
- Phase-Lock Loop Clock Distribution for Double Data Rate Synchronous DRAM Applications
- Distributes One Differential Clock Input to Ten Differential Outputs
- External Feedback Pins (FBIN, FBIN) Are Used to Synchronize the Outputs to the Clock Input
- Operates at V_{CC} = 2.5 V and AV_{CC} = 3.3 V
- Packaged in Plastic 48-Pin (DGG) Thin Shrink Small-Outline Package (TSSOP)
- Spread Spectrum Clocking Tracking Capability to Reduce EMI

description

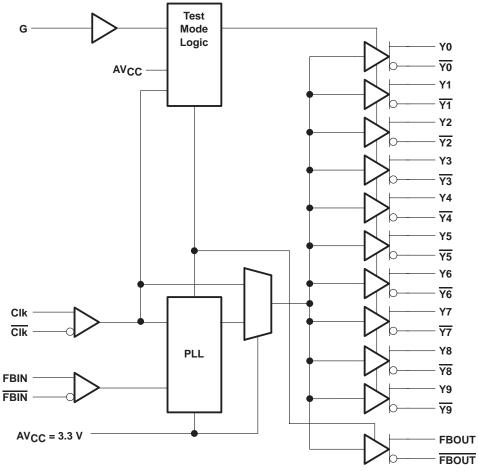
The CDC857-2 and CDC857-3 are high-performance, low-skew, low-jitter, phase-lock loop (PLL) clock driver. They use a PLL to precisely align, in both frequency and phase, the feedback (FBOUT) output to the clock (CLK) input signal. The CDC857-3 operates at 3.3 V (PLL) and 2.5 V (output buffer). The CDC857-2 operates at 2.5 V (PLL and output buffer).

One bank of ten inverting and noninverting outputs provide ten low-skew, low-jitter copies of CLK. Output signal duty cycles are adjusted to 50%, independent of the duty cycle at CLK.

All outputs can be enabled or disabled via a single output enable input. When the G input is high, the outputs switch in phase and frequency with CLK; when the G input is low, the outputs are disabled to high impedance state (3-state).

Unlike many products containing PLLs, the CDC857 does not require external RC networks. The loop filter for the PLL is included on-chip, minimizing component count, board space, and cost.

Because it is based on PLL circuity, the CDC857 requires a stabilization time to achieve phase lock of the feedback signal to the reference signal. This stabilization time is required following power up and application of a fixed-frequency, fixed-phase signal at CLK, as well as following any changes to the PLL reference or feedback signals. The PLL can be bypassed for test purposes by strapping AV $_{CC}$ to ground. If AV $_{CC}$ is at GND and V $_{CC}$ = ON, 2 falling edges on G cause the PLL to run with FBOUT being enabled and all other outputs being disabled, after AV $_{CC}$ ramps up to its specified V $_{CC}$ value, with G being kept low. The CDC857 is characterized for operation from 0°C to 85°C.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

FUNCTION TABLE

	INPUTS			PLL			
G	CLK	CLK	Υ	Y	FBOUT	FBOUT	PLL
L	Χ	Χ	Z	Z	Z	Z	OFF
Н	L	Н	L	Н	L	Н	RUN
Н	Н	L	Н	L	Н	L	RUN
Н	< 20 MHz	< 20 MHz	Z	Z	Z	Z	OFF

logic symbol

NOTE A: All outputs are connected to $V_{\mbox{CC}}$ = 2.5 V.

SPECIAL TEST MODES

	INPUTS OUTPUTS						COMMENTS	
VCC	AVCC	G	CLK _†	Υ	Y	FBOUT	FBOUT	COMMENTS
ON	0 V	L	L	Z	Z	Z	Z	Clock Mode
ON	0 V	L	Н	Z	Z	Z	Z	Clock Mode
ON	0 V	Н	L	L	Н	L	Н	Clock Mode
ON	0 V	Н	Н	Н	L	Н	L	Clock Mode
ON	UP [‡]	↓§	L	Z	Z	L	Н	PLL Mode
ON	UP [‡]	↓§	Н	Z	Z	Н	L	PLL Mode

Terminal Functions

TERMINAL			
NAME	NO.	I/O	DESCRIPTION
AGND	17	Ground	Analog ground. AGND provides the ground reference for the analog circuitry.
AVCC	16	Power	Analog power supply. AV $_{CC}$ provides the power reference for the analog circuitry. In addition, AV $_{CC}$ can be used to bypass the PLL for test purposes. When AV $_{CC}$ is strapped to ground, PLL is bypassed and CLK is buffered directly to the device outputs. During disable (G = 0), the PLL is powered down.
CLK	13 14	-	Clock input, CLK provides the clock signal to be distributed by the CDC857 clock driver. CLK is used to provide the reference signal to the integrated PLL that generates the clock output signals. CLK must have a fixed frequency and fixed phase for the PLL to obtain phase lock. Once the circuit is powered up and a valid CLK signal is applied, a stabilization time is required for the PLL to phase lock the feedback signal to its reference signal.
FBIN FBIN	36 35	I	Feedback input. FBIN provides the feedback signal to the internal PLL. FBIN must be hard-wired to FBOUT to complete the PLL. The integrated PLL synchronizes CLK and FBIN so that there is nominally zero phase error between CLK and FBIN.
FBOUT FBOUT	32 33	0	Feedback output. FBOUT is dedicated for external feedback. It switches at the same frequency as CLK. When externally wired to FBIN, FBOUT completes the feedback loop of the PLL.
G	37	I	Output bank enable. G is the output enable for outputs Y and \overline{Y} . When G is low outputs Y are disabled to a high-impedance state. When G is high, all outputs Y are enabled and switch at the same frequency as CLK.
GND	1, 7, 8, 18, 24, 25, 31, 41, 42, 48	Ground	Ground
VCC	4, 11, 12, 15, 21, 28, 34, 38, 45	Power	Power supply
Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9	3, 5, 10, 20, 22, 46, 44, 39, 29, 27	0	Clock outputs. These outputs provide low-skew copies of CLK.
$\frac{\overline{Y0}, \overline{Y1}, \overline{Y2},}{\overline{Y3}, \overline{Y4}, \overline{Y5},}\\ \overline{Y6}, \overline{Y7}, \overline{Y8},\\ \overline{Y9}$	2, 6, 9, 19, 23, 47, 43, 40, 30, 26	0	Clock outputs. These outputs provide low-skew copies of CLK.

[†] Only one signal shown for this differential input. ‡ AV_{CC} ramped up after two (2) high-to-low transitions on G input & G being low. § At least two (2) high-to-low transitions during AV_{CC} = 0.

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage range, V _{CC} or AV _{CC}	–0.5 V to 4.6 V
Input voltage range V _I (see Notes 1 and 2)	\sim -0.5 V to V _{CC} +0.5 V
Output voltage range, V _O , (see Notes 1 and 2)	\sim -0.5 V to V _{CC} +0.5 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±50 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC}	±50 mA
Continuous total output current, $I_O(V_O = 0 \text{ to } V_{CC})$	±50 mA
Package thermal impedance, θ _{JA} (see Note 3)	89°C/W
Storage temperature range T _{stq}	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

- 2. This value is limited to 4.6 V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}			2.3		2.7	V
Analog cumply valtage AVan	CDC85	7–2	2.3		2.7	V
Analog supply voltage, AVCC	CDC85	7–3	3		3.6	V
Low-level input voltage, VIL(G)		G input			0.3 × V _{CC}	V
High-level input voltage, VIH(G)		G input	$0.7 \times V_{CC}$			V
DC input signal voltage (see Note 5)		CLK, FBIN	-0.3		V _{CC} +0.3	V
Differential input signal voltage, V _{ID}	dc	CLK, FBIN	0.35		V _{CC} +0.6	
(see Note 6)	ac	CLK, FBIN	0.7		VCC+0.6	V
Differential cross-point input voltage (see No	ote 7)		V _{CC} /2-0.2	V _{CC} /2	V _{CC} /2+0.2	V
High-level output current, IOH			-		-12	mA
Low-level output current, IOL					12	mA
Input slew rate, SR			1			V/ns
Operating free-air temperature, TA			0		85	°C

NOTES: 4. Unused inputs must be held high or low to prevent them from floating.

- 5. DC input signal voltage specifies the allowable dc execution of differential input.
- 6. Differential input signal voltage specifies the differential voltage |VTR VCP| required for switching, where VTR is the true input level and VCP is the complementary input level (see figure 3).
- Differential cross-point voltage is expected to track variations of V_{CC} and is the voltage at which the differential signals must be crossing.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST	CONDITIONS	MIN	MIN TYP [†]		UNIT
VIK	Input voltage	All input pins	V _{CC} = 2.3 V,	I _I = -18 mA			-1.2	V
Vari	High-level output volta	200	V _{CC} = min to ma	x, I _{OH=} –1 mA	V _{CC} -0.1			V
VOH	r light-level output volta	ige	$V_{CC} = 2.3 \text{ V},$	$I_{OH} = -12 \text{ mA}$	1.7			٧
VOL	Low-level output volta	ae .	V _{CC} = min to ma	$x, I_{OL} = 1 mA$			0.1	V
VOL	Low-level output volta		$V_{CC} = 2.3 \text{ V},$	I_{OL} = 12 mA			0.6	V
loн	High-level output curre	ent	$V_{CC} = 2.3 \text{ V},$	V _O = 1 V	-18	-32		mA
IOL	Low-level output curre	ent	$V_{CC} = 2.3 \text{ V},$	V _O = 1.2 V	26	35		mA
VO	Output voltage swing		For load condition	see Figure 3	1.1		V _{CC} -0.4	V
l .	Input current	G	$V_{CC} = 2.7 \text{ V},$	$V_{ } = 0 V \text{ to } 2.7 V$			±10	μА
'1	input current	CLK, FBIN	$V_{CC} = 2.7 \text{ V},$	$V_{ } = 0 V \text{ to } 2.7 V$			±10	μΛ
loz	High-impedance outp	ut current	$V_{CC} = 2.7 V_{,}$	$V_O = V_{CC}$ or GND			±10	μΑ
Voc	Output crossing point	voltage‡			(V _{CC} /2)- 0.1	V _{CC} /2	(V _{CC} /2)+ 0.1	V
ICCZ	Supply current, disabl	ed	AVCC and VCC = G = L or no input	max, CLK signal		500	800	μΑ
lcc	Supply current on V _C (see Figure 7)	С	V _{CC} = 2.7 V, All outputs switch environment,	f_O = 167 MHz, ing 16 pF in 60 Ω See Figure 3		235	300	mA
Alaa	Supply current on	CDC857-2	$AV_{CC} = 2.7 \text{ V},$	f _O = 167 MHz		9	12	m A
AICC	AVCC	CDC857-3	$AV_{CC} = 3.6 \text{ V},$	f _O = 167 MHz		15	19	mA
Cl	Input capacitance		$V_{CC} = 2.5 \text{ V},$	$V_I = V_{CC}$ or GND		2		pF
СО	Output capacitance		V _{CC} = 2.5 V,V _O =	= V _{CC} or GND		3		рF

[†] All typical values are at respective nominal V_{CC} . ‡ The value of V_{OC} is expected to be |VTR + VCP|/2. In case of each clock directly terminated by a 120- Ω resistor, where VTR is the true input signal voltage and VCP is the complementary input signal voltage (see Figure 3).

timing requirements over recommended ranges or supply voltage and operating free-air temperature

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
fC	Clock frequency		66	167	MHz
	Input clock duty cycle		40%	60%	
	Stabilization time [†]			0.1	ms

