DS90CF563,DS90CF564

DS90CF563/DS90CF564 LVDS 18-Bit Color Flat Panel Display (FPD) Link - 65 MHz

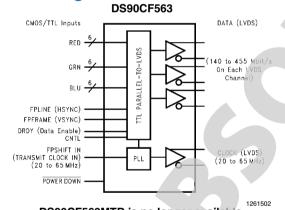
Literature Number: SNLS107C

DS90CF563/DS90CF564

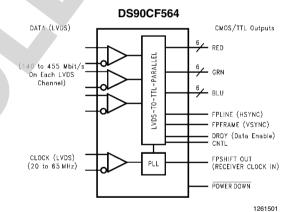
OBSOLETE July 18, 2011

LVDS 18-Bit Color Flat Panel Display (FPD) Link - 65 MHz

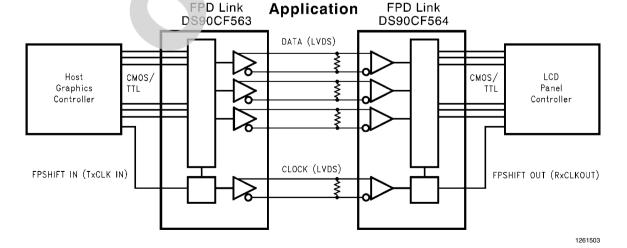
General Description


The DS90CF563 transmitter converts 21 bits of CMOS/TTL data into three LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link. Every cycle of the transmit clock 21 bits of input data are sampled and transmitted. The DS90CF564 receiver converts the LVDS data streams back into 21 bits of CMOS/TTL data. At a transmit clock frequency of 65 MHz, 18 bits of RGB data and 3 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY) are transmitted at a rate of 455 Mbps per LVDS data channel. Using a 65 MHz clock, the data throughput is 171 Mbytes per second. These devices are offered with falling edge data strobes for convenient interface with a variety of graphics and LCD panel controllers.

This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.


Features

- 20 to 65 MHz shift clk support
- Up to 171 Mbytes/s bandwidth
- Cable size is reduced to save cost
- 290 mV swing LVDS devices for low EMI
- Low power CMOS design (< 550 mW typ)
- Power-down mode saves power (< 0.25 mW)</p>
- PLL requires no external components
- Low profile 48-lead TSSOP package
- Falling edge data strobe
- Compatible with TIA/EIA-644 LVDS standard
- Single pixel per clock XGA (1024 x 768)
- Supports VGA, SVGA, XGA and higher
- 1.3 Gbps throughput


Block Diagrams

DS90CF563MTD is no longer available.

Order Number DS90CF564MTD See NS Package Number MTD48

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

© 2011 National Semiconductor Corporation

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V_{CC}) -0.3V to +6VCMOS/TTL Input Voltage -0.3V to $(V_{CC} + 0.3V)$ CMOS/TTL Output Voltage -0.3V to $(V_{CC} + 0.3V)$ -0.3V to $(V_{CC} + 0.3V)$ LVDS Receiver Input Voltage LVDS Driver Output Voltage -0.3V to $(V_{CC} + 0.3V)$

LVDS Output Short Circuit Duration Continuous Junction Temperature +150°C Storage Temperature -65°C to +150°C Lead Temperature +260°C

MTD48 (TSSOP) Package:

(Soldering, 4 sec) Maximum Package Power Dissipation @ +25°C **Recommended Operating Conditions** Min No

Max Units ٧ Supply Voltage (V_{CC}) 4.75 5.0 5.25 Operating Free Air +25 +70 °C Temperature (T_A) 0 2.4

This device does not meet 2000V ESD rating (Note 4).

Receiver Input Range Supply Noise Voltage (V_{CC})

DS90CF563

DS90CF564

DS90CF563

DS90CF564

Package Derating:

 mV_{P-P} 100

16 mW/°C above +25°C

15 mW/°C above +25°C

1.98W

1.89W

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter	Conditions			Тур	Max	Units
CMOS/TT	L DC SPECIFICATIONS						
V _{IH}	High Level Input Voltage					V _{cc}	V
V _{IL}	Low Level Input Voltage			GND		0.8	V
V _{OH}	High Level Output Voltage	$I_{OH} = -0.4 \text{ mA}$		3.8	4.9		٧
V _{OL}	Low Level Output Voltage	I _{OL} = 2 mA			0.1	0.3	٧
V _{CL}	Input Clamp Voltage	$I_{CL} = -18 \text{ mA}$			-0.79	-1.5	٧
I _{IN}	Input Current	V _{IN} = V _{CC} , GND, 2.5V or 0.4V			±5.1	±10	μA
I _{os}	Output Short Circuit Current	V _{OUT} = 0 V				-120	mA
	VER DC SPECIFICATIONS						
V _{OD}	Differential Output Voltage	$R_L = 100\Omega$		250	290	450	mV
ΔV_{OD}	Change in V _{OD} between Complementary Output States					35	mV
V _{CM}	Common Mode Voltage				1.25	1.375	٧
ΔV_{CM}	Change in V _{CM} between Complementary Output States					35	mV
V _{OH}	High Level Output Voltage				1.3	1.6	٧
V _{OL}	Low Level Output Voltage	1			1.01		V
I _{os}	Output Short Circuit Current	$V_{OUT} = 0V, R_L = 100\Omega$			-2.9	-5	mA
I _{oz}	Output TRI-STATE® Current	Power Down = 0V, V _{OUT} = 0V or V _{CC}			±1	±10	μA
	CEIVER DC SPECIFICATIONS						· ·
V _{TH}	Differential Input High Threshold	V _{CM} = +1.2V				+100	mV
V _{TL}	Differential Input Low Threshold	1		-100			mV
I _{IN}	Input Current	$V_{IN} = +2.4V$	V _{CC} = 5.5V			±10	μA
		$V_{IN} = 0V$				±10	μA
TRANSMI	TTER SUPPLY CURRENT		!				-
I _{CCTW}	Transmitter Supply Current,	$R_1 = 100\Omega, C_1 = 5 pF,$	f = 32.5 MHz		49	63	mA
	Worst Case	Worst Case Pattern	f = 37.5 MHz		51	64	mA
		(Figure 1, Figure 3)	f = 65 MHz		70	84	mA
I _{CCTG}	Transmitter Supply Current,	$R_L = 100\Omega, C_L = 5 pF,$	f = 32.5 MHz		40	55	mA
	16 Grayscale	16 Grayscale Pattern f = 37.5 MH			41	55	mA
		(Figure 2, Figure 3) f = 65 MHz			55	67	mA

Symbol	Parameter	Condition	Conditions				Units
I _{CCTZ}	Transmitter Supply Current, Power Down	Power Down = Low			1	25	μΑ
RECEIVE	R SUPPLY CURRENT						
I _{CCRW}	Receiver Supply Current,	C _L = 8 pF,	f = 32.5 MHz		64	77	mA
	Worst Case	Worst Case Pattern	f = 37.5 MHz		70	85	mA
		(Figure 1, Figure 4)	f = 65 MHz		110	140	mA
I _{CCRG}	Receiver Supply Current,	C _L = 8 pF,	f = 32.5 MHz		35	55	mA
	16 Grayscale	16 Grayscale Pattern	f = 37.5 MHz		37	55	mA
		(Figure 2, Figure 4)	f = 65 MHz		55	67	mA
I _{CCRZ}	Receiver Supply Current,	Power Down = Low			1	10	μA
	Power Down						

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Note 2: Typical values are given for V_{CC} = 5.0V and T_A = +25°C.

Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground unless otherwise specified (except V_{OD} and ΔV_{OD}).

Note 4: ESD Rating: HBM (1.5 k Ω , 100 pF)

PLL V $_{CC} \ge 1000V$ All other pins $\ge 2000V$ EIAJ $(0\Omega, 200 \text{ pF}) \ge 150V$

Transmitter Switching Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter	Min	Тур	Max	Units	
LLHT	LVDS Low-to-High Transition Time (Figure 3)		0.75	1.5	ns	
LHLT	LVDS High-to-Low Transition Time (Figure 3)			0.75	1.5	ns
TCIT	TxCLK IN Transition Time (Figure 5)				8	ns
TCCS	TxOUT Channel-to-Channel Skew (Note 5) (Figure 6)				350	ps
TCCD	TxCLK IN to TxCLK OUT Delay @ 25°C, V _{CC} = 5.0V (Figure 9)	3.5		8.5	ns	
TCIP	TxCLK IN Period (Figure 7)		15	Т	50	ns
TCIH	TxCLK IN High Time (Figure 7)		0.35T	0.5T	0.65T	ns
TCIL	TxCLK IN Low Time (Figure 7)	0.35T	0.5T	0.65T	ns	
TSTC	TxIN Setup to TxCLK IN (Figure 7)	f = 65 MHz	5	3.5		ns
THTC	TxIN Hold to TxCLK IN (Figure 7)		2.5	1.5		ns
TPDD	Transmitter Powerdown Delay (Figure 18)				100	ns
TPLLS	Transmitter Phase Lock Loop Set (Figure 11)				10	ms
TPPos0	Transmitter Output Pulse Position 0 (Figure 13)		-0.30	0	0.30	ns
TPPos1	Transmitter Output Pulse Position 1		1.70	1/7 T _{clk}	2.50	ns
TPPos2	Transmitter Output Pulse Position 2		3.60	2/7 T _{clk}	4.50	ns
TPPos3	Transmitter Output Pulse Position 3		5.90	3/7 T _{clk}	6.75	ns
TPPos4	Transmitter Output Pulse Position 4		8.30	4/7 T _{clk}	9.00	ns
TPPos5	Transmitter Output Pulse Position 5		10.40	5/7 T _{clk}	11.10	ns
TPPos6	Transmitter Output Pulse Position 6		12.70	6/7 T _{clk}	13.40	ns

Note 5: This limit based on bench characterization.

Receiver Switching Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Min	Тур	Max	Units	
CLHT	CMOS/TTL Low-to-High Transition Time (Figure 4)				4.0	ns
CHLT	CMOS/TTL High-to-Low Transition Time (Figure 4)			2.0	3.5	ns
RCOP	RxCLK OUT Period		15	Т	50	ns
RCOH	RxCLK OUT High Time f = 65 MHz					ns
RCOL	RxCLK OUT Low Time	f = 65 MHz	3.8	5		ns
RSRC	RxOUT Setup to RxCLK OUT	2.5	4.2		ns	
RHRC	RxOUT Hold to RxCLK OUT	4.0	5.2		ns	
RCCD	RxCLK IN to RxCLK OUT Delay @ 25°C, V _{CC} = 5.0V	6.4		10.7	ns	
	(Figure 10)					
RPLLS	Receiver Phase Lock Loop Set (Figure 12)				10	ms
RSKM	RxIN Skew Margin (Note 6) (Figure 14)	600			ps	
RPDD	Receiver Powerdown (Figure 17)			1	μs	

Note 6: Receiver Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin takes into account transmitter output skew (TCCS) and the setup and hold time (internal data sampling window), allowing for LVDS cable skew dependent on type/length and source clock (TxCLK IN) jitter.

RSKM ≥ cable skew (type, length) + source clock jitter (cycle to cycle)

AC Timing Diagrams

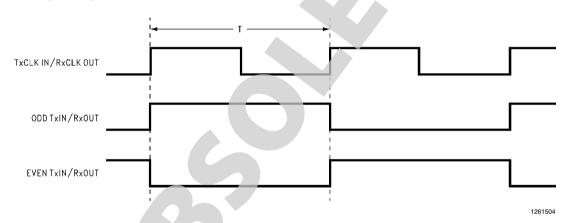


FIGURE 1. "Worst Case" Test Pattern

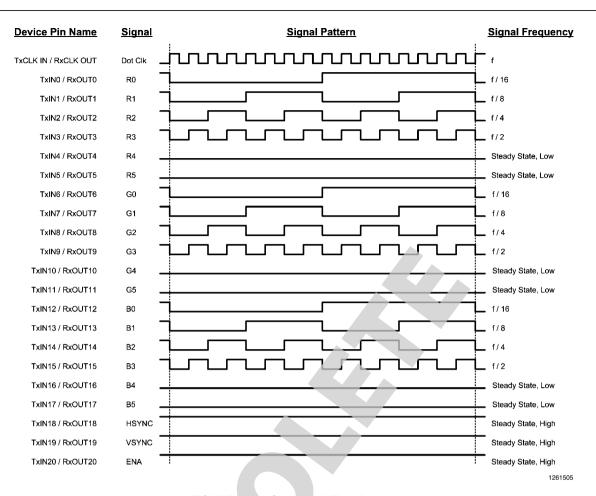


FIGURE 2. "16 Grayscale" Test Pattern

Note 7: The worst case test pattern produces a maximum toggling of digital circuits, LVDS I/O and CMOS/TTL I/O.

Note 8: The 16 grayscale test pattern tests device power consumption for a "typical" LCD display pattern. The test pattern approximates signal switching needed to produce groups of 16 vertical stripes across the display.

Note 9: Figure 1 and Figure 2 show a falling edge data strobe (TxCLK IN/RxCLK OUT).

Note 10: Recommended pin to signal mapping. Customer may choose to define differently.

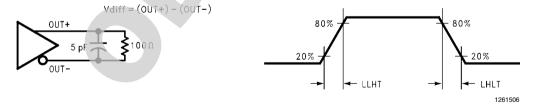


FIGURE 3. DS90CF563 (Transmitter) LVDS Output Load and Transition Times

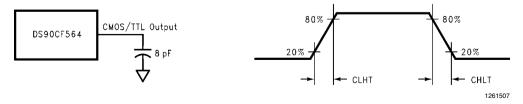


FIGURE 4. DS90CF564 (Receiver) CMOS/TTL Output Load and Transition Times

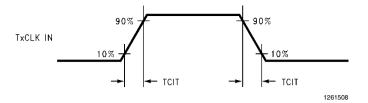
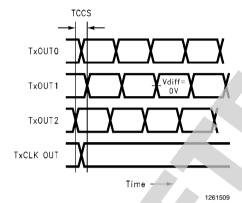



FIGURE 5. DS90CF563 (Transmitter) Input Clock Transition Time

Note: Measurements at Vdiff = 0V

Note: TCSS measured between earliest and latest LVDS edges.

Note: TxCLK Differential High→Low Edge

FIGURE 6. DS90CF563 (Transmitter) Channel-to-Channel Skew and Pulse Width

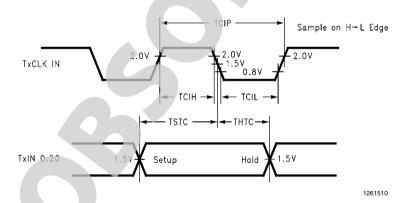


FIGURE 7. DS90CF563 (Transmitter) Setup/Hold and High/Low Times

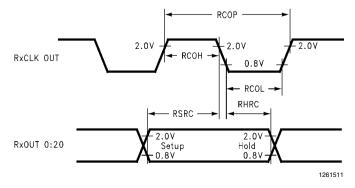


FIGURE 8. DS90CF564 (Receiver) Clock In to Clock Out Delay

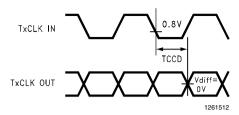


FIGURE 9. DS90CF563 (Transmitter) Clock In to Clock Out Delay

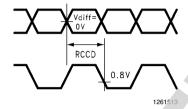


FIGURE 10. DS90CF564 (Receiver) Clock In to Clock Out Delay

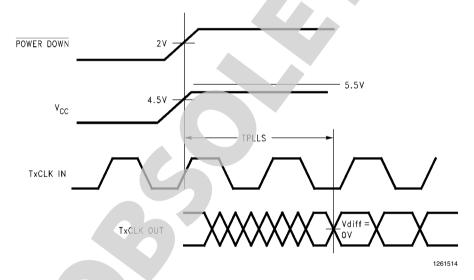


FIGURE 11. DS90CF563 (Transmitter) Phase Lock Loop Set Time

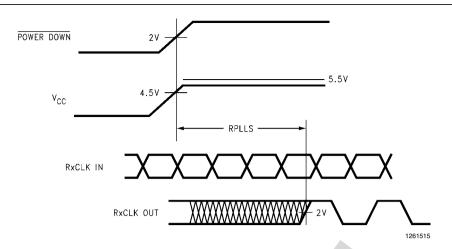


FIGURE 12. DS90CF564 (Receiver) Phase Lock Loop Set Time

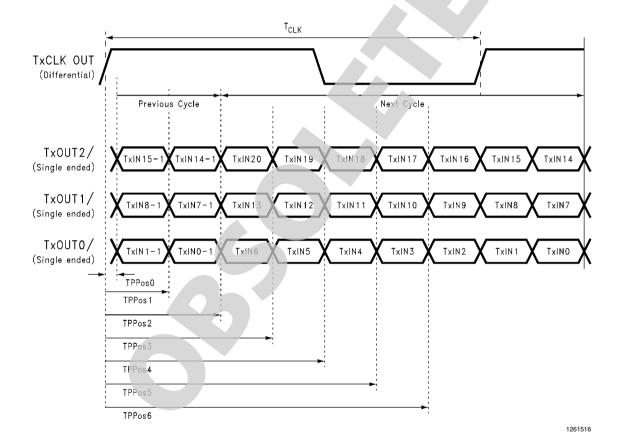
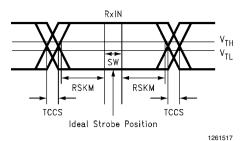



FIGURE 13. Transmitter LVDS Output Pulse Position Measurement

SW—Setup and Hold Time (Internal Data Sampling Window)

TCCS—Transmitter Output Skew

RSKM ≥ Cable Skew (type, length) + Source Clock Jitter (cycle to cycle)

Cable Skew-typically 10 ps-40 ps per foot

FIGURE 14. Receiver LVDS Input Skew Margin

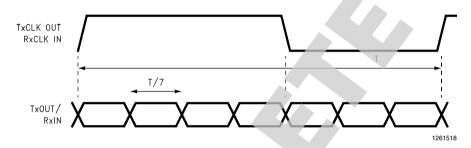


FIGURE 15. Seven Bits of LVDS in One Clock Cycle

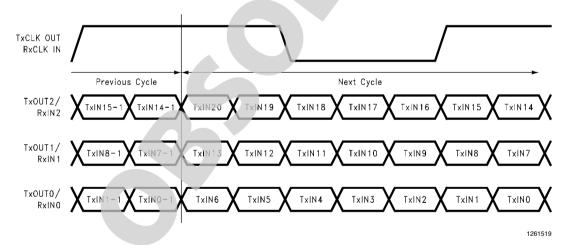


FIGURE 16. 21 Parallel TTL Data Inputs Mapped to LVDS Outputs (DS90CF563)

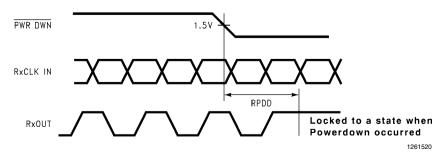
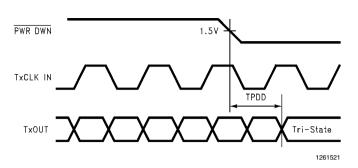
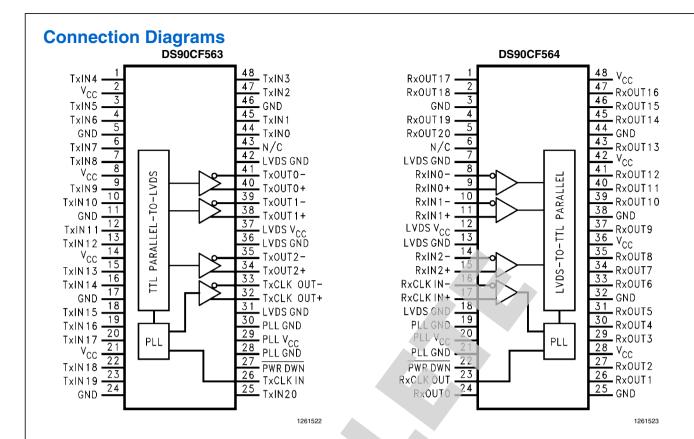
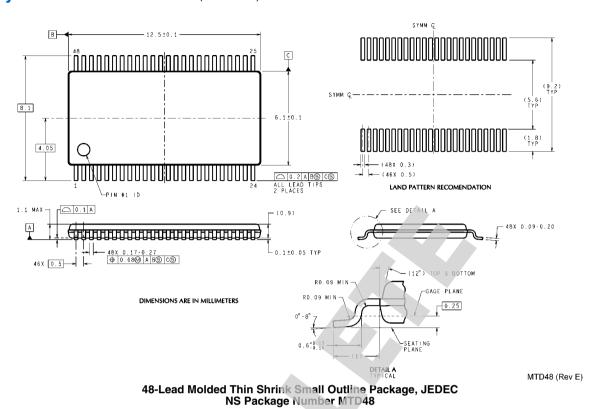


FIGURE 17. Receiver Powerdown Delay

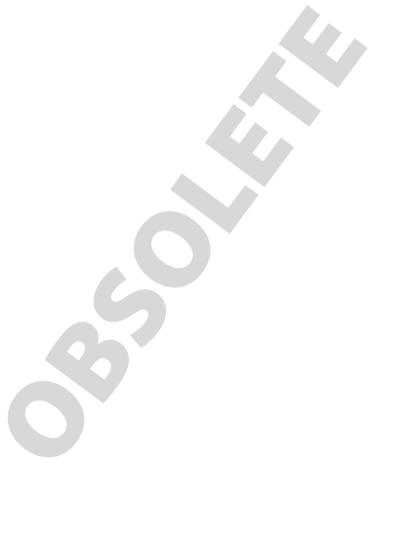



FIGURE 18. Transmitter Powerdown Delay

DS90CF563 Pin Descriptions—FPD Link Transmitter


Pin Name	1/0	No	Description			
TxIN	I	21	TTL level input. This includes: 6 Red, 6 Green, 6 Blue, and 3 control lines—FPLINE, FPFRAME, DRDY (also referred to as HSYNC, VSYNC, Data Enable)			
TxOUT+	0	3	Positive LVDS differential data output			
TxOUT-	0	3	Negative LVDS differential data output			
FPSHIFT IN	I	1	TTL level clock input. The falling edge acts as data strobe			
TxCLK OUT+	0	1	sitive LVDS differential clock output			
TxCLK OUT-	0	1	egative LVDS differential clock output			
PWR DOWN	1	1	TTL level input. Assertion (low input) TRI-STATES the outputs, ensuring low current at power down			
V _{cc}	1	4	Power supply pins for TTL inputs			
GND	I	5	Ground pins for TTL inputs			
PLL V _{CC}	1	1	Power supply pin for PLL			
PLL GND	T	2	Ground pins for PLL			
LVDS V _{CC}	ı	1	Power supply pin for LVDS outputs			
LVDS GND	I	3	Ground pins for LVDS outputs			

DS90CF564 Pin Descriptions—FPD Link Receiver


Pin Name	I/O	No	Description			
RxIN+	1	3	Positive LVDS differential data inputs			
RxIN-	T	3	gative LVDS differential data inputs			
RxOUT	0	21	TTL level data outputs. This includes: 6 Red, 6 Green, 6 Blue, and 3 control lines—FPLINE, FPFRAME, DRDY(also referred to as HSYNC, VSYNC, Data Enable)			
RxCLK IN+	ı	1	Positive LVDS differential clock input			
RxCLK IN-	ı	1	Negative LVDS differential clock input			
FPSHIFT OUT	0	1	L level clock output. The falling edge acts as data strobe			
PWR DOWN	ı	1	level input. Assertion (low input) maintains the receiver outputs in the previous state			
V _{CC}	I	4	Power supply pins for TTL outputs			
GND	T	5	Ground pins for TTL outputs			
PLL V _{CC}	ı	1	Power supply for PLL			
PLL GND	T	2	Ground pin for PLL			
LVDS V _{CC}	ı	1	Power supply pin for LVDS inputs			
LVDS GND	I	3	Ground pins for LVDS inputs			

Physical Dimensions inches (millimeters) unless otherwise noted

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Pr	oducts	Design Support			
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench		
Audio	www.national.com/audio	App Notes	www.national.com/appnotes		
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns		
Data Converters	www.national.com/adc	Samples	www.national.com/samples		
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards		
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging		
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green		
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts		
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality		
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback		
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy		
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions		
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero		
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic		
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training		

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS, PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS. NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor **Americas Technical** Support Center Email: support@nsc.com ww.national.com Tel: 1-800-272-9959

National Semiconductor Europe **Technical Support Center** Email: europe.support@nsc.com

National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan **Technical Support Center** Email: ipn.feedback@nsc.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

interface.ti.com

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Security

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Interface

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page <u>e2e.ti.com</u>

www.ti.com/security