SLTS037A (Revised 6/30/2000) - Wide Input Voltage Range: +8V to +25V - Negative Output: -2.5V/4A to -15V/1.5A - Adjustable Output Voltage - 85% Efficiency - Remote Sense Capability The PT6640 series is a positive input to negative output line of Integrated Switching Regulators (ISRs). Designed for general purpose applications, the PT6640 series delivers a negative output voltage at up to 24W. The PT6640 is packaged in a 14-Pin SIP (Single In-line Package) and is available in a surface-mount configuration. #### **Standard Application** C_1 = Required 560 μ F electrolytic C_2 = Required 330 μ F electrolytic #### **Pin-Out Information** | 1 | Remote Sense | |----|-------------------------| | 2 | Do Not Connect | | 3 | Do Not Connect | | 4 | $+V_{in}$ | | 5 | $+V_{in}$ | | 6 | $+V_{in}$ | | 7 | $-V_{out}$ | | 8 | $-V_{out}$ | | 9 | $-V_{out}$ | | 10 | $-V_{out}$ | | 11 | GND | | 12 | GND | | 13 | GND | | 14 | V _{out} Adjust | #### **Ordering Information** | PT6641 | =-3.3 Volts | |--------|---------------| | PT6642 | =-5.0 Volts | | PT6643 | =-12.0 Volts | | PT6644 | =-9.0 Volts | | PT6645 | =-15.0 Volts | | PT6646 | =-2.5 Volts | #### PT Series Suffix (PT1234X) | Case/Pin
Configuration | Heat
Spreader | |---------------------------|------------------| | Vertical Through-Hole | P | | Horizontal Through-Hole | D | | Horizontal Surface Mount | E | Note: Back surface of product is conducting metal #### **Specifications** | Characteristics | | | | PT6640 SE | RIES | | |---|--|---|---|----------------------------|---|------------| | (T _a = 25°C unless noted) | Symbols | Conditions | Min | Тур | Max | Units | | Output Current | I_o | $\begin{array}{c} T_a = 60^{\circ}\text{C}, \ 200 \ LFM, \ pkg \ P \\ T_a = 25^{\circ}\text{C}, \ natural \ convection} \ V_o \!\!\!\! < - \ 5.0V \\ V_o \!\!\!\! = - \ 9.0V \\ V_o \!\!\!\! = - \ 12.0V \\ V_o \!\!\!\! = - \ 15.0V \end{array}$ | 0.1
0.1
0.1
0.1
0.1 | | (See Note 2)
4.0
2.5
2.0
1.5 | A | | Input Voltage Range | $ m V_{in}$ | $\begin{array}{lll} 0.1A \leq I_{o} \leq I_{o} \; max & V_{o} = -2.5V/3.3V \\ V_{o} = -5.0V \\ V_{o} = -9.0V \\ V_{o} = -12.0V \\ V_{o} = -15.0V \end{array}$ | +8
+8
+8
+8 | | +27
+25
+21
+18
+15 | v | | Output Voltage Tolerance | $\Delta { m V_o}$ | Over V_{in} range
$T_a = -40$ °C to +65°C | Vo-0.1 | _ | Vo+0.1 | V | | Output Voltage Adjust Range | Voadj | $\begin{array}{ll} Pin \ 14 \ to \ V_o \ or \ ground & V_o = -2.5V \\ V_o = -3.3V \\ V_o = -5.0V \\ V_o = -9.0V \\ V_o = -12.0V \\ V_o = -15.0V \end{array}$ | -1.8
-2.2
-3.0
-6.0
-9.0
-10.0 | | -4.3
-4.7
-6.5
-10.2
-13.6
-17.0 | V | | Line Regulation | Regline | $+9V \le V_{in} \le +V_{in} \max$, $I_o = I_o \max$ | _ | ±0.5 | ±1.0 | $%V_{o}$ | | Load Regulation | Reg _{load} | $V_{in} = +12V$, $0.1 \le I_o \le I_o max$ | _ | ±0.5 | ±1.0 | $%V_{o}$ | | V _o Ripple/Noise | V_n | $V_{in} = +12V$, $I_o = I_o max$ | _ | 3.0 | _ | $%V_{o}$ | | Transient Response with $C_2 = 330 \mu F$ | $egin{array}{c} t_{tr} \ V_{os} \end{array}$ | I_o step between $0.5 x I_o max$ and $I_o max$ V_o over/undershoot | Ξ | 200
100 | _ | μSec
mV | | Efficiency | η | $V_{in} = +12V, I_o = 0.5x \ I_o max \qquad V_o = -2.5V \\ V_o = -3.3V \\ V_o = -5.0V \\ V_o = -9.0/12.0V \\ V_o = -15.0V$ | _
_
_
_ | 75
79
83
85
84 | _
_
_
_ | % | | | | V_{in} = +12V, I_o = I_o max V_o = -2.5V V_o = -3.3V V_o = -5.0V V_o = -9.0/12.0/15.0V | = | 74
77
80
84 | | % | Continued ### PT6640 Series #### 24W 12V Input Positive to Negative **Voltage Converter** #### **Specifications** (continued) | Characteristics | | | PT6640 SERIES | | | | |---|------------------|--|---------------|-----|---------|-------| | (T _a = 25°C unless noted) | Symbols | Conditions | Min | Тур | Max | Units | | Switching Frequency | f_{o} | $+9V \le V_{in} \le V_{in}$ max
Over I_o range | 500 | 550 | 600 | kHz | | Absolute Maximum
Operating Temperature Range | T_a | Over $V_{\rm in}$ range | -40 | _ | +85 (2) | °C | | Storage Temperature | T_s | _ | -40 | _ | +125 | °C | | Mechanical Shock | _ | Per Mil-STD-883D, Method 2002.3 | _ | 500 | _ | G's | | Mechanical Vibration | _ | Per Mil-STD-883D, Method 2007.2,
20-2000 Hz, soldered in a PC board | _ | 7.5 | _ | G's | | Weight | _ | _ | _ | 14 | _ | grams | (1) The PT6640 Series requires a 330µF(output) and 560µF(input) electrolytic capacitors for proper operation in all applications. (2) See Safe Operating Area curves or call the factory for guidance on thermal derating. #### CHARACTERISTICS TYPICAL #### Characteristic Curves @12.0V Vin (See Note A) ### **Safe Operating Area Curves** (See Note B) PT6640 Series # Adjusting the Output Voltage of the PT6640 24W Positive to Negative ISR Series The negative output voltage of the Power Trends PT6640 series ISRs may be adjusted higher or lower than the factory trimmed pre-set voltage with the addition of a single external resistor. Table 1 gives the allowable adjustment range for each model in the series as $V_{\rm a}$ (min) and $V_{\rm a}$ (max). **Adjust Up:** An increase in the negative output voltage is obtained by adding a resistor R2, between pin $14 \text{ (V}_{0} \text{ adjust)}$ and pins 7-10 (- V_{out}). **Adjust Down:** Adding a resistor (R1), between pin 14 (V_o adjust) and pins 11-13 (GND), decreases the output voltage magnitude. Refer to Figure 1 and Table 2 for both the placement and value of the required resistor, either (R1) or R2 as appropriate. #### Notes: - 1. Use only a single 1% resistor in either the (R1) or R2 location. Place the resistor as close to the ISR as possible. - 2. Never connect capacitors from V_{o} adjust to either GND, V_{out} , or the Remote Sense pin. Any capacitance added to the V_{o} adjust pin will affect the stability of the ISR. - If the Remote Sense feature is being used, connecting the resistor (R1) between pin 14 (V_o adjust) and pin 1 (Remote Sense) can benefit load regulation. - 4. The maximum allowed input voltage (V_{in}) will change as V_{out} is adjusted. The difference between the input voltage (V_{in}) and the output voltage (V_{out}) must not exceed 30V or $10 \times V_{out}$, whichever is less. Use one of the following formulas to determine the maximum allowed input voltage for the PT6640. $$\begin{aligned} & |V_{_{out}}| \text{ greater than 2.73V,} \\ & V_{_{in}}(\text{max}) &= 30 - |V_{_{out}}| & \text{Vdc} \end{aligned}$$ For example, if $V_{_{out}} = -12V$, $$V_{_{in}}(\text{max}) &= 30 - |-12| = 18V\text{dc}$$ $$|V_{_{out}}| \text{ less than } 2.73V$$, $$V_{_{in}}(\text{max}) &= 10 \times |V_{_{out}}| & \text{Vdc} \end{aligned}$$ Figure 1 The values of (R1) [adjust down], and R2 [adjust up], can also be calculated using the following formulas. $$(R1) \qquad = \quad \frac{R_o \left(V_o - 1.25 \right) \! \left(V_a - 1.25 \right)}{1.25 \left(V_o - V_a \right)} \quad - R_s \quad k\Omega$$ $$R2 \qquad = \frac{R_{o} (V_{o} - 1.25)}{V_{a} - V_{o}} - R_{s} \qquad k\Omega$$ $\begin{array}{lll} Where: \ V_{_{o}} &= Original \ V_{_{out}} \ (magnitude) \\ V_{_{a}} &= Adjusted \ V_{_{out}} \ (magnitude) \\ R_{_{o}} &= The \ resistance \ value \ in \ Table \ 1 \\ R_{_{s}} &= The \ series \ resistance \ from \ Table \ 1 \\ \end{array}$ #### Table 1 | PT6640 ADJUS | TMENT AND FOR | MULA PARAMETERS | | | | | | |---------------------|---------------|-----------------|--------|--------|--------|--------|--| | Series Pt # | PT6646 | PT6641 | PT6642 | PT6644 | PT6643 | PT6645 | | | Vo (nom) | -2.5V | -3.3V | -5.0V | -9.0V | -12.0V | -15.0V | | | Va (min) | -1.8V | -2.2V | -3.0V | -6.0V | -9.0V | -10.0V | | | Va (max) | -4.3V | -4.7V | -6.5V | -10.2V | -13.6V | -17.0V | | | Ro (kΩ) | 4.99 | 4.22 | 2.49 | 2.0 | 2.0 | 2.0 | | | R _s (kΩ) | 2.49 | 4.99 | 4.99 | 12.7 | 12.7 | 12.7 | | ## **Application Notes** continued ### PT6640 Series Table 2 | Series Pt # | PT6646 | PT6641 | PT6642 | Series Pt # | PT6644 | PT6643 | PT6645 | |--------------|------------------------|------------------------|------------------------|------------------------|--------------|----------------------|------------------| | Current | 4Adc | 4Adc | 4Adc | Current | 2.5Adc | 2Adc | 1.5Adc | | o (nom) | -2.5Vdc | -3.3Vdc | -5.0Vdc | V _o (nom) | -9.0Vdc | -12.0Vdc | -15.0Vd | | a (req'd) | | | | V _a (req'd) | | | | | -1.8 | (1.4)kΩ | | | -6.0 | (6.9)kΩ | | | | -1.9 | (2.9)kΩ | | | -6.2 | (9.2)kΩ | | | | -2.0 | (5.0)kΩ | | | -6.4 | (11.9)kΩ | | | | -2.1 | (8.1)kΩ | | | <u>-6.6</u> | (14.0)kΩ | | | | -2.2 | (0.1)kΩ
(13.3)kΩ | (1.0)kΩ | | -6.8 | (18.6)kΩ | | | | -2.3 | $(23.7)k\Omega$ | (2.3)kΩ | | | (23.0)kΩ | | | | -2.3
-2.4 | (54.9)kΩ | (2.3)kΩ | | | (28.3)kΩ | | | | | (34.9)852 | | | | | | | | <u>-2.5</u> | 50.01.0 | (5.8)kΩ | | _ | (35.0)kΩ | | | | -2.6 | 59.9kΩ | (8.4)kΩ | | | (43.5)kΩ | | | | -2.7 | 28.7kΩ | (11.7)kΩ | | | (55.0)kΩ | | | | -2.8 | 18.3kΩ | (16.5)kΩ | | | (71.0)kΩ | | | | -2.9 | 13.1kΩ | (23.6)kΩ | (1.01.0 | | (95.0)kΩ | | | | -3.0 | 10.0kΩ | (35.4)kΩ | (1.6)kΩ | | (135.0)kΩ | | | | -3.1 | 7.9kΩ | (59.0)kΩ | (2.3)kΩ | | (215.0)kΩ | | | | -3.2 | 6.4kΩ | (130.0) k Ω | (3.1)kΩ | | (455.0)kΩ | 2 | | | -3.3 | 5.3kΩ | | (4.0)kΩ | | | (31.7)kΩ | | | -3.4 | 4.4kΩ | 81.5kΩ | (5.1)kΩ | | 64.8kΩ | (36.1)kΩ | | | -3.5 | 3.8kΩ | 38.3kΩ | (6.2) k Ω | | 26.1kΩ | (41.2) k Ω | | | -3.6 | 3.2kΩ | 23.8kΩ | (7.6) k Ω | -9.6 | 13.1kΩ | (47.1) k Ω | | | -3.7 | $2.7 \mathrm{k}\Omega$ | 16.6kΩ | (9.1)kΩ | -9.8 | 6.7kΩ | (54.1) k Ω | | | -3.8 | 2.3kΩ | 12.3kΩ | (10.9) k Ω | -10.0 | 2.8kΩ | (62.6) k Ω | (25.8)k ⊆ | | -3.9 | 2.0kΩ | 9.4kΩ | (13.0) k Ω | -10.2 | $0.2k\Omega$ | (72.8) k Ω | (28.3)k ⊆ | | -4.0 | $1.7 \mathrm{k}\Omega$ | 7.4kΩ | (15.6) k Ω | -10.4 | | (85.7) k Ω | (31.1)kΩ | | 4.1 | $1.4 \mathrm{k}\Omega$ | 5.8 k Ω | (18.7) k Ω | -10.6 | | (102.0) k Ω | (34.1)k s | | -4.2 | $1.2 \mathrm{k}\Omega$ | 4.6kΩ | (22.6) k Ω | -10.8 | | (124.0) k Ω | (37.3)k ⊆ | | -4.3 | $1.0 \mathrm{k}\Omega$ | $3.7 \mathrm{k}\Omega$ | (27.6)kΩ | -11.0 | | (155.0) k Ω | (40.9)kΩ | | -4.4 | | 2.9kΩ | (34.2)kΩ | -11.2 | | (201.0)kΩ | (44.9)kΩ | | -4.5 | | 2.2kΩ | (43.6)kΩ | -11.4 | | (278.0)kΩ | (49.3)kΩ | | -4.6 | | 1.7kΩ | (57.6)kΩ | -11.6 | | (432.0)kΩ | (54.3)k ⊆ | | -4.7 | | 1.2kΩ | (80.9)kΩ | -11.8 | | (895.0)kΩ | (59.8)kΩ | | -4.8 | | | (128.0)kΩ | -12.0 | | | (66.1)kΩ | | -4.9 | | | (268.0)kΩ | -12.2 | | 94.8kΩ | (73.3)kΩ | | -5.0 | | | (2000) | -12.4 | | 41.1kΩ | (81.6)kΩ | | -5.1 | | | 88.4kΩ | -12.6 | | 23.1kΩ | (91.3)kΩ | | -5.2 | | | 41.7kΩ | -12.8 | | 14.2kΩ | (103.0)kΩ | | -5.3 | | | 26.1kΩ | -13.0 | | 8.8kΩ | (117.0)kΩ | | -5.4 | | | 18.4kΩ | -13.2 | | 5.2kΩ | (133.0)kΩ | | -5.5 | | | 13.7kΩ | -13.4 | | 2.7kΩ | (154.0)kΩ | | -5.6 | | | 10.6kΩ | -13.6 | | 0.7kΩ | (181.0)kΩ | | | | | 8.4kΩ | | | U./K\$2 | | | -5.7 | | | | <u>-13.8</u> | | | (217.0)kΩ | | -5.8
5.0 | | | 6.7kΩ | | | | (268.0)kΩ | | -5.9 | | | 5.4kΩ | | | | (343.0)kΩ | | -6.0 | | | 4.4kΩ | | | | (570.0)kΩ | | -6.1 | | | 3.5kΩ | | | | | | -6.2 | | | 2.8kΩ | | | | 42.3kΩ | | -6.3 | | | 2.2kΩ | | | | 14.8kΩ | | -6.4 | | | $1.7 \mathrm{k}\Omega$ | -16.5 | | | 5.6kΩ | R1 = (Blue) R2 = Black #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 2000, Texas Instruments Incorporated #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 2000, Texas Instruments Incorporated