[†] Time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal. For phase lock to be obtained, a fixed–frequency, fixed–phase reference signal must be present at CLK. Until phase lock is obtained, the specifications for propagation delay, skew, and jitter parameters given in the switching characteristics table are not applicable. This parameter does not apply for input modulation under SSC application.

switching characteristics

	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
t _{PLH} ‡	Low-to high level propagation delay time (see Figure 5)	CLK mode/CLK to any output	1.5	3.5	6	ns
t _{PHL} ‡	High-to low level propagation delay time (see Figure 5)	CLK mode/CLK to any output	1.5	3.5	6	ns
t _{en}	Output enable time	CLK mode/G to any Y output		3		ns
^t dis	Output disable time	CLK mode/G to any Y output		3		ns
*	litter (people to people)	66 MHz			120	
^t (jitter)	Jitter (peak-to-peak)	100/125/133/167 MHz			75	ps
4	litter (quale to quale)	66 MHz		no		
^t (jitter)	Jitter (cycle-to-cycle)	100/125/133/167 MHz			65	ps
t(phase error)	Phase error (see Figure 4)	All differential input and output termi-	-150		150	ps
tskew(0)	Output skew (see Figure 4)	nals are terminated with 120 Ω /			100	ps
tskew(p)	Pulse skew	16 pF as shown in Figure 2			100	ps
	Duty cycles (con Figure 6)	66 MHz to 100 MHz	49.5%		50.5%	
	Duty cycle [§] (see Figure 6)	101 MHz to 167 MHz	49%		51%	
t _r , t _f	Output rise and fall times (20% – 80%)	Load = 120 Ω/16 pF	650	800	950	ps

[‡] Refers to transition of noninverting output.

[§] While the pulse skew is almost constant over frequency, the duty cycle error increases at higher frequencies. This is due to the formula: duty cycle = t_{WH}/t_{C} , were the cycle time (t_{C}) decreases as the frequency goes up.

APPLICATION EXAMPLE

Table 1. Clock Structure and SDRAM Loads per Clock

CLOCK STRUCTURE	NUMBER of SDRAM LOADS	CAPACITIVE LOADING ON THE PLL OUTPUTS (pF)		
STRUCTURE	PER CLOCK	MIN	MAX	
1	2	5	8	
2	4	10	16	

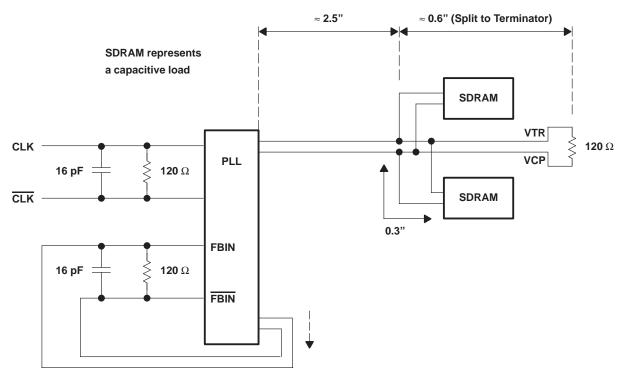


Figure 1. Clock Structure #1

APPLICATION EXAMPLE

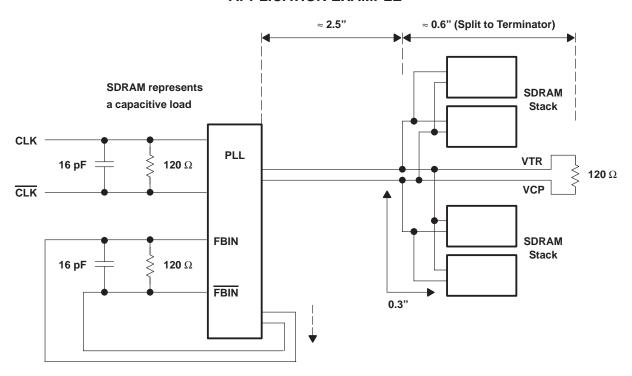


Figure 2. Clock Structure #2

differential clock signals

Figure 3 shows the differential clocks are directly terminated by a 120- Ω resistor.

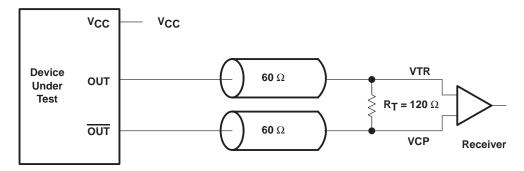


Figure 3. Differential Signal Using Direct Termination Resistor

PARAMETER MEASUREMENT INFORMATION

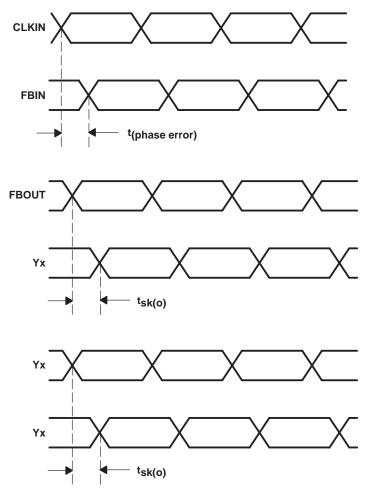


Figure 4. Phase Error and Skew Waveforms

PARAMETER MEASUREMENT INFORMATION

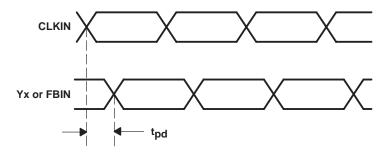
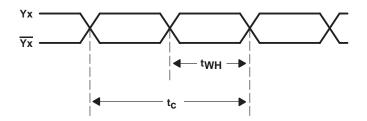
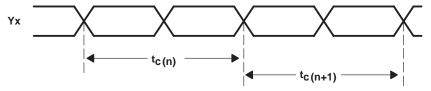
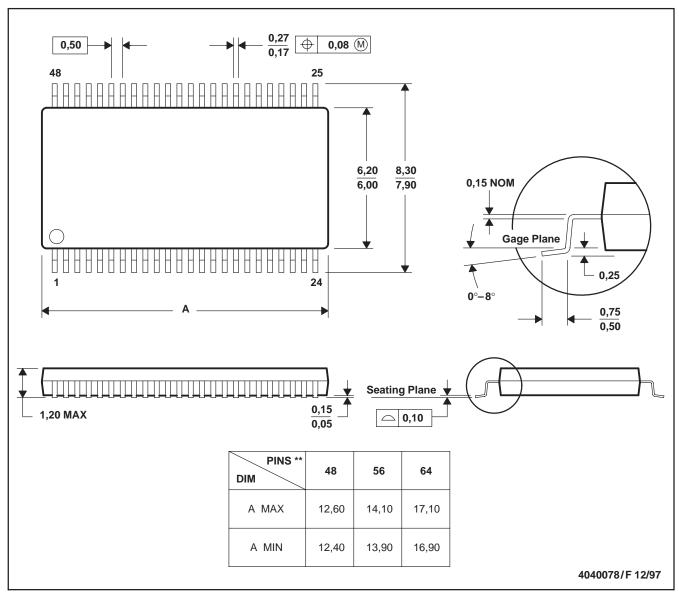




Figure 5. Propagation Delay Time; t_{PLH}, t_{PHL}

NOTE A: Duty cycle = t_{WH}/t_{C}

Figure 6. Output Duty Cycle

NOTE A: Cycle-to-cycle jitter = $|t_{C(n)} - t_{C(n+1)}|$ over 2000 consecutive cycles.


Figure 7. Cycle-to-Cycle Jitter

MECHANICAL DATA

DGG (R-PDSO-G**)

48 PIN SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: B. All linear dimensions are in millimeters.

C. This drawing is subject to change without notice.

D. Body dimensions do not include mold protrusion not to exceed 0,15.

E. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated