DAC7624 DAC7625 # 12-Bit Quad Voltage Output DIGITAL-TO-ANALOG CONVERTER # **FEATURES** - LOW POWER: 20mW - UNIPOLAR OR BIPOLAR OPERATION - SETTLING TIME: 10µs to 0.012% - 12-BIT LINEARITY AND MONOTONICITY: -40°C to +85°C - RESET TO MID-SCALE (DAC7624) OR ZERO-SCALE (DAC7625) - DATA READBACK - DOUBLE-BUFFERED DATA INPUTS # **APPLICATIONS** - PROCESS CONTROL - ATE PIN ELECTRONICS - CLOSED-LOOP SERVO-CONTROL - MOTOR CONTROL - DATA ACQUISITION SYSTEMS - DAC-PER-PIN PROGRAMMERS # **DESCRIPTION** The DAC7624 and DAC7625 are 12-bit quad voltage output digital-to-analog converters with guaranteed 12-bit monotonic performance over the specified temperature range. They accept 12-bit parallel input data, have double-buffered DAC input logic (allowing simultaneous update of all DACs), and provide a readback mode of the internal input registers. An asynchronous reset clears all registers to a mid-scale code of $800_{\rm H}$ (DAC7624) or to a zero-scale of $000_{\rm H}$ (DAC7625). The DAC7624 and DAC7625 can operate from a single +5V supply or from +5V and –5V supplies. Low power and small size per DAC make the DAC7624 and DAC7625 ideal for automatic test equipment, DAC-per-pin programmers, data acquisition systems, and closed-loop servo-control. The DAC7624 and DAC7625 are available in a 28-pin plastic doublewide or a 28-lead SOIC package, and offer guaranteed specifications over the -40° C to $+85^{\circ}$ C temperature range. International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111 Internet: http://www.burr-brown.com/ • FAXLine: (800) 548-6133 (US/Canada Only) • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132 # **SPECIFICATION** At $T_A = -40^{\circ}C$ to +85°C, $V_{DD} = +5V$, $V_{SS} = -5V$, $V_{REFH} = +2.5V$, $V_{REFL} = -2.5V$, unless otherwise noted. | | | | AC7624P,
AC7625P, | | | AC7624PB,
AC7625PB, | | | |--------------------------------|--------------------------------------|-------------------------|----------------------|-------------------------|-----|------------------------|-----|--------------------| | PARAMETER | CONDITIONS | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | ACCURACY | | | | | | | | | | Linearity Error ⁽¹⁾ | $V_{SS} = 0V \text{ or } -5V$ | | | ±2 | | | ±1 | LSB(2) | | Linearity Matching(3) | $V_{SS} = 0V \text{ or } -5V$ | | | ±2 | | | ±1 | LSB | | Differential Linearity Error | $V_{SS} = 0V \text{ or } -5V$ | | | ±1 | | | ±1 | LSB | | Monotonicity | T _{MIN} to T _{MAX} | 12 | | | * | | | Bits | | Zero-Scale Error | Code = 000 _H | | | ±4 | | | * | LSB | | Zero-Scale Drift | • | | 2 | 5 | | * | * | ppm/°C | | Zero-Scale Matching(3) | | | | ±2 | | | ±1 | LSB | | Full-Scale Error | Code = FFF _H | | | ±4 | | | * | LS | | Full-Scale Matching(3) | | | | ±2 | | | ±1 | LSB | | Zero-Scale Error | $Code = 00A_{H}, V_{SS} = 0V$ | | | ±8 | | | * | LSB | | Zero-Scale Drift | $V_{SS} = 0V$ | | 5 | 10 | | * | * | ppm/°C | | Zero-Scale Matching(3) | $V_{SS} = 0V$ | | | ±4 | | | ±2 | LSB | | Full-Scale Error | Code = FFF_H , $V_{SS} = 0V$ | | | ±8 | | | * | LSB | | Full-Scale Matching(3) | $V_{SS} = 0V$ | | | ±4 | | | ±2 | LSB | | Power Supply Rejection | | | 30 | | | * | | ppm/V | | ANALOG OUTPUT | | | | | | | | | | Voltage Output ⁽⁴⁾ | $V_{REFL} = 0V, V_{SS} = 0V$ | 0 | | V _{REFH} | * | | * | V | | | $V_{SS} = -5V$ | V_{REFL} | | V _{REFH} | * | | * | V | | Output Current | | -1.25 | | +1.25 | * | | * | mA | | Load Capacitance | No Oscillation | | 100 | | | * | | pF | | Short-Circuit Current | | | +5, -120 | | | * | | mA | | Short-Circuit Duration | | | Momentary | | | * | | | | REFERENCE INPUT | | | | | | | | | | V _{REFH} Input Range | $V_{SS} = 0V \text{ or } -5V$ | V _{REFL} +1.25 | | +2.5 | * | | * | V | | V _{REFL} Input Range | $V_{SS} = 0V$ | 0 | | V _{REFH} -1.25 | * | | * | V | | V _{REFL} Input Range | $V_{SS} = -5V$ | -2.5 | | V _{REFH} -1.25 | * | | * | V | | DYNAMIC PERFORMANCE | | | | | | | | | | Settling Time ⁽⁵⁾ | To ±0.012% | | 5 | 10 | | * | * | μs | | Channel-to-Channel Crosstalk | Full-Scale Step | | 0.25 | | | * | | LSB | | | On any other DAC | | | | | | | | | Output Noise Voltage | 0Hz to 1MHz | | 40 | | | * | | nV/√ Hz | | DIGITAL INPUT/OUTPUT | | | | | | | | | | Logic Family | | TTL-C | ompatible | CMOS | | * | | | | Logic Levels | | | i . | 1 | | | | | | V _{IH} | $I_{IH} \le \pm 10 \mu A$ | 2.4 | | V _{DD} +0.3 | * | | * | V | | V _{IL} | I _{IL} ≤ ±10μA | -0.3 | | 0.8 | * | | * | V | | V _{OH} | $I_{OH} = -0.8 \text{mA}$ | 3.6 | | V _{DD} | * | | * | V | | V _{OL} | $I_{OL} = 1.6 \text{mA}$ | 0.0 | | 0.4 | * | | * | V | | Data Format | | S | traight Bina | iry | | * | | | | POWER SUPPLY REQUIREMENTS | | | | | | | | | | V_{DD} | | 4.75 | | 5.25 | * | | * | V | | V _{SS} | If V _{SS} ≠ 0V | -5.25 | | -4.75 | * | | * | V | | I _{DD} | | | 1.5 | 1.9 | | * | * | mA | | I _{SS} | | -2.1 | -1.6 | | * | * | | mA | | Power Dissipation | $V_{SS} = -5V$ | | 15 | 20 | | * | * | mW | | | $V_{SS} = 0V$ | | 7.5 | 10 | | * | * | mW | | TEMPERATURE RANGE | | | | | | | | | | Specified Performance | DAC7624P, U, PB, UB | -40 | | +85 | * | | * | °C | | | DAC7625P, U, PB, UB | | | | | | | | NOTES: (1) If $V_{SS} = 0V$, specification applies at code $00A_H$ and above. (2) LSB means Least Significant Bit, when V_{REFH} equals +2.5V and V_{REFL} equals -2.5V, then one LSB equals 1.22mV. (3) All DAC outputs will match within the specified error band. (4) Ideal output voltage, does not take into account zero or full-scale error. (5) If $V_{SS} = -5V$, full-scale 5V step. If $V_{SS} = 0V$, full-scale positive 2.5V step and negative step from code FFF_H to $00A_H$. The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems. ### ABSOLUTE MAXIMUM RATINGS(1) | 0.3V to 11V | |--| | 0.3V to 5.5V | | 0.3V to (V _{DD} - V _{SS}) | | 0.3V to (V _{DD} - V _{SS}) | | 0.3V to (V _{DD} - V _{SS}) | | 0.3V to V _{DD} + 0.3V | | 0.3V to V _{DD} + 0.3V | | +150°C | | 40°C to +85°C | | 65°C to +150°C | | +300°C | | | NOTE: (1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability. This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### PACKAGE/ORDERING INFORMATION | PRODUCT | MAXIMUM
LINEARITY
ERROR (LSB) | MAXIMUM
DIFFERENTIAL
LINEARITY
ERROR (LSB) | SPECIFICATION
TEMPERATURE
RANGE | PACKAGE | PACKAGE
DRAWING
NUMBER ⁽¹⁾ | |-----------|-------------------------------------|---|---------------------------------------|--------------------|---| | DAC7624P | <u>+2</u> | ±1 | -40°C to +85°C | 28-Pin Plastic DIP | 215 | | DAC7624U | <u>±2</u> | ±1 | -40°C to +85°C | 28-Lead SOIC | 217 | | DAC7624PB | ±1 | ±1 | -40°C to +85°C | 28-Pin Plastic DIP | 215 | | DAC7624UB | ±1 | ±1 | -40°C to +85°C | 28-Lead SOIC | 217 | | DAC7625P | ±2 | ±1 | -40°C to +85°C | 28-Pin Plastic DIP | 215 | | DAC7625U | <u>±2</u> | ±1 | -40°C to +85°C | 28-Lead SOIC | 217 | | DAC7625PB | ±1 | ±1 | -40°C to +85°C | 28-Pin Plastic DIP | 215 | | DAC7625UB | ±1 | ±1 | -40°C to +85°C | 28-Lead SOIC | 217 | NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. ### **PIN CONFIGURATIONS** ### **PIN DESCRIPTIONS** | PIN | NAME | DESCRIPTION | |-----|-------------------|--| | 1 | V _{REFH} | Reference Input Voltage High. Sets maximum output voltage for all DACs. | | 2 | V _{OUTB} | DAC B Voltage Output. | | 3 | V_{OUTA} | DAC A Voltage Output. | | 4 | V_{SS} | Negative Analog Supply Voltage, 0V or –5V. | | 5 | GND | Ground. | | 6 | RESET | Asynchronous Reset Input. Sets DAC and input registers to either mid-scale (800 _H , DAC7624) or zero-scale (000 _H , DAC7625) when LOW. | | 7 | LDAC | Load DAC Input. All DAC Registers are transparent when LOW. | | 8 | DB0 | Data Bit 0. Least significant bit of 12-bit word. | | 9 | DB1 | Data Bit 1 | | 10 | DB2 | Data Bit 2 | | 11 | DB3 | Data Bit 3 | | 12 | DB4 | Data Bit 4 | | 13 | DB5 | Data Bit 5 | | 14 | DB6 | Data Bit 6 | | 15 | DB7 | Data Bit 7 | | 16 | DB8 | Data Bit 8 | | 17 | DB9 | Data Bit 9 | | 18 | DB10 | Data Bit 10 | | 19 | DB11 | Data Bit 11. Most significant bit of 12-bit word. | | 20 | R/W | Read/Write Control Input (read = HIGH, write = LOW). | | 21 | A1 | Register/DAC Select (C or D = HIGH, A or B = LOW). | | 22 | A0 | Register/DAC Select (B or D = HIGH, A or C = LOW). | | 23 | CS | Chip Select Input. | | 24 | NIC | Not Internally Connected. Pin has no internal connection to the device. | | 25 | V_{DD} | Positive Analog Supply Voltage, +5V nominal. | | 26 | V _{OUTD} | DAC D Voltage Output. | | 27 | V _{OUTC} | DAC C Voltage Output. | | 28 | V_{REFL} | Reference Input Voltage Low. Sets minimum output voltage for all DACs. | # TYPICAL PERFORMANCE CURVES: $V_{SS} = 0V$ At $T_A = +25$ °C, $V_{DD} = +5V$, $V_{SS} = 0V$, $V_{REFH} = +2.5V$, $V_{REFL} = 0V$, representative unit, unless otherwise specified. # TYPICAL PERFORMANCE CURVES: V_{SS} = 0V (CONT) At $T_A = +25$ °C, $V_{DD} = +5V$, $V_{SS} = 0V$, $V_{REFH} = +2.5V$, $V_{REFL} = 0V$, representative unit, unless otherwise specified. # TYPICAL PERFORMANCE CURVES: $V_{SS} = -5V$ At $T_A = +25^{\circ}\text{C}$, $V_{DD} = +5\text{V}$, $V_{SS} = -5\text{V}$, $V_{REFH} = +2.5\text{V}$, $V_{REFL} = -2.5\text{V}$, representative unit, unless otherwise specified. # TYPICAL PERFORMANCE CURVES: $V_{SS} = -5V$ (CONT) At $T_A = +25^{\circ}C$, $V_{DD} = +5V$, $V_{SS} = -5V$, $V_{REFH} = +2.5V$, $V_{REFL} = -2.5V$, representative unit, unless otherwise specified. # THEORY OF OPERATION The DAC7624 and DAC7625 are quad, voltage output, 12-bit digital-to-analog converters (DACs). The architecture is a classic R-2R ladder configuration followed by an operational amplifier that serves as a buffer. Each DAC has its own R-2R ladder network and output op-amp, but all share the reference voltage inputs. The minimum voltage output ("zero-scale") and maximum voltage output ("full-scale") are set by the external voltage references (V_{REFL} and V_{REFH} , respectively). The digital input is a 12-bit parallel word and the DAC input registers offer a readback capability. The converters can be powered from a single +5V supply or a dual $\pm 5V$ supply. Each device offers a reset function which immediately sets all DAC output voltages and DAC registers to mid-scale (DAC7624, code $800_{\rm H}$) or to zero-scale (DAC7625, code $000_{\rm H}$). See Figures 1 and 2 for the basic operation of the DAC7624/25. FIGURE 1. Basic Single-Supply Operation of the DAC7624/25. FIGURE 2. Basic Dual-Supply Operation of the DAC7624/25. #### **ANALOG OUTPUTS** When $V_{SS} = -5V$ (dual supply operation), the output amplifier can swing to within 2.25V of the supply rails, guaranteed over the -40° C to $+85^{\circ}$ C temperature range. With $V_{SS} = 0V$ (single-supply operation), the output can swing to ground. Note that the settling time of the output op-amp will be longer with voltages very near ground. Also, care must be taken when measuring the zero-scale error when $V_{SS} = 0V$. Since the output voltage cannot swing below ground, the output voltage may not change for the first few digital input codes $(000_H, 001_H, 002_H, \text{etc.})$ if the output amplifier has a negative offset. The behavior of the output amplifier can be critical in some applications. Under short circuit conditions (DAC output shorted to ground), the output amplifier can sink a great deal more current than it can source. See the specification table for more details concerning short circuit current. #### REFERENCE INPUTS The reference inputs, V_{REFL} and V_{REFH} , can be any voltage between $V_{SS}+2.25V$ and $V_{DD}-2.25V$ provided that V_{REFH} is at least 1.25V greater than V_{REFL} . The minimum output of each DAC is equal to V_{REFL} plus a small offset voltage (essentially, the offset of the output op-amp). The maximum output is equal to V_{REFH} plus a similar offset voltage. Note that V_{SS} (the negative power supply) must either be connected to ground or must be in the range of -4.75V to -5.25V. The voltage on V_{SS} sets several bias points within the converter, if V_{SS} is not in one of these two configurations, the bias values may be in error and proper operation of the device is not guaranteed. The current into the V_{REFH} input depends on the DAC output voltages and can vary from a few microamps to approximately 0.5 milliamp. The V_{REFH} source will not be required to sink current, only source it. Bypassing the reference voltage or voltages with at least a 0.1uF capacitor placed as close to the DAC7624/25 package is strongly recommended. #### DIGITAL INTERFACE Table I shows the basic control logic for the DAC7624/25. Note that each internal register is level triggered and not edge triggered. When the appropriate signal is LOW, the register becomes transparent. When this signal is returned HIGH, the digital word currently in the register is latched. The first set of registers (the Input Registers) are triggered via the A0, A1, R/\overline{W} , and \overline{CS} inputs. Only one of these registers is transparent at any given time. The second set of registers (the DAC Registers) are all transparent when \overline{LDAC} input is pulled LOW. Each DAC can be updated independently by writing to the appropriate Input Register and then updating the DAC Register. Alternatively, the entire DAC Register set can be configured as always transparent by keeping LDAC LOW—the DAC update will occur when the Input Register is written. The double buffered architecture is mainly designed so that each DAC Input Register can be written at any time and then all DAC voltages updated simultaneously by pulling \overline{LDAC} LOW. It also allows a DAC Input Register to be written to at any point and the DAC voltage to be synchronously changed via a trigger signal connected to \overline{LDAC} . | A 1 | Α0 | R/₩ | cs | RESET | LDAC | SELECTED
INPUT
REGISTER | STATE OF
SELECTED
INPUT
REGISTER | STATE OF
ALL DAC
REGISTERS | |------------|----|-----|---------------|------------------|------|-------------------------------|---|----------------------------------| | L(1) | L | L | L | H ⁽²⁾ | L | A | Transparent | Transparent | | L | Н | L | L | Н | L | В | Transparent | Transparent | | Н | L | L | L | Н | L | С | Transparent | Transparent | | Н | Н | L | L | Н | L | D | Transparent | Transparent | | L | L | L | L | Н | Н | A | Transparent | Latched | | L | Н | L | L | Н | Н | В | Transparent | Latched | | Н | L | L | L | Н | Н | С | Transparent | Latched | | Н | Н | L | L | Н | Н | D | Transparent | Latched | | L | L | Н | L | Н | Н | A | Readback | Latched | | L | Н | Н | L | Н | Н | В | Readback | Latched | | Н | L | Н | L | Н | Н | С | Readback | Latched | | Н | Н | Н | L | Н | Н | D | Readback | Latched | | X(3) | X | X | Н | Н | L | NONE | (All Latched) | Transparent | | X | X | X | Н | Н | Н | NONE | (All Latched) | Latched | | X | X | X | X | L | Х | ALL | Reset ⁽⁴⁾ | Reset ⁽⁴⁾ | NOTES: (1) L = Logic LOW. (2) H= Logic HIGH. (3) X = Don't Care. (4) DAC7624 resets to 800_H , DAC7625 resets to 000_H . When $\overline{\text{RESET}}$ rises, all registers that are in their latched state retain the reset value. TABLE I. DAC7624 and DAC7625 Control Logic Truth Table. ### **DIGITAL TIMING** Figure 3 and Table II provide detailed timing for the digital interface of the DAC7624 and DAC7625. ### **DIGITAL INPUT CODING** The DAC7624 and DAC7625 input data is in straight binary format. The output voltage is given by the following equation: $$V_{OUT} = V_{REFL} + \frac{(V_{REFH} - V_{REFL}) \cdot N}{4096}$$ where N is the digital input code. This equation does not include the effects of offset (zero-scale) or gain (full-scale) errors. FIGURE 3. Digital Input and Output Timing. | SYMBOL | DESCRIPTION | MIN | TYP | MAX | UNITS | |--------------------|---|-----|-----|-----|-------| | t _{RCS} | CS LOW for Read | 200 | | | ns | | t _{RDS} | R/W HIGH to CS LOW | 10 | | | ns | | t _{RDH} | R/W HIGH after CS HIGH | 0 | | | ns | | t _{DZ} | CS HIGH to Data Bus in High Impedance | | 100 | | ns | | t _{CSD} | CS LOW to Data Bus Valid | | 100 | 160 | ns | | t _{WCS} | CS LOW for Write | 50 | | | ns | | t _{WS} | R/\overline{W} LOW to \overline{CS} LOW | 0 | | | ns | | t _{WH} | R/W LOW after CS HIGH | 0 | | | ns | | t _{AS} | Address Valid to CS LOW | 0 | | | ns | | t _{AH} | Address Valid after CS HIGH | 0 | | | ns | | t _{LS} | LDAC LOW to CS LOW | 70 | | | ns | | t _{LH} | LDAC LOW after CS HIGH | 50 | | | ns | | t _{DS} | Data Valid to CS LOW | 0 | | | ns | | t _{DH} | Data Valid after CS HIGH | 0 | | | ns | | t _{LWD} | LDAC LOW | 50 | | | ns | | t _{RESET} | RESET LOW | 50 | | | ns | TABLE II. Timing Specifications ($T_A = -40^{\circ}C$ to $+85^{\circ}C$). ## **PACKAGING INFORMATION** | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | e Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |------------------|-----------------------|-----------------|--------------------|------|----------------|---------------------------|------------------|------------------------------| | DAC7624P | NRND | PDIP | NTD | 28 | 13 | Green (RoHS & no Sb/Br) | A194 NIPDAU | N / A for Pkg Type | | DAC7624PB | NRND | PDIP | NTD | 28 | 13 | Green (RoHS & no Sb/Br) | A194 NIPDAU | N / A for Pkg Type | | DAC7624PBG4 | ACTIVE | PDIP | NTD | 28 | 13 | Green (RoHS & no Sb/Br) | A194 NIPDAU | N / A for Pkg Type | | DAC7624PG4 | ACTIVE | PDIP | NTD | 28 | 13 | Green (RoHS & no Sb/Br) | A194 NIPDAU | N / A for Pkg Type | | DAC7624U | ACTIVE | SOIC | DW | 28 | 20 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR | | DAC7624U/1K | ACTIVE | SOIC | DW | 28 | 1000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR | | DAC7624U/1KG4 | ACTIVE | SOIC | DW | 28 | 1000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR | | DAC7624UB | ACTIVE | SOIC | DW | 28 | 20 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR | | DAC7624UB/1K | ACTIVE | SOIC | DW | 28 | 1000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR | | DAC7624UB/1KG4 | ACTIVE | SOIC | DW | 28 | 1000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR | | DAC7624UBG4 | ACTIVE | SOIC | DW | 28 | 20 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR | | DAC7624UG4 | ACTIVE | SOIC | DW | 28 | 20 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR | | DAC7625P | NRND | PDIP | NTD | 28 | 13 | Green (RoHS & no Sb/Br) | A194 NIPDAU | N / A for Pkg Type | | DAC7625PB | NRND | PDIP | NTD | 28 | 13 | Green (RoHS & no Sb/Br) | A194 NIPDAU | N / A for Pkg Type | | DAC7625PBG4 | ACTIVE | PDIP | NTD | 28 | 13 | Green (RoHS & no Sb/Br) | A194 NIPDAU | N / A for Pkg Type | | DAC7625PG4 | ACTIVE | PDIP | NTD | 28 | 13 | Green (RoHS & no Sb/Br) | A194 NIPDAU | N / A for Pkg Type | | DAC7625U | ACTIVE | SOIC | DW | 28 | 20 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR | | DAC7625U/1K | ACTIVE | SOIC | DW | 28 | 1000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR | | DAC7625U/1KG4 | ACTIVE | SOIC | DW | 28 | 1000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR | | DAC7625UB | ACTIVE | SOIC | DW | 28 | 20 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR | | DAC7625UB/1K | ACTIVE | SOIC | DW | 28 | 1000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR | | DAC7625UB/1KG4 | ACTIVE | SOIC | DW | 28 | 1000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR | | DAC7625UBG4 | ACTIVE | SOIC | DW | 28 | 20 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR | | DAC7625UG4 | ACTIVE | SOIC | DW | 28 | 20 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR | $^{^{(1)}}$ The marketing status values are defined as follows: ### PACKAGE OPTION ADDENDUM 5-Oct-2007 ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. **Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. com 4-Oct-2007 ### TAPE AND REEL BOX INFORMATION | | Dimension designed to accommodate the component width | |----|---| | | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE | Device | Package | Pins | | Reel
Diameter
(mm) | Reel
Width
(mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |--------------|---------|------|---------|--------------------------|-----------------------|---------|---------|---------|------------|-----------|------------------| | DAC7624U/1K | DW | 28 | SITE 41 | 330 | 32 | 11.35 | 18.67 | 3.1 | 16 | 32 | Q1 | | DAC7624UB/1K | DW | 28 | SITE 41 | 330 | 32 | 11.35 | 18.67 | 3.1 | 16 | 32 | Q1 | | DAC7625U/1K | DW | 28 | SITE 41 | 330 | 32 | 11.35 | 18.67 | 3.1 | 16 | 32 | Q1 | | DAC7625UB/1K | DW | 28 | SITE 41 | 330 | 32 | 11.35 | 18.67 | 3.1 | 16 | 32 | Q1 | | Device | Package | Pins | Site | Length (mm) | Width (mm) | Height (mm) | |--------------|---------|------|---------|-------------|------------|-------------| | DAC7624U/1K | DW | 28 | SITE 41 | 346.0 | 346.0 | 49.0 | | DAC7624UB/1K | DW | 28 | SITE 41 | 346.0 | 346.0 | 49.0 | | DAC7625U/1K | DW | 28 | SITE 41 | 346.0 | 346.0 | 49.0 | | DAC7625UB/1K | DW | 28 | SITE 41 | 346.0 | 346.0 | 49.0 | ### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |-----------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | RFID | www.ti-rfid.com | Telephony | www.ti.com/telephony | | Low Power
Wireless | www.ti.com/lpw | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated