PGND TERMINALs as possible.	
PSEL	D4	14	I	Hardware Input Current Limit. In DEFAULT mode, PSEL selects the input current limit during DEFAULT mode. Drive PSEL high to select USB100 mode, drive PSEL low to select 1.5A mode.	
SCL	D2	16	I	I^2C Interface Clock. Connect SCL to the logic rail through a $10k\Omega$ resistor.	
SDA	D1	17	I/O	I^2C Interface Data. Connect SDA to the logic rail through a $10k\Omega$ resistor.	
STAT	E1	13	0	Status Output. STAT is an open-drain output that signals charging status and fault interrupts. STAT pulls low during charging. STAT is high impedance when charging is complete or the charger is disabled. When a fault occurs, a 128 μ s pulse is sent out as an interrupt for the host. STAT is enabled /disabled using the EN_STAT bit in the control register. Connect STAT to a logic rail using an LED for visual indication or through a 10k Ω resistor to communicate with the host processor.	
SW	B2-B6	23, 24	0	Inductor Connection. Connect to the switched side of the external inductor.	
CS+	E3-E6	6, 7	I	System Voltage Sense and Charger FET Connection. Connect CS+ to the inductor. Bypass CS+ locally with 20μ F.	
TS	D5	5	I	Battery Pack NTC Monitor. Connect TS to the center tap of a resistor divider from DRV to GND. The NTC is connected from TS to GND. The TS function provides 4 thresholds for JEITA compatibility. T faults are reported by the I ² C interface. Pull TS high to V _{DRV} to disable the TS function. See the <i>NT Monitor</i> section for more details on operation and selecting the resistor values.	
Thermal PAD	-	_	_	There is an internal electrical connection between the exposed thermal pad and the PGND TERMINAL of the device. The thermal pad must be connected to the same potential as the PGND TERMINAL on the printed circuit board. Do not use the thermal pad as the primary ground input for the device. PGND TERMINAL must be connected to ground at all times.	

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

		MIN	MAX	UNIT
	IN	-1.3	30	V
Terminal voltage range (with	BOOT	-0.3	30	V
respect to PGND)	SW	-0.7	20	V
	SDA, SCL, CS+, BAT, STAT, DRV, TS, PSEL, INT	-0.3	5	V
BOOT to SW		-0.3	5	V
Output Current (Continuous)	SW		4.5	А
Output Current (Continuous)	CS+, BAT (charging)		3.5	А
Input Current (Continuous)			2.75	А
Output Sink Current	STAT, INT		10	mA
Operating free-air temperature	range	-40	85	°C
Junction temperature, T _J		-40	125	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 Handling Ratings

		MIN	MAX	UNIT
T _{STG}	Storage temperature range	-65	150	°C

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V	IN voltage	4.2	28 ⁽¹⁾	V
V _{IN}	IN operating voltage	4.2	6.0	
I _{IN}	Input current, IN input		2.5	А
I _{SW}	Ouput Current from SW, DC		2	А
I _{BAT}	Charge Current		2	А
TJ	Operating junction temperature, T _J	0	125	°C

(1) The inherent switching noise voltage spikes should not exceed the absolute maximum rating on either the BOOST or SW terminals. A *tight* layout minimizes switching noise.

7.4 Thermal Information

		bq2	4187	
	THERMAL METRIC ⁽¹⁾	YFF	RGE	UNIT
		36 TERMINALS	24 TERMINALS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	55.8	32.6	
R _{0JCtop}	Junction-to-case (top) thermal resistance	0.5	30.5	
$R_{\theta JB}$	Junction-to-board thermal resistance	10	3.3	°C/W
ΨJT	Junction-to-top characterization parameter	2.6	0.4	°C/VV
Ψ _{JB}	Junction-to-board characterization parameter	9.9	9.3	
R _{0JCbot}	Junction-to-case (bottom) thermal resistance	N/A	2.6	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

Circuit of Figure 6, $V_{UVLO} < V_{IN} < V_{OVP}$ and $V_{IN} > V_{BAT} + V_{SLP}$, $T_J = -40^{\circ}C - 125^{\circ}C$ and $T_J = 25^{\circ}C$ for typical values (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
INPUT CURR	ENTS						
		$V_{UVLO} < V_{IN} < V_{OVP}$ AND $V_{IN} > V_{BAT} + V_{SLP}$, PWM switching			15		
l _{in}	Supply current for control	$V_{UVLO} < V_{IN} < V_{OVP}$ AND V_{IN} NOT switching	_N >V _{BAT} +V _{SLP} , PWM			6.5	mA
		0°C< T _J < 85°C, V _{IN} = 5V, H	ligh-Z Mode			250	μA
	Battery discharge current in high	$0^{\circ}C < T_{J} < 85^{\circ}C, V_{BAT} = 4.2$ = 0V or 1.8V, High-Z Mode	V, V _{IN} = 5V, SCL, SDA			15	μA
BAT_HIZ	impedance mode, (BAT, SW, CS+)	0°C< T _J < 85°C, V _{BAT} = 4.2 = 0V or 1.8V	0°C< T _J < 85°C, V _{BAT} = 4.2 V, V _{IN} = 0V, SCL, SDA			80	μA
CHARGER PA	ARAMETERS		· · · · · ·				
	Internal Sense Element	Measured from BAT to	YFF		17	25	mΩ
R _{SENSE}	Resistance	CS+, V _{BAT} = 4.2V, High-Z mode	RGE		32	47	mΩ
	Charge voltage	Operating in voltage regulat range	tion, Programmable	3.5		4.44	V
V _{BATREG}	Voltage Regulation Accuracy	T _J = 25°C, RGE Package		-0.5%		0.5%	
		$T_J = 0^{\circ}C$ to 85°C, RGE and YFF Package		-0.75%		0.75%	
		T _J = 0°C to 125°C, RGE and YFF Package		-1.0%		1.0%	
	Fast charge current range	$V_{LOWV} \le V_{BAT} < V_{BAT(REG)}$		500		2000	mA
I _{CHARGE}		$500 \text{ mA} \le I_{CHARGE} \le 1A$		-10%		10%	
	Fast charge current accuracy	I _{CHARGE} ≥ 1000mA		-5%		5%	
VBATSHRT	Battery short circuit threshold			1.9	2	2.1	V
VBATSHRT(hys)	Hysteresis for V _{LOWV}	Battery voltage falling			100		mV
IBATSHRT	Battery short circuit charge current	V _{BAT} < V _{LOWV}		33.5	50	66.5	mA
		_{ITERM} ≤ 50mA		-30%		30%	
I _{TERM}	Termination charge current	$50\text{mA} < \text{I}_{\text{TERM}} < 200\text{mA}$		-15%		15%	
		I _{TERM} ≥ 200mA		-15%		10%	
V _{RCH}	Recharge threshold voltage	Below V _{OREG}		100	120	150	mV
V _{DET(SRC1)}		During current source (Turn	I _{BATSHRT} off)		V _{RCH}		V
V _{DET(SRC2)}	Battery detection voltage threshold (TE = 1)	During current source (Turr	During current source (Turn I _{BATSHRT} on)		V _{RCH} – 200mV		
V _{DET(SNK)}		During current sink			VBATSHRT		
IDETECT	Battery detection current before charge done (sink current)	Termination enabled (TE =	1)		7		mA

Electrical Characteristics (continued)

Circuit of Figure 6, $V_{UVLO} < V_{IN} < V_{OVP}$ and $V_{IN} > V_{BAT} + V_{SLP}$, $T_J = -40^{\circ}C - 125^{\circ}C$ and $T_J = 25^{\circ}C$ for typical values (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
INPUT CURF	RENT LIMITING						
			I _{INLIM} = USB100	90	95	100	
			$I_{INLIM} = USB500$	450	475	500	
	la sut sum at limitin s the solution	USB charge mode,	I _{INLIM} = USB150	125	140	150	0
I _{IN_USB}	Input current limiting threshold	V _{IN} = 5V, Current pulled from SW	I _{INLIJM} = USB900	800	850	900	mA
			I _{INLIM} = 1.5A	1425	1500	1575	
			I _{INLIM} = 2.0A	1850	2000	2200	
V _{IN_DPM}	Input based DPM threshold range	Charge mode, programmal	ole via I ² C	4.2		4.76	V
	V _{IN_DPM} threshold Accuracy			-3%		3%	
VDRV BIAS	REGULATOR						
V _{DRV}	Internal bias regulator voltage	V _{IN} >5V		4.3	4.8	5.3	V
I _{DRV}	DRV Output current			0		10	mA
V _{DO_DRV}	DRV Dropout voltage (V _{IN} – V _{DRV})	$I_{IN} = 1A, V_{IN} = 4.2V, I_{DRV} =$	10mA			450	mV
STATUS OU	TPUT (STAT, INT)					I	
V _{OL}	Low-level output saturation voltage	I _O = 5 mA, sink current				0.4	V
IIH	High-level leakage current	$V_{/CHG} = V_{/PG} = 5V$				1	μA
INPUT TERM	AINALS (CD, PSEL)					1	
V _{IL}	Input low threshold					0.4	V
V _{IH}	Input high threshold			1.4			V
R _{PULLDOWN}	CD pull-down resistance	CD only			100		kΩ
PROTECTIO	N	н				ŀ	
V _{UVLO}	IC active threshold voltage	V _{IN} rising		3.2	3.3	3.4	V
V _{UVLO_HYS}	IC active hysteresis	V _{IN} falling from above V _{UVL}	0		300		mV
V _{SLP}	Sleep-mode entry threshold, V_{IN} - V_{BAT}	$2.0 \text{ V} \leq \text{V}_{\text{BAT}} \leq \text{V}_{\text{BATREG}}, \text{V}_{\text{IN}}$, falling	0	40	120	mV
V _{SLP_HYS}	Sleep-mode exit hysteresis			40	100	190	mV
V _{OVP}	Input supply OVP threshold voltage	IN rising, 100mV hysteresis	3	6.25	6.5	6.75	V
V _{BOVP}	Battery OVP threshold voltage	V_{BAT} threshold over V_{OREG} during charge	to turn off charger	1.03 × V _{BATREG}	1.05 × V _{BATREG}	1.07 × V _{BATREG}	V
V _{BOVP_HYS}	V _{BOVP} hysteresis	Lower limit for V _{BAT} falling	from above V _{BOVP}		1		% of V _{BATREG}
I _{CbCLIMIT}	Cycle-by-cycle current limit	V _{CS+} shorted		4.1	4.5	4.9	А
T _{SHTDWN}	Thermal trip				150		°C
	Thermal hysteresis				10		
T _{REG}	Thermal regulation threshold	Charge current begins to c	ut off		125		°C
	Safety Timer Accuracy			-20%		20%	
PWM	1	1		1		I	
	Internal top MOSFET on-	YFF Package: Measured fr	om IN to SW		75	120	mΩ
R _{DSON_Q1}	resistance	RGE Package: Measured f			80	135	mΩ
	Internal bottom N-channel	YFF Package: Measured fr			75	115	mΩ
R _{DSON_Q2}	MOSFET on-resistance	RGE Package: Measured f	rom SW to PGND		80	135	mΩ

Electrical Characteristics (continued)

Circuit of Figure 6, $V_{UVLO} < V_{IN} < V_{OVP}$ and $V_{IN} > V_{BAT} + V_{SLP}$, $T_J = -40^{\circ}C - 125^{\circ}C$ and $T_J = 25^{\circ}C$ for typical values (unless otherwise noted)

	PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
BATTERY-PA	ACK NTC MONITOR			·			
V _{HOT}	High temperature threshold	V_{TS} falling, 2% V_{DRV} Hy	V _{TS} falling, 2% V _{DRV} Hysteresis		30	32.6	%V _{DRV}
V _{WARM}	Warm temperature threshold	V _{TS} falling, 2% V _{DRV} Hy	vsteresis	36.0	38.3	41.2	%V _{DRV}
V _{COOL}	Cool temperature threshold	V _{TS} rising, 2% V _{DRV} Hy	steresis	54.7	56.4	58.1	%V _{DRV}
V _{COLD}	Low temperature threshold	V _{TS} rising, 2% V _{DRV} Hy	steresis	58.2	60	61.8	%V _{DRV}
TSOFF	TS Disable threshold	V _{TS} rising, 4% V _{DRV} Hy	steresis	80		85	%V _{DRV}
I ² C COMPAT	BLE INTERFACE			·			
V _{IH}	Input low threshold level	V _{PULL-UP} =1.8V, SDA an	d SCL	1.3			V
V _{IL}	Input low threshold level	V _{PULL-UP} =1.8V, SDA an	d SCL			0.4	V
V _{OL}	Output low threshold level	I _L =5mA, sink current				0.4	V
I _{BIAS}	High-Level leakage current	V _{PULL-UP} =1.8V, SDA an	d SCL			1	μA
OTG BOOST	SUPPLY	l					
I _{QBAT_ BOOST}	Quiescent current during boost mode (BAT TERMINAL)	2.7V <v<sub>BAT<4.5V, no switching</v<sub>				100	μA
	Boost voltage range for specified boost operation					4.5	V
V _{IN_BOOST}	Boost output voltage (to terminal VBUS)	2.7V <v<sub>BAT<4.5V over li</v<sub>	ne and load	4.95	5.05	5.2	V
	Maximum output current for		BOOST_ILIM=1	1000			
I _{BO}	boost	2.7V <v<sub>BAT<4.5V</v<sub>	BOOST_ILIM=0	500			mA
	Cycle by cycle current limit for	2.7V <v<sub>BAT<4.5V</v<sub>	BOOST_ILIM=1		4		•
BLIMIT	boost (measured at lowside FET)	2.7V <v<sub>BAT<4.5V</v<sub>	BOOST_ILIM=0		2		A
VBOOSTOVP	Over voltage protection threshold for boost (IN terminal)	Signals fault and exits boost mode		5.8	6	6.2	V
V _{BURST(ENT)}	Upper V _{IN} voltage threshold to enter burst mode (stop switching)			5.1	5.2	5.3	V
V _{BURST(EXIT)}	Lower V _{BUS} voltage threshold to exit burst mode (start switching)			4.9	5	5.1	V

7.6 Timing Requirements

Circuit of Figure 6, $V_{UVLO} < V_{IN} < V_{OVP}$ and $V_{IN} > V_{BAT} + V_{SLP}$, $T_J = -40^{\circ}C - 125^{\circ}C$ and $T_J = 25^{\circ}C$ for typical values (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
CHARGER PARAMETERS								
	Deglitch time for battery short to fast charge transition	V _{BAT} rising or falling		1		ms		
t _{DGL(TERM)}	Deglitch time for charge termination	Both rising and falling, 2-mV over-drive, t_{RISE} , t_{FALL} =100ns		32		ms		
t _{DGL(RCH)}	Deglitch time	V_{BAT} falling below V_{RCH} , t_{FALL} =100ns		32		ms		
t _{DETECT(SRC)}	Battery detection time (sourcing current)	Termination enabled (TE = 1)		2		S		
t _{DETECT(SNK)}	Battery detection time (sinking current)	Termination enabled (TE = 1)		250		ms		
INPUT TERM	IINALS (CD, PSEL)							
	Deglitch for CD and PSEL	CD or PSEL rising/falling		100		μs		
PROTECTIO	N							
t _{DGL(VSLP)}	Deglitch time for supply rising above $V_{SLP}+V_{SLP}$ _EXIT	Rising voltage, 2-mV over drive, t _{RISE} =100ns		30		ms		
t _{DGL(BOVP)}	BOVP Deglitch	Battery entering/exiting BOVP		8		ms		
	Safety Timer Accuracy		-20%		20%			
BATTERY-P	ACK NTC MONITOR							
t _{DGL(TS)}	Deglitch time on TS change	Applies to V_{HOT} , V_{WARM} , V_{COOL} , and V_{COLD}		50		ms		
I ² C COMPAT	IBLE INTERFACE	·	*					
t _{WATCHDOG}			30	50		s		
t _{I2CRESET}				700		ms		

7.7 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{OSC}	Oscillator frequency		1.35	1.5	1.65	MHz
D _{MAX}	Maximum duty cycle			95%		
D _{MIN}	Minimum duty cycle		0%			

bq24187 SLUSBM0-APRIL 2014 Texas Instruments

www.ti.com

7.8 Typical Characteristics

8 Detailed Description

8.1 Overview

The bq24187 is a highly integrated single cell Li-Ion battery charger targeted for space-limited, portable applications with high capacity batteries. The single cell charger has a single input that supports operation from either a USB port or wall adapter supply for a versatile solution. The integrated sense element reduces solution size and external component count. The charge parameters are programmable using the I2C interface. To Support USB OTG applications, the bq24187 is configurable to boost the battery voltage to 5V at the input. In this mode, the bq24187 supplies up to 1A and operates with battery voltages down to 3.3V. The battery is charged in three phases: precharge, fast charge constant current and constant voltage. In all charge phases, an internal control loop monitors the IC junction temperature and reduces the charge current if the internal temperature threshold is exceeded. Additionally, a voltage-based, JEITA compatible battery pack thermistor monitoring input (TS) is included that monitors battery temperature for safe charging.

bq24187 SLUSBM0-APRIL 2014 INSTRUMENTS

www.ti.com

Texas

8.2 Functional Block Diagrams

Functional Block Diagrams (continued)

8.3 Feature Description

The bq24187 is a highly integrated single cell Li-Ion battery charger targeted for space-limited, portable applications with high capacity batteries. The single cell charger has a single input that supports operation from either a USB port or wall adapter supply for a versatile solution. The integrated sense element reduces solution size and external component count. The charge parameters are programmable using the I2C interface. To Support USB OTG applications, the bq24187 is configurable to boost the battery voltage to 5V at the input. In this mode, the bq24187 supplies up to 1A and operates with battery voltages down to 3.3V. The battery is charged in three phases: precharge, fast charge constant current and constant voltage. In all charge phases, an internal control loop monitors the IC junction temperature and reduces the charge current if the internal temperature threshold is exceeded. Additionally, a voltage-based, JEITA compatible battery pack thermistor monitoring input (TS) is included that monitors battery temperature for safe charging.

The Device Functional Modes section explains these features in detail.

8.4 Device Functional Modes

8.4.1 High Impedance Mode (Hi-Z Mode)

High Impedance mode (Hi-Z mode) is the low quiescent current state for the bq24187. During Hi-Z mode, the buck converter is off. The bq24187 is in Hi-Z mode when $VI_N < V_{UVLO}$, the HZ_MODE bit in the I2C is '1' or the CD terminal is driven high. Hi-Z mode resets the safety timer.

The bq24187 contains a CD input that is used to disable the IC and place the bq24187 into high-impedance mode. Drive CD low to enable the bq24187 and enter normal operation. Drive CD high to disable charge and place the bq24187 into high-impedance mode. CD is internally pulled down to PGND with a $100k\Omega$ resistor. When exiting Hi-Z mode, charging resumes in approximately 110ms.

8.4.1.1 Input Connected

8.4.1.1.1 Input Voltage Protection In Charge Mode

8.4.1.1.1.1 Sleep Mode

The bq24187 enters the low-power sleep mode if the voltage on VIN falls below sleep-mode entry threshold, $V_{BAT}+V_{SLP}$, and V_{IN} is higher than the undervoltage lockout threshold, V_{UVLO} . This feature prevents draining the battery during the absence of V_{IN} . When $V_{IN} < V_{BAT}+V_{SLP}$, the bq24187 turns off the PWM converter, sends a single 128µs pulse is sent on the STAT and INT outputs and the STATx and FAULT_x bits of the status registers are updated in the I²C. Once $V_{IN} > V_{BAT}+V_{SLP}$, the STATx and FAULT_x bits are cleared and the device initiates a new charge cycle. The FAULT_x bits are not cleared until they are read in the I²C and the sleep condition no longer exists.

8.4.1.1.1.2 Input Voltage Based DPM (V_{IN}-DPM)

During normal charging process, if the input power source is not able to support the programmed or default charging current, the supply voltage deceases. Once the supply drops to V_{IN_DPM} (default 4.2V), the charge current limit is reduced down to prevent the further drop of the supply. When the IC enters this mode, the charge current is lower than the set value and the DPM_STATUS bit is set. This feature ensures IC compatibility with adapters with different current capabilities without a hardware change. Figure 7 shows the VIN-DPM behavior to a current limited source. In this figure the input source has a 750mA current limit and the device charge current is increased until the input current limit of the adapter is reached and the supply collapses. If the 2X timer is set, the safety timer is extended while V_{IN} -DPM is active. Additionally, termination is disabled.

Device Functional Modes (continued)

Figure 7. bq24187 V_{INDPM}

8.4.1.1.1.3 Input Over-Voltage Protection

The bq24187 provides over-voltage protection on the input that protects downstream circuitry. The built-in input over-voltage protection to protect the device and other components against damage from overvoltage on the input supply (Voltage from V_{IN} to PGND). When V_{IN} > V_{OVP}, the bq24187 turns off the PWM converter, sends a single 128µs pulse is sent on the STAT and INT outputs and the STATx and FAULT_x bits of the status registers are updated in the l²C. Once the OVP fault is removed, the STATx and FAULT_x bits are cleared and the device returns to normal operation.

8.4.1.1.2 Charge Mode Operation

8.4.1.1.2.1 Charge Profile

When a valid input source is connected, the \overline{CE} bit in the control register determines whether a charge cycle is initiated. By default, the bq24187 enables the charge cycle when a valid input source is connected (V_{IN}>V_{UVLO} and V_{BAT}+V_{SLP}<V_{IN}<V_{OVP}). There are 4 loops that influence the charge current; constant current loop (CC), constant voltage loop (CV), thermal regulation loop and input voltage dynamic power management loop (V_{IN}-DPM). During the charging process, all four loops are enabled and the one that is dominant takes control. The bq24187 supports a precision Li-Ion or Li-Polymer charging system for single-cell applications. Figure 8 shows a typical charge.

Texas Instruments

www.ti.com

Device Functional Modes (continued)

Figure 8. Typical Charging Profile Of Bq24187

8.4.1.1.3 Battery Charging Process

When the battery is deeply discharged or shorted, the bq24187 applies $I_{BATSHORT}$ to the battery to close the battery protector switch and bring the battery voltage up to acceptable charging levels. Once the battery rises above $V_{BATSHRT}$, the charge current is regulated to the value set in the I²C register by the I_{CHARGE} bits. The charge current is regulated to I_{CHARGE} until the voltage between BAT and PGND reaches the regulation voltage. The voltage between BAT and PGND is regulated to VBATREG (CV mode) while the charge current naturally tapers down as shown in Figure 8. During the CC or CV modes, if the die temperature heats up, the thermal regulation loop reduces the input current to maintain a die temperature at 125°C.

When termination is enabled (TE bit is '1'), the bq24187 monitors the charging current during the CV mode. Once the charge current tapers down to the termination threshold, I_{TERM} , and the battery voltage is above the recharge threshold, the bq24187 terminates charge and enters battery detection (see Battery Detection section for more details). The termination current level is programmable. To disable the charge current termination, the host sets the charge termination bit (TE) of charge control register to 0. Refer to I²C section for details. When termination is disabled, V_{BAT} is continuously regulated to V_{BATREG} . Termination is also disabled when any loop is active other than CC or CV. This includes V_{INDPM} , input current limit, or thermal regulation. Termination is also disabled during TS WARM/COOL conditions and when the LOW_CHG bit is set to '1'. A charge cycle is initiated when one of the following conditions is detected:

- The battery voltage falls below the V_{BATREG}-V_{RCH} threshold
- IN Power-on reset (POR)
- CE bit toggle or RESET bit is set (Host controlled)
- CD terminal is toggled

Device Functional Modes (continued)

8.4.1.1.3.1 Charge Time Optimizer

The CC to CV transition is enhanced in the bq24187 architecture. The "knee" between CC and CV is very sharp. This enables the charger to remain in CC mode as long as possible before beginning to taper the charge current (CV mode). This provides a decrease in charge time as compared to older topologies.

8.4.1.1.4 Battery Detection

When termination conditions are met, a battery detection cycle is started. During battery detection, I_{DETECT} is pulled from V_{BAT} for $t_{DETECT(SNK)}$ to verify there is a battery. If the battery voltage remains above V_{DETECT} for the full duration of $t_{DETECT(SNK)}$, a battery is determined to be present and the IC enters "Charge Done". If V_{BAT} falls below V_{DETECT} , a "Battery Not Present" fault is signaled, the charge parameters are reset (V_{BATREG} , I_{CHARGE} and I_{TERM}) and battery detection continues. The next cycle of battery detection, the bq24187 turns on $I_{BATSHRT}$ for $t_{DETECT(SRC)}$. If V_{BAT} rises to $V_{DET(SRC1)}$, the current source is turned off and a "No Battery" condition is registered. In order to keep V_{BAT} high enough to close the battery protector, the current source turns on if V_{BAT} falls to $V_{DET(SRC2)}$. The source cycle continues for $t_{DETECT(SRC)}$. After $t_{DETECT(SRC)}$, the battery detection continues through another current sink cycle. Battery detection continues until charge is disabled or a battery is detected. Once a battery is detected, the fault status clears and a new charge cycle begins. Battery detection is not performed when termination is disabled.

8.4.1.1.5 Battery Overvoltage Protection (BOVP)

If the battery is ever above the battery OVP threshold (V_{BOVP}), the battery OVP circuit shuts the PWM converter off to discharge the battery to safe operating levels. A battery OVP most commonly occurs when the bq24187 returns to DEFAULT mode after a watchdog timer expiration or RESET bit written to '1'. In this condition, the V_{BATREG} is reset and may be below the battery voltage. Other conditions may be when the input is initially plugged in before I²C communication is established or TS WARM conditions or when writing the VBATREG to less than the battery voltage. The battery OVP condition is cleared when the battery voltage falls below the hysteresis of V_{BOVP} either by the battery discharging or writing the V_{BATREG} to a higher value. When a battery OVP event exists for $t_{DGL(BOVP)}$, the bq24187 sends a single 128µs pulse on the STAT/ INT outputs and the STATx and FAULT_x bits are updated in the I2C. Once the BOVP fault is removed, the STATx bits are cleared and the device returns to normal operation. The FAULT_x bits are not cleared until they are read in the I2C after the BOVP condition no longer exists.

8.4.1.1.6 Default Mode

DEFAULT mode is used when I²C communication is not available. DEFAULT mode is entered in the following situations:

- 1. When the charger is enabled before I²C communication is established
- 2. When the watchdog timer expires without a reset from the I²C interface
- 3. The RESET bit is written in the I^2C register

In DEFAULT mode, the I²C registers are reset to the default values. The 1.25 min safety timer is reset and starts when DEFAULT mode is entered if a charge cycle is underway. The default value for V_{BATREG} is 3.6V, and the default value for I_{CHARGE} is 1A. The input current limit in DEFAULT mode is set by PSEL. (See *Power Source Selector Input* section) DEFAULT mode is exited by writing to the I²C interface. Note that if termination is enabled and charging has terminated, a new charge cycle is NOT initiated when entering DEFAULT mode.

8.4.1.1.7 Power Source Selector Input (PSEL)

The bq24187 contains a PSEL input that is used to program the input current limit during DEFAULT mode. Drive PSEL high to indicate a USB source is connected to the input and program the 100mA current limit for IN. Drive PSEL low to indicate that an AC Adapter is connected to the input. When PSEL is low, the IC starts up with a 1.5A input current limit. Once an I²C write is done and the device is in HOST mode, the PSEL has no effect on the input current limit until the watchdog timer expires and returns the bq24187 to DEFAULT mode.

Device Functional Modes (continued)

8.4.1.1.8 Safety Timer and Watchdog Timer In Charge Mode

At the beginning of charging process, the bq24187 starts the safety timer. This timer is active during the entire charging process. If charging has not terminated before the safety timer expires, the IC enters suspend mode where charging is disabled. The safety timer time is selectable using the I2C interface. When a safety timer fault occurs, a single 128µs pulse is sent on the STAT and INT outputs and the STATx bits of the status registers are updated in the I²C. The CE bit, HZ_MODE bit, CD terminal or input power must be toggled in order to clear the safety timer fault. The safety timer duration is selectable using the TMR_X bits in the Safety Timer Register/ NTC Monitor register. Changing the safety timer duration resets the safety timer.

In addition to the safety timer, the bq24187 contains a 30-second ($t_{WATCHDOG}$) watchdog timer that monitors the host through the l²C interface. Once a write is performed on the l²C interface, a watchdog timer is started. The watchdog timer is reset by the host using the l2C interface. This is done by writing a "1" to the reset bit (TMR_RST) in the control register. The TMR_RST bit is automatically set to "0" when the watchdog timer is reset. This process continues until battery is fully charged or the safety timer expires. If the watchdog timer respires, the IC enters DEFAULT mode where the default charge parameters are loaded, the safety timer restarts at 1.25 minutes and charging continues. The l²C may be accessed again to reinitialize the desired values and restart the watchdog timer as long as the safety timer has not expired. Once the safety timer expires, charging is disabled. This function prevents continuous charging of a defective battery if the host fails to reset the safety timer. In the event the watchdog timer expires, the l²C circuit is reset as well. This prevents the l²C from indefinitely hanging if the l²C master loses control during a read/write. The watchdog timer flow chart is shown in Figure 9.

Device Functional Modes (continued)

Figure 9. The Watchdog Timer Flow Chart For Bq24187

8.4.1.1.9 LDO Output (DRV)

The bq24187 contains a linear regulator (DRV) that is used to supply the internal MOSFET drivers and other circuitry. Additionally, DRV supplies up to 10mA external loads to power the STAT LED or the USB transceiver circuitry. The maximum value of the DRV output is 5.3V so it ideal to protect voltage sensitive USB circuits. The LDO is on whenever a supply is connected to the input of the bq24187. The LDO is on whenever a supply is connected to the input of the bq24187. The DRV is disabled under the following conditions:

- 1. V_{SUPPLY} < UVLO
- 2. $V_{SUPPLY} < V_{BAT} + V_{SLP}$
- 3. Thermal Shutdown

Device Functional Modes (continued)

8.4.1.1.10 External NTC Monitoring (TS)

The I²C interface allows the user to easily implement the JEITA standard for systems where the battery pack thermistor is monitored by the host. Additionally, the bq24187 provides a flexible, voltage based TS input for monitoring the battery pack NTC thermistor. The voltage at TS is monitored to determine that the battery is at a safe temperature during charging. The JEITA specification is shown in Figure 10.

Figure 10. Charge Current During TS Conditions

To satisfy the JEITA requirements, four temperature thresholds are monitored; the cold battery threshold ($T_{NTC} < 0^{\circ}C$), the cool battery threshold ($0^{\circ}C < T_{NTC} < 10^{\circ}C$), the warm battery threshold ($45^{\circ}C < T_{NTC} < 60^{\circ}C$) and the hot battery threshold ($T_{NTC} > 60^{\circ}C$). These temperatures correspond to the V_{COLD}, V_{COLD}, V_{WARM}, and V_{HOT} thresholds in the EC table. Charging is suspended and timers are suspended when V_{TS} < V_{HOT} or V_{TS} > V_{COLD}. When V_{COOL} < V_{TS} < V_{COLD}, the charging current is reduced to half of the programmed charge current. When V_{HOT} < V_{TS} < V_{WARM}, the battery regulation voltage is reduced by 140mV from the programmed regulation threshold. The TS function is disabled by connecting TS directly to DRV (V_{TS} > V_{TSOFF}).

The TS function is voltage based for maximum flexibility. Connect a resistor divider from DRV to GND with TS connected to the center tap to set the threshold. The connections are shown in Figure 11. The resistor values are calculated using the following equations:

$$RLO = \frac{V_{DRV} \times RCOLD \times RHOT \times \left[\frac{1}{V_{COLD}} - \frac{1}{V_{HOT}}\right]}{RHOT \times \left[\frac{V_{DRV}}{V_{HOT}} - 1\right] - RCOLD \times \left[\frac{V_{DRV}}{V_{COLD}} - 1\right]}$$
(1)
$$RHI = \frac{\frac{V_{DRV}}{V_{COLD}} - 1}{\frac{1}{RLO} + \frac{1}{RCOLD}}$$
(2)

Device Functional Modes (continued)

Where:

 $V_{COLD} = 0.60 \times V_{DRV}$ $V_{HOT} = 0.30 \times V_{DRV}$ $RCOOL = \frac{RLO \times RHI \times 0.564}{RLO - RLO \times 0.564 - RHI \times 0.564}$ $RWARM = \frac{RLO \times RHI \times 0.383}{RLO - RLO \times 0.383 - RHI \times 0.383}$

(3)

(4)

Where RHOT is the NTC resistance at the hot temperature and RCOLD is the NTC resistance at cold temperature.

The WARM and COOL thresholds are not independently programmable. The COOL and WARM NTC resistances for a selected resistor divider are calculated using Equation 3 and Equation 4.

8.4.1.1.11 Thermal Regulation and Protection

During the charging process, to prevent overheating in the chip, bq24187 monitors the junction temperature, T_J , of the die and reduces the input current once T_J reaches the thermal regulation threshold, T_{REG} . The input current is reduced to zero when the junction temperature increases about 10°C above T_{REG} . Once the input current is reduced to 0, the system current is reduced while the battery supplements the load to supply the system. When the input current is completely reduced to 0 and T_J >125°C, this is may cause a thermal shutdown of the bq24187 if the die temperature rises too high. At any state, if T_J exceeds T_{SHTDWN} , bq24187 stops charging and disables the buck converter. During thermal shutdown mode, PWM is turned off, all timers are suspended, and a single 128µs pulse is sent on the STAT and INT outputs and the STATx and FAULT_x bits of the status registers are updated in the l²C. The charge cycle resumes when T_J falls below T_{SHTDWN} by approximately 10°C.

Device Functional Modes (continued)

8.4.1.1.12 Charge Status Outputs (STAT, INT)

The STAT/INT output is used to indicate operation conditions for bq24187. STAT/INT is pulled low during charging when EN_STAT bit in the control register is set to "1". When charge is complete or disabled, STAT/INT is high impedance. When a fault occurs, a 128-µs pulse (interrupt) is sent out to notify the host. The status of STAT/INT during different operation conditions is summarized in Table 1. STAT/INT drives an LED for visual indication or can be connected to the logic rail for host communication. The EN_STAT bit in the control register is used to enable/disable the charge status for STAT/INT. The interrupt pulses are unaffected by EN_STAT and will always be shown.

Table 1. STAT Terminal Summary

CHARGE STATE	STAT
Charge in progress and EN_STAT=1	Low
Other normal conditions	High-Impedance
Charge mode faults: Timer fault, sleep mode, VIN over voltage, VIN < UVLO, thermal shutdown	128-µs pulse, then High Impedance

8.4.2 Boost Mode Operation

In HOST mode, when the operation mode bit (BOOST_EN) in the control register (bit 6 in register 0x00h) is set to 1, bq24187 operates in boost mode and delivers 5V to IN to supply USB OTG devices connected to the USB connector. Boost operation can start with VBAT between 3.45V to 4.5V, and will maintain boost output until VBAT falls to 3.3V. IN supplies up to 1A to power these devices. It is not recommended to operate boost mode when the battery voltage is less than 3.3V. Proper operation is **not** guaranteed.

8.4.2.1 PWM Controller In Boost Mode

Similar to charge mode operation, in boost mode the IC switches at 1.5MHz to regulate the voltage at IN to 5V. The voltage control loop is internally compensated to provide enough phase margin for stable operation with the full battery voltage range and up to 750mA.

In boost mode, the cycle-by-cycle current limit is set to 4A or 2A (depending on the I^2C setting) to provide protection against short circuit conditions. If the cycle-by-cycle current limit is active for 8 ms, an overload condition is detected and the device exits boost mode, and signals an over-current fault. Additionally, discharge current limit ($I_{LIM(DISCH)}$) is active to protect the battery from overload. Synchronous operation and burst mode are used to maximize efficiency over the full load range.

The bq24187 will not enter boost mode unless the IN voltage is less than the UVLO and the IC is in high impedance mode. When the boost function is enabled, the bq24187 enters a linear mode to bring IN up to the battery voltage. Once $V_{IN} > (V_{BAT} - 1V)$, the bq24187 begins switching and regulates IN up to 5V. If V_{IN} does not rise to within 1V of V_{BAT} within 8ms, an over-current event is detected and boost mode is exited and a boost mode over-current event is announced, the BOOST bit is reset to '0' and the STAT_x and FAULT_x bits in the Status/ Control register are updated.

8.4.2.2 Burst Mode During Light Load

In boost mode, the IC operates using burst mode to improve light load efficiency and reduce power loss. During boost mode, the PWM converter is turned off when the devices reaches minimum duty cycle and the output voltage rises to V_{BURST_ENT} threshold. This corresponds to approximately a 75mA inductor current. The converter then restarts when V_{IN} falls to V_{BURST_EXT} . See Figure 21 in the Application Curves for an example waveform.

8.4.2.3 Watchdog Timer In Boost Mode

During boost mode, the watchdog timer is active. The watchdog timer works the same as in charge mode. Write a "1" to the TMR_RST reset bit in the control register. If the watchdog timer expires, the IC resets the BOOST bit to 0, signals the fault pulse on the STAT and INT terminals and sets fault status bits in the status register.

8.4.2.4 STAT/ INT During Boost Mode

During boost mode, the STAT and INT outputs are high impedance. Under fault conditions, a 128µs pulse is sent out to notify the host of the error condition.

8.4.2.5 Protection In Boost Mode

8.4.2.5.1 Output Over-Voltage Protection

The bq24187 contains integrated over-voltage protection on the IN terminal. During boost mode, if an over-voltage condition is detected (V_{IN} . $V_{BOOSTOVP}$), the IC turns off the PWM converter, resets EN_BOOST bit to 0, sets fault status bits and sends out a fault pulse on STAT and INT. The converter does not restart when VIN drops to the normal level until the EN_BOOST bit is reset to 1.

8.4.2.5.2 Output Over-Current Protection

The bq24187 contains over current protection to prevent the device and battery damage when IN is overloaded. When an over-current condition occurs, the cycle-by-cycle current limit limits the current from the battery to the load. If the overload condition lasts for 8 consecutive cycles, the overload fault is detected. When an overload condition is detected, the bq24187 turns off the PWM converter, resets BOOST bit to 0, sets the fault status bits and sends out the fault pulse on STAT and INT. The boost starts only after the fault is cleared and the EN_BOOST bit is reset to 1 using the l^2C .

8.4.2.5.3 Battery Overvoltage Protection

During boost mode, when the battery voltage is below the minimum battery voltage threshold, VBATUVLO, the IC turns off the PWM converter, resets BOOST bit to 0, sets fault status bits and sends out a fault pulse on STAT and INT. Once the battery voltage returns to the acceptable level, the boost starts after the BOOST bit is set to 1. Proper operation below 3.3V down to the $V_{BATUVLO}$ is not specified.

8.5 Programming

8.5.1 Serial Interface Description

The bq24187 uses an I²C compatible interface to program charge parameters. I²CTM is a 2-wire serial interface developed by Philips Semiconductor (see I2C-Bus Specification, Version 2.1, January 2000). The bus consists of a data line (SDA) and a clock line (SCL) with pull-up structures. When the bus is idle, both SDA and SCL lines are pulled high. All the I²C compatible devices connect to the I²C bus through open drain I/O terminals, SDA and SCL. A master device, usually a microcontroller or a digital signal processor, controls the bus. The master is responsible for generating the SCL signal and device addresses. The master also generates specific conditions that indicate the START and STOP of data transfer. A slave device receives and/or transmits data on the bus under control of the master device.

The bq24187 device works as a slave and supports the following data transfer modes, as defined in the l^2C BusTM Specification: standard mode (100 kbps) and fast mode (400 kbps). The interface adds flexibility to the battery charge solution, enabling most functions to be programmed to new values depending on the instantaneous application requirements. Register contents remain intact as long as battery voltage remains above 2.5 V (typical). The l^2C circuitry is powered from VBUS when a supply is connected. If the VBUS supply is not connected, the l^2C circuitry is powered from the battery through CSOUT. The battery voltage must stay above 2.5V with no input connected in order to maintain proper operation.

The data transfer protocol for standard and fast modes is exactly the same; therefore, they are referred to as the F/S-mode in this document. The bq24187/1 device only supports 7-bit addressing. The device 7-bit address is defined as '1101011' (0x6Bh).

8.5.1.1 F/S Mode Protocol

The master initiates data transfer by generating a start condition. The start condition is when a high-to-low transition occurs on the SDA line while SCL is high, as shown in Figure 12. All I²C-compatible devices should recognize a start condition.

TEXAS INSTRUMENTS

www.ti.com

Programming (continued)

Figure 12. Start And Stop Condition

The master then generates the SCL pulses, and transmits the 8-bit address and the read/write direction bit R/W on the SDA line. During all transmissions, the master ensures that data is valid. A valid data condition requires the SDA line to be stable during the entire high period of the clock pulse (see Figure 13). All devices recognize the address sent by the master and compare it to their internal fixed addresses. Only the slave device with a matching address generates an acknowledge (see Figure 13) by pulling the SDA line low during the entire high period of the ninth SCL cycle. Upon detecting this acknowledge, the master knows that communication link with a slave has been established.

Figure 13. Bit Transfer On The Serial Interface

The master generates further SCL cycles to either transmit data to the slave (R/W bit 0) or receive data from the slave (R/W bit 1). In either case, the receiver needs to acknowledge the data sent by the transmitter. So an acknowledge signal can either be generated by the master or by the slave, depending on which one is the receiver. The 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as necessary. To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from low to high while the SCL line is high (see Figure 15). This releases the bus and stops the communication link with the addressed slave. All I2C compatible devices must recognize the stop condition. Upon the receipt of a stop condition, all devices know that the bus is released, and they wait for a start condition followed by a matching address. If a transaction is terminated prematurely, the master needs to send a STOP condition to prevent the slave I2C logic from getting stuck in a bad state. Attempting to read data from register addresses not listed in this section will result in FFh being read out.

Programming (continued)

Figure 15. Bus Protocol

8.6 Register Maps

Table 2. Status/Control Register (READ/WRITE) Memory Location: 00, Reset State: 00xx 0xxx

BIT	NAME ⁽¹⁾ (2)	READ/WRITE	FUNCTION
B7 (MSB)	TMR_RST	Read/Write	Write: TMR_RST function, write "1" to reset the watchdog timer (auto clear) Read: Always 0
В	BOOST	Read/Write	0-Charger Mode 1-Boost Mode (default 0)
B5	STAT_1	Read Only	00-Ready
B4	STAT_0	Read Only	01-Charge in progress, 10-Charge done 11-Fault
B3	NA	Read/Write Only	NA
B2	FAULT_2	Read Only	000-Normal
B1	FAULT_1	Read Only	001-V _{IN} > V _{OVP} or Boost Mode OVP 010- Low Supply connected (V _{IN} <v<sub>UVLO or V_{IN}<vs<sub>LP) or Boost Mode Overcurrent</vs<sub></v<sub>
B0 (LSB)	FAULT_0	Read Only	011- Thermal Shutdown 100-Battery Temperature Fault 101- Timer Fault (watchdog or safety timer) 110-Battery OVP 111-No Battery connected

(1)

STAT_x bits show current status. These bits change based on the current condition. FAULT_x bits show faults. If a fault occurs, these bits announce the fault and do not clear until read. If more than one fault occurs, the (2) first fault is shown.

BOOST Bit (Operation Mode) The BOOST bit selects the operation mode for the bq24187. Write a "1" to enable boost mode and regulate IN to 5V to supply OTG peripherals. See "Boost Mode Operation" section for more details

Table 3. Control Register (Read/Write) Memory Location: 01, Reset State: 1xxx 1110

BIT	NAME	READ/WRITE	FUNCTION
B7 (MSB)	RESET	Write only	Write: 1-Reset all registers to default values 0-No effect Read: always get "1"
B6	IN_LIMIT_2	Read/Write	000-USB2.0 host with 100mA current limit
B5	IN_LIMIT_1	Read/Write	001-USB3.0 host with 150mA current limit 010 – USB2.0 host with 500mA current limit
B4	IN_LIMIT_0	Read/Write	011 – USB3.0 host/charger with 900mA current limit 100 – Charger with 1500mA current limit 101—NA 110 – Charger with 2500mA current limit 111-NA (default xxx ⁽¹⁾)
В3	EN_STAT	Read/Write	0-Disable STAT function (STAT only shows faults) 1-Enable STAT function (default 1)
B2	TE	Read/Write	0-Disable charge current termination 1-Enable charge current termination (default 1)
B1	CE	Read/Write	0-Charger enabled 1-Charger is disabled (default 0)
B0 (LSB)	HZ_MODE	Read/Write	0-Not high impedance mode 1-High impedance mode (default 0)

(1) When in DEFAULT mode, the D+/D- inputs or PSEL determine the default input current limit.

RESET Bit	The RESET bit in the control register (0x01h) is used to reset all the charge parameters. Write "1" to RESET bit to reset all the registers to default values and place the bq24187 into DEFAULT mode and turn off the watchdog timer. The RESET bit is automatically cleared to zero once the bq24187 enters DEFAULT mode.
CE Bit (Charge Enable)	The \overline{CE} bit in the control register (0x01h) is used to disable or enable the charge process. A low logic level (0) on this bit enables the charge and a high logic level (1) disables the charge.
HZ_MODE Bit (High Impedance Mode Enable)	The HZ_MODE bit in the control register $(0x01h)$ is used to disable or enable the high impedance mode. A low logic level (0) on this bit enables the IC and a high logic level (1) puts the IC in a low quiescent current state called high impedance mode. When in high impedance mode, the converter is off.

Table 4. Control/Battery Voltage Register (Read/Write) Memory Location: 02, Reset State: 0001 0100

BIT	NAME	READ/WRITE	FUNCTION
B7 (MSB)	V _{BREG5}	Read/Write	Battery Regulation Voltage: 640 mV (default 0)
B6	V _{BREG4}	Read/Write	Battery Regulation Voltage: 320 mV (default 0)
B5	V _{BREG3}	Read/Write	Battery Regulation Voltage: 160 mV (default 0)
B4	V _{BREG2}	Read/Write	Battery Regulation Voltage: 80 mV (default 0)
B3	V _{BREG1}	Read/Write	Battery Regulation Voltage: 40 mV (default 1)
B2	V _{BREG0}	Read/Write	Battery Regulation Voltage: 20 mV (default 0)
B1	MOD_FREQ1	Read/Write	Modify Switching Frequency Target –
B0 (LSB)	MOD_FREQ2	Read/Write	00 – No Change to Nominal Frequency Target 01 – +10% Change to Nominal Frequency 10 – –10% Change to Nominal Frequency 11 – NA (default 00)

V _{BREG} Bits (Battery Regulation Threshold setting)	Use V_{BREG} bits to set the battery regulation threshold. The VBATREG is calculated using the following equation: $V_{BATREG} = 3.5 \text{ V} + V_{BREG}CODE \times 20 \text{ mV}$ The charge voltage range is 3.5V to 4.44V with the offset of 3.5V and step of 20mV. The default setting is 3.6V. If a value greater than 4.44V is written, the setting goes to 4.44V. It is recommended to set V_{BATREG} above V_{MINSYS} .
MOD_FREQx Bits (Frequency Modification)	The MOD_FREQx bits are used to change the switching frequency by $\pm 10\%$. This is used for applications where the 1.5MHz switching frequency noise interferes with other device operation. The frequency may be modified by $\pm 10\%$ of the nominal frequency.

Table 5. Vender/Part/Revision Register (Read only) Memory Location: 03, Reset State: 0100 0110

BIT	NAME	READ/WRITE	FUNCTION
B7 (MSB)	Vender2	Read Only	Vender Code: bit 2 (default 0)
B6	Vender1	Read Only	Vender Code: bit 1 (default 1)
B5	Vender0	Read Only	Vender Code: bit 0 (default 0)
B4	PN1	Read Only	
B3	PN0	Read Only	For I ² C Address 6Bh: 00–bq24187
B2	Revision2	Read Only	
B1	Revision1	Read Only	Revision Code
B0 (LSB)	Revision0	Read Only	

Table 6. Battery Termination/Fast Charge Current Register (Read/Write) Memory Location: 04, Reset State: 0010 1010

		•	-
BIT	NAME	READ/WRITE	FUNCTION
B7 (MSB)	V _{ICHRG4}	Read/Write	Charge current: 1600mA – (default 0)
B6	V _{ICHRG3}	Read/Write	Charge current: 800mA— (default 0)
B5	V _{ICHRG2}	Read/Write	Charge current: 400mA—(default 1)
B4	V _{ICHRG1}	Read/Write	Charge current: 200mA— (default 0)
B3	V _{ICHRG0}	Read/Write	Charge current: 100mA (default 1)
B2	VITERM2	Read/Write	Termination current sense: 200mA (default 0)
B1	V _{ITERM1}	Read/Write	Termination current sense voltage: 100mA (default 1)
B0 (LSB)	V _{ITERM0}	Read/Write	Termination current sense voltage: 50mA (default 0)
(Charge Current RegulationcurrentThreshold setting)1A. The			$_{RG}$ bits to set the charge current regulation threshold. The charge is programmable from 500mA to 2A in 100mA steps. The default is I_{CHARGE} is calculated using the following equation: = 500 mA + $I_{CHRG}CODE \times 50$ mA
		. –	_{RM} bits to set the charge current termination threshold. The tion threshold is programmable from 50mA to 300mA in 50mA steps.

(Charge Current Termination Threshold setting)

Use I_{TERM} bits to set the charge current termination threshold. The termination threshold is programmable from 50mA to 300mA in 50mA steps. The default is 150mA. The I_{TERM} is calculated using the following equation: $I_{TERM} = 50 \text{ mA} + I_{TERM}\text{CODE} \times 50 \text{ mA}$ Any setting programmed above 300mA selects the 300mA setting.

Table 7. V_{IN-DPM} Voltage/ DPPM Status Register Memory location: 05, Reset state: xx00 x000

BIT	NAME	READ/WRITE	FUNCTION
B7 (MSB)	NA	Read Only	NA
B6	DPM_STATUS	Read Only	$0 - V_{IN}$ -DPM mode is not active $1 - V_{IN}$ -DPM mode is active
B5	LOW_CHG	Read/Write	0 – Normal charge current set by 04h 1 – Low charge current setting 300mA (default 0)
B4	NA	Read Only	NA
В3	CD_STATUS	Read Only	0 – CD low, IC enabled 1 – CD high, IC disabled
B2	V _{INDPM2}	Read/Write	Input V _{IN-DPM} voltage: V _{DPMOFF} + 8% (default 0)
B1	V _{INDPM1}	Read/Write	Input V _{IN-DPM} voltage: V _{DPMOFF} + 4% (default 0)
B0 (LSB)	VINDPM0	Read/Write	Input V _{IN-DPM} voltage: V _{DPMOFF} + 2% (default 0)

V_{IN-DPM} voltage offset is 4.2V.

LOW_CHG Bit (Low Charge Mode Enable)	The LOW_CHG bit is used to reduce the charge current to a minimum current. This feature is used by systems where battery NTC is monitored by the host and requires a reduced charge current setting or by systems that need a "preconditioning" current for low battery voltages. Write a "1" to this bit to charge at 300mA. Write a "0" to this bit to charge at the programmed charge current.
V _{INDPM} Bits (VINDPM Threshold setting)	Use V_{INDPM} bits to set the V_{INDPM} regulation threshold. The V_{INDPM} threshold is calculated using the following equation: $V_{INDPM} = V_{INDPM_OFF} + V_{INDPM}CODE \times 2\% \times V_{INDPM_OFF}$

Texas Instruments

www.ti.com

Table 8. Safety Timer/ NTC Monitor Register (READ/WRITE) Memory location: 06, Reset state: 1001 1xx0

BIT	NAME	READ/WRITE	FUNCTION
B7 (MSB)	2XTMR_EN	Read/Write	0 – Timer not slowed at any time 1 – Timer slowed by 2x when in thermal regulation, V_{IN_DPM} or DPPM (default 1)
B6	TMR_1	Read/Write	Safety Timer Time Limit –
B5	TMR_2	Read/Write	00—40 minute fast charge 01 – 6 hour fast charge 10 – 9 hour fast charge 11 – Disable safety timers (default 00) (bq24187/1 only)
B4	BOOST_ILIM	Read/Write	0—500mA 1—750mA (Default 1)
В3	TS_EN	Read/Write	0 – TS function disabled 1 – TS function enabled (default 1)
B2	TS_FAULT1	Read only	TS Fault Mode:
B1	TS_FAULT0	Read only	$\begin{array}{l} 00 & \mbox{Normal, No TS fault} \\ 01 & \mbox{TS temp} < TC_{OLD} \mbox{ or TS temp} > T_{HOT}(Charging suspended) \\ 10 & \mbox{T}_{COOL} > TS temp > T_{COLD} \mbox{ (Charge current reduced by half)} \\ 11 & \mbox{T}_{WARM} < TS temp < T_{HOT} \mbox{ (Charge voltage reduced by 100mV)} \end{array}$
B0 (LSB)	NA	Read/Write	Always write to '0'

BOOST_ILIM Bit .(Boost current limit setting) The BOOST_ILIM bit programs the cycle by cycle current limit threshold for boost operation. The 1A setting sets the low side cycle by cycle current limit to 4A (typ). This ensures that at least 1A can be supplied from the boost converter over the entire battery range. The 500mA setting sets the current limit to 2A(typ) to ensure at least 500mA available from the boost converter. See the boost mode over-current section for more details

9 Applications and Implementation

9.1 Application Information

The bq24187-625 evaluation module (EVM) is a complete charger module for evaluating the bq24187. The application curves were taken using the bq24187EVM-625. See Related Documentation.

9.2 Typical Application

Figure 16. bq24187 Typical Application Circuit

9.2.1 Design Requirements

DESIGN PARAMATER	EXAMPLE VALUE					
Input Voltage Range	4.75 V to 5.25 V nominal, withstand 28 V					
Input Current Limit	1500 mA					
Input DPM Threshold	4.25 V					
Fast Charge Current	2000 mA					
Battery Charge Voltage	4.2 V					
Termination Current	150 mA					

Table 9. Design Requirements

9.2.2 Detailed Design Procedure

The parameters are configurable using the EVM software.

The typical application circuit shows the minimum capacitance requirements for each terminal. Options for sizing the inductor outside the 1.5 μ H recommended value and additional SYS terminal capacitance are explained in the next section. The resistors on STAT and INT are sized per each LED's current requirements. The TS resistor divider for configuring the TS function to work with the battery's specific thermistor can be computed from Equation 1 and Equation 2. The external battery FET is optional.

9.2.2.1 Output Inductor And Capacitor Selection Guidelines

When selecting an inductor, several attributes must be examined to find the right part for the application. First, the inductance value should be selected. The bq24187 is designed to work with 1.5 μ H to 2.2 μ H inductors. The chosen value will have an effect on efficiency and package size. Due to the smaller current ripple, some efficiency gain is reached using the 2.2 μ H inductor, however, due to the physical size of the inductor, this may not be a viable option. The 1.5 μ H inductor provides a good tradeoff between size and efficiency.

TEXAS INSTRUMENTS

www.ti.com

Once the inductance has been selected, the peak current must be calculated in order to choose the current rating of the inductor. Use Equation 5 and Equation 6 to calculate the peak current.

$$\%_{\mathsf{RIPPLE}} = \frac{\mathsf{V}_{\mathsf{IN}} - \mathsf{V}_{\mathsf{BAT}}}{\mathsf{L}} \times \frac{\mathsf{V}_{\mathsf{BAT}}}{\mathsf{V}_{\mathsf{IN}} \times f_{\mathsf{SW}}}$$
(5)

For the 5V adapter case, a good rule of thumb is to use 3.5V as V_{BAT} . This provides a reasonable worst case ripple. For higher adapters, the closer to 50% duty cycle, the worse the ripple.

$$I_{PEAK} = I_{CHARGE} \times \left(1 + \frac{\%_{RIPPPLE}}{2}\right)$$
(6)

The inductor selected must have a saturation current rating greater than or equal to the calculated I_{PEAK} . Due to the high currents possible with the bq24187, a thermal analysis must also be done for the inductor. Many inductors have 40°C temperature rise rating. This is the DC current that will cause a 40°C temperature rise above the ambient temperature in the inductor. For this analysis, the typical load current may be used adjusted for the duty cycle of the load transients. For example, if the application requires a 1.5A DC load with peaks at 2.5A 20% of the time, a Δ 40°C temperature rise current must be greater than 1.7A:

$$I_{\text{TEMPRISE}} = I_{\text{LOAD}} + D \times (I_{\text{PEAK}} - I_{\text{LOAD}}) = 1.5A + 0.2 \times (2.5A - 1.5A) = 1.7A$$
(7)

The internal loop compensation of the bq24187 is designed to be stable with 10μ F to 150μ F of local capacitance but requires at least 20μ F total capacitance on CS+. To reduce the output voltage ripple, a ceramic capacitor with the capacitance between 20μ F and 47μ F is recommended for local bypass to CS+. If more than 100μ F is placed on CS+, place at least 10μ F from BAT to GND.

9.2.3 Application Curves

10 Layout

10.1 Layout Guidelines

It is important to pay special attention to the PCB layout. Figure 25 provides a sample layout for the high current paths of the bq24187YFF.

The following provides some guidelines:

- Place 4.7µF input capacitor as close to IN terminal and PGND terminal as possible to make high frequency current loop area as small as possible.
- Place 1µF input capacitor as close to PMID terminal and PGND terminal as possible to make high frequency current loop area as small as possible. Connect the GND of the PMID and IN caps as close as possible.
- The local bypass capacitor from CS+ to GND should be connected between the CS+ terminal and PGND of the IC. The intent is to minimize the current path loop area from the SW terminal through the LC filter and back to the PGND terminal.
- Place all decoupling capacitor close to their respective IC terminal and as close as to PGND (do not place components such that routing interrupts power stage currents). All small control signals should be routed away from the high current paths.
- The PCB should have a ground plane (return) connected directly to the return of all components through vias (two vias per capacitor for power-stage capacitors, one via per capacitor for small-signal components). It is also recommended to put vias inside the PGND pads for the IC, if possible. A star ground design approach is typically used to keep circuit block currents isolated (high-power/low-power small-signal) which reduces noisecoupling and ground-bounce issues. A single ground plane for this design gives good results. With this small layout and a single ground plane, there is no ground-bounce issue, and having the components segregated minimizes coupling between signals.
- The high-current charge paths into IN, BAT, CS+ and from the SW terminals must be sized appropriately for the maximum charge current in order to avoid voltage drops in these traces. The PGND terminals should be connected to the ground plane to return current through the internal low-side FET.
- For high-current applications, the balls for the power paths should be connected to as much copper in the board as possible. This allows better thermal performance as the board pulls heat away from the IC.

10.2 Layout Example

Figure 25. Recommended bq24187 PCB Layout For WCSP Package

Figure 26. Recommended bq24187 PCB Layout For QFN Package

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

High-efficiency, Switch-mode Battery Charge Evaluation Module User's Guide, SLUUAI5

11.2 Trademarks

All trademarks are the property of their respective owners.

11.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

17-May-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
BQ24187RGER	PREVIEW	VQFN	RGE	24	3000	TBD	Call TI	Call TI	-40 to 85		
BQ24187RGET	PREVIEW	VQFN	RGE	24	250	TBD	Call TI	Call TI	-40 to 85		
BQ24187YFFR	ACTIVE	DSBGA	YFF	36	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	BQ24187	Samples
BQ24187YFFT	ACTIVE	DSBGA	YFF	36	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	BQ24187	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight

Green (ROHS & no Sb/Br): If defines "Green" to mean Pb-Free (ROHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

17-May-2014

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	•	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ24187YFFR	DSBGA	YFF	36	3000	180.0	8.4	2.54	2.54	0.76	4.0	8.0	Q1
BQ24187YFFT	DSBGA	YFF	36	250	180.0	8.4	2.54	2.54	0.76	4.0	8.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

11-May-2014

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ24187YFFR	DSBGA	YFF	36	3000	182.0	182.0	17.0
BQ24187YFFT	DSBGA	YFF	36	250	182.0	182.0	17.0

MECHANICAL DATA

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-Leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. F. Falls within JEDEC MO-220.
 - TEXAS INSTRUMENTS www.ti.com

YFF (S-XBGA-N36)

DIE-SIZE BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. B. This drawing is subject to change without notice.

C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated