

LM4949

www.ti.com

LM4949 Boomer® Audio Power Amplifier Series Stereo Class D Audio Subsystem with OCL

Headphone Amplifier

Check for Samples: LM4949

FEATURES

- **Output Short Circuit Protection**
- **Thermal Shutdown**
- Stereo Filterless Class D Operation
- Selectable OCL/CC Headphone Drivers
- **RF Suppression**
- I²C Control Interface
- 32-step Digital Volume Control
- **Independent Speaker and Headphone Gain** Settings
- Minimum External Components
- Click and Pop suppression
- **Micro-Power Shutdown**
- Available in Space-Saving 25-Bump DSBGA Package

APPLICATIONS

- **Mobile Phones**
- **PDAs**
- Laptops

KEY SPECIFICATIONS

- Efficiency $V_{DD} = 3.6V$, 400mW into 8 Ω : 86.5 %
- Efficiency V_{DD} = 5V, 1W into 8 Ω : 87.4 %
- Quiescent Power Supply Current @ 3.6V : 9.36 mA
- Power Output at $V_{DD} = 5V$
 - Speaker:
 - R_L = 4Ω, THD+N ≤ 1%: 2 W
 - R₁ = 8Ω, THD+N ≤ 1%: 1.19 W
 - R_L = 4Ω, THD+N ≤ 10%: 2.5 W
 - Headphone:
 - R_L = 16Ω, THD+N ≤ 1%: 153 mW
 - R_L = 32Ω, THD+N ≤ 1%: 89 mW
- Shutdown Current: 0.1 µA

DESCRIPTION

The LM4949 is a fully integrated audio subsystem designed for stereo cell phone applications. The LM4949 combines a 2.5W stereo Class D amplifier plus a separate 190mW stereo headphone amplifier, volume control, and input mixer into a single device. amplifiers The filterless class D deliver 1.19W/channel into an 8Ω load with <1% THD+N from a 5V supply. The headphone amplifier features TI's Output Capacitor-less (OCL) architecture that eliminates the output coupling capacitors required by traditional headphone amplifiers. Additionally, the headphone amplifiers can be configured with capacitively coupled (CC)loads, or used to drive an external headphone amplifier. When configured for an external amplifier, the V_{DD}/2 output (VOC) controls the external amplifier's shutdown input.

For improved noise immunity, the LM4949 features fully differential left, right and mono inputs. The three inputs can be mixed/multiplexed to either the speaker or headphone amplifiers. The left and right inputs can be used as separate single-ended inputs, mixing multiple stereo audio sources. The mixer, volume control, and device mode select are controlled through an I²C compatible interface.

Output short circuit and thermal shutdown protection prevent the device from being damaged during fault conditions. Superior click and pop suppression eliminates audible transients on power-up/down and during shutdown.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

www.ti.com

Typical Application

Figure 1. Typical Audio Amplifier Application Circuit

Connection Diagram

Figure 2. 25-Bump DSBGA (Top View) See YZR0025 Package

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾⁽²⁾

Supply Voltage ⁽³⁾	6.0V
Storage Temperature	-65°C to +150°C
Input Voltage	-0.3V to V _{DD} +0.3V
Power Dissipation ⁽⁴⁾	Internally Limited
ESD Susceptibility ⁽⁵⁾	2000V
ESD Susceptibility ⁽⁶⁾	200V
Junction Temperature	150°C
Thermal Resistance (θ _{JA})	35.1°C/W

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.

- (2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
- (3) All voltages are measured with respect to the ground pin, unless otherwise specified.
- (4) The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX}, θ_{JA}, and the ambient temperature T_A. The maximum allowable power dissipation is P_{DMAX} = (T_{JMAX} T_A) / θ_{JA} or the number given in Absolute Maximum Ratings, whichever is lower. For the LM4949, see power derating currents for additional information.
- (5) Human body model, 100pF discharged through a $1.5k\Omega$ resistor.
- (6) Machine Model, 220pF 240pF discharged through all pins.

OPERATING RATINGS

Temperature Range ($T_{MIN} \le T_A \le T_{MAX}$)	$-40^{\circ}C \le T_{A} \le +85^{\circ}C$
Supply Voltage (V _{DD} , V _{DD} LS, V _{DD} HP)	$2.7V \le V_{DD} \le 5.5V$
I ² C Voltage (I ² CV _{DD})	$2.4V \le I^2 CV_{DD} \le 5.5V$

www.ti.com

ELECTRICAL CHARACTERISTICS $V_{DD} = 3.0V^{(1)(2)}$

The following specifications apply for $A_V = 0$ dB, $R_{L(SP)} = 15\mu$ H + 8Ω + 15μ H, $R_{L(HP)} = 32\Omega$, f = 1kHz unless otherwise specified. Limits apply for $T_A = 25^{\circ}$ C.

Symbol	Parameter	Conditions	LM4949		Units
Symbol	Falameter		Typical ⁽³⁾	Limit ⁽⁴⁾⁽⁵⁾	(Limits)
		LS Mode Stereo Mono	6 4.5	8.75	mA (max) mA
I _{DD}	Supply Current	OCL HP Mode Stereo Mono	5.0 4.3	6.5	mA (max) mA
		CC HP Mode Stereo Mono	4.0 3.3	5.25	mA (max) mA
		Stereo LS + HP Mode	8.6		mA
I _{SD}	Shutdown Supply Current		0.03	2	μA (max)
V _{OS}	Output Offset Voltage	Speaker (mode 1) OCL HP (mode 1)	8.9 5.6	48.9 24.5	mV (max) mV (max)
P _{OUT} Output Power		$eq:linear_line$	820 662 515 415	340	mW mW mW mW (min)
	Output Power	$\begin{array}{l} \mbox{OCP HP Mode, f = 1 kHz} \\ R_L = 16\Omega, \mbox{THD+N} = 10\% \\ R_L = 16\Omega, \mbox{THD+N} = 1\% \\ R_L = 32\Omega, \mbox{THD+N} = 10\% \\ R_L = 32\Omega, \mbox{THD+N} = 1\% \end{array}$	62.5 50 37.5 30.3		mW mW mW mW
		$\begin{array}{l} \text{CC HP Mode, f} = 1 \text{ kHz} \\ \text{R}_{L} = 16\Omega, \text{ THD+N} = 10\% \\ \text{R}_{L} = 16\Omega, \text{ THD+N} = 1\% \\ \text{R}_{L} = 32\Omega, \text{ THD+N} = 10\% \\ \text{R}_{L} = 32\Omega, \text{ THD+N} = 1\% \end{array}$	63 50 38 30		mW mW mW mW (min)
		Differential Mode, f = 1kHz		ł.	
		HP Mode, $R_L = 16\Omega$, $P_{OUT} = 35mW$ OCL CC	0.015 0.012		%
THD+N	Total Harmonic Distortion + Noise	HP Mode, $R_L = 32\Omega$, $P_{OUT} = 20mW$ OCL CC	0.017 0.018		% %
		$ LS Mode \\ R_L = 4\Omega, P_{OUT} = 300mW \\ R_L = 8\Omega, P_{OUT} = 150mW $	0.023 0.02		% %
		Single-Ended Input Mode, f = 1kHz			
THD+N	Total Harmonic Distortion + Noise	HP Mode, $R_L = 16\Omega$, $P_{OUT} = 35mW$ OCL CC	0.023 0.017		% %
		HP Mode, $R_L = 32\Omega$, $P_{OUT} = 20mW$ OCL CC	0.019 0.013		%
		LS Mode $R_L = 4\Omega$, $P_{OUT} = 300mW$ $R_L = 8\Omega$, $P_{OUT} = 150mW$	0.05 0.03		% %

(1) All voltages are measured with respect to the ground pin, unless otherwise specified.

(2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.

(3) Typicals are measured at 25°C and represent the parametric norm.

(4) Limits are specified to AOQL (Average Outgoing Quality Level).

(5) Datasheet min/max specification limits are specified by design, test or statistical analysis.

4 Submit Documentation Feedback

ELECTRICAL CHARACTERISTICS $V_{DD} = 3.0V^{(1)(2)}$ (continued)

The following specifications apply for A_V = 0dB, R_{L(SP)} = 15μ H + 8Ω + 15μ H, R_{L(HP)} = 32Ω , f = 1kHz unless otherwise specified. Limits apply for T_A = 25° C.

Symbol	Parameter	Conditions		4949	Units	
2,			Typical ⁽³⁾	Limit ⁽⁴⁾⁽⁵⁾	(Limits)	
		Differential Input, A-weighted, Input Re	eferred			
		Mono Input				
		OCL	16.4		μV	
		CC	15.5		μV	
		LS	43		μV	
		All Inputs ON				
		OCL	29.8		μV	
		CC	29.2		μV	
e _N	Noise	LS	46.6		μV	
		Single-Ended Input, A-weighted, Input	Referred			
		Stereo Input				
		OCL	12		μV	
		CC	11		μV	
		LA	45		μV	
		All Inputs ON				
		OCL	23.7		μV	
		CC	22.9		μV	
		LS	52		μV	
n	Efficiency	LS Mode, $P_{OUT} = 400 \text{mW}$, $R_L = 8\Omega$	85.3		%	
		LS Mode, $f = 1kHz$, $R_L = 8\Omega$, $V_{IN} = 1V$	Р-Р			
		Differential Input Mode	84.7		dB	
Xtalk	Ktalk Crosstalk	OCL HP Mode, f = 1kHz, $R_L = 32\Omega$, $V_{IN} = 1V_{P-P}$				
		Differential Input Mode	68		dB	
		CC Mode	68			
т	Turn on Time	OCL Mode	14		ms	
T _{ON}	rum on nine	LS Mode	29		ms ms	
т	Turn off Time	From any mode	683		ms	
T _{OFF}						
Z _{IN}	Input Impedance	Maximum Gain	24.8		kΩ kΩ	
		Minimum Gain	222.7		K12	
		Volume Control	-57		dB	
		Minimum Gain	18		dB	
		Maximum Gain			42	
		LS Second Gain Stage		· · · · ·		
		Step 0				
		Differential Input	6		dB	
		Single-Ended Input	12		dB	
		Step 1				
		Differential Input	4		dB	
A _V	Gain	Single-Ended Input	10		dB	
	Cant	Step 2				
		Differential Input	2		dB	
		Single-Ended Input	8		dB	
		Step 3				
		Differential Input	0		dB	
		Single-Ended Input	6		dB	
		HP Second Gain Stage		· .		
		Step 0	0		dB	
		Step 1	-6		dB	
		Step 2	-12		dB	
		Speaker Mode	-103		dB	
Mute	Mute Attenuation					
		Headphone Mode	-123		dB	

TEXAS INSTRUMENTS

www.ti.com

ELECTRICAL CHARACTERISTICS $V_{DD} = 3.0V^{(1)(2)}$ (continued)

The following specifications apply for $A_V = 0dB$, $R_{L(SP)} = 15\mu H + 8\Omega + 15\mu H$, $R_{L(HP)} = 32\Omega$, f = 1kHz unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$.

a	Demonster	O an little and	LM4949		Units
Symbol	Parameter	Conditions	Typical ⁽³⁾	Limit ⁽⁴⁾⁽⁵⁾	(Limits)
CMRR	Common Mode Dejection Datio	Speaker Mode, f = 1kHz, $V_{IN} = 200mV_{P-P}$	66.1		dB
CIVIRK	Common Mode Rejection Ratio	OCL Headphone Mode, f = 1kHz, $V_{IN} = 200mV_{P-P}$	70		dB
		Differential Input Mode, V _{RIPPLE} = 200)mV _{P-P}		
PSRR	Power Supply Rejection Ratio	OCL HP Mode, $f = 217Hz$ OCL HP Mode, $f = 1kHz$ LS Mode, $f = 217Hz$ LS Mode, $f = 1kHz$	78.1 75.4 74 72.9		dB dB dB dB
		Single-Ended Input Mode, V _{RIPPLE} = 2	200mV _{P-P}		
PSRR	Power Supply Rejection Ratio	OCL HP Mode, $f = 217Hz$ OCL HP Mode, $f = 1kHz$ LS Mode, $f = 217Hz$ LS Mode, $f = 70.31kHz72.8$	77.5 81 69 81		dB dB dB dB
		All Inputs ON, Single-Ended Input Mc	ode, V _{RIPPLE} = 200	mV _{P-P}	
PSRR	Power Supply Rejection Ratio	OCL HP Mode, $f = 217Hz$ OCL HP Mode, $f = 1kHz$ LS Mode, $f = 217Hz$ LS Mode, $f = 1120$	66.1 70.5 65.4 72.2		dB dB dB dB

ELECTRICAL CHARACTERISTICS V_{DD} = 3.6V⁽¹⁾⁽²⁾

The following specifications apply for $A_V = 0$ dB, $R_{L(SP)} = 15\mu$ H + 8 Ω + 15 μ H, $R_{L(HP)} = 32\Omega$, f = 1kHz unless otherwise specified. Limits apply for $T_A = 25$ °C.

Symbol			LM4949		Units
	Parameter	Conditions	Typical ⁽³⁾	Limit ⁽⁴⁾⁽⁵⁾	(Limits)
	DD Supply Current	LS Mode Stereo Mono	6.8 4.9	7.3 5.3	mA (max) mA (max)
DD		OCL HP Mode Stereo Mono	5.8 4.9	6.5 5.5	mA (max) mA (max)
		CC HP Mode Stereo Mono	4.7 4.1	5.2 4.6	mA (max) mA (max)
		Stereo LS + HP Mode	9.36		mA
SD	Shutdown Supply Current		0.03	1	μA (max)
V _{OS}	Output Offset Voltage	Headphone Speaker	6.7 8.9	20 49	mV (max) mV (max)

(1) All voltages are measured with respect to the ground pin, unless otherwise specified.

- (3) Typicals are measured at 25°C and represent the parametric norm.
- (4) Limits are specified to AOQL (Average Outgoing Quality Level).
- (5) Datasheet min/max specification limits are specified by design, test or statistical analysis.

6 Submit Documentation Feedback

⁽²⁾ Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.

www.ti.com

ELECTRICAL CHARACTERISTICS $V_{DD} = 3.6V^{(1)(2)}$ (continued)

The following specifications apply for A_V = 0dB, R_{L(SP)} = 15μ H + 8Ω + 15μ H, R_{L(HP)} = 32Ω , f = 1kHz unless otherwise specified. Limits apply for T_A = 25° C.

Symbol	Parameter	Conditions	LM4949		Units
			Typical ⁽³⁾	Limit ⁽⁴⁾⁽⁵⁾	(Limits)
		$eq:linear_line$	1.24 1 0.765 0.615		W W W W
оот	Output Power	$\begin{array}{l} \text{OCL HP Mode, f} = 1 \text{ kHz} \\ \text{R}_{\text{L}} = 16\Omega, \text{ THD+N} = 10\% \\ \text{R}_{\text{L}} = 16\Omega, \text{ THD+N} = 1\% \\ \text{R}_{\text{L}} = 32\Omega, \text{ THD+N} = 10\% \\ \text{R}_{\text{L}} = 32\Omega, \text{ THD+N} = 1\% \end{array}$	94 76 55 45		mW mW mW mW
		$\begin{array}{l} \mbox{CC HP Mode, f = 1 kHz} \\ R_L = 16\Omega, THD+N = 10\% \\ R_L = 16\Omega, THD+N = 1\% \\ R_L = 32\Omega, THD+N = 10\% \\ R_L = 32\Omega, THD+N = 1\% \end{array}$	93 75 56 45		mW mW mW mW
		Differential Mode, f = 1kHz			
		HP Mode, $R_L = 16\Omega$, $P_{OUT} = 50mW$ OCL CC	0.021 0.021		% %
ΓHD+N	0+N Total Harmonic Distortion + Noise	HP Mode, $R_L = 32\Omega$, $P_{OUT} = 30mW$ OCL CC LS Mode $R_L = 4\Omega$, $P_{OUT} = 400mW$	0.01 0.01 0.023		% %
		$R_L = 8\Omega, P_{OUT} = 300 \text{mW}$	0.02		%
		Single-Ended Input Mode, f = 1kHz			
		HP Mode, $R_L = 16\Omega$, $P_{OUT} = 50mW$ OCL CC	0.021 0.017		% %
ΓHD+N	Total Harmonic Distortion + Noise	HP Mode, $R_L = 32\Omega$, $P_{OUT} = 30mW$ OCL CC	0.02 0.015		% %
		$ \begin{array}{l} \text{LS Mode} \\ \text{R}_{\text{L}} = 4\Omega, \ \text{P}_{\text{OUT}} = 400\text{mW} \\ \text{R}_{\text{L}} = 8\Omega, \ \text{P}_{\text{OUT}} = 300\text{mW} \end{array} $	0.05 0.034		% %
		Differential Mode, A-weighted, Input R	eferred	1	
		Mono Input OCL CC LS	16.4 15.5 43		μV μV μV
		All Inputs ON OCL CC LS	29.8 29.2 46.6		μV μV μV
'n	Noise	Single-Ended Input, A-weighted, Input	Referred	· · · · · · · · · · · · · · · · · · ·	
		Stereo Input OCL CC LS	12 11 45		μV μV μV
	All Inputs ON OCL CC LS	23.7 22.9 52		μV μV μV	
	1		52		μ۷

www.ti.com

ELECTRICAL CHARACTERISTICS $V_{DD} = 3.6V^{(1)(2)}$ (continued)

The following specifications apply for A_V = 0dB, R_{L(SP)} = 15μ H + 8Ω + 15μ H, R_{L(HP)} = 32Ω , f = 1kHz unless otherwise specified. Limits apply for T_A = 25° C.

Symbol	Parameter	Conditions		4949	Units	
Symbol	i arameter	Conditions	Typical ⁽³⁾	Limit ⁽⁴⁾⁽⁵⁾	(Limits)	
		LS Mode, f = 1kHz, $R_L = 8\Omega$, $V_{IN} = 1V$	/ _{P-P}			
Ktalk	Crosstalk	Differential Input Mode	86		dB	
Main	Clossian	OCL HP Mode, f = 1kHz, $R_L = 32\Omega$, $V_{IN} = 1V_{P-P}$				
		Differential Input Mode	68		dB	
-		CC Mode	75		ms	
T _{ON}	Turn on Time	OCL Mode LS Mode	14 31		ms	
T _{OFF}	Turn off Time	From any mode	692		ms	
Z _{IN}	Input Impedance	Maximum Gain Minimum Gain	24.8 222.7		kΩ kΩ	
		Volume Control Minimum Gain Maximum Gain	-57 18		dB dB	
		LS Second Gain Stage	-			
		Step 0 Differential Input	6		dB	
		Single-Ended Input	12		dB	
٨	Coin	Step 2 Differential Input Single-Ended Input	4 10		dB dB	
A _V	Gain	Step 2 Differential Input Single-Ended Input	2 8		dB dB	
		Step 3 Differential Input Single-Ended Input	0		dB dB	
		HP Second Gain Stage				
		Step 0	0			
		Step 1	-6		dB	
		Step 2	-12		dB	
Mute	Mute Attenuation	Speaker Mode	-84		dB	
		Headphone Mode	-95		dB	
CMRR	Common Mode Rejection Ratio	Speaker Mode, $f = 1kHz$, $V_{IN} = 200mV_{P-P}$	66		dB	
		OCL Headphone Mode, f = 1kHz, $V_{IN} = 200mV_{P-P}$	68.6		dB	
		Differential Input Mode, V _{RIPPLE} = 200	mV _{P-P}	11		
PSRR	Power Supply Rejection Ratio	OCL HP Mode, f = 217Hz OCL HP Mode, f = 1kHz	75 75		dB dB	
		LS Mode, $f = 217Hz$	75		dВ dB	
		LS Mode, f = 1kHz	73		dB	
		Single-Ended Input Mode, V _{RIPPLE} = 2	200mV _{P-P}	1		
PSRR	Power Supply Rejection Ratio	OCL HP Mode, f = 217Hz	75		dB	
		OCL HP Mode, f = 1kHz LS Mode, f = 217Hz	75 67		dB dB	
		LS Mode, $f = 1 \text{ kHz}$	71		dB	
		All Inputs ON, Single-Ended Input Mo	de, V _{RIPPLE} = 200)mV _{P-P}		
		OCL HP Mode, f = 217Hz	72		dB	
PSRR	Power Supply Rejection Ratio	OCL HP Mode, f = 1kHz	70		dB	
		LS Mode, f = 217Hz LS Mode, f = 1kHz	60 65		dB dB	

ELECTRICAL CHARACTERISTICS $V_{DD} = 5.0V^{(1)}$ (2)

The following specifications apply for $A_V = 0dB$, $R_{L(SP)} = 15\mu H + 8\Omega + 15\mu H$, $R_{L(HP)} = 32\Omega$, f = 1kHz unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions		1949	Units
Symbol	Falalleter		Typical ⁽³⁾	Limit ⁽⁴⁾⁽⁵⁾	(Limits)
		LS Mode Stereo Mono	9.9 6.6	10.9 7.2	mA (max) mA (max)
I _{DD}	Supply Current	OCL HP Mode Stereo Mono	6.6 5.5	7.3 6.2	mA (max) mA (max)
		CC HP Mode Stereo Mono	5.4 4.3	5.9 4.8	mA (max) mA (max)
		Stereo LS + HP Mode	13		mA
I _{SD}	Shutdown Supply Current		0.1	1	μA (max)
V _{OS}	Output Offset Voltage	Headphone Speaker	10 9.6	52 50	mV (max) mV (max)
		$\label{eq:LS} \begin{array}{l} \text{LS Mode, f} = 1 \text{ kHz} \\ \text{R}_{L} = 4\Omega, \text{ THD+N} = 10\% \\ \text{R}_{L} = 4\Omega, \text{ THD+N} = 1\% \\ \text{R}_{L} = 8\Omega, \text{ THD+N} = 10\% \\ \text{R}_{L} = 8\Omega, \text{ THD+N} = 1\% \end{array}$	2.5 2.01 1.48 1.19		W W W
P _{OUT}	Output Power	$\begin{array}{l} \text{OCL HP Mode, f} = 1 \text{ kHz} \\ \text{R}_{L} = 16\Omega, \text{THD+N} = 10\% \\ \text{R}_{L} = 16\Omega, \text{THD+N} = 1\% \\ \text{R}_{L} = 32\Omega, \text{THD+N} = 10\% \\ \text{R}_{L} = 32\Omega, \text{THD+N} = 1\% \end{array}$	190 154 109 89		mW mW mW mW
		CC HP Mode, f = 1 kHz $R_L = 16\Omega$, THD+N = 10% $R_L = 16\Omega$, THD+N = 1% $R_L = 32\Omega$, THD+N = 10% $R_L = 32\Omega$, THD+N = 1%	188 153 105 88		mW mW mW mW
		Differential Input Mode, f = 1kHz			1
		$\begin{array}{l} \text{HP Mode, } R_{L} = 16\Omega, P_{OUT} = 100 \text{mW} \\ \text{OCL} \\ \text{CC} \end{array}$	0.02 0.027		% %
THD + N	Total Harmonic Distortion + Noise	HP Mode, $R_L = 32\Omega$, $P_{OUT} = 50mW$ OCL CC	0.02 0.022		% %
		$ \begin{array}{l} \text{LS Mode} \\ \text{R}_{\text{L}} = 4\Omega, \ \text{P}_{\text{OUT}} = 1W \\ \text{R}_{\text{L}} = 8\Omega, \ \text{P}_{\text{OUT}} = 600\text{mW} \end{array} $	0.022 0.02		% %
		Single-Ended Input Mode, f = 1kHz			
THD + N	Total Harmonic Distortion + Noise	HP Mode, $R_L = 16\Omega$, $P_{OUT} = 100mW$ OCL CC	0.021 0.02		% %
		HP Mode, $R_L = 32\Omega$, $P_{OUT} = 50mW$ OCL CC	0.02 0.017		% %
		$ LS Mode \\ R_L = 4\Omega, P_{OUT} = 1W \\ R_L = 8\Omega, P_{OUT} = 600mW $	0.05 0.033		% %

(1) All voltages are measured with respect to the ground pin, unless otherwise specified.

(2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.

- (3) Typicals are measured at 25°C and represent the parametric norm.
- (4) Limits are specified to AOQL (Average Outgoing Quality Level).
- (5) Datasheet min/max specification limits are specified by design, test or statistical analysis.

Copyright © 2006–2013, Texas Instruments Incorporated

Texas Instruments

www.ti.com

ELECTRICAL CHARACTERISTICS $V_{DD} = 5.0V^{(1)}$ (continued)

The following specifications apply for $A_V = 0dB$, $R_{L(SP)} = 15\mu H + 8\Omega + 15\mu H$, $R_{L(HP)} = 32\Omega$, f = 1kHz unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions		4949	Units (Limits)
Cymbol			Typical ⁽³⁾	Limit ⁽⁴⁾⁽⁵⁾	
		Differential Input, A-weighted, Input	Referred		
		Mono Input			
		OCL	16.4		μV
		CC	15.5		μV
		LS	43		μV
		All Inputs ON	20.9		
		OCL CC	29.8 29.2		μV
		LS	46.6		μV μV
e _N	Noise	Single-Ended Input, A-weighted, Inp			μ۰
		Stereo Input OCL	12		μV
		CC	11		μV
		LS	45		μV
		All Inputs ON	-		F
		OCL	23.7		μV
		CC	22.9		μV
		LS	52		μV
η	Efficiency	LS Mode, $P_{OUT} = 1W$, $R_L = 8\Omega$	87.4		%
		LS Mode, f = 1kHz, $R_L = 8\Omega$, $V_{IN} = 1$	V _{P-P}		
		Differential Input Mode	105.8		dB
Xtalk	alk Crosstalk	OCL HP Mode, $f = 1 \text{ kHz}$, $R_L = 32\Omega$,	$V_{IN} = 1V_{P-P}$	1	
		Differential Input Mode	69.6		dB
T _{ON}		CC Mode	89		ms
ON	Turn on Time	OCL Mode	14		ms
		LS Mode	35		ms
T _{OFF}	Turn off Time	From any mode	716		ms
		Maximum Gain	24.8		kΩ
Z _{IN}	Input Impedance	Minimum Gain	222.7		kΩ
		Volume Control	F7		
		Minimum Gain	-57		dB
		Maximum Gain	18		dB
		LS Second Gain Stage			
		Step 0			
		Differential Input	6		dB
		Single-Ended Input	12		dB
		Step 1			
		Differential Input	4		dB
A _V	Gain	Single-Ended Input	10		dB
-		Step 2	•		-10
		Differential Input Single-Ended Input	8		dB dB
			۷		UD
		Step 3 Differential Input	0		dB
		Single-Ended Input	6		dВ
		HP Second Gain Stage	0		uD
			0		dB
		Step 0 Step 1	0 6		dB dB
		Step 1			dB
		Speaker Mode	-102.7		dB
Mute	Mute Attenuation				
		Headphone Mode	-123		dB

ELECTRICAL CHARACTERISTICS $V_{DD} = 5.0V^{(1)}$ (continued)

The following specifications apply for A_V = 0dB, R_{L(SP)} = 15μ H + 8Ω + 15μ H, R_{L(HP)} = 32Ω , f = 1kHz unless otherwise specified. Limits apply for T_A = 25° C.

	Parameter		LM4	1949	Units
Symbol		Conditions	Typical ⁽³⁾	Limit ⁽⁴⁾⁽⁵⁾	(Limits)
	Common Made Dejection Detio	Speaker Mode, f = 1kHz, V _{IN} = 200mV _{P-P}	64.4		dB
CMRR	Common Mode Rejection Ratio	OCL Headphone Mode, f = 1kHz, $V_{IN} = 200mV_{P-P}$	74.3		dB
		Differential Input Mode, V _{RIPPLE} = 20	0mV _{P-P}		
		OCL HP Mode, f = 217Hz	68.3		dB
PSRR	Power Supply Rejection Ratio	OCL HP Mode, f = 1kHz	67.9		dB
		LS Mode, f = 217Hz	73.8		dB
		LS Mode, f = 1kHz	72		dB
		Single-Ended Input Mode, V _{RIPPLE} =	200mV _{P-P}		
		OCL HP Mode, f = 217Hz	70.55		dB
PSRR	Power Supply Rejection Ratio	OCL HP Mode, f = 1kHz	63.05		dB
		LS Mode, f = 217Hz	64.6		dB
		LS Mode, f = 1kHz	70.3		dB
		All Inputs ON, Single-Ended Input M	ode, V _{RIPPLE} = 200	mV _{P-P}	
		OCL HP Mode, f = 217Hz	63.1		dB
PSRR	Power Supply Rejection Ratio	OCL HP Mode, f = 1kHz	66.4		dB
		LS Mode, f = 217Hz	59.1		dB
		LS Mode, f = 1kHz	69.3		dB

Texas Instruments

	Table 1. Bump Descripti	ion
BUMP	NAME	DESCRIPTION
A1	LLS-	Left Channel Loudspeaker Inverting Output
A2	LLS+	Left Channel Loudspeaker Non-inverting Output
A3	SDA	Serial Data Input
A4	HPGND	Headphone Ground
A5	HPR	Right Channel Headphone Output
B1	VDDLS	Speaker Power Supply
B2	ADR	Address Select Bit
B3	RIN-	Right Channel Inverting Input
B4	HPL	Left Channel Headphone Output
B5	VOC	Headphone Return Bias Output
C1	GNDLS	Speaker Ground
C2	VDD	Power Supply
C3	RIN+	Right Channel Non-Inverting Input
C4	LIN+	Left Channel Non-inverting Input
C5	VDDHP	Headphone Power Supply
D1	VDDLS	Speaker Power Supply
D2	I ² CVDD	I2C Power Supply
D3	SCL	Serial Clock Input
D4	MIN+	Mono Channel Non-inverting Input
D5	LIN-	Left Channel Inverting Input
E1	RLS-	Right Channel Loudspeaker Inverting Output
E2	RLS+	Right Channel Loudspeaker Non-inverting Output
E3	GND	Ground
E4	MIN-	Mono Channel Inverting Input
E5	BYPASS	Mid-rail Bias Bypass

TYPICAL PERFORMANCE CHARACTERISTICS

CC Headphone Mode, Differential Input V_{DD} = 3.6V, P_{OUT} = 50mW, R_L = 16 Ω 100 10 THD+N (%) 1 0.1 0.01 0.001 20 100 1k 10k 20k FREQUENCY (Hz) Figure 28.

THD+N vs Frequency

THD+N vs Frequency CC Headphone Mode, Differential Input V_{DD} = 3.0V, P_{OUT} = 20mW, R_L = 32 Ω 100 Ш 10 1 0.1 0.01

THD+N (%)

0.001

20

FREQUENCY (Hz) Figure 30.

1k

10k 20k

100

SNAS368D-SEPTEMBER 2006-REVISED MAY 2013

Figure 35.

THD+N vs Frequency CC Headphone Mode, Single-Ended Input V_{DD} = 3.0V, P_{OUT} = 20mW, R_L = 32 Ω

THD+N vs Frequency CC Headphone Mode, Single-Ended Input v_{DD} = 5.0V, P_{OUT} = 50mW, R_L = 32Ω

PSRR vs Frequency OCL Headphone Mode, Differential Input $V_{DD} = 3.6V, V_{RIPPLE} = 200mV_{P-P}, R_L = 32\Omega$

Figure 54.

PSRR vs Frequency OCL Headphone Mode, Single-Ended Input Stereo and Mono Inputs Active V_{DD} = 3.6V, V_{RIPPLE} = 200mV_{P-P}, R_L = 32Ω -20 PSRR(dB) -40 -60 -80 ∟ 20 100 10k 20k 1k FREQUENCY (Hz) Figure 56.

100

1k

FREQUENCY (Hz) Figure 55.

-40

-60

-80

20

10k 20k

Figure 58.

Output Noise vs Frequency OCL Headphone Mode, Single-Ended Input Stereo and Mono Inputs Active $V_{DD} = 3.6V, R_L = 32\Omega$

www.ti.com

APPLICATION INFORMATION

I2C COMPATIBLE INTERFACE

The LM4949 is controlled through an I²C compatible serial interface that consists of two wires; clock (SCL) and data (SDA). The clock line is uni-directional. The data line is bi-directional (open-collector) although the LM4949 does not write to the I²C bus. The maximum clock frequency specified by the I²C standard is 400kHz.

To avoid an address conflict with another device on the I^2C bus, the LM4949 address is determined by the ADR pin, the state of ADR determines address bit A1 (Table 2). When ADR = 0, the address is 1111 1000. When ADR = 1 the device address is 1111 1010.

ADR	A7	A6	A5	A4	A3	A2	A1	A0
Х	1	1	1	1	1	0	Х	0
0	1	1	1	1	1	0	0	0
1	1	1	1	1	1	0	1	0

Table 2. Device Address

BUS FORMAT

The I²C bus format is shown in Figure 92. The "start" signal is generated by lowering the data signal while the clock is high. The start signal alerts all devices on the bus that a device address is being written to the bus.

The 8-bit device address is written to the bus next, most significant bit first. The data is latched in on the rising edge of the clock. Each address bit must be stable while the clock is high.

After the last address bit is sent, the master device releases the data line, during which time, an acknowledge clock pulse is generated. If the LM4949 receives the address correctly, then the LM4949 pulls the data line low, generating an acknowledge bit (ACK).

Once the master device has registered the ACK bit, the 8-bit register address/data word is sent. Each data bit should be stable while the clock level is high. After the 8-bit word is sent, the LM4949 sends another ACK bit. Following the acknowledgment of the data word, the master device issues a "stop" bit, allowing SDA to go high while the clock signal is high.

Figure 93. I2C Timing Diagram

Table 3. I ² C Control Registers											
REGISTER	REGISTER NAME	D7	D6	D5	D4	D3	D2	D1	D0		
0.0	Shutdown Control	0	0	0	0	0	OCL_LGC ⁽¹⁾	OCL ⁽¹⁾	PWR_ON		
0.1	Stereo Input Mode Control	0	0	0	1	L1_INSEL	L2_INSEL	SDB_HPSEL	SDB_MUXSEL		
1	Speaker Output Mux Control	0	0	1	LS_XSEL	LSR_MSEL	LSR_SSEL	LSL_MSEL	LSL_SSEL		
2	Headphone Output Mux Control	0	1	0	HP_XSEL	HPR_MSEL	HPR_SSEL	HPL_MSEL	HPL_SSEL		
3.0	Output On/Off Control	0	1	1	0	HPR_ON	HPL_ON	LSR_ON	LSL_ON		
3.1	Reserved	0	1	1	1	RESERVED	RESERVED	RESERVED	RESERVED		
4.0	Headphone Output Stage Gain Control	1	0	0	0	HPG1	HPG0	RESERVED	RESERVED		
4.1	Speaker Output Stage Gain Control	1	0	0	1	LSRG1	LSRG0	LSLG1	LSLG0		
5	Mono Input Gain Control	1	0	1	MG4	MG3	MG2	MG1	MG0		
6	Left Input Gain Control	1	1	0	LG4	LG3	LG2	LG1	LG0		
7	Right Input Gain Control	1	1	1	RG4	RG3	RG2	RG1	RG0		

(1) $OCL_LGC = 1$ and OCL = 1 at the same time is not allowed.

GENERAL AMPLIFIER FUNCTION

Class D Amplifier

The LM4949 features a high-efficiency, filterless, Class D stereo amplifier. The LM4949 Class D amplifiers feature a filterless modulation scheme, the differential outputs of each channel switch at 300khz, from V_{DD} to GND. When there is no input signal applied, the two outputs (_LS+ and _LS-) switch with a 50% duty cycle, with both outputs in phase. Because the outputs of the LM4949 are differential, the two signals cancel each other. This results in no net voltage across the speaker, thus no load current during the idle state, conserving power.

When an input signal is applied, the duty cycle (pulse width) changes. For increasing output voltages, the duty cycle of _LS+ increases, while the duty cycle of _LS- decreases. For decreasing output voltages, the converse occurs, the duty cycle of _LS- increases while the duty cycle of _LS+ decreases. The difference between the two pulse widths yields the differential output voltage.

Headphone Amplifier

The LM4949 headphone amplifier features three different operating modes, output capacitorless (OCL), capacitor-coupled (CC), and external amplifier mode.

www.ti.com

www.ti.com

The OCL architecture eliminates the bulky, expensive output coupling capacitors required by traditional headphone amplifiers. The LM4949 headphone section uses three amplifiers. Two amplifiers drive the headphones while the third (VOC) is set to the internally generated bias voltage (typically $V_{DD}/2$). The third amplifier is connected to the return terminal of the headphone jack. In this configuration, the signal side of the headphones are biased to $V_{DD}/2$, the return is biased to $V_{DD}/2$, thus there is no net DC voltage across the headphone, eliminating the need for an output coupling capacitor. Removing the output coupling capacitors from the headphone signal path reduces component count, reducing system cost and board space consumption, as well as improving low frequency performance.

In OCL mode, the headphone return sleeve is biased to $V_{DD}/2$. When driving headphones, the voltage on the return sleeve is not an issue. However, if the headphone output is used as a line out, the $V_{DD}/2$ can conflict with the GND potential that a line-in would expect on the return sleeve. When the return of the headphone jack is connected to GND, the VOC amplifier of the LM4949 detects an output short circuit condition and is disabled, preventing damage to the LM4949, and allowing the headphone return to be biased at GND.

Capacitor Coupled Headphone Mode

In capacitor coupled (CC) mode, the VOC pin is disabled, and the headphone outputs are coupled to the jack through series capacitors, allowing the headphone return to be connected to GND (Figure 94). In CC mode, the LM4949 requires output coupling capacitors to block the DC component of the amplifier output, preventing DC current from flowing to the load. The output capacitor and speaker impedance form a high pass filter with a -3dB roll-off determined by:

$$f_{-3dB} = 1 / 2\pi R_L C_{OUT}$$

(1)

Where R_L is the headphone impedance, and C_{OUT} is the output coupling capacitor. Choose C_{OUT} such that f_{-3dB} is well below the lowest frequency of interest. Setting f_{-3dB} too high results in poor low frequency performance. Select capacitor dielectric types with low ESR to minimize signal loss due to capacitor series resistance and maximize power transfer to the load.

Figure 94. Capacitor Coupled Headphone Mode

External Headphone Amplifier

The LM4949 features the ability to drive and control a separate headphone amplifier for applications that require a True Ground headphone output (Figure 95). Configure the LM4949 into external headphone amplifier mode by setting bit D2 (OCL_LGC) in register 0.0 to 1 and bit D1 (OCL) to 0. In this mode the VOC output becomes a logic output used to drive the shutdown input of the external amplifier. The output level of VOC is controlled by bits D1 (SDB_HPSEL) and D2 (SDB_MUXSEL) in register 0.1. SDB_MUXSEL determines the source of the VOC control signal. With SDB_MUXSEL = 0, the VOC signal comes from the internal start-up circuitry of the LM4949. This allows the external headphone amplifier to be turned on and off simultaneously with the LM4949. When SDB_MUXSEL = 1, the VOC signal comes from the I^2 C bus, bit D1. With SDB_HPSEL = 0, VOC is a logic low, with SDB_HPSEL = 1, VOC is a logic high.

www.ti.com

Single-Ended Input

The left and right stereo inputs of the LM4949 can be configured for single-ended sources (Figure 96). In single-ended input mode, the LM4949 can accept up to 4 different single-ended audio sources. Set bits L1_INSEL = 1 and L2_INSEL = 0 to use the RIN+ and LIN+ inputs. Set L1_INSEL = 0 and L2_INSEL = 1 to use the RIN- and LIN- inputs. Set L1_INSEL = 1 to use both input pairs. Table 4 shows the single ended input combinations.

www.ti.com

Figure 96. Single-Ended Input Configuration

Table	4.	Sinal	e-Ended	Stereo	Input	Modes
I GOIO		e		0.0.00	mpat	moaco

INPUT MODE	L1_INSEL	L2_INSEL	INPUT DESCRIPTION
0	0	0	Fully Differential Input Mode
1	0	1	Single-ended input. RIN- and LIN- selected
2	1	0	Single-ended input. RIN+ and LIN+ selected
3	1	1	Single-ended input. RIN+ mixed with RIN- and LIN+ mixed with LIN-

Input Mixer / Multiplexer

The LM4949 includes a comprehensive mixer/multiplexer controlled through the I2C interface. The mixer/multiplexer allows any input combination to appear on any output of the LM4949. Control bits LSR_SSEL and LSL_SSEL (loudspeakers), and HPR_SSEL and HPL_SSEL (headphones) select the individual stereo input channels; for example, LSR_SSEL = 1 outputs the right channel stereo input on the right channel loudspeaker, while LSL_SSEL = 1 outputs the left channel stereo input on the left channel loudspeaker. Control bits

LSR_MSEL and LSL_MSEL (loudspeaker), and HPR_MSEL and HPR_LSEL (headphones) direct the mono input to the selected output. Setting HPR_MSEL = 1 outputs the mono input on the right channel headphone. Control bits LS_XSEL (loudspeaker) and HP_XSEL (headphone) selects both stereo input channels and directs the signals to the opposite outputs, for example, LS_XSEL = 1 outputs the right channel stereo input on the left channel loudspeaker, while the left channel stereo input is output on the right channel loudspeaker. Setting __XSEL = selects both stereo inputs simultaneously, unlike the __SSEL controls which select the stereo input channels individually.

Multiple input paths can be selected simultaneously. Under these conditions, the selected inputs are mixed together and output on the selected channel. Table 5 and Table 6 show how the input signals are mixed together for each possible input selection combination.

LS MODE	LS_XSEL	LSR_MSEL/ LSL_MSEL	LSR_SSEL/ LSL_SSEL	LEFT CHANNEL OUTPUT	RIGHT CHANNEL OUTPUT
0		0	0	MUTE	MUTE
1	0	1	0	MONO	MONO
2	0	0	1	LEFT (DIFF)/ /LIN+/LIN-/ (LIN+ - LIN-)	RIGHT (DIFF)/ /RIN+/RIN-/ (RIN+ - RIN-)
3	0	1	1	MONO + LEFT (DIFF)/ /LIN+/LIN-/ (LIN+ - LIN-)	MONO + RIGHT (DIFF)/ /RIN+/RIN-/ (RIN+ - RIN-)
4	1	0	1	LEFT (DIFF)/ /LIN+/LIN-/ (LIN+ - LIN-) + RIGHT (DIFF)/ /RIN+/RIN-/ (RIN+ - RIN-)	LEFT (DIFF)//LIN+/LIN-/ (LIN+ - LIN-) + RIGHT (DIFF)//RIN+/RIN-/ (RIN+ - RIN-)
5	1	1	1	MONO + LEFT (DIFF)/ /LIN+/LIN-/ (LIN+ - LIN-) + RIGHT (DIFF)/ /RIN+/RIN-/ (RIN+ - RIN-)	MONO + LEFT (DIFF)/ /LIN+/LIN-/ (LIN+ - LIN-) + RIGHT (DIFF)/ /RIN+/RIN-/ (RIN+ - RIN-)

Table 5. Loudspeaker Multiplexer Control

Table 6. Headphone Multiplexer Control

HP MODE	HP_XSEL	HPR_MSEL/ HPL_MSEL	HPR_SSEL/ LSL_SSEL	LEFT CHANNEL OUTPUT	RIGHT CHANNEL OUTPUT
0		0	0	MUTE	MUTE
1	0	1	0	MONO	MONO
2	0	0	1	LEFT (DIFF)/ /LIN+/LIN-/ (LIN+ - LIN-)	RIGHT (DIFF)/ /RIN+/RIN-/ (RIN+ - RIN-)
3	0	1	1	MONO + LEFT (DIFF)/ /LIN+/LIN-/ (LIN+ - LIN-)	MONO + RIGHT (DIFF)/ /RIN+/RIN-/ (RIN+ - RIN-)
4	1	0	1	LEFT (DIFF)/ /LIN+/LIN-/ (LIN+ - LIN-) + RIGHT (DIFF)/ /RIN+/RIN-/ (RIN+ - RIN-)	LEFT (DIFF)/ /LIN+/LIN-/ (LIN+ - LIN-) + RIGHT (DIFF)/ /RIN+/RIN-/ (RIN+ - RIN-)
5	1	1	1	MONO + LEFT (DIFF)/ /LIN+/LIN-/ (LIN+ - LIN-) + RIGHT (DIFF)/ /RIN+/RIN-/ (RIN+ - RIN-)	MONO + LEFT (DIFF)/ /LIN+/LIN-/ (LIN+ - LIN-) + RIGHT (DIFF)/ /RIN+/RIN-/ (RIN+ - RIN-)

Power Supplies

The LM4949 uses different supplies for each portion of the device, allowing for the optimum combination of headroom, power dissipation and noise immunity. The speaker amplifier gain stage is powered from VDD, while the output stage is powered from VDDLS. The headphone amplifiers, input amplifiers and volume control stages are powered from VDDHP. The separate power supplies allow the speakers to operate from a higher voltage for maximum headroom, while the headphones operate from a lower voltage, improving power dissipation. VDDHP may be driven by a linear regulator to further improve performance in noisy environments. The I²C portion if powered from I²CVDD, allowing the I²C portion of the LM4949 to interface with lower voltage digital controllers.

Shutdown Function

The LM4949 features five shutdown modes, configured through the I^2C interface. Bit D0 (PWR_ON) in the Shutdown Control register shuts down/turns on the entire device. Set PWR_ON = 1 to enable the LM4949, set PWR_ON 0 to disable the device. Bits D0 – D3 in the Output On/Off Control shutdown/turn on the individual channels. HPR_ON (D3) controls the right channel headphone output, HPL_ON (D2) controls the left channel headphone output, LSR_ON (D1) controls the right channel loudspeaker output, and LRL_ON (D0) controls the left channel loudspeaker over the individual channel controls.

Audio Amplifier Gain Setting

The each channel of the LM4949 has two separate gain stages. Each input stage features a 32 step volume control with a range of -57dB to +18dB (Table 7). Each speaker output stage has 4 gain settings (Table 8); 0dB, 2dB, 4dB, and 6dB when either a fully differential signal or two single ended signals are applied on the _IN+ and _IN- pins; and 6dB, 8dB, 10dB and 12dB in single-ended input mode with only one signal applied. The headphone gain is not affected by the input mode. Each headphone output stage has 3 gain settings (Table 9), 0dB, -6dB, and -12dB. This allows for a maximum separation of 24dB between the speaker and headphone outputs when both are active.

Calculate the total gain of a given signal path as follows:

 $A_{VOL} + A_{OS} = A_{TOTAL}$

where

- A_{VOL} is the volume control level,
- A_{OS} is the gain setting of the output stage, and
- A_{TOTAL} is the total gain for the signal path.

(2)

Volume Step	MG4/LG4/RG4	MG3/LG3/RG3	MG2/LG2/RG2	MG1/LG1/RG1	MG0/LG0/RG0	Gain (dB)
1	0	0	0	0	0	-57
2	0	0	0	0	1	-49
3	0	0	0	1	0	-42
4	0	0	0	1	1	-34.5
5	0	0	1	0	0	-30.5
6	0	0	1	0	1	-27
7	0	0	1	1	0	-24
8	0	0	1	1	1	-21
9	0	1	0	0	0	-18
10	0	1	0	0	1	-15
11	0	1	0	1	0	-13.5
12	0	1	0	1	1	-12
13	0	1	1	0	0	-10.5
14	0	1	1	0	1	-9
15	0	1	1	1	0	-7.5
16	0	1	1	1	1	-6
17	1	0	0	0	0	-4.5
18	1	0	0	0	1	-3
19	1	0	0	1	0	-1.5
20	1	0	0	1	1	0
21	1	0	1	0	0	1.5
22	1	0	1	0	1	3
23	1	0	1	1	0	4.5
24	1	0	1	1	1	6
25	1	1	0	0	0	7.5
26	1	1	0	0	1	9

Table 7. 32 Step Volume Control

www.ti.com

Volume Step	MG4/LG4/RG4	MG3/LG3/RG3	MG2/LG2/RG2	MG1/LG1/RG1	MG0/LG0/RG0	Gain (dB)			
27	1	1	0	1	0	10.5			
28	1	1	0	1	1	12			
29	1	1	1	0	0	13.5			
30	1	1	1	0	1	15			
31	1	1	1	1	0	16.5			
32	1	1	1	1	1	18			

Table 7. 32 Step Volume Control (continued)

Table 8. Loudspeaker Gain Setting

		Gain (dB)			
LSRG1/LSLG1	LSRG0/LSLG0	_IN+ ≠ _IN-	_IN+ =_IN-		
0	0	12	6		
0	1	10	4		
1	0	8	2		
1	1	6	0		

Table 9. Headphone Gain Setting

HPG1	HPG0	Gain (dB)
0	0	0
0	1	-6
1	0	-12

Differential Audio Amplifier Configuration

As logic supply voltages continue to shrink, system designers increasingly turn to differential signal handling to preserve signal to noise ratio with decreasing voltage swing. The LM4949 can be configured as a fully differential amplifier, amplifying the difference between the two inputs. The advantage of the differential architecture is any signal component that is common to both inputs is rejected, improving common-mode rejection (CMRR) and increasing the SNR of the amplifier by 6dB over a single-ended architecture. The improved CMRR and SNR of a differential amplifier reduce sensitivity to ground offset related noise injection, especially important in noisy applications such as cellular phones. Driving the LM4949 differentially also allows the inputs to be DC coupled, eliminating two external capacitors per channel. Set bits L1_INSEL and L2_INSEL = 0 for differential input mode. The left and right stereo inputs have selectable differential or single-ended input modes, while the mono input is always differential.

Single-Ended Audio Amplifier Configuration

In single-ended input mode, the audio sources must be capacitively coupled to the LM4949. With LIN+ \neq LINand RIN+ \neq RIN-, the loud speaker gain is 6dB more than in differential input mode, or when LIN+ = LIN- and RIN+ = RIN-. The headphone gain does not change. The mono input channel is not affected by L1_INSEL and L2_INSEL, and is always configured as a differential input.

Power Dissipation and Efficiency

 $P_{DMAX} = V_{DD}^2 / 2\pi^2 R_1$

The major benefit of Class D amplifiers is increased efficiency versus Class AB. The efficiency of the LM4949 speaker amplifiers is attributed to the output transistors' region of operation. The Class D output stage acts as current steering switches, consuming negligible amounts of power compared to their Class AB counterparts. Most of the power loss associated with the output stage is due to the IR loss of the MOSFET on-resistance, along with the switching losses due to gate charge.

The maximum power dissipation per headphone channel in Capacitor-Coupled mode is given by:

(3)

In OCL mode, the maximum power dissipation per headphone channel increases due to the use of a third amplifier as a buffer. The power dissipation is given by:

Product Folder Links: LM4949

$\mathsf{P}_{\mathsf{DMAX}} = \mathsf{V}_{\mathsf{DD}}^2 / \pi^2 \mathsf{R}_{\mathsf{L}}$

PROPER SELECTION OF EXTERNAL COMPONENTS

Audio Amplifier Power Supply Bypassing / Filtering

Proper power supply bypassing is critical for low noise performance and high PSRR. Place the supply bypass capacitors as close to the device as possible. Typical applications employ a voltage regulator with 10μ F and 0.1μ F bypass capacitors that increase supply stability. These capacitors do not eliminate the need for bypassing of the LM4949 supply pins. A 1μ F ceramic capacitor placed close to each supply pin is recommended.

Bypass Capacitor Selection

The LM4949 generates a V_{DD}/2 common-mode bias voltage internally. The BYPASS capacitor, C_B, improves PSRR and THD+N by reducing noise at the BYPASS node. Use a 1µF capacitor, placed as close to the device as possible for C_B.

Audio Amplifier Input Capacitor Selection

Input capacitors, C_{IN} , in conjunction with the input impedance of the LM4949 forms a high pass filter that removes the DC bias from an incoming signal. The AC-coupling capacitor allows the amplifier to bias the signal to an optimal DC level. Assuming zero source impedance, the -3dB point of the high pass filter is given by:

 $f_{-3dB} = 1 / 2\pi R_{IN}C_{IN}$

Choose C_{IN} such that f_{-3dB} is well below the lowest frequency of interest. Setting f_{-3dB} too high affects the lowfrequency response of the amplifier. Use capacitors with low voltage coefficient dielectrics, such as tantalum or aluminum electrolytic. Capacitors with high-voltage coefficients, such as ceramics, may result in increased distortion at low frequencies. Other factors to consider when designing the input filter include the constraints of the overall system. Although high fidelity audio requires a flat frequency response between 20Hz and 20kHz, portable devices such as cell phones may only concentrate on the frequency range of the spoken human voice (typically 300Hz to 4kHz). In addition, the physical size of the speakers used in such portable devices limits the low frequency response; in this case, frequencies below 150Hz may be filtered out.

PCB LAYOUT GUIDELINES

Minimize trace impedance of the power, ground and all output traces for optimum performance. Voltage loss due to trace resistance between the LM4949 and the load results in decreased output power and efficiency. Trace resistance between the power supply and GND of the LM4949 has the same effect as a poorly regulated supply, increased ripple and reduced peak output power. Use wide traces for power-supply inputs and amplifier outputs to minimize losses due to trace resistance, as well as route heat away from the device. Proper grounding improves audio performance, minimizes crosstalk between channels and prevents switching noise from interfering with the audio signal. Use of power and ground planes is recommended.

Place all digital components and digital signal traces as far as possible from analog components and traces. Do not run digital and analog traces in parallel on the same PCB layer.

Rev	Date	Description				
1.0	09/06/06	Initial release.				
1.1	09/27/06	Fixed some of the Typical Performance Curves.				
1.2	01/17/07	Added the X1, X2, and X3 numerical values of theTLA25JJA mktg outline (back page).				
D	05/03/13	Changed layout of National Data Sheet to TI format.				

REVISION HISTORY

(4)

(5)

www.ti.com

3-May-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
LM4949TL/NOPB	ACTIVE	DSBGA	YZR	25	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	GH3	Samples
LM4949TLX/NOPB	ACTIVE	DSBGA	YZR	25	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	GH3	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM4949TL/NOPB	DSBGA	YZR	25	250	178.0	8.4	2.82	2.82	0.76	4.0	8.0	Q1
LM4949TLX/NOPB	DSBGA	YZR	25	3000	178.0	8.4	2.82	2.82	0.76	4.0	8.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

8-May-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM4949TL/NOPB	DSBGA	YZR	25	250	210.0	185.0	35.0
LM4949TLX/NOPB	DSBGA	YZR	25	3000	210.0	185.0	35.0

YZR0025

B. This drawing is subject to change without notice.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications				
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive			
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications			
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers			
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps			
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy			
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial			
Interface	interface.ti.com	Medical	www.ti.com/medical			
Logic	logic.ti.com	Security	www.ti.com/security			
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense			
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video			
RFID	www.ti-rfid.com					
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com			
Wireless Connectivity	www.ti.com/wirelessconnectivity					

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated