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Chapter 1
SPRUHJ1F–January 2013–Revised July 2014

Introduction

Welcome and thank you for selecting Texas Instrument's InstaSPIN™ solutions. This document will guide
you through the technical details of InstaSPIN enabling you to integrate this solution into your application.
The structure of this document can be summarized as:
• Introduction to

– InstaSPIN-FOC™ and FAST™
– InstaSPIN-MOTION™ and SpinTAC™

• Running a motor immediately with TI hardware and software
• Understand software details, from reviewing API function calls to state diagrams and tuning the speed

and position control loops
• Understanding hardware aspects that directly impact InstaSPIN's performance.

All of the above are provided to help you develop a successful product using InstaSPIN-FOC or
InstaSPIN-MOTION software. Example projects (labs) are a key part of this success and are designed to
relate specifically with the topics in this document. They are intended for you to not only experiment with
InstaSPIN but to also use as reference for your design. The most up-to-date InstaSPIN-FOC and
InstaSPIN-MOTION solutions and design resources, along with practical videos, can be found here:
http://www.ti.com/instaspin.

Definition of terms that are used throughout this document can be found in Appendix A at the end of this
document. The most common terms used are the following:
• FOC:

– Field-Oriented Control
• InstaSPIN-FOC:

– Complete sensorless FOC solution provided by TI on-chip in ROM on select devices (FAST
observer, FOC, speed and current loops), efficiently controlling your motor without the use of any
mechanical rotor sensors.

• FAST
– Unified observer structure which exploits the similarities between all motors that use magnetic flux

for energy transduction, automatically identifying required motor parameters and providing motor
feedback signals: Flux, flux Angle, motor shaft Speed, and Torque.

• SpinTAC Motion Control Suite:
– Includes an advanced speed and position controller, a motion engine, and a motion sequence

planner. The SpinTAC disturbance-rejecting speed controller proactively estimates and
compensates for system disturbances in real-time, improving overall product performance. The
SpinTAC motion engine calculates the ideal reference signal (with feed forward) based on user-
defined parameters. SpinTAC supports the standard industry curves, and LineStream's proprietary
“smooth trajectory” curve. The SpinTAC motion sequence planner operates user-defined state
transition maps, making it easy to design complex motion sequences.

• InstaSPIN-MOTION:
– A comprehensive sensorless or sensored FOC solution for motor-, motion-, speed-, and position-

control. This solution delivers robust system performance at the highest efficiency for motor
applications that operate in various motion state transitions. InstaSPIN-MOTION includes the FAST
unified software observer, combined with SpinTAC Motion Control Suite from LineStream
Technologies.

• MotorWare™ software:
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– TI supplied scalable software architecture for motor control, of which InstaSPIN-FOC is a part.

The InstaSPIN-FOC and InstaSPIN-MOTION software is available on the TMS320F2806xF,
TMS320F2086xM, TMS320F2802xF, TMS320F2805xF, and TMS320F2805xM device families with plans
to release on more devices in the future. For more details, see the device-specific data sheets and the
device-specific technical reference manuals (TRMs). The InstaSPIN TRMs have the latest performance
data resulting from tests conducted by TI motor labs. This document, the InstaSPIN User's Guide, differs
in that it is a functional "How-To" guide for using InstaSPIN-FOC or InstaSPIN-MOTION in your
application.

Whether you are using TI supplied inverters and motors or using your own, this document helps you learn
about this new and empowering solution from TI.

Topic ........................................................................................................................... Page

1.1 An Overview of InstaSPIN-FOC and FAST ............................................................. 22
1.2 An Overview of InstaSPIN-MOTION and SpinTAC................................................... 29

21SPRUHJ1F–January 2013–Revised July 2014 Introduction
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


&�^d¡����]u��}�

Flux, Angle, Speed, Torque 

Motor Parameters ID

Vbus 

Vr_in 

Vt_in 

Ir_in

It_in

Angle

Speed

Flux

Torque

Enable Motor Identification

Enable PowerWarp¡ 

Motor Type

Enable Rs Online Recalibration

EST_run

ROM

Rs

a

Rr

a

Irated

a
\rated
a

Lsd

a

Lsq

a

T
a

Z
a

Wa

\
a

Wa

Z
a

\
a

Irated

a

T
a

Enable Force Angle Startup

Motor Phase 

Currents

Motor Phase 

Voltages

Bus Voltage

An Overview of InstaSPIN-FOC and FAST www.ti.com

1.1 An Overview of InstaSPIN-FOC and FAST
TMS320F2806xF (69F, 68F, and 62F — 80- or 100-pin packages), TMS320F2802xF (26F and 27F — 48-
pin package), and TMS320F2805xF (54F and 52F, — 80-pin packages) devices are the first from Texas
Instruments that include the FAST (Figure 1-1) estimator and additional motor control functions needed for
cascaded speed and torque loops for efficient three-phase field-oriented motor control (FOC).

Together — with F2806xF, F2805xF, and F2802xF peripheral drivers in user code — they enable a
sensorless (also known as self-sensing) InstaSPIN-FOC solution which can identify, tune the torque
controller and efficiently control your motor in minutes, without the use of any mechanical rotor sensors.
This entire package is called InstaSPIN-FOC, which is made available in ROM. For the F2806xF devices,
the ROM contains the FAST estimator and the FOC blocks; for the F2802xF devices, only the FAST
estimator is in ROM; and for the F2805xF devices, the ROM contains the FAST estimator and the FOC
blocks. In the case of the F2806xF devices, the user also has the option of executing all FOC functions in
user memory (FLASH or RAM), which makes calls to the proprietary FAST estimator firmware in ROM. In
the case of the F2805xF devices, the user also has the option of executing all FOC functions in user
memory (FLASH or RAM), which makes calls to the proprietary FAST estimator firmware in ROM. In the
case of the F2802xF devices, all the FOC blocks are loaded and executed from user's memory (FLASH or
RAM) while the estimator is run from ROM.InstaSPIN-FOC was designed for flexibility, to accommodate a
range of system software architectures. The range of this flexibility is shown in Figure 1-2 and Figure 1-3.

Figure 1-1. FAST - Estimating Flux, Angle, Speed, Torque - Automatic Motor Identification

InstaSPIN, InstaSPIN-FOC, FAST, InstaSPIN-MOTION, MotorWare, PowerWarp, C2000, Piccolo, NexFET, Code Composer Studio,
controlSUITE are trademarks of Texas Instruments.
SpinTAC is a trademark of LineStream Technologies.
All other trademarks are the property of their respective owners.
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1.1.1 FAST Estimator Features
• Unified observer structure which exploits the similarities between all motors that use magnetic flux for

energy transduction
– Both synchronous (BLDC, SPM, IPM), and asynchronous (ACIM) control are possible
– Salient compensation for Interior Permanent Magnet motors: observer tracks rotor flux and angle

correctly when Ls-d and Ls-q are provided
• Unique, high quality motor feedback signals for use in control systems

– High-quality Flux signal for stable flux monitoring and field weakening
– Superior rotor flux Angle estimation accuracy over wider speed range compared to traditional

observer techniques (independent of all rotor parameters for ACIM)
– Real-time low-noise motor shaft Speed signal
– Accurate high bandwidth Torque signal for load monitoring and imbalance detection

• Angle estimator converges within first cycle of the applied waveform, regardless of speed
• Stable operation in all power quadrants, including generator quadrants
• Accurate angle estimation at steady state speeds below 1 Hz (typ.) with full torque
• Angle integrity maintained even during slow speed reversals through zero speed
• Angle integrity maintained during stall conditions, enabling smooth stall recovery
• Motor Identification process measures required electrical motor parameters of unloaded motor in under

2 minutes (typ.)
• “On-the-fly” stator resistance recalibration (online Rs) tracks stator resistance changes in real time,

resulting in robust operation over temperature. This feature can also be used as a temperature sensor
of the motor's windings (basepoint calibration required)

• Superior transient response of rotor flux angle tracking compared to traditional observers
• PowerWarp™ adaptively reduces current consumption to minimize the combined (rotor and stator)

copper losses without compromising ACIM output power levels

1.1.2 InstaSPIN-FOC Solution Features
• Includes FAST estimator to measure rotor flux (magnitude and angle) in a sensorless FOC system
• Automatic torque (current) loop tuning, with option for user adjustments
• Automatic configuration of speed loop gains (Kp and Ki) provides stable operation for most

applications, user adjustments required for optimum transient response
• Automatic or manual field weakening and field boosting
• Bus Voltage compensation
• Automatic offset calibration insures quality samples of feedback signals
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1.1.3 InstaSPIN-FOC Block Diagrams

Figure 1-2. i. Block Diagram of Entire InstaSPIN-FOC Package in ROM (except F2802xF devices)
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Figure 1-3. Block Diagram of InstaSPIN-FOC in User Memory, with Exception of FAST in ROM
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1.1.4 Comparing FAST Estimator to Typical Solutions

Table 1-1. FAST Estimator vs. Typical Solutions

Typical Software Sensors and
Topic FOC Solutions TI's FAST Estimator and InstaSPIN-FOC Solution

Relies on fewer motor parameters Off-line parameterElectrical Motor Motor-model based observers heavily identification of motor – no Datasheet required!On-lineParameters dependent on motor parameters parameter monitoring and re-estimation of stator resistance
No estimator tuning required. Once motor parameters areComplex observer tuning done multipleEstimator Tuning identified, it works the same way every time across speed/torquetimes for speed/loads for each motor dynamics

Angle-tracking performance is typically FAST provides reliable angle tracking which converges within
only good at over 5-10Hz with challenges one electrical cycle of the applied waveform, and can track at
at higher speeds and compensation for less than 1 Hz frequency (dependent on quality and resolution ofEstimator Accuracy field weakening; Dynamic performance analog sensing)Angle tracking exhibits excellent transient
influenced by hand tuning of observer; response (even with sudden load transients which can stall the
Motor stalls typically crash observer motor, thus enabling a controlled restart with full torque)

InstaSPIN-FOC includes:
• Zero Speed start with forced-angle

Difficult or impossible to start from zero
• 100% torque at start-upspeedObserver feedback at zero speed isStart-up • FAST rotor flux angle tracking converges within onenot stable, resulting in poor rotor angle

electrical cycleaccuracy and speed feedback
FAST is completely stable through zero speed, providing
accurate speed and angle estimation.
Automatically sets the initial tuning of current controllers based

Tuning FOC current control is on the parameters identified. User may update gains or use ownCurrent Loop challenging – especially for novices controllers if desiredThe identification process to fully tune the
observer and torque controller takes less than 2 minutes
FAST includes automatic hardware/software calibration and
offset compensationFAST requires 2-phase currents (3 for 100%

System offsets and drifts are not and over-modulation), 3-phase voltages to support full dynamicFeedback Signals managed performance, DCbus voltage for ripple compensation in current
controllers FAST includes an on-line stator resistance tracking
algorithm

Multiple techniques for multiple motors: FAST works with all 3-phase motor types, synchronous and
standard back-EMF, Sliding Mode, asynchronous, regardless of load dynamics. Supports salientMotor Types Saliency tracking, induction flux IPM motors with different Ls-d and Ls-qIncludes PowerWarp for
estimators, or “mixed mode” observers induction motors = energy savings
Field-weakening region challenging for FAST estimator allows easy field weakening or field boosting

Field-Weakening observers – as Back-EMF signals grow applications due to the stability of the flux estimation in a wide
too large, tracking and stability effected range
Angle tracking degrades with stator Angle estimation accuracy is improved from online statorMotor Temperature temperature changes resistance recalibration
Poor speed estimation causes efficiency High quality low noise Speed estimator, includes slip calculationSpeed Estimation losses in the FOC system and less stable for induction motorsdynamic operation
Torque and vibration sensors typicallyTorque Estimation High bandwidth motor Torque estimatorrequired
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1.1.5 FAST Provides Sensorless FOC Performance

1.1.5.1 FAST Estimator Replaces Mechanical Sensor
Field Oriented Control (FOC) of an electric motor results in superior torque control, lower torque ripple,
and in many cases, improved efficiency compared to traditional AC control techniques. For best dynamic
response, rotor flux referenced control algorithms are preferred to stator flux referenced techniques. To
function correctly, these systems need to know the spacial angle of the rotor flux with respect to a fixed
point on the stator frame (typically the magnetic axis of the phase A stator coil). This has traditionally been
accomplished by a mechanical sensor (e.g., encoder or resolver) mounted to the shaft of the motor. These
sensors provide excellent angle feedback, but inflict a heavy toll on the system design. There are six
major system impacts resulting from sensored angle feedback, as discussed below and illustrated in
Section 3.5.4:
1. The sensor itself is very expensive (often over $2500 for a good resolver and several dollars for high

volume integrated encoders)
2. The installation of the sensor requires skilled assembly, which increases labor costs
3. The sensor often requires separate power supplies, which increases system costs and reduces

reliability
4. The sensor is the most delicate component of the system, which impacts system reliability, especially

in harsh real-world applications
5. The sensor feedback signals are brought back to the controller board via connectors, which also

increases system costs and can significantly reduce reliability, depending on the type of connector
6. The cabling required to bring the sensor signals back to the controller creates multiple challenges for

the system designer:
• Additional costs for the cable, especially if there is a substantial distance between the motor and

controller
• Susceptibility to sources of noise, which requires adding expense to the cable with special

shielding or twisted pairs
• The sensor and associated cabling must be earth grounded for safety reasons. This often adds

additional cost to isolate these signals, especially if the processor which processes the sensor
signals is not earth grounded

In some applications where the motor is enclosed (e.g., compressors), a sensored solution is impractical
due to the cost of getting the feedback wires through the casing. For these reasons, designers of FOC
systems are highly motivated to eliminate the sensor altogether, and obtain the rotor flux angle information
by processing signals which are already available on the controller circuit board. For synchronous
machines, most techniques involve executing software models of the motor being controlled to estimate
the back-EMF waveforms (rotor flux), and then processing these sensed waveforms to extract an
estimation of the rotor shaft angle, and a derivation of its speed. For asynchronous machines the process
is a bit more complicated, as this software model (observer) must also account for the slip which exists
between the rotor and rotor flux.

However, in both cases, performance suffers at lower speeds due to the amplitude of the back-EMF
waveforms being directly proportional to the speed of the motor (assuming no flux weakening). As the
back-EMF amplitude sinks into the noise floor, or if the ADC resolution cannot faithfully reproduce the
small back-EMF signal, the angle estimation falls apart, and the motor drive performance suffers.

To solve the low-speed challenge, techniques have been created that rely on high frequency injection to
measure the magnetic irregularities as a function of angle (i.e., magnetic saliency) to allow accurate angle
reconstruction down to zero speed. However, this introduces another set of control problems. First, the
saliency signal is non-existent for asynchronous motors and very small for most synchronous machines
(especially those with surface mount rotor magnets). For the motors that do exhibit a strong saliency
signal (e.g., IPM motors), the signal often shifts with respect to the rotor angle as a function of loading,
which must be compensated. Finally, this angle measurement technique only works at lower speeds
where the fundamental motor frequency does not interfere with the interrogation frequency. The control
system has to create a mixed-control strategy, using high-frequency injection tracking at low speed, then
move into Back-EMF based observers at nominal and high speeds.
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With any technique, the process of producing a stable software sensor is also extremely challenging, as
this motor model (observer) is essentially its own control system that needs to be tuned per motor across
the range of use. This tuning must be done with a stable forward control loop. Needed is a stable torque
(and usually speed) loop to tune the observer, but how do you pre-tune your forward control without a
functioning observer? One option is to use a mechanical sensor for feedback to create stable current and
speed loops, and then tune your software sensor in parallel to the mechanical sensor. However, the use of
a mechanical sensor is often not practical. This problem has delayed market use of software sensors for
sensorless FOC control.

Figure 1-4. Sensored FOC System

In summary, these existing solutions all suffer from various maladies including:
• Poor low speed performance (back-EMF and SMO)
• Poor high speed performance (saliency observers)
• Poor dynamic response
• Calculation intensive (multi-modal observers)
• Parameter sensitivity
• Requirement for observer tuning

The most recent innovation in the evolution of sensorless control is InstaSPIN-FOC. Available as a C-
callable library embedded in on-chip ROM on several TI processors, InstaSPIN-FOC was created to solve
all of these challenges, and more. It reduces system cost and development time, while improving
performance of three-phase variable speed motor systems. This is achieved primarily through the
replacement of mechanical sensors with the proprietary FAST estimator. FAST is an estimator that:
• Works efficiently with all three phase motors, taking into account the differences between

synchronous/asynchronous, salient/non-salient, and permanent/non-permanent/induced magnets
• Dramatically improves performance and stability across the entire operating frequency and load range

for a variety of applications
• Removes the manual tuning challenge of traditional FOC systems:

– observers and estimators, completely removes required tuning
– current loop regulators, dramatically reduces required tuning
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• Eliminates or reduces motor parameter variation effects
• Automatically designs a stable and functional control system for most motors in under two minutes.

1.1.5.2 Rotor Angle Accuracy Critical for Performance
Why has the need for a precise estimation of the rotor flux angle driven many to use mechanical sensors?

For efficient control of three-phase motors, the objective is to create a rotating flux vector on the stator
aligned to an ideal orientation with respect to the rotor in such a way that the rotor field follows the stator
field while creating necessary torque and using the minimum amount of current.
• Stator: stationary portion of the motor connected to the microprocessor-controlled inverter
• Ideal Orientation: 90 degrees for non-salient synchronous; slightly more for salient machines, and

slightly less in asynchronous machines since part of the current vector is also used to produce rotor
flux

• Rotor: rotating portion of the motor, produces torque on the shaft to do work
To achieve this, you need to extract the following information from the motor:

• Current being consumed by each phase
• Precise relative angle of the rotor flux magnetic field (usually within ±3 electrical degrees), so you can

orient your stator field correctly
• For speed loops, you also need to know rotor speed.

1.2 An Overview of InstaSPIN-MOTION and SpinTAC
InstaSPIN-MOTION [TMS320F2806xM (69M and 68M — 80- or 100-pin packages) and TMS320F2805xM
(54M and 52M, — 80-pin packages)] is the first offering from Texas Instruments to combine TI's 32-bit
C2000™ Piccolo™ microcontrollers with comprehensive motor-, motion-, speed-, and position-control
software. InstaSPIN-MOTION delivers robust velocity and position control at the highest efficiency for
motor applications that operate in various motion state transitions. InstaSPIN-MOTION is your own motion
control expert, on a single chip.

InstaSPIN-MOTION is a sensorless or sensored FOC solution that can identify, tune, and control your
motor in minutes. InstaSPIN-MOTION features the FAST premium software sensor and the SpinTAC
Motion Control Suite (Figure 1-5). The core algorithms are embedded in the read-only-memory (ROM) on
TI's 32-bit C2000 Piccolo microcontrollers (MCUs).
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Figure 1-5. InstaSPIN-MOTION = C2000 Piccolo Microcontroller + FAST Software Sensor (optional) +
Auto-Tuned Inner Torque Controller + SpinTAC Motion Control Suite

InstaSPIN-MOTION is ideal for applications that require accurate speed and position control, minimal
disturbance, or undergo multiple state transitions or experience dynamic speed or load changes.

Table 1-2 provides examples of applications that will most benefit from InstaSPIN-MOTION.

Table 1-2. InstaSPIN-MOTION Application Examples

Application Characteristics Examples

• Industrial fans
• Conveyor systems
• Elevators/escalatorsAccurate speed control
• Automotive body parts (electric windows, sunroofs, etc.)
• Optical disc drives/hard drives
• Medical mixing

• Surveillance systems
• Packaging systems

Accurate position control • Medical robots
• Gimbal systems
• Textile/Sewing machines

• Dental tools
Minimal disturbance • Power tools

• Security gates and doors
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Table 1-2. InstaSPIN-MOTION Application Examples (continued)
Application Characteristics Examples

• HVAC pumps, fans and blowers
• Generators

Undergoes multiple state • Air conditioning compressors
transitions/dynamic changes • Washing machines

• Exercise equipment
• Medical pumps

1.2.1 InstaSPIN-MOTION Key Capabilities and Benefits
InstaSPIN-MOTION replaces inefficient, older design techniques with a solution that maximizes system
performance and minimizes design effort. By embedding the motor expertise on the chip, InstaSPIN-
MOTION enables users to focus on optimizing their application rather than struggling with motion control.

InstaSPIN-MOTION provides the following core capabilities:
• The FAST unified software observer, which exploits the similarities between all motors that use

magnetic flux for energy transduction. The FAST estimator measures rotor flux (magnitude, angle, and
speed) as well as shaft torque in a sensorless FOC system.

• Motor parameter identification, used to tune the FAST software observer and initialize the innermost
current (torque) PI controllers for Iq and Id control of the FOC system.

• SpinTAC, a comprehensive motion control suite (see Figure 1-6) from LineStream Technologies,
simplifies tuning and ensures optimal performance across dynamic speed and position ranges.

Figure 1-6. SpinTAC Motion Control Suite Components

1.2.1.1 The FAST Unified Software Observer
The FAST unified observer structure exploits the similarities between all motors that use magnetic flux for
energy transduction:
• Supports both synchronous (BLDC, SPM, IPM), and asynchronous (ACIM) control.
• Provides salient compensation for interior permanent magnet motors: observer tracks rotor flux and

angle correctly when Ls-d and Ls-q are provided.

FAST offers unique, high-quality motor feedback signals for control systems:
• High-quality Flux signal for stable flux monitoring and field weakening.
• Superior rotor flux Angle estimation accuracy over wider speed range compared to traditional observer

techniques independent of all rotor parameters for ACIM.
• Real-time low-noise motor shaft Speed signal.
• Accurate high-bandwidth Torque signal for load monitoring and imbalance detection.

FAST replaces mechanical encoders and resolvers and accelerates control system design:
• Angle estimator converges within first cycle of the applied waveform, regardless of speed.
• Stable operation in all power quadrants, including generator quadrants.
• Accurate angle estimation at steady state speeds below 1 Hz (typ) with full torque.
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• Angle integrity maintained even during slow speed reversals through zero speed.
• Angle integrity maintained during stall conditions, enabling smooth stall recovery.
• Motor identification measures required electrical motor parameters of unloaded motor in under 2

minutes (typ).
• On-the-fly stator resistance recalibration (online Rs) tracks stator resistance changes in real time,

resulting in robust operation over temperature. This feature can also be used as a temperature sensor
of the motor's windings (basepoint calibration required).

• Superior transient response of rotor flux angle tracking compared to traditional observers.
• PowerWarp adaptively reduces current consumption to minimize the combined (rotor and stator)

copper losses to the lowest, without compromising ACIM output power levels.

1.2.1.2 The SpinTAC Motion Control Suite
SpinTAC minimizes the time you spend defining how you want your motor to spin and ensures that your
motor runs at its optimal level for ideal performance. Key benefits include:
• Simplified Tuning - Tune your system for the entire position and speed operating range with a single,

easy-to-evaluate parameter.
• Intuitive Trajectory Planning - Easily design and execute complex motion sequences.
• Mechanically Sound Movement - Optimize your transitions between speeds based on your system's

mechanical limitations.
• Ideal Control - Benefit from the most accurate speed and position control on the market, based on

LineStream's patented Active Disturbance Rejection Control.

There are four components that comprise the SpinTAC Motion Control Suite: Identify, Control, Move, and
Plan. Each of these components exist for both the Velocity and Position solution.

1.2.1.2.1 IDENTIFY
SpinTAC Identify estimates inertia (the resistance of an object to rotational acceleration around an axis).
The greater the system inertia, the greater the torque needed to accelerate or decelerate the motor. The
SpinTAC controller uses the system's inertia value to provide the most accurate system control. SpinTAC
Identify automatically measures system inertia by spinning the motor in the application and measuring the
feedback.

1.2.1.2.2 CONTROL
SpinTAC Control is an advanced speed and position controller featuring Active Disturbance Rejection
Control (ADRC), which proactively estimates and compensates for system disturbance, in real time.
SpinTAC automatically compensates for undesired system behavior caused by:
• Uncertainties (e.g., resonant mode)
• Nonlinear friction
• Changing loads
• Environmental changes

SpinTAC Control presents better disturbance rejection and trajectory tracking performance than a PI
controller and can tolerate a wide range of inertia change. This means that SpinTAC improves accuracy
and system performance and minimizes mechanical system duress.

With single coefficient tuning, the SpinTAC controller allows users to quickly test and tune their velocity
and position control from soft to stiff response. This single gain (bandwidth) typically works across the
entire variable speed, position and load range of an application, reducing complexity and system tuning
time typical in multi-variable PI-based systems. A single parameter controls both position and speed.
These systems often require a dozen or more tuned coefficient sets to handle all possible dynamic
conditions.
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Figure 1-7. Simple Tuning Interface

The InstaSPIN-MOTION (F2805xM and F2806xM) GUI (see Figure 1-7), in conjunction with the
InstaSPIN-MOTION Quick Start Guide, allow users to quickly evaluate InstaSPIN-MOTION (speed control)
using TI's evaluation kits, the TI provided motors, or their own motor. The GUI is designed to quickly guide
you through the InstaSPIN-MOTION evaluation process. You can obtain the GUI, free of charge,
from ti.com/tool/motorkitscncd69miso. Once you determine that InstaSPIN-MOTION is right for your
application, use the MotorWare-based projects, in conjunction with this document to design your project
and conduct performance testing.

1.2.1.2.3 MOVE
SpinTAC Move provides an easy way to smoothly transition from one speed or position to another by
computing the fastest path between Point A and Point B. SpinTAC Move generates a profile based on
starting velocity or position, desired velocity or position, and configured system limitations for acceleration
and jerk. Jerk represents the rate of change of acceleration. A larger jerk will increase the acceleration at
a faster rate. Steps, or sharp movement between two points, can cause systems to oscillate. The bigger
the step, the greater this tendency. Control over jerk can round the velocity corners, reducing oscillation.
As a result, acceleration can be set higher. Controlling the jerk in your system will lead to less mechanical
stress on your system components and can lead to better reliability and less failing parts.

As opposed to pre-defined lookup tables, SpinTAC Move runs on the processor, consuming less memory
than traditional solutions. Besides the industry standard trapezoidal curve and s-Curve, SpinTAC also
provides a proprietary st-Curve, which is even smoother than s-Curve and allows users to limit the jerk of
the motion.

Figure 1-8. Curves Available in SpinTAC Move
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Figure 1-8 describes the curves that are available for use in SpinTAC Move. The LineStream proprietary
st-Curve provides the smoothest motion by smoothing out the acceleration of the profile. For most
applications the st-Curve represents the best motion profile.

1.2.1.2.4 PLAN
SpinTAC Plan provides easy design and execution of complex motion sequences. The trajectory planning
feature allows users to quickly build various states of motion (point A to point B) and tie them together with
state based logic. SpinTAC Plan can be used to implement a motion sequence for nearly any application.
Equation 76 displays the motion sequence for a washing machine and Figure 1-10 displays the motion
sequence for a garage door. Both of these were easily designed using SpinTAC Plan. Once designed, the
trajectories are directly embedded into the C code on the microcontroller.

Figure 1-9. State Transition Map for a Washing Machine
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Figure 1-10. State Transition Map for a Garage Door System

1.2.1.3 Additional InstaSPIN-MOTION Features
• Automatic torque (current) loop tuning with option for user adjustments
• Automatic or manual field weakening and field boosting
• Bus voltage compensation
• Automatic offset calibration ensures quality samples of feedback signals

1.2.2 InstaSPIN-MOTION Block Diagrams
InstaSPIN-MOTION is designed in a modular structure. Customers can determine which functions will be
included in their system. The FAST Observer resides in ROM. The core control algorithms of the SpinTAC
library reside in ROM, and these functions are accessed by application program interface (API) from the
user code.

InstaSPIN-MOTION supports a wide array of system designs. InstaSPIN-MOTION uses the FAST
software encoder for sensorless FOC systems [for additional information, see the TMS320F2802xF
InstaSPIN-FOC Technical Reference Manual (SPRUHP4), the TMS320F2805xF InstaSPIN-FOC
Technical Reference Manual (SPRUHW0), and the TMS320F2806xF InstaSPIN-FOC Technical
Reference Manual (SPRUHI9)]. InstaSPIN-MOTION also supports solutions that leverage mechanical
sensors (e.g., encoders, resolvers). These scenarios are described below.
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Note that the variables used in Section 8.6, Figure 1-12, Figure 1-13, and Figure 1-14 are defined as
follows:
• θQep: position angle signal from encoder
• θM: formatted sawtooth position signal to be used in SpinTAC Position Controller
• θSP: Sawtooth position reference signal generated by SpinTAC Position Move
• ωlim: Speed Limit (used in position profile generation)
• : Acceleration Limit
• : Jerk Limit
• ωRef: Speed Reference
• : Acceleration Reference
• : Motor time constant

Scenario 1: InstaSPIN-MOTION Speed Control with FAST Software Encoder
In this scenario (see Section 8.6 and Figure 1-12), SpinTAC Velocity Control receives the speed estimate
from the FAST estimator and generates the torque reference signal. This works with InstaSPIN-MOTION
in user memory (see Section 8.6) or in ROM (see Figure 1-12). The SpinTAC Motion Control Suite
provides the motion sequence state machine, generates the reference trajectory and controls the system
speed.
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Figure 1-11. InstaSPIN-MOTION in User Memory, with Exception of FAST and SpinTAC in ROM
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Figure 1-12. InstaSPIN-MOTION in ROM
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Scenario 2: InstaSPIN-MOTION Speed Control with a Mechanical Sensor
While sensorless solutions are appealing and cost effective for many applications, there are some
applications that require the rigor and accuracy of a mechanical sensor. For these applications (see
Figure 1-13), the quadrature encoder provides position information, which is then converted to speed
feedback via the SpinTAC Position Converter. SpinTAC Velocity Control receives the speed feedback and
generates the torque reference signal via IqRef. The SpinTAC Motion Control Suite provides the motion
sequence state machine, generates the reference trajectory and controls the system speed.
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Figure 1-13. InstaSPIN-MOTION Speed Control with a Mechanical Sensor
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Scenario 3: InstaSPIN-MOTION Position Control with Mechanical Sensor and Redundant FAST
Software Sensor
There are many applications where precise position control is required. For these applications, it is difficult
to balance the many tuning parameters that are required. InstaSPIN-MOTION features accurate position,
speed, and torque control, with combined position and speed single-variable tuning. This simplifies the
tuning challenge and allows you to focus on your application and not on tuning your motor. Position
applications require a mechanical sensor in order to precisely identify the motor angle at zero and very low
speeds. The FAST Software Encoder may provide redundancy in position control applications; this can be
used as a safety feature in case the mechanical encoder fails (see Figure 1-14).
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Figure 1-14. InstaSPIN-MOTION Position Control with Mechanical Sensor and Redundant FAST Software Sensor
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1.2.3 Application Examples
InstaSPIN-MOTION is ideal for applications that require accurate speed and position control, minimal
disturbance, and for applications that undergo multiple state transitions or experience dynamic changes. A
few examples are provided below.

1.2.3.1 Treadmill Conveyor: Smooth Motion Across Varying Speeds and Loads
Consistent speed control is critical for treadmill conveyor belts. When a person runs on the treadmill, their
stride disturbs the motion of the belt. The runner's stride will be choppy if the motor driving the belt cannot
quickly provide enough torque to overcome the disturbance. This problem is exacerbated when the user
changes speeds as part of their exercise regime. If the belt does not smoothly accelerate or decelerate it
seems like the treadmill is not operating correctly. In addition, at low speeds when a user steps on the
belt, their weight can cause the belt to stop.

InstaSPIN-MOTION was applied to a commercial treadmill using a 4-HP, 220-V AC induction motor to
drive the conveyor belt. The treadmill was tested across a variable speed range: 42 rpm at the low end, to
3300 rpm at top speed.

The customer found that InstaSPIN-MOTION's advanced controller automatically compensated for
disturbances, keeping the speed consistent while running, and across changing speeds. The controller
prevented the belt from stopping at low speeds when a load was applied. In addition, a single gain was
used to control the entire operating range.

1.2.3.2 Video Camera: Smooth Motion and Position Accuracy at Low Speeds
High-end security and conference room cameras operate at very low speeds (e.g., 0.1 rpm) and require
accurate and smooth position control to pan, tilt, and zoom. The motors that drive these cameras are
difficult to tune for low speed, and they usually require a minimum of four tuning sets. In addition, there
can be choppy movement at startup, which results in a shaky or unfocused picture.

InstaSPIN-MOTION was applied to a high-precision security camera driven by a 2-pole BLDC motor with
a magnetic encoder. InstaSPIN-MOTION was able to control both velocity and position using a single
tuning parameter that was effective across the entire operating range. SpinTAC Move was used to control
the motor jerk, resulting in smooth startup.

1.2.3.3 Washing Machine: Smooth Motion and Position Accuracy at Low Speeds
Cycle transitions, changing loads, and environmental disturbances cause significant wear and tear on
motors. Automatic, real-time reduction of disturbances can extend the life and performance of motors.

Consider washing machines, for example. Figure 6-59 displays the motion profile for three stages of a
standard washing machine. The first stage represents the agitation cycle, rotating between 250 rpm and -
250 rpm repeatedly. The second and third stages represent two different spin cycles. The second stage
spins at 500 rpm and the third stage spins at 2000 rpm. This profile was easily created using SpinTAC
Plan.
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Figure 1-15. Washing Machine Profile

InstaSPIN-MOTION was applied to a washing machine application. The SpinTAC Plan trajectory planning
feature was used to quickly build various states of motion (speed A to speed B) and tie them together with
state based logic.

The washing machine application was run twice, once using a standard PI controller and once using
LineStream's SpinTAC controller. The data was then plotted against the reference curve for comparison.

1.2.3.3.1 Agitation Cycle
During agitation, the motor switches between the 250 rpm and -250 rpm set points 20 times. The results,
shown in Figure 1-16, that InstaSPIN-MOTION more closely matched the reference profile. Additionally,
the maximum error for PI was 91 rpm (341 - 250 = 91 rpm), whereas the maximum error for InstaSPIN-
MOTION was 30 rpm (280 - 250 = 30 rpm).
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Figure 1-16. InstaSPIN-MOTION Minimizes Error

1.2.3.3.2 Spin Cycles
For the first spin cycle, the objective is to maintain 500 rpm, even when disturbances are introduced.
Figure 7-7 shows that the InstaSPIN-MOTION recovered from disturbances more quickly and with less
oscillation than the PI controller. Additionally, InstaSPIN-MOTION does not suffer from the overshoot and
undershoot shown by the PI controller when it tries to reach the initial 500 rpm set point.
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Figure 1-17. First Spin Cycle - 500 rpm

During the second spin cycle, shown in Figure 1-18, InstaSPIN-MOTION consistently recovered from
disturbances at 2000 rpm more quickly and with less oscillation than the PI controller. Note that SpinTAC
does not suffer from the overshoot and undershoot shown by the PI controller when it tries to reach the
initial 2000 rpm set point.
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Figure 1-18. Second Spin Cycle - 2000 rpm

Additionally, the PI controller could not recover from the ramp disturbance at the 9.75 second mark.
Instead, it shows a steady-state error of roughly 20 rpm.

1.2.3.3.3 InstaSPIN-MOTION Works Over the Entire Operating Range
Both the InstaSPIN-MOTION controller and the PI controller were tuned once, before executing the
washing machine application. From the example, it is evident that InstaSPIN-MOTION's tuning works over
the entire operating range. Whether the motor switches between the 250 rpm and -250 rpm, or maintains
500 rpm or 2000 rpm spin cycles, there is no need for new tuning sets.
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Quick Start Kits - TI Provided Software and Hardware

Several GUI-based applications are provided for a quick and easy way to evaluate InstaSPIN-FOC and
InstaSPIN–MOTION software. Pre-configured graphical user interfaces (GUIs) are the quickest way to get
started, providing a demonstration platform for the F2806xM and F2806xF devices. The universal GUI
provides a GUI option for any MotorWare project that you can customize. You can use this GUI outside of
Code Composer Studio or within the IDE. The GUI Quick-Start Guides will lead you through the details of
the evaluation process. A simple overview of the pre-configured GUI is provided here:
http://www.ti.com/tool/instaspinfocmotorwaregui

Kits currently available all use the same processor, TMDSCNCD28069MISO Piccolo F28069M (ROM)
controlCARD, paired with one of the following 3-phase inverters:
• Low Voltage / Low Current: DRV8312

– PN: DRV8312-69M-KIT http://www.ti.com/tool/DRV8312-69M-KIT
– DRV8312 three-phase inverter integrated power module base board supporting up to 50V and 3.5A

continuous with controlCARD interface
– 1 NEMA17 BLDC/PMSM 55W Motor
– For Position Control, purchase Anaheim Automation motor (with an encoder): BLY172D-24V-4000-

2000SI
• Low Voltage / Medium Current: BoosterPack for LaunchPads

– 6-24V, 14A continuous
– PN: BOOSTXL-DRV8301 BoosterPack http://www.ti.com/tool/BOOSTXL-DRV8301
– PN: InstaSPIN enabled LaunchPad: http://www.ti.com/launchpad
– DRV8301 2.3A sink/1.7A source, three-phase inverter with integrated buck converter for 1.5-A

external loads
– NexFET™ Power MOSFETs
– No motor or power supply included

• Low Voltage / High Current: DRV8301
– PN: DRV8301-69M-KIT http://www.ti.com/tool/DRV8301-69M-KIT
– DRV8301 2.3A sink/1.7A source, three-phase inverter with integrated buck converter for 1.5A

external loads
– No motor included
– For Position Control, purchase http://www.ti.com/tool/lvservomtr

• High Voltage: hvmtrkit
– PN: TMDSHVMTRINSPIN http://www.ti.com/tool/TMDSHVMTRINSPIN
– Support for AC Induction, Permanent Magnet AC Synchronous, Brushless DC Motor
– Motor driver stage capable of up to 10A@350Vdv-bus continuous
– High voltage motors are available to order:

• ACIM http://www.ti.com/tool/hvacimtr
• BLDC http://www.ti.com/tool/hvbldcmtr
• PMSM http://www.ti.com/tool/hvpmsmmtr

– For Position Control, purchase http://www.ti.com/tool/hvpmsmmtr

All software and documentation is available in the MotorWare software download:
http://www.ti.com/tool/motorware.
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Kit information is also available from Resource Explorer, an application within Code Composer Studio™
(CCStudio), the IDE for TI MCUs. Resource Explorer will display the first time CCStudio is used with a
new workspace, to open it at a later time, select: Help->Welcome to CCS. Below are examples of the
information that is available.

This document, along with all related documents for using InstaSPIN development kits, is available from
Resource Explorer:
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Additional hardware information is available through controlSUITE™ libraries for C2000™
microcontrollers, a cohesive set of software infrastructure and software tools designed to minimize
software development time. The controlSUITE libraries can be downloaded from ti.com/tool/controlsuite.
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2.1 Evaluating InstaSPIN-FOC and InstaSPIN-MOTION
The GUI provides a quick and easy way to evaluate InstaSPIN-FOC and InstaSPIN–MOTION. The
InstaSPIN-FOC and InstaSPIN-MOTION Quick Start Guides will lead you through the details of the
evaluation process. A simple overview is provided here:

Step 1. Identify the motor parameters (Figure 2-1).

Figure 2-1. InstaSPIN-MOTION GUI Using Motor Identification Tab

Step 2. Tune the torque and/speed control (Figure 10-5).
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Figure 2-2. InstaSPIN-MOTION GUI Using Speed or Torque Tab

Step 3. Identify system inertia (Figure 2-3).
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Figure 2-3. InstaSPIN-MOTION GUI Using SpinTAC 1:Startup Tab

Step 4. Tune the disturbance-rejecting speed controller (Figure 2-4) This replaces the speed
controller in Step 2.
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Figure 2-4. InstaSPIN-MOTION GUI SpinTAC 2:Tuning Tab

Step 5. Set the target speed and select the profile type (Figure 2-5).
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Figure 2-5. InstaSPIN-MOTION GUI Using SpinTAC 3:Motion Tab

Spending time with the InstaSPIN Quick Start Kits and Quick Start Guides is a good investment of time to
become familiar with the software and to reference the hardware schematics for the design of your board.
The example code (labs) are configured to run on each of these kits. Whether you are interested in code
for InstaSPIN-FOC or InstaSPIN-MOTION, you will find the examples you need to get started fast with
your project. For example software and documentation, see the MotorWare InstaSPIN Projects and Labs
User's Guide in the MotorWare software download (http://www.ti.com/tool/motorware).
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InstaSPIN and MotorWare

The MotorWare™ library is a cohesive set of software and technical resources designed to minimize
motor control system development time.

From device-specific drivers and support software to complete system examples and technical training,
MotorWare software provides support for every stage of development and evaluation.

MotorWare software has been developed to enable easy integration of best-in-class motor control
techniques.

The software has been designed to enable:
• Cross TI MCU support
• Modular and portable across MCU, power electronics and control techniques
• Object Oriented software design
• API based

InstaSPIN-FOC and InstaSPIN-MOTION motor control solutions are delivered within MotorWare. For a
latest and complete listing of the API functions, MotorWare's Software Coding Standards and Architecture,
see the Resource Explorer found within CCStudio.
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3.1 MotorWare Directory Structure
The MotorWare directories are structured to contain all code needed to run every motor control project.

File references in the Code Composer Studio (CCStudio) projects are relative. The relative directory links
provides the ability to open a project and compile the first time. The MotorWare directory structure was
created to provide an easy way to locate headers, libraries, and source code.

Four folders make up the core of the MotorWare directory structure:
• drivers - Peripheral driver API code.
• ide - Generic linker files used by CCStudio
• modules - Functions used in motor control
• solutions - Contains CCStudio projects to operate software solutions on motor example kits.

When integrating TI's MotorWare software with your application, it is recommended to create a separate
MotorWare directory structure with board specific files for multiple projects. Your software would then
reference the files within TI's MotorWare directory. This is optional, but recommended to simplify using
future updates that are planned by TI, see the screenshot below. For the actual contents of the directory
structure, see the most recent release of MotorWare software.
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3.1.1 MotorWare – drivers
The driver directory contains peripheral APIs for configuring a specific processor.
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3.1.2 MotorWare – ide
The IDE directory contains generic linker files needed by the compiler tools.
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3.1.3 MotorWare – modules
The modules directory contains algorithms that are common across processors and projects. If a module
has a specific dependence to a processor it will have sub-directory for this dependence. The module will
have source code and/or library functions.

3.1.4 MotorWare – solutions
The solutions directory contains the complete solutions with complete CCStudio projects for specific
targets. InstaSPIN-FOC and InstaSPIN-MOTION example code is common across multiple target devices.
The hierarchical directory structure allows common source code that is not target dependent to be used
with different processors and different target boards. Where there is source code that is target dependent
or processor dependent, there are specific source code directories for these purposes. The figure below
illustrates this structure.
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3.2 MotorWare Object-Oriented Design
An object oriented approach has been used for MotorWare software. By using objects, the software is
self-documenting and uses much less space in the main.c file. An object is really a structure that contains
variables used by the object to perform its function. Associated with an object are methods which are
function calls used to setup and run calculations for the object. As we go through the definitions of the
object oriented software technique, the park transform object is used to show an example of how the
objects are written.
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3.2.1 Objects
The object is a structure. An example of the park transform structure is shown below. Park.h is the file that
contains the structure declaration.

typedef struct _PARK_Obj_{
_iq sinTh; //!< the sine of the angle between the d,q and the alpha,beta

coordinate systems
_iq cosTh; //!< the cosine of the angle between the d,q and the alpha,beta

coordinate systems
} PARK_Obj;

Every object has a handle. The handle is a pointer to the object. A handle is very useful when passing
objects between functions. Handles to objects also allow functions to work on only that object, or what is
called re-entrant code. The handle declaration for the Park transform object is listed below.

typedef struct PARK_Obj *PARK_Handle;

3.2.2 Methods
Every object must do something. As it stands, an object is just a container of variables. For the object to
perform calculations or even send and receive data between its variables, it must have methods. Methods
are functions specific to an object that work on the variables the object contains. There are four main
methods to every object in MotorWare and they are named as follows.
• Init method - Used only to create a handle to an object
• Set method - Sets internal variables of an object
• Get method - Returns internal variable values of an object
• Run method - Performs the calculation function of the object

3.2.2.1 Init method
The init method is only used to point a handle to an object. Code for the Park transform init method is
shown next.

PARK_Handle PARK_init(void *pMemory,const size_t numBytes)
{

PARK_Handle parkHandle;
if(numBytes < sizeof(PARK_Obj))

return((PARK_Handle)NULL);

// assign the handle
parkHandle = (PARK_Handle)pMemory;

return(parkHandle);
}

The init method only takes two parameters, first the address of the object and second is the size (in
bytes) of the object. After the object is created, the other methods are used.
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3.2.2.2 Set method
A set method puts a value into the variables that the object contains. In the example code for the Park
transform below, the set function assigns sine and cosine values to sinTh and cosTh object variables.

static inline void PARK_setup(PARK_Handle parkHandle,const _iq angle_pu)
{

PARK_Obj *park = (PARK_Obj *)parkHandle;

park->sinTh = _IQsinPU(angle_pu);
park->cosTh = _IQcosPU(angle_pu);

return;
}

The set method takes as parameters the object handle and in the Park transform example, the angle θ.
Set functions do not return any values.

3.2.2.3 Get method
Get methods return object variables. Only two variables are contained in the Park object. Because the two
variables contained in Park are needed outside of the object, there are two get methods. One of the get
methods is shown below.

static inline _iq PARK_getSinTh(PARK_Handle parkHandle)
{

PARK_Obj *park = (PARK_Obj *)parkHandle;

return(park->sinTh);
}

The get method returns only the variable that the method is named for. In the example code above for the
Park object get method, the sinTh variable is returned. A handle to the object is the only variable that is
passed to the get method. Only one variable is returned by a get method.

3.2.2.4 Run method
Run methods perform calculations of the object variables. In the case of embedded software, run
methods might also operate a peripheral or some other hardware. The Park run method calculates the
Park transform of the input vector {Id, Iq } and then returns the output vector {Iα, Iβ}. The code for the Park
run method is shown below.

static inline void PARK_run(PARK_Handle parkHandle,const MATH_vec2
*pInVec,MATH_vec2 *pOutVec)

{
PARK_Obj *park = (PARK_Obj *)parkHandle;
_iq sinTh = park->sinTh;
_iq cosTh = park->cosTh;
_iq value_0 = pInVec->value[0];
_iq value_1 = pInVec->value[1];
pOutVec->value[0] = _IQmpy(value_0,cosTh) + _IQmpy(value_1,sinTh);
pOutVec->value[1] = _IQmpy(value_1,cosTh) - _IQmpy(value_0,sinTh);
return;

} // end of PARK_run() function
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In run methods the first parameter is the handle to the object, the subsequent parameters are input and
output variables when in single quantities or pointers to vectors. Nothing is returned from a run method.

3.3 InstaSPIN-FOC API
All of the functionality of InstaSPIN-FOC is accessible through an extensive API. This API remains the
same whether InstaSPIN-FOC is in ROM or user memory. In this section, we will review the most
commonly used functions that provide access to variables and enable your application to implement
system control. These functions are used in the lab example projects at the end of this guide. For the
latest and complete listing of the API functions, see the Resource Explorer found within CCStudio.

Another resource for the API functions that is especially useful during software development is the Outline
View within CCStudio. This is feature provides navigation across the multiple files with a complete
hyperlink listing of all the symbols within the file you are using that is part of a CCStudio project. Access
this view from the CCStudio menu: Window->Show View->Outline.

Below is a screen capture using this view with ctrl.c. Notice that by clicking on the function name in the
Outline window, the cursor in the Source window highlights the related code. You can quickly navigate
functions and all symbols within a file, which is especially useful for the large number of API functions in
InstaSPIN-FOC.
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When using Outline View with ctrl.h you will notice some functions do not have source code listed. These
functions will have a circle with a green and white pattern next to the filename (instead of a solid green
circle). This indicates it is one of the few files that must remain in ROM since it is a function that interfaces
directly to the FAST estimator. An example of this can be seen in the figure below where the function
CTRL_initCtrl() does not have source code but the function CTRL_isError() does.

The block diagram shown in Figure 3-1 provides a good overview of the InstaSPIN-FOC system's
functions and variables as they relate to user memory and ROM. Notice the key functions: CTRL_run,
CTRL_setup, EST_run, HAL_run, HAL_acqAdcInt, and HAL_readAdcData. Also, the variables show in the
diagram are all available. For example, the Ki gain for PI used for Id and Iq can be read with the function
CTRL_getKi and set with CTRL_setKi. The intention is to give full access to all functions and variables.

Figure 3-1. Block Diagram of InstaSPIN-FOC in User Memory, with Exception of FAST in ROM
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The API can be grouped into the following four categories:
• Controller – ctrl.c (software that can be moved to user memory)
• Estimator – FAST library (FAST estimator in ROM)
• HAL – hal.c (Hardware Abstraction Layer)
• User – user.c (user settings)

The commonly used functions from each of these groups are listed in the next sections.

For the F2802xF devices, the API has an additional library in user memory:
• Public Library – fast_public.lib (software that has to be loaded in user memory)

The commonly used functions from each of these groups are listed in the next sections.

3.3.1 Controller API Functions – ctrl.c, ctrl.h, CTRL_obj.h

3.3.1.1 CTRL Enumerations and Structures

CTRL_Obj

Defines the controller (CTRL) object. The controller object implements all of the FOC
algorithms and the estimator functions.
typedef struct _CTRL_Obj_
{

CTRL_Version version; //!< the controller version
CTRL_State_e state; //!< the current state of the controller
CTRL_State_e prevState; //!< the previous state of the

controller
CTRL_ErrorCode_e errorCode; //!< the error code for the controller
CLARKE_Handle clarkeHandle_I; //!< the handle for the current Clarke

transform
CLARKE_Obj clarke_I; //!< the current Clarke transform object
CLARKE_Handle clarkeHandle_V; //!< the handle for the voltage Clarke

transform
CLARKE_Obj clarke_V; //!< the voltage Clarke transform object
EST_Handle estHandle; //!< the handle for the parameter

estimator
PARK_Handle parkHandle; //!< the handle for the Park object
PARK_Obj park; //!< the Park transform object
PID_Handle pidHandle_Id; //!< the handle for the Id PID

controller
PID_Obj pid_Id; //!< the Id PID controller object
PID_Handle pidHandle_Iq; //!< the handle for the Iq PID

controller
PID_Obj pid_Iq; //!< the Iq PID controller object
PID_Handle pidHandle_spd; //!< the handle for the speed PID controller
PID_Obj pid_spd; //!< the speed PID controller object
IPARK_Handle iparkHandle; //!< the handle for the inverse Park

transform
IPARK_Obj ipark; //!< the inverse Park transform object
SVGEN_Handle svgenHandle; //!< the handle for the space vector

generator
SVGEN_Obj svgen; //!< the space vector generator object
TRAJ_Handle trajHandle_Id; //!< the handle for the Id trajectory

generator
TRAJ_Obj traj_Id; //!< the Id trajectory generator object
TRAJ_Handle trajHandle_spd; //!< handle for the speed trajectory

generator
TRAJ_Obj traj_spd; //!< the speed trajectory generator

object
TRAJ_Handle trajHandle_spdMax; //!< handle for max speed traj generator
TRAJ_Obj traj_spdMax; //!< the max speed trajectory generator

object
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MOTOR_Params motorParams; //!< the motor parameters
uint_least32_t waitTimes[CTRL_numStates];

//!< an array of wait times for each state, estimator clock counts
uint_least32_t counter_state; //!< the state counter
uint_least16_t numIsrTicksPerCtrlTick; //!< # of isr ticks per controller

tick
uint_least16_t numCtrlTicksPerCurrentTick;

//!< # of controller ticks per current controller tick
uint_least16_t numCtrlTicksPerSpeedTick;

//!< # of controller ticks per speed controller tick
uint_least16_t numCtrlTicksPerTrajTick;

//!< # of controller ticks per trajectory tick
uint_least32_t ctrlFreq_Hz; //!< Defines the controller frequency,

Hz
uint_least32_t trajFreq_Hz; //!< Defines the trajectory frequency,

Hz
_iq trajPeriod_sec; //!< Defines the trajectory period, sec
float_t ctrlPeriod_sec; //!< Defines the controller period, sec
_iq maxVsMag_pu; //!< the maximum voltage vector that is

allowed, pu
MATH_vec2 Iab_in; //!< the Iab input values
MATH_vec2 Iab_filt; //!< the Iab filtered values
MATH_vec2 Idq_in; //!< the Idq input values
MATH_vec2 Vab_in; //!< the Vab input values
_iq spd_out; //!< the speed output value
MATH_vec2 Vab_out; //!< the Vab output values
MATH_vec2 Vdq_out; //!< the Vdq output values
float_t Rhf; //!< the Rhf value
float_t Lhf; //!< the Lhf value
float_t RoverL; //!< the R/L value
_iq Kp_Id; //!< the desired Kp_Id value
_iq Kp_Iq; //!< the desired Kp_Iq value
_iq Kp_spd; //!< the desired Kp_spd value
_iq Ki_Id; //!< the desired Ki_Id value
_iq Ki_Iq; //!< the desired Ki_Iq value
_iq Ki_spd; //!< the desired Ki_spd value
_iq Kd_Id; //!< the desired Kd_Id value
_iq Kd_Iq; //!< the desired Kd_Iq value
_iq Kd_spd; //!< the desired Kd_spd value
_iq Ui_Id; //!< the desired Ui_Id value
_iq Ui_Iq; //!< the desired Ui_Iq value
_iq Ui_spd; //!< the desired Ui_spd value
MATH_vec2 Idq_ref; //!< the Idq reference values, pu
_iq IdRated; //!< the Id rated current, pu
_iq spd_ref; //!< the speed reference, pu
_iq spd_max; //!< the maximum speed, pu
uint_least16_t counter_current; //!< the isr counter
uint_least16_t counter_isr; //!< the isr counter
uint_least16_t counter_speed; //!< the speed counter
uint_least16_t counter_traj; //!< the traj counter
bool flag_enableCtrl; //!< a flag to enable the controller
bool flag_enableDcBusComp;

//!< a flag to enable the DC bus compensation in the controller
bool flag_enablePowerWarp; //!< a flag to enable PowerWarp
bool flag_enableOffset;

//!< a flag to enable offset estimation after idle state
bool flag_enableSpeedCtrl; //!< a flag to enable the speed

controller
bool flag_enableUserMotorParams;

//!< a flag to use known motor parameters from user.h file
} CTRL_Obj;
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CTRL_State_e

Enumeration for the controller states
typedef enum {

CTRL_State_Error=0, //!< the controller error state
CTRL_State_Idle, //!< the controller idle state
CTRL_State_OffLine, //!< the controller offline state
CTRL_State_OnLine, //!< the controller online state
CTRL_numStates //!< the number of controller states

} CTRL_State_e;

CTRL_ErrorCode_e

Enumeration for the error codes
typedef enum
{

CTRL_ErrorCode_NoError=0, //!< no error error code
CTRL_ErrorCode_IdClip, //!< Id clip error code
CTRL_ErrorCode_EstError, //!< estimator error code
CTRL_numErrorCodes //!< the number of controller error codes

} CTRL_ErrorCode_e;

CTRL_TargetProc_e

Enumeration for the target processors
typedef enum
{

CTRL_TargetProc_2806x=0, //!< 2806x processor
CTRL_TargetProc_2805x, //!< 2805x processor
CTRL_TargetProc_2803x, //!< 2803x processor
CTRL_TargetProc_2802x, //!< 2802x processor
CTRL_TargetProc_Unknown //!< Unknown processor

} CTRL_TargetProc_e;

CTRL_Type_e

Enumeration for the target processors
typedef enum
{

CTRL_Type_PID_spd=0, //!< PID Speed controller
CTRL_Type_PID_Id, //!< PID Id controller
CTRL_Type_PID_Iq //!< PID Iq controller

} CTRL_Type_e;

CTRL_Version

Defines the controller (CTRL) version number
typedef struct _CTRL_Version_
{

uint16_t rsvd; //!< reserved value
CTRL_TargetProc_e targetProc; //!< the target processor
uint16_t major; //!< the major release number
uint16_t minor; //!< the minor release number

} CTRL_Version;

70 InstaSPIN and MotorWare SPRUHJ1F–January 2013–Revised July 2014
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


www.ti.com InstaSPIN-FOC API

3.3.1.2 CTRL State Control and Error Handling

CTRL_initCtrl() ctrlHandle = CTRL_initCtrl(ctrlNumber,estNumber)

Initializes a specified controller

ctrlNumber: The FOC (CTRL) controller number – The number of the FOC controller.

estNumber: The estimator (EST) number – The number of the InstaSPIN estimator.

Return: The controller (CTRL) object handle – The handle that is returned to point to the specific
estimator and controller.

CTRL_updateState () bool CTRL_updateState(CTRL_Handle handle)

Feeds back whether or not the controller state has changed

Handle: The controller (CTRL) handle

Return: A Boolean value denoting if the state has changed (true) or not (false)

CTRL_isError () inline bool CTRL_isError(CTRL_Handle handle)

Determines if there is a controller error

Handle: The controller (CTRL) handle

Return: A Boolean value denoting if there is a controller error (true) or not (false)

CTRL_checkForErrors ()
inline void CTRL_checkForErrors(CTRL_Handle handle)

Checks for error with the estimator and, if found, sets the controller state to the error
state

Handle: The controller (CTRL) handle

Errors: CTRL_State_Error, CTRL_ErrorCode_EstError
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3.3.1.3 CTRL Get Functions

CTRL_getCount_current ()
inline uint_least16_t CTRL_getCount_current(CTRL_Handle handle)

Gets the current loop count

Handle: The controller (CTRL) handle

Return: The current loop count, obj->counter_current

CTRL_getCount_isr ()
inline uint_least16_t CTRL_getCount_isr(CTRL_Handle handle)

Gets the isr count

Handle: The controller (CTRL) handle

Return: The isr count, obj->counter_isr

CTRL_getCount_speed ()
inline uint_least16_t CTRL_getCount_speed(CTRL_Handle handle)

Gets the speed loop count

Handle: The controller (CTRL) handle

Return: The speed loop count, obj->counter_speed

CTRL_getCount_state ()
inline uint_least32_t CTRL_getCount_state(CTRL_Handle handle)

Gets the state count

Handle: The controller (CTRL) handle

Return: The state count, obj->counter_state

CTRL_getCount_traj ()
inline uint_least32_t CTRL_getCount_state(CTRL_Handle handle)

Gets the trajectory loop count

Handle: The controller (CTRL) handle

Return: The trajectory loop count, obj->counter_traj

CTRL_getCtrlFreq () inline uint_least32_t CTRL_ getCtrlFreq(CTRL_Handle handle)

Gets the controller execution frequency

Handle: The controller (CTRL) handle

Return: The controller execution frequency, Hz, obj->ctrlFreq_Hz

CTRL_getCtrlPeriod_sec ()
inline float_t CTRL_getCtrlPeriod_sec(CTRL_Handle handle)
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Gets the controller execution period

Handle: The controller (CTRL) handle

Return: The controller execution period, sec, obj->ctrlPeriod_sec

CTRL_getErrorCode ()
inline CTRL_ErrorCode_e CTRL_getErrorCode(CTRL_Handle handle)

Gets the error code from the controller (CTRL) object

Handle: The controller (CTRL) handle

Return: The error code, obj->errorCode

CTRL_getEstHandle ()
inline EST_Handle CTRL_getEstHandle(CTRL_Handle handle)

Gets the estimator handle for a given controller

Handle: The controller (CTRL) handle

Return: The estimator handle for the given controller, obj->estHandle

CTRL_getFlag_enableCtrl ()
inline bool CTRL_getFlag_enableCtrl(CTRL_Handle handle)

Gets the enable controller flag value from the estimator

Handle: The controller (CTRL) handle

Return: The enable controller flag value, obj->flag_enableCtrl

CTRL_getFlag_enableDcBusComp ()
inline bool CTRL_getFlag_enableDcBusComp(CTRL_Handle handle)

Gets the enable DC bus compensation flag value from the estimator

Handle: The controller (CTRL) handle

Return: The enable DC bus compensation flag value, obj-> flag_enableDcBusComp

CTRL_getFlag_enablePowerWarp ()
inline bool CTRL_getFlag_enablePowerWarp(CTRL_Handle handle)

Gets the PowerWarp enable flag value from the estimator

Handle: The controller (CTRL) handle

Return: The PowerWarp enable flag value, obj-> flag_enablePowerWarp

CTR CTRL_getFlag_enableOffset ()
inline bool CTRL_getFlag_enableOffset(CTRL_Handle handle)

Gets the enable offset flag value from the controller

Handle: The controller (CTRL) handle
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Return: The enable offset flag value, obj-> flag_enableOffset

CTRL_getFlag_enableSpeedCtrl ()
inline bool CTRL_getFlag_enableSpeedCtrl(CTRL_Handle handle)

Gets the enable speed control flag value from the controller

Handle: The controller (CTRL) handle

Return: The enable speed control flag value, obj-> flag_enableSpeedCtrl

CTRL_getFlag_enableUserMotorParams ()
inline bool CTRL_getFlag_enableSpeedCtrl(CTRL_Handle handle)

Gets the enable user motor parameters flag value in the estimator

Handle: The controller (CTRL) handle

Return: The enable user motor parameters flag value:
• true = Use the user motor parameters from user.h
• false = Perform motor parameter estimation

CTRL_getGains () void CTRL_getGains(CTRL_Handle handle, const CTRL_Type_e ctrlType, iq
*pKp,_iq *pKi,_iq *pKd)

Updates Kp, Ki, and Kd in the controller object

Handle: The controller (CTRL) handle

ctrlType: The controller type

pKp: The pointer for the Kp value, pu

pKi: The pointer for the Ki value, pu

pKd: The pointer for the Kd value, pu

CTRL_getIab_filt_pu ()
void CTRL_getIab_filt_pu (CTRL_Handle handle,MATH_vec2 *pIab_filt_pu)

Updates the alpha/beta filtered current vector values in the controller object

Handle: The controller (CTRL) handle

pIab_filt_pu: The vector for the alpha/beta filtered current vector values, pu

CTRL_getIab_filt_addr ()
inline MATH_vec2 *CTRL_getIab_filt_addr(CTRL_Handle handle)

Gets the alpha/beta filtered current vector memory address from the controller

Handle: The controller (CTRL) handle

Return: The alpha/beta filtered current vector memory address, obj->Iab_filt

CTRL_getIab_in_addr ()
inline MATH_vec2 *CTRL_getIab_in_addr(CTRL_Handle handle)

74 InstaSPIN and MotorWare SPRUHJ1F–January 2013–Revised July 2014
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


www.ti.com InstaSPIN-FOC API

Gets the alpha/beta current input vector memory address from the controller

Handle: The controller (CTRL) handle

Return: The alpha/beta current input vector memory address, obj-> Iab_in

CTRL_getIab_in_pu ()
void CTRL_getIab_in_pu(CTRL_Handle handle,MATH_vec2 *pIab_in_pu);

Gets the alpha/beta current input vector values from the controller

Handle: The controller (CTRL) handle

pIab_in_pu: The vector for the alpha/beta current input vector values, pu

CTRL_getId_in_pu ()
inline _iq CTRL_getId_in_pu(CTRL_Handle handle)

Gets the direct current input value from the controller

Handle: The controller (CTRL) handle

Return: The direct current input value, pu, obj->Idq_in.value[0]

CTRL_getId_ref_pu ()
inline _iq CTRL_getId_ref_pu(CTRL_Handle handle)

Gets the direct current (Id) reference value from the controller

Handle: The controller (CTRL) handle

Return: The direct current reference value, pu, obj-> Idq_ref.value[0]

CTRL_getIdq_in_addr ()
inline MATH_vec2 *CTRL_getIdq_in_addr(CTRL_Handle handle)

Gets the direct/quadrature current input vector memory address from the controller

Handle: The controller (CTRL) handle

Return: The direct/quadrature current input vector memory address, obj-> Idq_in

CTRL_getIdq_in_pu ()
void CTRL_getIdq_in_pu(CTRL_Handle handle,MATH_vec2 *pIdq_in_pu);

Gets the direct/quadrature current input vector values from the controller

Handle: The controller (CTRL) handle

pIdq_in_pu: The vector for the direct/quadrature input current vector values, pu

CTRL_getIdq_ref_pu ()
void CTRL_getIdq_ref_pu(CTRL_Handle handle,MATH_vec2 *pIdq_ref_pu);

Gets the direct/quadrature current reference vector values from the controller

Handle: The controller (CTRL) handle
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pIdq_ref_pu: The vector for the direct/quadrature current reference vector values, pu

CTRL_getIdRated_pu ()
inline _iq CTRL_getIdRated_pu(CTRL_Handle handle)

Gets the Id rated current value from the controller

Handle: The controller (CTRL) handle

Return: The Id rated current value, pu, obj-> IdRated

CTRL_getIq_in_pu ()
inline _iq CTRL_getIq_in_pu(CTRL_Handle handle)

Gets the quadrature current input value from the controller

Handle: The controller (CTRL) handle

Return: The quadrature current input value, pu, obj-> Idq_in.value[1]

CTRL_getIq_ref_pu ()
inline _iq CTRL_getIq_ref_pu(CTRL_Handle handle)

Gets the quadrature current (Iq) reference value from the controller

Handle: The controller (CTRL) handle

Return: The quadrature current reference value, pu, obj-> Idq_ref.value [1]

CTRL_getKi () _iq CTRL_getKi (CTRL_Handle handle,const CTRL_Type_e ctrlType)

Gets the controller state

Handle: The controller (CTRL) handle

ctrlType: The controller type

Return: The Ki value

CTRL_getKd () _iq CTRL_getKd (CTRL_Handle handle,const CTRL_Type_e ctrlType)

Gets the proportional gain (Kd) value from the specified controller

Handle: The controller (CTRL) handle

ctrlType: The controller type

Return: The Kd value

CTRL_getKp () _iq CTRL_getKp (CTRL_Handle handle,const CTRL_Type_e ctrlType)

Gets the controller state

Handle: The controller (CTRL) handle

ctrlType: The controller type

Return: The Kp value
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CTRL_getLhf () inline float_t CTRL_getLhf(CTRL_Handle handle)

Gets the high frequency inductance (Lhf) value from the controller

Handle: The controller (CTRL) handle

Return: Return: The Lhf value, obj->Lhf

CTRL_getMagCurrent_pu ()
_iq CTRL_getMagCurrent_pu(CTRL_Handle handle)

Gets the magnetizing current value from the controller

Handle: The controller (CTRL) handle

Return: The magnetizing current value

CTRL_getMaxVsMag_pu ()
inline _iq CTRL_getMaxVsMag_pu(CTRL_Handle handle)

Gets the maximum voltage vector

Handle: The controller (CTRL) handle

Return: The maximum voltage vector (value between 0 and 4/3)

CTRL_getMaximumSpeed_pu ()
_iq CTRL_getMaximumSpeed_pu(CTRL_Handle handle);

Gets the maximum speed value from the controller

Handle: The controller (CTRL) handle

Return: The maximum voltage vector (value between 0 and 4/3)

CTRL_getMotorRatedFlux ()
inline float_t CTRL_getMotorRatedFlux(CTRL_Handle handle)

Gets the motor rated flux from the controller

Handle: The controller (CTRL) handle

Return: The motor rated flux, V*sec, obj->motorParams.ratedFlux_VpHz

CTRL_getMotorType ()
inline MOTOR_Type_e CTRL_getMotorType(CTRL_Handle handle)

Gets the motor type from the controller

Handle: The controller (CTRL) handle

Return: The motor type, obj-> motorParams.type

CTRL_getNumCtrlTicksPerCurrentTick ()
inline uint_least16_t CTRL_getNumCtrlTicksPerCurrentTick(CTRL_Handle handle)

Gets the number of controller clock ticks per current controller clock tick
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Handle: The controller (CTRL) handle

Return: The number of controller clock ticks per estimator clock tick, obj->
numCtrlTicksPerCurrentTick

CTRL_getNumCtrlTicksPerSpeedTick ()
inline uint_least16_t CTRL_getNumCtrlTicksPerSpeedTick(CTRL_Handle handle)

Gets the number of controller clock ticks per speed controller clock tick

Handle: The controller (CTRL) handle

Return: The number of controller clock ticks per speed clock tick, obj->
numCtrlTicksPerSpeedTick

CTRL_getNumCtrlTicksPerTrajTick ()
inline uint_least16_t CTRL_getNumCtrlTicksPerTrajTick(CTRL_Handle handle)

Gets the number of controller clock ticks per trajectory clock tick

Handle: The controller (CTRL) handle

Return: The number of controller clock ticks per trajectory clock tick, obj->
numCtrlTicksPerTrajTick

CTRL_getNumIsrTicksPerCtrlTick ()
inline uint_least16_t CTRL_getNumIsrTicksPerCtrlTick(CTRL_Handle handle)

Gets the number of Interrupt Service Routine (ISR) clock ticks per controller clock tick

Handle: The controller (CTRL) handle

Return: The number of Interrupt Service Routine (ISR) clock ticks per controller clock tick, obj->
numIsrTicksPerCtrlTick

CTRL_getRefValue_pu ()
inline _iq CTRL_getRefValue_pu(CTRL_Handle handle,const CTRL_Type_e
ctrlType)

Gets the reference value from the specified controller

Handle: The controller (CTRL) handle

ctrlType: The controller type

Return: The reference value, pu

CTRL_getRhf () inline float_t CTRL_getRhf(CTRL_Handle handle)

Gets the high frequency resistance (Rhf) value from the controller

Handle: The controller (CTRL) handle

Return: The Rhf value, obj->Rhf

CTRL_getRoverL () inline float_t CTRL_getRoverL(CTRL_Handle handle)

Gets the R/L value from the controller
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Handle: The controller (CTRL) handle

Return: The the R/L value, obj-> RoverL

CTRL_getSpd_max_pu () i

nline _iq CTRL_getSpd_max_pu(CTRL_Handle handle)

Gets the maximum speed value from the controller

Handle: The controller (CTRL) handle

Return: The maximum speed value, pu, obj-> spd_max

CTRL_getSpd_out_addr ()
inline _iq *CTRL_getSpd_out_addr(CTRL_Handle handle)

Gets the output speed memory address from the controller

Handle: The controller (CTRL) handle

Return: The output speed memory address, obj-> spd_out

CTRL_getSpd_out_pu ()
inline _iq CTRL_getSpd_out_pu(CTRL_Handle handle)

Gets the output speed value from the controller

Handle: The controller (CTRL) handle

Return: The output speed value, pu, obj-> spd_out

CTRL_getSpd_ref_pu ()
inline _iq CTRL_getSpd_ref_pu(CTRL_Handle handle)

Gets the output speed reference value from the controller

Handle: The controller (CTRL) handle

Return: The output speed reference value, pu, obj-> spd_ref

CTRL_getSpd_int_ref_pu ()
inline _iq CTRL_getSpd_int_ref_pu(CTRL_Handle handle)

Gets the output speed intermediate reference value from the controller

Handle: The controller (CTRL) handle

Return: The output speed intermediate reference value, pu, obj-> trajHandle_spd

CTRL_getState () CTRL_State_e CTRL_getState(CTRL_Handle handle)

Gets the controller state

Handle: The controller (CTRL) handle

Return: The controller state
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CTRL_getTrajFreq ()
inline uint_least32_t CTRL_getTrajFreq(CTRL_Handle handle)

Gets the trajectory execution frequency

Handle: The controller (CTRL) handle

Return: The trajectory execution frequency, Hz, obj->trajFreq_Hz

CTRL_getTrajPeriod_sec ()
inline _iq CTRL_getTrajPeriod_sec(CTRL_Handle handle)

Gets the trajectory execution frequency

Handle: The controller (CTRL) handle

Return: The trajectory execution period, sec, obj-> trajPeriod_sec

CTRL_getTrajStep ()
void CTRL_getTrajStep(CTRL_Handle handle);

Gets the trajectory step size

Handle: The controller (CTRL) handle

Return: The trajectory execution frequency, Hz

CTRL_getUi () inline _iq CTRL_getUi(CTRL_Handle handle,const CTRL_Type_e ctrlType)

Gets the integrator (Ui) value from the specified controller

Handle: The controller (CTRL) handle

Return: The Ui value

CTRL_getVab_in_pu ()
void CTRL_getVab_in_pu(CTRL_Handle handle,MATH_vec2 *pVab_in_pu);

Gets the alpha/beta voltage input vector values from the controller

Handle: The controller (CTRL) handle

pVab_in_pu: The vector for the alpha/beta voltage input vector values, pu

CTRL_getVab_out_addr ()
inline MATH_vec2 *CTRL_getVab_out_addr(CTRL_Handle handle)

Gets the alpha/beta voltage output vector memory address from the controller

Handle: The controller (CTRL) handle

Return: The alpha/beta voltage output vector memory address, &(obj->Vab_out)

CTRL_getVab_out_pu ()
void CTRL_getVab_out_pu(CTRL_Handle handle,MATH_vec2 *pVab_out_pu);

Gets the alpha/beta voltage output vector values from the controller
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Handle: The controller (CTRL) handle

Return: The vector for the alpha/beta voltage output vector values, pu

CTRL_getVd_out_addr ()
inline _iq *CTRL_getVd_out_addr(CTRL_Handle handle)

Gets the direct voltage output value memory address from the controller

Handle: The controller (CTRL) handle

Return: The direct voltage output value memory address, &(obj->Vdq_out.value[0])

CTRL_getVd_out_pu ()
inline _iq CTRL_getVd_out_pu(CTRL_Handle handle)

Gets the direct voltage output value from the controller

Handle: The controller (CTRL) handle

Return: The direct voltage output value, pu, obj->Vdq_out.value[0])

CTRL_getVdq_out_addr ()
inline MATH_vec2 *CTRL_getVdq_out_addr(CTRL_Handle handle)

Gets the direct/quadrature voltage output vector memory address from the controller

Handle: The controller (CTRL) handle

Return: The direct/quadrature voltage output vector memory address, &(obj->Vdq_out)

CTRL_getVdq_out_pu ()
void CTRL_getVdq_out_pu(CTRL_Handle handle,MATH_vec2 *pVdq_out_pu);

Gets the direct/quadrature voltage output vector values from the controller

Handle: The controller (CTRL) handle

pVdq_out_pu: The vector for the direct/quadrature voltage output vector values, pu

CTRL_getVersion () void CTRL_getVersion(CTRL_Handle handle,CTRL_Version *pVersion);

Gets the controller version number

Handle: The controller (CTRL) handle

pVersion: A pointer to the version

CTRL_getVq_out_addr ()
inline _iq *CTRL_getVq_out_addr(CTRL_Handle handle)

Gets the quadrature voltage output value memory address from the controller

Handle: The controller (CTRL) handle

Return: The quadrature voltage output value memory address, &(obj->Vdq_out.value[1])
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CTRL_getVq_out_pu ()
inline _iq CTRL_getVq_out_pu(CTRL_Handle handle)

Gets the quadrature voltage output value from the controller

Handle: The controller (CTRL) handle

Return: The quadrature voltage output value, pu, obj->Vdq_out.value[1]

CTRL_getWaitTime ()
inline uint_least32_t CTRL_getWaitTime(CTRL_Handle handle,const CTRL_State_e
ctrlState)

Gets the wait time for a given state

Handle: The controller (CTRL) handle

ctrlState: The controller state

Return: The wait time, controller clock counts, waitTimes[ctrlState]
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3.3.1.4 CTRL Counter Functions

CTRL_incrCounter_current ()
inline void CTRL_incrCounter_current(CTRL_Handle handle)

Increments the current counter

Handle: The controller (CTRL) handle

counter_current: Member of CTRL object that is incremented

CTRL_incrCounter_isr ()
inline void CTRL_incrCounter_isr(CTRL_Handle handle)

Increments the ISR counter

Handle: The controller (CTRL) handle

counter_isr: Member of CTRL object that is incremented

CTRL_incrCounter_speed ()
inline void CTRL_incrCounter_speed(CTRL_Handle handle)

Increments the speed counter

Handle: The controller (CTRL) handle

counter_speed: Member of CTRL object that is incremented

CTRL_incrCounter_state ()
inline void CTRL_incrCounter_state(CTRL_Handle handle)

Increments the state counter

Handle: The controller (CTRL) handle

counter_state: Member of CTRL object that is incremented

CTRL_incrCounter_traj ()
inline void CTRL_incrCounter_traj(CTRL_Handle handle)

Increments the trajectory counter

Handle: The controller (CTRL) handle

counter_traj: Member of CTRL object that is incremented

CTRL_resetCounter_current ()
inline void CTRL_resetCounter_current(CTRL_Handle handle)

Resets the current counter to 0

Handle: The controller (CTRL) handle

counter_current: Member of CTRL object that is reset to 0
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CTRL_resetCounter_isr ()
inline void CTRL_resetCounter_isr(CTRL_Handle handle)

Resets the ISR counter to 0

Handle: The controller (CTRL) handle

counter_isr: Member of CTRL object that is reset to 0

CTRL_resetCounter_speed ()
inline void CTRL_resetCounter_speed(CTRL_Handle handle)

Resets the speed counter to 0

Handle: The controller (CTRL) handle

counter_speed: Member of CTRL object that is reset to 0

CTRL_resetCounter_state ()
inline void CTRL_resetCounter_state(CTRL_Handle handle)

Resets the state counter to 0

Handle: The controller (CTRL) handle

counter_state: Member of CTRL object that is reset to 0

CTRL_resetCounter_traj ()
inline void CTRL_resetCounter_traj(CTRL_Handle handle)

Resets the trajectory counter to 0

Handle: The controller (CTRL) handle

counter_traj: Member of CTRL object that is reset to 0
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3.3.1.5 CTRL Set Functions

CTRL_setCtrlFreq_Hz ()
nline void CTRL_setCtrlFreq_Hz(CTRL_Handle handle,const uint_least32_t
ctrlFreq_Hz)

Sets the controller frequency

Handle: The controller (CTRL) handle

ctrlFreq_Hz: The controller frequency, Hz

CTRL_setCtrlFreq_sec ()
inline void CTRL_setCtrlPeriod_sec(CTRL_Handle handle,const float_t
ctrlPeriod_sec)

Sets the controller execution period

Handle: The controller (CTRL) handle

ctrlPeriod_sec: The controller execution period, sec

CTRL_setErrorCode ()
inline void CTRL_setErrorCode(CTRL_Handle handle,const CTRL_ErrorCode_e
errorCode)

Sets the error code in the controller

Handle: The controller (CTRL) handle

errorCode: The error code

CTRL_setEstParams ()
void CTRL_setEstParams(EST_Handle estHandle,USER_Params *pUserParams);

Sets the default estimator parameters. Copies all scale factors that are defined in the file
user.h and used by CTRL into the CTRL object.

estHandle: The estimator (EST) handle

pUserParams: The pointer to the user parameters

CTRL_setFlag_enableCtrl ()
void CTRL_setFlag_enableCtrl(CTRL_Handle handle,const bool_t state)

Enables the FOC controller (enables the motor controller)

Handle: The controller (CTRL) handle

State: The desired state:
• True -> Enable the controller
• False -> Disable the controller

CTRL_setFlag_enableDcBusComp ()
void CTRL_setFlag_enableDcBusComp (CTRL_Handle handle,bool_t state)

Sets the enable DC bus compensation flag value in the estimator. The DC bus

85SPRUHJ1F–January 2013–Revised July 2014 InstaSPIN and MotorWare
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


InstaSPIN-FOC API www.ti.com

compensation algorithm will compensate the Iq and Id PI controller's.

Handle: The controller (CTRL) handle

State: Boolean of desired state

CTRL_setFlag_enablePowerWarp ()
inline void CTRL_setFlag_enablePowerWarp(CTRL_Handle handle,const bool
state)

Sets the PowerWarp enable flag value in the estimator. PowerWarp is only used when
controlling an induction motor. PowerWarp adjusts field levels so that the least amount of
power is used according to the load on the motor.

Handle: The controller (CTRL) handle

State: Boolean of desired state

CTRL_setFlag_enableOffset ()
void CTRL_setFlag_enableOffset(CTRL_Handle handle,const bool_t state)

Enable or disable the voltage and current offset calibration

Handle: The controller (CTRL) handle

State: The desired state:
• True -> Perform the offset calibration
• False -> Do not perform the offset

calibrationCTRL_setFlag_enableSpeedCtrl ()
void CTRL_setFlag_enableSpeedCtrl(CTRL_Handle handle,const bool_t state)

Enables speed control mode or enables torque control mode (connects the speed PI
output to Iq)

Handle: The controller (CTRL) handle

State: The desired state:
• True -> Enable speed control (connect the speed PI output to the Iq input)
• False -> Disable speed control (dis-connect the speed PI from the Iq. Iq is available

for direct input)

CTRL_setFlag_enableUserMotorParams ()
void CTRL_setFlag_enableUserMotorParams(CTRL_Handle handle,const bool_t
state)

Sets the enable user motor parameters flag value in the estimator

Handle: The controller (CTRL) handle

State: The desired state:
• True -> Use the user motor parameters from user.h
• False -> Perform motor parameter estimation

CTRL_setGains () void CTRL_setGains(CTRL_Handle handle,const CTRL_Type_e ctrlType, const _iq
Kp,const _iq Ki,const _iq Kd);
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Sets the gain values for the specified controller

Handle: The controller (CTRL) handle

ctrlType: The controller type

Kp: The Kp gain value, pu

Ki: The Ki gain value, pu

Kd: The Kd gain value, pu

CTRL_setIab_in_pu ()
inline void CTRL_setIab_in_pu(CTRL_Handle handle,const MATH_vec2
*pIab_in_pu)

Sets the alpha/beta current (Iab) input vector values in the controller

Handle: The controller (CTRL) handle

pIab_in_pu: The vector of the alpha/beta current input vector values, pu

CTRL_setIab_filt_pu ()
void CTRL_setIab_filt_pu(CTRL_Handle handle,const MATH_vec2 *pIab_filt_pu);

Sets the alpha/beta filtered current vector values in the controller

Handle: The controller (CTRL) handle

pIab_filt_pu: The vector of the alpha/beta filtered current vector values, pu

CTRL_setId_ref_pu ()
inline void CTRL_setId_ref_pu(CTRL_Handle handle,const _iq Id_ref_pu)

Sets the direct current (Id) reference value in the controller

Handle: The controller (CTRL) handle

Id_ref_pu: The quadrature current reference value, pu; obj->Idq_ref.value[0]

CTRL_setIdq_in_pu ()
inline void CTRL_setIdq_in_pu(CTRL_Handle handle,const MATH_vec2
*pIdq_in_pu)

Sets the direct/quadrature current (Idq) input vector values in the controller

Handle: The controller (CTRL) handle

pIdq_in_pu: The vector of the direct/quadrature current input vector values, pu; obj-> Idq_in.value
[0,1]

CTRL_setIdq_ref_pu ()
inline void CTRL_setIdq_ref_pu(CTRL_Handle handle,const MATH_vec2
*pIdq_ref_pu)

Sets the direct/quadrature current (Idq) reference vector values in the controller

Handle: The controller (CTRL) handle

87SPRUHJ1F–January 2013–Revised July 2014 InstaSPIN and MotorWare
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


InstaSPIN-FOC API www.ti.com

pIdq_ref_pu: The vector of the direct/quadrature current reference vector values, pu, obj->
Idq_ref.value[0,1]

CTRL_setIdRated_pu ()
inline void CTRL_setIdRated_pu(CTRL_Handle handle,const _iq IdRated_pu)

Sets the Id rated current value in the controller

Handle: The controller (CTRL) handle

IdRated_pu: The Id rated current value, pu, obj-> IdRated

CTRL_setIq_ref_pu ()
void CTRL_setIq_ref_pu (CTRL_Handle handle, const _iq IqRef_pu)

Sets the quadrature current (Iq) reference value in the controller

Handle: The controller (CTRL) handle

IqRef_pu: The quadrature current reference value, pu, Idq_ref.value[1]

CTRL_setKd () void CTRL_setKd (CTRL_Handle handle, const CTRL_Type_e ctrlType,const _iq
Kd)

Sets the derivative gain (Kd) value for the specified controller (speed, Id, or Iq)

Handle: The controller (CTRL) handle

ctrlType: The controller type Kd: The Kd value

CTRL_setKi () void CTRL_setKi (CTRL_Handle handle, const CTRL_Type_e ctrlType,const _iq Ki)

Sets the integral gain (Ki) value for the specified controller (speed, Id, or Iq)

Handle: The controller (CTRL) handle

ctrlType: The controller type Ki: The Ki value

CTRL_setKp () void CTRL_setKp (CTRL_Handle handle, const CTRL_Type_e ctrlType,const _iq
Kp)

Sets the proportional gain (Kp) value for the specified controller (speed, Id, or Iq)

Handle: The controller (CTRL) handle

ctrlType: The controller type

Kp: The Kp value

CTRL_setLhf () inline void CTRL_setLhf(CTRL_Handle handle,const float_t Lhf)

Sets the high frequency inductance (Lhf) value in the controller

Handle: The controller (CTRL) handle

ctrlType: The controller type

Lhf: The Lhf value
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CTRL_setMagCurrent_pu ()
void CTRL_setMagCurrent_pu(CTRL_Handle handle,const _iq magCurrent_pu);

Sets the magnetizing current value in the controller

Handle: The controller (CTRL) handle

magCurrent_pu: The magnetizing current value, pu

CTRL_setMaxVsMag_pu ()
inline void CTRL_setMaxVsMag_pu(CTRL_Handle handle,const _iq maxVsMag)

Sets the maximum voltage vector in the controller

Handle: The controller (CTRL) handle

maxVsMag: The maximum voltage vector (value between 0 and 4/3), obj->maxVsMag_pu

CTRL_setMaxAccel_pu ()
inline void CTRL_setMaxAccel_pu(CTRL_Handle handle,const _iq maxAccel_pu)

Sets the maximum acceleration of the speed controller. Sets the maximum acceleration
rate of the speed reference.

Handle: The controller (CTRL) handle

maxAccel_pu: The maximum acceleration (value between 0 and 1), pu, obj->traj_spd.maxDelta

CTRL_setMaximumSpeed_pu ()
void CTRL_setMaximumSpeed_pu(CTRL_Handle handle,const _iq maxSpeed_pu);

Sets the maximum speed value in the controller.

Handle: The controller (CTRL) handle

maxSpeed_pu: The maximum speed value, pu

CTRL_setParams() void CTRL_setParams(CTRL_Handle handle,USER_Params *pUserParams)

Sets the default controller parameters. This function allows for updates in scale factors
during real-time operation of the controller.

Handle: The controller (CTRL) handle

pUserParams: The pointer to the user parameters

CTRL_setNumCtrlTicksPerCurrentTick ()
inline void CTRL_setNumCtrlTicksPerCurrentTick(CTRL_Handle handle, const
uint_least16_t numCtrlTicksPerCurrentTick)

Sets the number of controller clock ticks per current controller clock tick.

Handle: The controller (CTRL) handle

numCtrlTicksPerCurrentTick: The number of controller clock ticks per estimator clock tick, obj-
>numCtrlTicksPerCurrentTick
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CTRL_setNumCtrlTicksPerSpeedTick ()
inline void CTRL_setNumCtrlTicksPerSpeedTick(CTRL_Handle handle,,const
uint_least16_t numCtrlTicksPerSpeedTick)numCtrlTicksPerCurrentTick)

Sets the number of controller clock ticks per speed controller clock tick.

Handle: The controller (CTRL) handle

numCtrlTicksPerSpeedTick: The number of controller clock ticks per speed clock tick, obj->
numCtrlTicksPerSpeedTick

CTRL_setNumCtrlTicksPerTrajTick ()
inline void CTRL_setNumCtrlTicksPerTrajTick(CTRL_Handle handle, const
uint_least16_t numCtrlTicksPerTrajTick)

Sets the number of controller clock ticks per trajectory clock tick.

Handle: The controller (CTRL) handle

numCtrlTicksPerTrajTick: The number of controller clock ticks per trajectory clock tick, obj->
numCtrlTicksPerTrajTick

CTRL_setNumIsrTicksPerCtrlTick () inline void CTRL_setNumIsrTicksPerCtrlTick(CTRL_Handle
handle, const uint_least16_t numIsrTicksPerCtrlTick)

Sets the number of Interrupt Service Routine (ISR) clock ticks per controller clock tick.

Handle: The controller (CTRL) handle

numIsrTicksPerCtrlTick: The number of ISR clock ticks per controller clock tick

CTRL_setRhf () inline void CTRL_setRhf(CTRL_Handle handle,const float_t Rhf)

Sets the high frequency resistance (Rhf) value in the controller

Handle: The controller (CTRL) handle

Rhf: The Rhf value, obj->Rhf

CTRL_setRoverL () inline void CTRL_setRoverL(CTRL_Handle handle,const float_t RoverL)

Sets the R/L value in the controller

Handle: The controller (CTRL) handle

RoverL: The R/L value, obj-> RoverL

CTRL_setSpdMax () void CTRL_setSpdMax (CTRL_Handle handle, const _iq spdMax)

Sets the PI speed reference value that is located in the controller

Handle: The controller (CTRL) handle

spdMax: The maximum allowed output of the speed controller

CTRL_setSpd_max_pu ()
inline void CTRL_setSpd_max_pu(CTRL_Handle handle,const _iq maxSpd_pu)
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Sets the maximum speed value in the controller

Handle: The controller (CTRL) handle

maxSpd_pu: The maximum speed value, pu

CTRL_setSpd_out_pu ()
inline void CTRL_setSpd_out_pu(CTRL_Handle handle,const _iq spd_out_pu)

Sets the output speed value in the controller

Handle: The controller (CTRL) handle

spd_out_pu: The output speed value, pu

CTRL_setSpd_ref_pu ()
void CTRL_setSpd_ref_pu(CTRL_Handle handle,const _iq spd_ref_pu);

Sets the output speed reference value in the controller

Handle: The controller (CTRL) handle

spd_ref_pu: The output speed reference value, pu

CTRL_setSpd_ref_krpm ()
void CTRL_setSpd_ref_krpm(CTRL_Handle handle,const _iq spd_ref_krpm)

Sets the PI speed reference value that is located in the controller

Handle: The controller (CTRL) handle

spd_ref_krpm: The output speed reference value, kilo-rpm

CTRL_setState () inline void CTRL_setState(CTRL_Handle handle,const CTRL_State_e state)

Sets the controller state

Handle: The controller (CTRL) handle

state: The new state

CTRL_setTrajFreq_Hz ()
inline void CTRL_setTrajFreq_Hz(CTRL_Handle handle,const uint_least32_t
trajFreq_Hz)

Sets the trajectory execution frequency

Handle: The controller (CTRL) handle

trajFreq_Hz: The trajectory execution frequency, Hz, obj->trajFreq_Hz

CTRL_setTrajPeriod_sec ()
inline void CTRL_setTrajPeriod_sec(CTRL_Handle handle,const _iq
trajPeriod_sec)

Sets the trajectory execution period

Handle: The controller (CTRL) handle
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trajPeriod_sec: The trajectory execution period, sec, obj->trajPeriod_sec

CTRL_setUi () inline void CTRL_setUi(CTRL_Handle handle,const CTRL_Type_e ctrlType,const
_iq Ui)

Sets the integrator (Ui) value in the specified controller (speed, Id, or Iq)

Handle: The controller (CTRL) handle

ctrlType: The controller type

Ui: Ui value

CTRL_setupClarke_I ()
void CTRL_setupClarke_I(CTRL_Handle handle,uint_least8_t numCurrentSensors);

Sets the number of current sensors. Different algorithms are used for calculating the
Clarke transform when different number of currents are read in.

Handle: The controller (CTRL) handle

ctrlType: The controller type

numCurrentSensors: The number of current sensors

CTRL_setupClarke_V ()
void CTRL_setupClarke_V(CTRL_Handle handle,uint_least8_t
numVoltageSensors);

Sets the number of voltage sensors. Different algorithms are used for calculating the
Clarke transform when different number of voltages are read in.

Handle: The controller (CTRL) handle

ctrlType: The controller type

numVoltageSensors: The number of voltage sensors

CTRL_setupEstIdleState ()
void CTRL_setupEstIdleState(CTRL_Handle handle);

Sets up the controller and trajectory generator for the estimator idle state

Handle: The controller (CTRL) handle

Handle: The controller (CTRL) handle

:

CTRL_setupEstOnLineState ()
void CTRL_setupEstOnLineState(CTRL_Handle handle);

Sets up the controller and trajectory generator for the estimator idle state

Handle: The controller (CTRL) handle
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CTRL_setUserMotorParams ()
void CTRL_setUserMotorParams(CTRL_Handle handle);

Sets the controller and estimator with motor parameters from the user.h file

Handle: The controller (CTRL) handle

CTRL_setVab_in_pu ()
inline void CTRL_setVab_in_pu(CTRL_Handle handle,const MATH_vec2
*pVab_in_pu)

Sets the alpha/beta voltage input vector values in the controller

Handle: The controller (CTRL) handle

CTRL_setVab_out_pu ()
inline void CTRL_setVab_out_pu(CTRL_Handle handle,const MATH_vec2
*pVab_out_pu)

Sets the alpha/beta voltage output vector values in the controller

Handle: The controller (CTRL) handle

CTRL_setVdq_out_pu ()
inline void CTRL_setVdq_out_pu(CTRL_Handle handle,const MATH_vec2
*pVdq_out_pu)

Sets the direct/quadrature voltage output vector values in the controller

Handle: The controller (CTRL) handle

pVdq_out_pu: The vector of direct/quadrature voltage output vector values, pu

CTRL_setWaitTimes () void CTRL_setWaitTimes(CTRL_Handle handle,const uint_least32_t
*pWaitTimes)

Sets the wait times for the controller states

Handle: The controller (CTRL) handle

pWaitTimes: A pointer to a vector of wait times, controller clock counts

CTRL_setup () void CTRL_setup(CTRL_Handle handle)

Sets up the controllers

Handle: The controller (CTRL) handle

CTRL_setupCtrl () void CTRL_setupCtrl(CTRL_Handle handle);

Sets up the controller (CTRL) object and all of the subordinate objects (Runs the
InstaSPIN state machine)

Handle: The controller (CTRL) handle

CTRL_setupEst () void CTRL_setupEst(CTRL_Handle handle);
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Sets up the controller (CTRL) object and all of the subordinate objects (Runs the
InstaSPIN state machine)

Handle: The controller (CTRL) handle

CTRL_setupTraj () void CTRL_setupTraj(CTRL_Handle handle);

Sets up the trajectory (TRAJ) object

Handle: The controller (CTRL) handle
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3.3.1.6 CTRL Run and Compute Functions

CTRL_angleDelayComp ()
inline _iq CTRL_angleDelayComp(CTRL_Handle handle, const _iq angle_pu)

Runs angle delay compensation. This function takes the decimation rates to calculate a
phase delay, and it compensates the delay. This allows the voltage output to do a better
correction of the error.

Handle: The controller (CTRL) handle

angle_pu: The angle delayed

Return: The phase delay compensated angle, angleComp_pu

CTRL_computePhasor ()
inline void CTRL_computePhasor(const _iq angle_pu,MATH_vec2 *pPhasor)

Computes a phasor for a given angle

angle_pu: The angle, pu

pPhasor: The pointer to the phasor vector values

CTRL_doCurrentCtrl ()
inline bool CTRL_doCurrentCtrl(CTRL_Handle handle)

Determines if the current controllers should be run

Handle: The controller (CTRL) handle

Return: The value denoting that the current controllers should be run (true) or not (false), result

CTRL_doSpeedCtrl ()
inline bool CTRL_doSpeedCtrl(CTRL_Handle handle)

Determines if the speed controller should be executed

Handle: The controller (CTRL) handle

Return: A Boolean value denoting if the speed controller should be executed (true) or not (false)

CTRL_run() void CTRL_run(CTRL_Handle handle,HAL_Handle halHandle,const
HAL_AdcData_t *pAdcData, HAL_PwmData_t *pPwmData)

Runs the motor controller calculations, must be called at the ISR rate

Handle: The controller (CTRL) handle

halHandle: The driver (HAL) handle

pAdcData: The pointer to the ADC data in “HAL_AdcData_t” type format

pPwmData: The pointer to the PWM data in “HAL_AdcData_t” type format

CTRL_runTraj () void CTRL_runTraj(CTRL_Handle handle)

Runs the trajectory
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Handle: The controller (CTRL) handle

CTRL_runOffLine () inline void CTRL_runOffLine(CTRL_Handle handle,HAL_Handle halHandle, const
HAL_AdcData_t *pAdcData,HAL_PwmData_t *pPwmData)

Runs the offline controller

Handle: The controller (CTRL) handle

halHandle: The hardware abstraction layer (HAL) handle

pAdcData: The pointer to the ADC data

pPwmData: The pointer to the PWM data

CTRL_runOnLine () inline void CTRL_runOnLine(CTRL_Handle handle,const HAL_AdcData_t
*pAdcData,HAL_PwmData_t *pPwmData)

Runs the online controller

Handle: The controller (CTRL) handle

pAdcData: The pointer to the ADC data

pPwmData: The pointer to the PWM data

CTRL_runOnLine_User ()
inline void CTRL_runOnLine_User(CTRL_Handle handle, const HAL_AdcData_t
*pAdcData,HAL_PwmData_t *pPwmData)

Runs the online controller

Handle: The controller (CTRL) handle

pAdcData: The pointer to the ADC data

pPwmData: The pointer to the PWM data

CTRL_useZeroIq_ref ()
inline bool CTRL_useZeroIq_ref(CTRL_Handle handle)

Determines if a zero Iq current reference should be used in the controller

Handle: The controller (CTRL) handle

Return: A Boolean value denoting if a zero Iq current reference should be used (true) or not
(false)
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3.3.2 Estimator API Functions – FAST Library – est.h, est_states.h

3.3.2.1 EST Enumerations and Structures

EST_RsOnLineFilterType_e

Enumeration for the Rs online filter types
typedef enum
{

EST_RsOnLineFilterType_Current=0, < Current Filter
EST_RsOnLineFilterType_Voltage < Voltage Filter

} EST_RsOnLineFilterType_e;

EST_ErrorCode_e

Enumeration for the estimator error codes
typedef enum
{

EST_ErrorCode_NoError=0, < no error error code
EST_ErrorCode_Flux_OL_ShiftOverFlow, < flux open loop shift overflow error

code
EST_ErrorCode_FluxError, < flux estimator error code
EST_ErrorCode_Dir_ShiftOverFlow, < direction shift overflow error code
EST_ErrorCode_Ind_ShiftOverFlow, < inductance shift overflow error code
EST_numErrorCodes < the number of estimator error codes

} EST_ErrorCode_e;

EST_State_e

Enumeration for the estimator states
typedef enum
{

EST_State_Error=0, < error
EST_State_Idle, < idle
EST_State_RoverL, < R/L estimation
EST_State_Rs, < Rs estimation state
EST_State_RampUp, < ramp up the speed
EST_State_IdRated, < control Id and estimate the rated flux
EST_State_RatedFlux_OL, < estimate the open loop rated flux
EST_State_RatedFlux, < estimate the rated flux
EST_State_RampDown, < ramp down the speed
EST_State_LockRotor, < lock the rotor
EST_State_Ls, < stator inductance estimation state
EST_State_Rr, < rotor resistance estimation state
EST_State_MotorIdentified, < motor identified state
EST_State_OnLine, < online parameter estimation
EST_numStates < the number of estimator states

} EST_State_e;
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3.3.2.2 EST Set Functions

EST_setRsOnLineId_pu ()
extern void EST_setRsOnLineId_pu(EST_Handle handle,const _iq Id_pu);

Gets the Id value used for online stator resistance estimation in per unit (pu), IQ24

Handle: The estimator (EST) handle

Return: The Id value, pu

EST_setAngle_pu ()
extern void EST_setAngle_pu(EST_Handle handle,const _iq angle_pu);

Sets the angle value in the estimator in per unit (pu), IQ24

This function overwrites the estimated angle with a user's provided angle. The set value
should be between 0x00000000 or _IQ(0.0) to 0x00FFFFFF or _IQ(1.0). The following
example shows how to overwrite the estimated angle:

_iq Overwrite_Flux_Angle_pu = _IQ(0.5);
EST_setAngle_pu(handle, Overwrite_Flux_Angle_pu);

This function is not recommended for general use, since this will automatically generate
an axis misalignment between the rotor flux axis and the control signals driving the
motor. The use of this function is recommended for advanced users interested in doing
open loop startup algorithms that need to bypass the estimator.

Handle: The estimator (EST) handle

angle_pu: The angle value, pu

EST_setDcBus_pu ()
extern void EST_setDcBus_pu(EST_Handle handle,const _iq dcBus_pu);

Sets the DC bus voltage in the estimator in per unit (pu), IQ24

Handle: The estimator (EST) handle

dcBus_pu: The DC bus voltage, pu

EST_setDir_qFmt () extern void EST_setDir_qFmt(EST_Handle handle,const uint_least8_t dir_qFmt);

Sets the direction Q format in the estimator

Handle: The estimator (EST) handle

dir_qFmt: The direction Q format

EST_setFe_neg_max_pu ()
extern void EST_setFe_neg_max_pu(EST_Handle handle,const _iq
fe_neg_max_pu);

Sets maximum negative electrical frequency from the estimator

Handle: The estimator (EST) handle

fe_neg_max_pu: The maximum negative electrical frequency, Hz
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EST_setFe_pos_min_pu ()
extern void EST_setFe_pos_min_pu(EST_Handle handle,const _iq
fe_pos_min_pu);

Sets minimum positive electrical frequency from the estimator

Handle: The estimator (EST) handle

fe_pos_min_pu: The minimum positive electrical frequency, Hz

EST_setFlag_enableFluxControl ()
extern void EST_setFlag_enableFluxControl(EST_Handle handle,const bool state);

Sets the enable flux control flag in the estimator

Handle: The estimator (EST) handle

State: The desired flag state, on (1) or off (0)

EST_setFlag_enableForceAngle ()
void EST_setFlag_enableForceAngle (EST_Handle handle,const bool_t state)

Sets the enable force angle flag in the estimator

Enable or disable the DC measurement of Rs at startup of the motor

Handle: The estimator (EST) handle

State: The desired flag state, on (1) or off (0)
• TRUE: Enable forced angle. The estimated angle will be bypassed if the flux

frequency falls below a threshold defined by:
#define USER_ZEROSPEEDLIMIT (0.001)

in user.h. A typical value of this frequency is 0.001 of the full scale frequency defined
in:

#define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)

Forced angle algorithm, when active, that is, when the rotor flux electrical frequency
falls below the threshold, will be forcing a rotating angle at a frequency set by the
following define:

#define USER_FORCE_ANGLE_FREQ_Hz (1.0)

• FALSE: Disable forced angle. The estimator will never be bypassed by any forced
angle algorithm.

EST_setFlag_enableRsOnLine ()
void EST_setFlag_enableRsOnLine(EST_Handle handle,const bool_t state)

Enables or disables the Rs online estimation in the estimator handle

Handle: The estimator (EST) handle

State: The desired flag state, on (1) or off (0)

EST_setFlag_enableRsRecalc ()
void EST_setFlag_enableRsRecalc(EST_Handle handle,const bool_t state)

Sets the enable stator resistance (Rs) re-calculation flag in the estimator
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Enable or disable the DC measurement of Rs at startup of the motor

Handle: The estimator (EST) handle

State: The desired flag state, on (1) or off (0)

EST_setFlag_estComplete () extern void EST_setFlag_estComplete(EST_Handle handle,const bool
state);

Sets the estimation complete flag in the estimator

Handle: The estimator (EST) handle

State: The desired flag state, true (1) or false (0)

EST_setFlag_updateRs ()
void EST_setFlag_updateRs(EST_Handle handle,const bool_t state)

Sets the update stator resistance (Rs) flag in the estimator. Copies the Rs value from the
Rs online estimator to the Rs value used by the InstaSpin angle estimator

Handle: The estimator (EST) handle

State: The desired flag state, on (1) or off (0)

EST_setForceAngleDelta_pu ()
extern void EST_setForceAngleDelta_pu(EST_Handle handle,const _iq
angleDelta_pu);

Sets the force angle delta value in the estimator in per unit (pu), IQ24

This function sets a forced angle delta, which represents the increments to be added to
or subtracted from the forced angle. The higher this value is, the higher frequency will be
generated when the angle is forced (estimated angle is bypassed when in forced angle
mode). By default the forced angle frequency is set in user.h. The following example
shows how to set a forced angle frequency from Hertz (Hz) to per unit:

#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)
#define USER_NUM_CTRL_TICKS_PER_EST_TICK (1)
#define USER_PWM_FREQ_kHz (15.0)
#define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
#define USER_CTRL_FREQ_Hz

(uint_least32_t)(USER_ISR_FREQ_Hz/USER_NUM_ISR_TICKS_PER_CTRL_TICK)
#define USER_EST_FREQ_Hz

(uint_least32_t)(USER_CTRL_FREQ_Hz/USER_NUM_CTRL_TICKS_PER_EST_TICK)
#define USER_FORCE_ANGLE_FREQ_Hz (1.0)

_iq delta_hz_to_pu_sf = _IQ(1.0/(float_t)USER_EST_FREQ_Hz);
_iq Force_Angle_Freq_Hz = _IQ(USER_FORCE_ANGLE_FREQ_Hz);
_iq Force_Angle_Delta_pu = _IQmpy(Force_Angle_Freq_Hz, delta_hz_to_pu_sf);

EST_setForceAngleDelta_pu(handle, Force_Angle_Delta_pu);

Handle: The estimator (EST) handle

angleDelta_pu: The force angle delta value, pu

EST_setFreqB0_lp_pu ()
extern void EST_setFreqB0_lp_pu(EST_Handle handle,const _iq b0_lp_pu);

Sets the low pass filter numerator value in the frequency estimator in per unit (pu), IQ30
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Handle: The estimator (EST) handle

b0_lp_pu: The low pass filter numerator value, pu

EST_setFreqBeta_lp_pu ()
extern void EST_setFreqBeta_lp_pu(EST_Handle handle,const _iq beta_lp_pu);

Sets the value used to set the low pass pole location in the frequency estimator in per
unit (pu), IQ30

Handle: The estimator (EST) handle

beta_lp_pu: The value used to set the filter pole location, pu

EST_setFullScaleCurrent ()
extern void EST_setFullScaleCurrent(EST_Handle handle,const float_t
fullScaleCurrent);

Sets the full scale current in the estimator in Amperes (A)

Handle: The estimator (EST) handle

fullScaleCurrent: The full scale current, A

EST_setFullScaleFlux ()
extern void EST_setFullScaleFlux(EST_Handle handle,const float_t fullScaleFlux);

Sets the full scale flux value used in the estimator in Volts*seconds (V.s)

Handle: The estimator (EST) handle

fullScaleFlux: The full scale flux value, V*sec

EST_setFullScaleFreq ()
extern void EST_setFullScaleFreq(EST_Handle handle,const float_t fullScaleFreq);

Sets the full scale frequency in the estimator in Hertz (Hz)

Handle: The estimator (EST) handle

fullScaleFreq: The full scale frequency, Hz

EST_setFullScaleInductance ()
extern void EST_setFullScaleInductance(EST_Handle handle,const float_t
fullScaleInductance);

Sets the full scale inductance in the estimator in Henries (H).

Handle: The estimator (EST) handle

fullScaleInductance: The full scale inductance, Henry

EST_setFullScaleResistance () extern void EST_setFullScaleResistance(EST_Handle handle,const
float_t fullScaleResistance);

Sets the full scale resistance in the estimator in Ohms.

Handle: The estimator (EST) handle
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fullScaleResistance: The full scale resistance, Ohm

EST_setFullScaleVoltage ()
extern void EST_setFullScaleVoltage(EST_Handle handle,const float_t
fullScaleVoltage);

Sets the full scale resistance in the estimator in Volts (V).

Handle: The estimator (EST) handle

fullScaleVoltage: The full scale voltage, V

EST_setIdle () extern void EST_setIdle(EST_Handle handle);

Sets the estimator to idle

Handle: The estimator (EST) handle

EST_setIdle_all () extern void EST_setIdle_all(EST_Handle handle);

Sets the estimator and all of the subordinate estimators to idle

Handle: The estimator (EST) handle

EST_setId_ref_pu () extern void EST_setId_ref_pu(EST_Handle handle,const _iq Id_ref_pu);

Sets the direct current (Id) reference value in the estimator in per unit (pu), IQ24

Handle: The estimator (EST) handle

Id_ref_pu: The Id reference value, pu

EST_setIdRated_pu ()
extern void EST_setIdRated_pu(EST_Handle handle,const _iq IdRated_pu);

Sets the Id rated current value in the estimator in per unit (pu), IQ24

Handle: The estimator (EST) handle

IdRated_pu: The Id rated current value, pu

EST_setIq_ref_pu () extern void EST_setIq_ref_pu(EST_Handle handle,const _iq Iq_ref_pu);

Sets the quadrature current (Iq) reference value in the estimator in per unit (pu), IQ24

Handle: The estimator (EST) handle

Iq_ref_pu: The Iq reference value, pu

EST_setLs_d_pu () extern void EST_setLs_d_pu(EST_Handle handle,const _iq Ls_d_pu);

Sets the direct stator inductance value in the estimator in per unit (pu), IQ30

The internal direct inductance (Ls_d) used by the estimator can be changed in real time
by calling this function. An example showing how this is done is shown here:

#define USER_MOTOR_Ls_d (0.012)

float_t fullScaleInductance = EST_getFullScaleInductance(handle);
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float_t Ls_coarse_max = _IQ30toF(EST_getLs_coarse_max_pu(handle));
int_least8_t lShift =

ceil(log(USER_MOTOR_Ls_d/(Ls_coarse_max*fullScaleInductance))/log(2.0));
uint_least8_t Ls_qFmt = 30 - lShift;
float_t L_max = fullScaleInductance * pow(2.0,lShift);
_iq Ls_d_pu = _IQ30(USER_MOTOR_Ls_d / L_max);

EST_setLs_d_pu(handle, Ls_d_pu);
EST_setLs_qFmt(handle, Ls_qFmt);

Handle: The estimator (EST) handle

Ls_d_pu: The direct stator inductance value, pu

EST_setLs_delta_pu ()
extern void EST_setLs_delta_pu(EST_Handle handle,const _iq Ls_delta_pu);

Sets the delta stator inductance value during fine estimation

Handle: The estimator (EST) handle

Ls_delta_pu: The delta stator inductance value, pu

EST_setLs_dq_pu () extern void EST_setLs_dq_pu(EST_Handle handle,const MATH_vec2
*pLs_dq_pu);

Sets the direct/quadrature stator inductance vector values in the estimator in per unit
(pu), IQ30

The internal direct and quadrature inductances (Ls_d and Ls_q) used by the estimator
can be changed in real time by calling this function. An example showing how this is
done is shown here:

#define USER_MOTOR_Ls_d (0.012)
#define USER_MOTOR_Ls_q (0.027)

float_t fullScaleInductance = EST_getFullScaleInductance(handle);
float_t Ls_coarse_max = _IQ30toF(EST_getLs_coarse_max_pu(handle));
int_least8_t lShift =

ceil(log(USER_MOTOR_Ls_d/(Ls_coarse_max*fullScaleInductance))/log(2.0));
uint_least8_t Ls_qFmt = 30 - lShift;
float_t L_max = fullScaleInductance * pow(2.0,lShift);
MATH_vec2 Ls_dq_pu;

Ls_dq_pu.value[0] = _IQ30(USER_MOTOR_Ls_d / L_max);
Ls_dq_pu.value[1] = _IQ30(USER_MOTOR_Ls_q / L_max);

EST_setLs_dq_pu(handle, &Ls_dq_pu);
EST_setLs_qFmt(handle, Ls_qFmt);

Handle: The estimator (EST) handle

pLs_dq_pu: The pointer to the direct/quadrature stator inductance vector values, pu

EST_setLs_q_pu () extern void EST_setLs_q_pu(EST_Handle handle,const _iq Ls_q_pu);

Sets the quadrature stator inductance value in the estimator in per unit (pu), IQ30

The internal quadrature inductance (Ls_q) used by the estimator can be changed in real
time by calling this function. An example showing how this is done is shown here:

#define USER_MOTOR_Ls_q (0.027)

float_t fullScaleInductance = EST_getFullScaleInductance(handle);

103SPRUHJ1F–January 2013–Revised July 2014 InstaSPIN and MotorWare
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


InstaSPIN-FOC API www.ti.com

float_t Ls_coarse_max = _IQ30toF(EST_getLs_coarse_max_pu(handle));
int_least8_t lShift =

ceil(log(USER_MOTOR_Ls_q/(Ls_coarse_max*fullScaleInductance))/log(2.0));
uint_least8_t Ls_qFmt = 30 - lShift;
float_t L_max = fullScaleInductance * pow(2.0,lShift);
_iq Ls_d_pu = _IQ30(USER_MOTOR_Ls_q / L_max);

EST_setLs_q_pu(handle, Ls_q_pu);
EST_setLs_qFmt(handle, Ls_qFmt);

Handle: The estimator (EST) handle

Ls_q_pu: The quadrature stator inductance value, pu

EST_setLs_qFmt () extern void EST_setLs_qFmt(EST_Handle handle,const uint_least8_t Ls_qFmt);

Sets the stator inductance Q format in the estimator in 8 bit unsigned integer
(uint_least8_t)

Updating the internal inductance also requires to update the Q format variable, which is
used to extend the covered range. This qFmt (Q Format) variable creates a floating point
using fixed point math. It is important to notice that the inductance Q Format set by
calling EST_setLs_qFmt() will be used by both per unit inductance calculations Ls_d and
Ls_q. An example showing how this Q Format is set is shown below:

#define USER_MOTOR_Ls_d (0.012)
#define USER_MOTOR_Ls_q (0.027)

float_t fullScaleInductance = EST_getFullScaleInductance(handle);
float_t Ls_coarse_max = _IQ30toF(EST_getLs_coarse_max_pu(handle));
int_least8_t lShift =

ceil(log(USER_MOTOR_Ls_d/(Ls_coarse_max*fullScaleInductance))/log(2.0));
uint_least8_t Ls_qFmt = 30 - lShift;
float_t L_max = fullScaleInductance * pow(2.0,lShift);
MATH_vec2 Ls_dq_pu;

Ls_dq_pu.value[0] = _IQ30(USER_MOTOR_Ls_d / L_max);
Ls_dq_pu.value[1] = _IQ30(USER_MOTOR_Ls_q / L_max);

EST_setLs_dq_pu(handle, &Ls_dq_pu);
EST_setLs_qFmt(handle, Ls_qFmt);

Handle: The estimator (EST) handle

Ls_qFmt: The stator inductance Q format

EST_setMaxAccel_pu ()
extern void EST_setMaxAccel_pu(EST_Handle handle,const _iq maxAccel_pu);

Sets the maximum acceleration value in the estimator in per unit (pu), IQ24

Handle: The estimator (EST) handle

maxAccel_pu: The maximum acceleration value, pu

EST_setMaxAccel_est_pu ()
extern void EST_setMaxAccel_est_pu(EST_Handle handle,const _iq
maxAccel_pu);

Sets the maximum estimation acceleration value in the estimator in per unit (pu), IQ24.

Handle: The estimator (EST) handle
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maxAccel_pu: The maximum estimation acceleration value, pu

EST_setMaxCurrentSlope_pu ()
void EST_setMaxCurrentSlope_pu (EST_Handle handle, const _iq
maxCurrentSlope_pu )

Determines if the motor has been identified

Handle: The estimator (EST) handle

maxCurrentSlope_pu: The maximum current slope value, pu

EST_setMaxCurrentSlope_PowerWarp_pu ()
extern void EST_setMaxCurrentSlope_PowerWarp_pu(EST_Handle handle,const
_iq maxCurrentSlope_pu);

Sets the maximum PowerWarp current slope value used in the estimator in per unit (pu),
IQ24

Handle: The estimator (EST) handle

maxCurrentSlope_pu: The maximum current slope value, pu

EST_setRr_pu () extern void EST_setRr_pu(EST_Handle handle,const _iq Rr_pu);

Sets the rotor resistance value in the estimator in per unit (pu), IQ30.

Handle: The estimator (EST) handle

Rr_pu: The rotor resistance value, pu

EST_setRr_qFmt () extern void EST_setRr_qFmt(EST_Handle handle,uint_least8_t Rr_qFmt);

Sets the rotor resistance Q format in the estimator in 8 bit unsigned integer
(uint_least8_t)

Handle: The estimator (EST) handle

Rr_qFmt: The rotor resistance Q format

EST_setRs_delta_pu ()
extern void EST_setRs_delta_pu(EST_Handle handle,const _iq Rs_delta_pu);

Sets the delta stator resistance value

Handle: The estimator (EST) handle

Rs_delta_pu: The delta stator resistance value, pu

EST_setRsOnLine_pu ()
extern void EST_setRsOnLine_pu(EST_Handle handle,const _iq Rs_pu);

Sets the stator resistance value in the online stator resistance estimator in per unit (pu),
IQ30.

Handle: The estimator (EST) handle

Rs_pu: The stator resistance value, pu
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EST_setRsOnLine_qFmt ()
extern void EST_setRsOnLine_qFmt(EST_Handle handle,const uint_least8_t
Rs_qFmt);

Sets the stator resistance Q format in the online stator resistance estimator in 8 bit
unsigned integer (uint_least8_t)

Handle: The estimator (EST) handle

Rs_qFmt: The stator resistance Q format

EST_setRsOnLineFilterParams ()
extern void EST_setRsOnLineFilterParams(EST_Handle handle,const
EST_RsOnLineFilterType_e filterType, const _iq filter_0_b0,const _iq
filter_0_a1,const _iq filter_0_y1, const _iq filter_1_b0,const _iq filter_1_a1,const
_iq filter_1_y1);

Sets the online stator resistance filter parameters in per unit (pu), IQ24

Handle: The estimator (EST) handle

filterType: The filter type

filter_0_b0: The filter 0 numerator coefficient value for z^0

filter_0_a1: The filter 0 denominator coefficient value for z^(-1)

filter_0_y1: The filter 0 output value at time sample n=-1

filter_1_b0: The filter 1 numerator coefficient value for z^0

filter_1_a1: The filter 1 denominator coefficient value for z^(-1)

filter_1_y1: The filter 1 output value at time sample n=-1

EST_setRsOnLineId_mag_pu ()
extern void EST_setRsOnLineId_mag_pu(EST_Handle handle,const _iq
Id_mag_pu);

Sets the Id magnitude value used for online stator resistance estimation in per unit (pu),
IQ24

Handle: The estimator (EST) handle

Id_mag_pu: The Id magnitude value, pu

EST_setRs_pu () extern void EST_setRs_pu(EST_Handle handle,const _iq Rs_pu);

Sets the stator resistance value used in the estimator in per unit (pu), IQ30

Handle: The estimator (EST) handle

Rs_pu: The stator resistance value, pu

EST_setRs_qFmt () extern void EST_setRs_qFmt(EST_Handle handle,uint_least8_t Rs_qFmt);

Sets the stator resistance Q format in the estimator in 8 bit unsigned integer
(uint_least8_t)
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Handle: The estimator (EST) handle

Rs_qFmt: The stator resistance Q format

EST_updateId_ref_pu ()
extern void EST_updateId_ref_pu(EST_Handle handle,_iq *pId_ref_pu);

Updates the Id reference value used for online stator resistance estimation in per unit
(pu), IQ24.

Handle: The estimator (EST) handle

pId_ref_pu: The pointer to the Id reference value, pu
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3.3.2.3 EST Get Functions

EST_get_krpm_to_pu_sf ()
extern _iq EST_get_krpm_to_pu_sf(EST_Handle handle);

Gets the krpm to pu scale factor in per unit (pu), IQ24. This function is needed when a
user needs to scale a value of the motor speed from kpm (kilo revolutions per minute) to
a per units value.

This scale factor is calculated and used as shown below:
#define USER_MOTOR_NUM_POLE_PAIRS (2)

#define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)

_iq scale_factor = _IQ(USER_MOTOR_NUM_POLE_PAIRS * 1000.0 / (60.0 *
USER_IQ_FULL_SCALE_FREQ_Hz));

_iq Speed_krpm = EST_getSpeed_krpm(handle);
_iq Speed_krpm_to_pu_sf = EST_get_krpm_to_pu_sf(handle);
_iq Speed_pu = _IQmpy(Speed_krpm,Speed_krpm_to_pu_sf);

Handle: The estimator (EST) handle

Return: The krpm to pu scale factor. This value is in IQ24

EST_get_pu_to_krpm_sf ()
extern _iq EST_get_pu_to_krpm_sf(EST_Handle handle);

Gets the pu to krpm scale factor in per unit (pu), IQ24. This function is needed when a
user needs to scale a value of the motor speed from per units to krpm (kilo revolutions
per minute) value.

This scale factor is calculated and used as shown below:
#define USER_MOTOR_NUM_POLE_PAIRS (2)

#define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)

_iq scale_factor = IQ(60.0 * USER_IQ_FULL_SCALE_FREQ_Hz /
(USER_MOTOR_NUM_POLE_PAIRS * 1000.0));

_iq Speed_pu = EST_getFm_pu(handle);
_iq Speed_pu_to_krpm_sf = EST_get_pu_to_krpm_sf(handle);
_iq Speed_krpm = _IQmpy(Speed_krpm,Speed_krpm_to_pu_sf);

Handle: The estimator (EST) handle

Return: The krpm to pu scale factor. This value is in IQ24

EST_getAngle_pu () _iq EST_getAngle_pu(EST_Handle handle)

Gets the angle value from the estimator in per unit (pu), IQ24. This function returns a per
units value of the rotor flux angle. This value wraps around at 1.0, so the return value is
between 0x00000000 or _IQ(0.0) to 0x00FFFFFF or _IQ(1.0). An example of using this
angle is shown:
_iq Rotor_Flux_Angle_pu = EST_getAngle_pu(handle);

Handle: The estimator (EST) handle

Return: The flux angle value, pu

EST_getDcBus_pu () _iq EST_getDcBus_pu(EST_Handle handle)
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Gets the DC bus value from the estimator in per unit (pu), IQ24. This value is originally
passed as a parameter when calling function EST_run(). A similar function can be simply
reading what has been read and scaled by the ADC converter on pAdcData->dcBus.
This value is used by the libraries internally to calculate one over dcbus, which is a value
used to compensate the proportional gains of the current controllers. The following
example shows how to use this function to calculate a DC bus value in kilo volts:
#define USER_IQ_FULL_SCALE_VOLTAGE_V (300.0)

_iq Vbus_pu = EST_getDcBus_pu(handle);
_iq Vbus_pu_to_kV_sf = _IQ(USER_IQ_FULL_SCALE_VOLT

_iq Vbus_kV = _IQmpy(Vbus_pu,Vbus_pu_to_kV_sf);

Handle: The estimator (EST) handle

Return: The DC bus value, pu

EST_ErrorCode_e EST_getErrorCode ()
extern EST_ErrorCode_e EST_getErrorCode(EST_Handle handle);

Gets the error code from the estimator

Handle: The estimator (EST) handle

Return: The error code

EST_getFe () extern int32_t EST_getFe(EST_Handle handle);

Gets the electrical frequency of the motor in Hertz (Hz). This frequency, in Hz, is the
frequency of currents and voltages going into the motor. In order to get the speed of the
motor, it is better to use EST_getFm().

Handle: The estimator (EST) handle

Return: The electrical frequency, Hz

EST_getFe_pu () extern _iq EST_getFe_pu(EST_Handle handle);

Gets the electrical frequency of the motor in per unit (pu), IQ24. Similar to EST_getFe()
function, this function returns the electrical frequency of the motor in per units. In order to
convert the electrical frequency from per units to Hz, the user needs to multiply the
returned value by the following scale factor:
_iq Full_Scale_Freq_Elec_Hz = _IQ(USER_IQ_FULL_SCALE_FREQ_Hz);
_iq Freq_Elec_Hz = _IQmpy(EST_getFe_pu(handle),Full_Scale_Freq_Elec_Hz);

Handle: The estimator (EST) handle

Return: The electrical frequency, pu

EST_getFlag_enableForceAngle ()
extern bool EST_getFlag_enableForceAngle(EST_Handle handle);

Gets the enable force angle flag value from the estimator.

Handle: The estimator (EST) handle

Return: The value of the flag, in Boolean type, bool
• TRUE: Forced angle is enabled, and the estimated angle will be bypassed if the flux

frequency falls below a threshold defined by:
#define USER_ZEROSPEEDLIMIT (0.001)
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A typical value of this frequency is 0.001 of the full scale frequency defined in:
#define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)

Forced angle algorithm, when active, that is, when the rotor flux electrical frequency
falls below the threshold, will be forcing a rotating angle at a frequency set by the
following define:

#define USER_FORCE_ANGLE_FREQ_Hz (1.0)

• FALSE: Disable forced angle. The estimator will never be bypassed by any forced
angle algorithm.

EST_getFlag_enableRsOnLine ()
extern bool EST_getFlag_enableRsOnLine(EST_Handle handle);

Gets the value of the flag which enables online stator resistance (Rs) estimation

Handle: The estimator (EST) handle

Return: The enable online Rs flag value
• true Rs online recalibration algorithm is enabled. The estimator will run a set of

functions related to rs online which recalculates the stator resistance while the motor
is rotating. This algorithm is useful when motor heats up, and hence stator resistance
increases.

• false Rs online recalibration algorithm is disabled, and no updates to Rs will be made
even if the motor heats up. Low speed performace, and startup performance with full
torque might be affected if stator resistance changes due to motor heating up. The
stator resistance will be fixed, and equal to the value returned by:
EST_getRs_Ohm().

EST_getFlag_enableRsRecalc ()
extern bool EST_getFlag_enableRsRecalc(EST_Handle handle);

Gets the value of the flag which enables online stator resistance (Rs) estimation

Handle: The estimator (EST) handle

Return: The enable online Rs flag value
• true Rs online recalibration algorithm is enabled. The estimator will run a set of

functions related to rs online which recalculates the stator resistance while the motor
is rotating. This algorithm is useful when motor heats up, and hence stator resistance
increases.

• false Rs online recalibration algorithm is disabled, and no updates to Rs will be made
even if the motor heats up. Low speed performace, and startup performance with full
torque might be affected if stator resistance changes due to motor heating up. The
stator resistance will be fixed, and equal to the value returned by:
EST_getRs_Ohm().

EST_getFlag_estComplete ()
extern bool EST_getFlag_estComplete(EST_Handle handle);

Gets the value of the flag which denotes when the estimation is complete. This flag is set
to true every time the EST_run() function is run. This flag can be reset to false by using
the following example:
bool estComplete_Flag = EST_getFlag_estComplete(handle);

Handle: The estimator (EST) handle
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Return: The enable online Rs flag value
• true - The estimator has been run at least once since last time

EST_setFlag_estComplete(handle, false) was called.
• false - The estimator has not been run since last time

EST_setFlag_estComplete(handle, false) was called.

EST_getFlag_updateRs ()
extern bool EST_getFlag_updateRs(EST_Handle handle);

Gets the value of the flag which enables the updating of the stator resistance (Rs) value.
When the online resistance estimator is enabled, the update flag allows the online
resistance to be copied to the resistance used by the estimator model. If the update flag
is not set to true the online resistance estimation will not be used by the estimator model,
and if the resistance changes too much due to temperature increase, the model may not
work as expected.
bool update_Flag = EST_getFlag_updateRs(handle);

Handle: The estimator (EST) handle

Return: The update Rs flag value
• true - The stator resistance estimated by the Rs OnLine module will be copied to the

stator resistance used by the module, so of the motor's temperature changes, the
estimated angle will be calculated based on the most up to date stator resistance

• false - The stator resistance estimated by the Rs OnLine module may or may not be
updated depending on the enable flag, but will not be used in the motor's model used
to generate the estimated speed and angle.

EST_getFlux_VpHz ()
int32_t EST_getFlux_VpHz(EST_Handle handle)

Gets the flux value in V/Hz

The estimator continuously calculates the flux linkage between the rotor and stator,
which is the portion of the flux that produces torque. This function returns the flux
linkage, ignoring the number of turns, between the rotor and stator coils, in Volts per
Hertz, or V/Hz. This functions returns a precise value only after the motor has been
identified, which can be checked by the following code example:
if(EST_isMotorIdentified(handle))

{
// once the motor has been identified, get the flux
float_t Flux_VpHz = EST_getFlux_VpHz(handle);

}

Handle: The estimator (EST) handle

Return: The flux value, V/Hz

EST_getFlux_Wb () int32_t EST_getFlux_Wb(EST_Handle handle)

Gets the flux value in Weber

The estimator continuously calculates the flux linkage between the rotor and stator,
which is the portion of the flux that produces torque. This function returns the flux
linkage, ignoring the number of turns, between the rotor and stator coils, in Webers, or
Wb, or Volts * Seconds (V.s). This functions returns a precise value only after the motor
has been identified, which can be checked by the following code example:
if(EST_isMotorIdentified(handle))

{
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// once the motor has been identified, get the flux
float_t Flux_Wb = EST_getFlux_Wb(handle);

}

Handle: The estimator (EST) handle

Return: The flux value, Weber

EST_getFlux_pu () extern _iq EST_getFlux_pu(EST_Handle handle);

Gets the flux value in per unit (pu), IQ24

The estimator continuously calculates the flux linkage between the rotor and stator,
which is the portion of the flux that produces torque. This function returns the flux
linkage, ignoring the number of turns, between the rotor and stator coils, in per units.
This functions returns a precise value only after the motor has been identified, which can
be checked by the following code example:
if(EST_isMotorIdentified(handle))

{
// once the motor has been identified, get the flux
_iq Flux_pu = EST_getFlux_pu(handle);

}

For some applications it is important to get this value in per units, since it is much faster
to process especially when the architecture of the microcontroller does not have a
floating point processing unit. In order to translate this per units value into a scaled value
in _iq, it is important to consider a scale factor to convert this flux in per units to the
required units. The following example shows how to scale a per units value to Wb and
V/Hz in IQ for faster processing:
float_t FullScaleFlux = (USER_IQ_FULL_SCALE_VOLTAGE_V/(float_t)USER_EST_FREQ_Hz);

float_t maxFlux =
(USER_MOTOR_RATED_FLUX*((USER_MOTOR_TYPE==MOTOR_Type_Induction)?0.05:0.7));

float_t lShift = -ceil(log(FullScaleFlux/maxFlux)/log(2.0));
_iq gFlux_pu_to_Wb_sf = _IQ(FullScaleFlux/(2.0*MATH_PI)*pow(2.0,lShift));
_iq gFlux_pu_to_VpHz_sf = _IQ(FullScaleFlux*pow(2.0,lShift));
// The value of gFlux_pu_to_Wb_sf and gFlux_pu_to_VpHz_sf can be calculated once

at the beginning of the
// code and stored as global variables

_iq Flux_Wb;
_iq Flux_VpHz;
_iq Flux_pu = EST_getFlux_pu(handle);

Flux_Wb = _IQmpy(Flux_pu, gFlux_pu_to_Wb_sf);
Flux_VpHz = _IQmpy(Flux_pu, gFlux_pu_to_VpHz_sf);

Handle: The estimator (EST) handle

Return: The flux value, pu

EST_getFm () extern int32_t EST_getFm(EST_Handle handle);

Gets the mechanical frequency of the motor in Hertz (Hz). This frequency, in Hz, is the
mechanical frequency of the motor. If the motor is a permanent magnet motor, the
mechanical frequency will be equal to the electrical frequency, since it is a synchronous
motor. In the case of AC induction motors, the mechanical frequency will be equal to the
electrical frequency minus the slip frequency. The following code example shows how to
use this function to calculate revolutions per minute (RPM) in floating point:
#define USER_MOTOR_NUM_POLE_PAIRS (2)

float_t Mechanical_Freq_Hz = EST_getFm(handle);
float_t hz_to_rpm_sf = 60.0/USER_MOTOR_NUM_POLE_PAIRS;
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float_t Speed_RPM = Mechanical_Freq_Hz * hz_to_rpm_sf;

Handle: The estimator (EST) handle

Return: The mechanical frequency, Hz

EST_getFm_pu () extern _iq EST_getFm_pu(EST_Handle handle);

Gets the mechanical frequency of the motor in per unit (pu), IQ24. Similar to
EST_getFe_pu() function, this function returns the mechanical frequency of the motor in
per units. In order to convert the mechanical frequency from per units to kHz (to avoid
saturation of IQ24), the user needs to multiply the returned value by the following scale
factor:
#define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)

_iq pu_to_khz_sf = _IQ(USER_IQ_FULL_SCALE_FREQ_Hz/1000.0);
_iq khz_to_krpm_sf = _IQ(60.0/USER_MOTOR_NUM_POLE_PAIRS);
_iq Mechanical_Freq_kHz = _IQmpy(EST_getFm_pu(handle),pu_to_khz_sf);
_iq Speed_kRPM = _IQmpy(Mechanical_Freq_kHz,khz_to_krpm_sf);

Handle: The estimator (EST) handle

Return: The mechanical frequency, pu

EST_getForceAngleDelta_pu ()
extern _iq EST_getForceAngleDelta_pu(EST_Handle handle);

Gets the force angle delta value from the estimator in per unit (pu), IQ24. This function
returns a valid value only after initializing the controller object by calling
CTRL_setParams() function. The force angle delta represents the increments to be
added to or subtracted from the forced angle. The higher this value is, the higher
frequency will be generated when the angle is forced (estimated angle is bypassed when
in forced angle mode). By default the forced angle frequency is set in user.h. The
following example shows how to convert delta in per units to kilo Hertz (kHz).
#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)

#define USER_NUM_CTRL_TICKS_PER_EST_TICK (1)
#define USER_PWM_FREQ_kHz (15.0)
#define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
#define USER_CTRL_FREQ_Hz

(uint_least32_t)(USER_ISR_FREQ_Hz/USER_NUM_ISR_TICKS_PER_CTRL_TICK)
#define USER_EST_FREQ_Hz

(uint_least32_t)(USER_CTRL_FREQ_Hz/USER_NUM_CTRL_TICKS_PER_EST_TICK)

_iq delta_pu_to_kHz_sf = _IQ((float_t)USER_EST_FREQ_Hz/1000.0);
_iq Force_Angle_Delta_pu = EST_getForceAngleDelta_pu(handle);
_iq Force_Angle_Freq_kHz = _IQmpy(Force_Angle_Delta_pu, delta_pu_to_kHz_sf);

Note that kHz is preferred to avoid overflow of IQ24 variables.

Handle: The estimator (EST) handle

Return: The force angle delta, pu. Minimum value of _IQ(0.0) and maximum of _IQ(1.0).

EST_getForceAngleStatus ()
extern bool EST_getForceAngleStatus(EST_Handle handle);

Gets the status of the force angle operation in the estimator. The status can only change
to active when forced angle mode has been enabled by calling the following function:
EST_setFlag_enableForceAngle(handle, true); Forced angle mode will be active when
the electrical frequency of the motor falls below the defined threshold in user.h: #define
USER_ZEROSPEEDLIMIT (0.001) details A manual check of forced angle status can be
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done using the following code example:
_iq fe_pu = EST_getFe_pu(handle);

bool is_forced_angle_active;
if(_IQabs(fe_pu) < _IQ(USER_ZEROSPEEDLIMIT))

{
is_forced_angle_active = true;

}
else

{
is_forced_angle_active = false;

}

Note that kHz is preferred to avoid overflow of IQ24 variables.

Handle: The estimator (EST) handle

Return: A Boolean value denoting whether the angle has been forced (true) or not (false)
• true - The last iteration of the estimator used a forced angle to run the park and

inverse park transforms. The estimator was also run in parallel to the forced angle,
but the estimator output was not used.

\retval

• false - Forced angle mode is either disabled, or the electrical frequency did not fall
below the predetermined threshold. The estimator output was used to run the park
and inverse park transforms.

EST_getFreqB0_lp_pu ()
extern _iq EST_getFreqB0_lp_pu(EST_Handle handle);

Gets the low pass filter numerator value in the frequency estimator in per unit (pu), IQ30

Handle: The estimator (EST) handle

Return: The low pass filter numerator value, pu

EST_getFreqBeta_lp_pu ()
extern _iq EST_getFreqBeta_lp_pu(EST_Handle handle);

Gets the value used to set the pole location in the low-pass filter of the frequency
estimator in per unit (pu), IQ30

Handle: The estimator (EST) handle

Return: The value used to set the filter pole location, pu

EST_getFslip () extern int32_t EST_getFslip(EST_Handle handle);

Gets the slip frequency of the motor in Hertz (Hz).

Handle: The estimator (EST) handle

Return: The slip frequency, Hz

Handle: The estimator (EST) handle

Return: The krpm to pu scale factor. This value is in IQ24
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EST_getFslip_pu () extern _iq EST_getFslip_pu(EST_Handle handle);

Gets the slip frequency of the motor in per unit (pu), IQ24

Similar to EST_getFe_pu() function, this function returns the slip frequency of the motor
in per units. In order to convert the slip frequency from from per units to Hz, the user
needs to multiply the returned value by the following scale factor:
#define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)

_iq Full_Scale_Freq_Elec_Hz = _IQ(USER_IQ_FULL_SCALE_FREQ_Hz);

_iq Freq_Slip_Hz = _IQmpy(EST_getFslip_pu(handle),Full_Scale_Freq_Elec_Hz);

Handle: The estimator (EST) handle

Return: The slip frequency, pu

EST_getFullScaleCurrent ()
extern int32_t EST_getFullScaleCurrent(EST_Handle handle);

Gets the full scale current value used in the estimator in Amperes (A)

The value returned by this function is the same as the value defined in user.h. When
users require to display a value in real world units; i.e., in Amperes, this value is used to
convert the per unit values of currents into Amperes. The following example shows two
different ways of doing this conversion, one using floating point, and the other one using
IQ math. Example using floating point:
float_t pu_to_amps_sf = EST_getFullScaleCurrent(handle);

_iq Id_rated_pu = EST_getIdRated_pu(handle);
float_t Id_rated_A = _IQtoF(Id_rated_pu) * pu_to_amps_sf;

Example using fixed point:

#define USER_IQ_FULL_SCALE_CURRENT_A (10.0)

_iq pu_to_amps_sf = _IQ(USER_IQ_FULL_SCALE_CURRENT_A);
_iq Id_rated_pu = EST_getIdRated_pu(handle);
_iq Id_rated_A = _IQmpy(Id_rated_pu, pu_to_amps_sf);

Handle: The estimator (EST) handle

Return: The full scale current value, A

EST_getFullScaleFlux ()
extern int32_t EST_getFullScaleFlux(EST_Handle handle);

Gets the full scale flux value used in the estimator in Volts per Hertz (V/Hz)

Handle: The estimator (EST) handle

Return: The full scale flux value

EST_getFullScaleFreq ()
extern int32_t EST_getFullScaleFreq(EST_Handle handle);

Gets the full scale frequency value used in the estimator in Hertz (Hz).

Full-scale frequency can be used as a scale factor to convert values from per units to
Hertz. The following example shows how to use this function to convert frequency from
per units to Hz using floating point math:
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float_t Mechanical_Frequency_pu = _IQtoF(EST_getFm_pu(handle));
float_t pu_to_hz_sf = EST_getFullScaleFreq(handle);
float_t Mechanical_Frequency_hz = Mechanical_Frequency_pu * pu_to_hz_sf

For faster execution, this function call can be avoided by using a definition of the full
scale frequency that resides in user.h. The following example shows the same
functionality but using fixed point math for faster execution:
#define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)

_iq Mechanical_Frequency_pu = EST_getFm_pu(handle);
_iq pu_to_khz_sf = _IQ(USER_IQ_FULL_SCALE_FREQ_Hz/1000.0);
_iq Mechanical_Frequency_khz = _IQmpy(Mechanical_Frequency_pu, pu_to_khz_sf);

Handle: The estimator (EST) handle

Return: The full scale frequency value, Hz

EST_getFullScaleInductance ()
extern int32_t EST_getFullScaleInductance(EST_Handle handle);

Gets the full scale inductance value used in the estimator in Henries (H).

There are different ways of getting the inductance used by the estimator. This function
helps when converting an inductance from per units to H. However, the returned value is
in floating point format, so utilizing this full scale value to convert per units to H is not the
most efficient way. Two examples are provided below, showing a floating point per units
to H conversion, and a fixed point per units to H conversion for faster execution. Floating
point example:
uint_least8_t Ls_qFmt = EST_getLs_qFmt(handle);

float_t fullScaleInductance = EST_getFullScaleInductance(handle);
float_t Ls_d_pu = _IQ30toF(EST_getLs_d_pu(handle));
float_t pu_to_h_sf = fullScaleInductance * pow(2.0, 30 - Ls_qFmt);
float_t Ls_d_H = Ls_d_pu * pu_to_h_sf;

Another example is to avoid using floating point math for faster execution. In this
example the full scale inductance value is calculated using pre-compiler math based on
user's parameters in user.h:
#define VarShift(var,nshift) (((nshift) < 0) ? ((var)>>(-
(nshift))) : ((var) <<(nshift)))

#define MATH_PI (3.1415926535897932384626433832795)
#define USER_IQ_FULL_SCALE_VOLTAGE_V (300.0)
#define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
#define USER_VOLTAGE_FILTER_POLE_Hz (335.648)
#define USER_VOLTAGE_FILTER_POLE_rps (2.0 * MATH_PI *

USER_VOLTAGE_FILTER_POLE_Hz)

uint_least8_t Ls_qFmt = EST_getLs_qFmt(handle);
_iq fullScaleInductance =

_IQ(USER_IQ_FULL_SCALE_VOLTAGE_V/(USER_IQ_FULL_SCALE_CURRENT_A *
USER_VOLTAGE_FILTER_POLE_rps));

_iq Ls_d_pu = _IQ30toIQ(EST_getLs_d_pu(handle));
_iq pu_to_h_sf = VarShift(fullScaleInductance, 30 - Ls_qFmt);
_iq Ls_d_H = _IQmpy(Ls_d_pu, pu_to_h_sf);

Handle: The estimator (EST) handle

Return: The full scale resistance value, Henry

EST_getFullScaleResistance ()
extern int32_t EST_getFullScaleResistance(EST_Handle handle);
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Gets the full scale resistance value used in the estimator in Ohms There are different
ways of getting the resistance used by the estimator. This function helps when
converting resistance from per units to Ohms. However, the returned value is in floating
point format, so utilizing this full scale value to convert per units to Ohms is not the most
efficient way. Two examples are provided below, showing a floating point per units to
Ohms conversion, and a fixed point per units to Ohms conversion for faster execution.
Floating point example:
uint_least8_t Rs_qFmt = EST_getRs_qFmt(handle);

float_t fullScaleResistance = EST_getFullScaleResistance(handle);
float_t Rs_pu = _IQ30toF(EST_getRs_pu(handle));
float_t pu_to_ohms_sf = fullScaleResistance * pow(2.0, 30 - Rs_qFmt);
float_t Rs_Ohms = Rs_pu * pu_to_ohms_sf;

Another example is to avoid using floating point math for faster execution. In this
example the full scale resistance value is calculated using pre-compiler math based on
user's parameters in user.h:
#define VarShift(var,nshift) (((nshift) < 0) ? ((var)>>(-
(nshift))) : ((var)<<(nshift)))

#define USER_IQ_FULL_SCALE_VOLTAGE_V (300.0)
#define USER_IQ_FULL_SCALE_CURRENT_A (10.0)

uint_least8_t Rs_qFmt = EST_getRs_qFmt(handle);
_iq fullScaleResistance =

_IQ(USER_IQ_FULL_SCALE_VOLTAGE_V/USER_IQ_FULL_SCALE_CURRENT_A);
_iq Rs_pu = _IQ30toIQ(EST_getRs_pu(handle));
_iq pu_to_ohms_sf = VarShift(fullScaleResistance, 30 - Rs_qFmt);
_iq Rs_Ohms = _IQmpy(Rs_pu, pu_to_ohms_sf);

Handle: The estimator (EST) handle

Return: The full scale resistance value, Ohm

EST_getFullScaleVoltage ()
extern int32_t EST_getFullScaleVoltage(EST_Handle handle);

Gets the full-scale voltage value used in the estimator in Volts (V).

The value returned by this function is the same as the value defined in user.h. When
users require to display a value in real world units; i.e., in Volts, this value is used to
convert the per unit values of voltage into Volts. The following example shows two
different ways of doing this conversion, one using floating point, and the other one using
IQ math.

Example using floating point:
float_t pu_to_v_sf = EST_getFullScaleVoltage(handle);

_iq DcBus_pu = EST_getDcBus_pu(handle);
float_t DcBus_V = _IQtoF(DcBus_pu) * pu_to_v_sf;

Example using fixed point:
#define USER_IQ_FULL_SCALE_VOLTAGE_V (300.0)

_iq pu_to_kv_sf = _IQ(USER_IQ_FULL_SCALE_VOLTAGE_V/1000.0);
_iq DcBus_pu = EST_getDcBus_pu(handle);
_iq DcBus_kV = _IQmpy(DcBus_pu, pu_to_kv_sf);

Handle: The estimator (EST) handle

Return: The full scale resistance value, Ohm

EST_getIdRated () float_t EST_getIdRated(EST_Handle handle)

117SPRUHJ1F–January 2013–Revised July 2014 InstaSPIN and MotorWare
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


InstaSPIN-FOC API www.ti.com

Gets the Id rated current value from the estimator

Handle: The estimator (EST) handle

Return: The Id rated current value, A

EST_getIdRated_pu ()
extern _iq EST_getIdRated_pu(EST_Handle handle);

Gets the Id rated current value from the estimator in per unit (pu), IQ24.

Handle: The estimator (EST) handle

Return: The Id rated current value, pu

EST_getIdRated_indEst_pu ()
_iq EST_getIdRated_indEst_pu(EST_Handle handle)

Gets the Id rated current value used for induction estimation

Handle: The estimator (EST) handle

Return: The Id rated value, pu

EST_getIdRated_ratedFlux_pu ()
extern _iq EST_getIdRated_ratedFlux_pu(EST_Handle handle);

Gets the Id current value used for flux estimation of induction motors in per unit (pu),
IQ24.

Handle: The estimator (EST) handle

Return: The Id rated value, pu

EST_getLr_H () extern int32_t EST_getLr_H(EST_Handle handle);

Gets the rotor inductance value in Henries (H).

Handle: The estimator (EST) handle

Return: The Id rated value, pu

EST_getLr_pu () extern _iq EST_getLr_pu(EST_Handle handle);

Gets the rotor inductance value in per unit (pu), IQ30.

The per units value of the rotor inductance can be used as an alternative way of
calculating the rotor inductance of an induction motor using fixed point math. An example
showing how this is done is shown here:
#define VarShift(var,nshift) (((nshift) < 0) ? ((var)>>(-
(nshift))) : ((var)<<(nshift)))

#define MATH_PI (3.1415926535897932384626433832795)
#define USER_IQ_FULL_SCALE_VOLTAGE_V (300.0)
#define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
#define USER_VOLTAGE_FILTER_POLE_Hz (335.648)
#define USER_VOLTAGE_FILTER_POLE_rps (2.0 * MATH_PI *

USER_VOLTAGE_FILTER_POLE_Hz)
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uint_least8_t Lr_qFmt = EST_getLr_qFmt(handle);
_iq fullScaleInductance =

_IQ(USER_IQ_FULL_SCALE_VOLTAGE_V/(USER_IQ_FULL_SCALE_CURRENT_A *
USER_VOLTAGE_FILTER_POLE_rps));

_iq Lr_pu = _IQ30toIQ(EST_getLr_pu(handle));
_iq pu_to_h_sf = VarShift(fullScaleInductance, 30 - Lr_qFmt);
_iq Lr_H = _IQmpy(Lr_pu, pu_to_h_sf);

Handle: The estimator (EST) handle

Return: The rotor inductance value, pu

EST_getLr_qFmt () extern uint_least8_t EST_getLr_qFmt(EST_Handle handle);

Gets the rotor inductance Q format in 8 bit unsigned integer (uint_least8_t).

When the motor is identified by the estimator, the Q format is used to have a wider
range of the identified parameter. This Q format is the difference between the actual Q
format used for the identification and IQ30 which is used internaly during identification of
the motor parameters. To understand how this Q format can be used in user's code,
please refer to the following example, which converts a per units value read from the
estimator to Henries:
#define VarShift(var,nshift) (((nshift) < 0) ? ((var)>>(-
(nshift))) : ((var)<<(nshift)))

#define MATH_PI (3.1415926535897932384626433832795)
#define USER_IQ_FULL_SCALE_VOLTAGE_V (300.0)
#define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
#define USER_VOLTAGE_FILTER_POLE_Hz (335.648)
#define USER_VOLTAGE_FILTER_POLE_rps (2.0 * MATH_PI *

USER_VOLTAGE_FILTER_POLE_Hz)

uint_least8_t Lr_qFmt = EST_getLr_qFmt(handle);
_iq fullScaleInductance =

_IQ(USER_IQ_FULL_SCALE_VOLTAGE_V/(USER_IQ_FULL_SCALE_CURRENT_A *
USER_VOLTAGE_FILTER_POLE_rps));

_iq Lr_pu = _IQ30toIQ(EST_getLr_pu(handle));
_iq pu_to_h_sf = VarShift(fullScaleInductance, 30 - Lr_qFmt);
_iq Lr_H = _IQmpy(Lr_pu, pu_to_h_sf);

Handle: The estimator (EST) handle

Return: The rotor inductance value Q format

EST_getLs_d_H () float_t EST_getLs_d_H(EST_Handle handle)

Gets the direct stator inductance value in Henries

Handle: The estimator (EST) handle

Return: The direct stator inductance value, Henry

EST_getLs_d_pu () extern _iq EST_getLs_d_pu(EST_Handle handle);

Gets the direct stator inductance value in per unit (pu), IQ30

The per units value of the direct stator inductance can be used as an alternative way of
calculating the direct stator inductance of a permanent magnet motor using fixed point
math. An example showing how this is done is shown here:
#define VarShift(var,nshift) (((nshift) < 0) ? ((var)>>(-
(nshift))) : ((var)<<(nshift)))
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#define MATH_PI (3.1415926535897932384626433832795)
#define USER_IQ_FULL_SCALE_VOLTAGE_V (300.0)
#define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
#define USER_VOLTAGE_FILTER_POLE_Hz (335.648)
#define USER_VOLTAGE_FILTER_POLE_rps (2.0 * MATH_PI *

USER_VOLTAGE_FILTER_POLE_Hz)

uint_least8_t Ls_qFmt = EST_getLs_qFmt(handle);
_iq fullScaleInductance =

_IQ(USER_IQ_FULL_SCALE_VOLTAGE_V/(USER_IQ_FULL_SCALE_CURRENT_A *
USER_VOLTAGE_FILTER_POLE_rps));

_iq Ls_d_pu = _IQ30toIQ(EST_getLs_d_pu(handle));
_iq pu_to_h_sf = VarShift(fullScaleInductance, 30 - Ls_qFmt);
_iq Ls_d_H = _IQmpy(Ls_d_pu, pu_to_h_sf);

Handle: The estimator (EST) handle

Return: The direct stator inductance value, pu

EST_getLs_delta_pu ()
extern _iq EST_getLs_delta_pu(EST_Handle handle);

Gets the delta stator inductance value in the stator inductance estimator

Handle: The estimator (EST) handle

Return: The delta stator inductance value, pu

EST_getLs_dq_pu () extern void EST_getLs_dq_pu(EST_Handle handle,MATH_vec2 *pLs_dq_pu);

Gets the direct/quadrature stator inductance vector values from the estimator in per unit
(pu), IQ30 Both direct and quadrature stator inductances can be read from the estimator
by using this function call and passing a pointer to a structure where these two values
will be stored.

Handle: The estimator (EST) handle

pLs_dq_pu: The pointer for the direct/quadrature stator inductance vector values, pu

EST_getLs_q_H () float_t EST_getLs_q_H(EST_Handle handle)

Gets the stator inductance value in the quadrature coordinate direction in Henries

Handle: The estimator (EST) handle

Return: The stator inductance value, Henry

EST_getLs_q_pu () extern _iq EST_getLs_q_pu(EST_Handle handle);

Gets the stator inductance value in the quadrature coordinate direction in per unit (pu),
IQ30

The per units value of the quadrature stator inductance can be used as an alternative
way of calculating the quadrature stator inductance of a permanent magnet motor using
fixed point math. An example showing how this is done is shown here:
#define VarShift(var,nshift) (((nshift) < 0) ? ((var)>>(-
(nshift))) : ((var)<<(nshift)))

#define MATH_PI (3.1415926535897932384626433832795)
#define USER_IQ_FULL_SCALE_VOLTAGE_V (300.0)
#define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
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#define USER_VOLTAGE_FILTER_POLE_Hz (335.648)
#define USER_VOLTAGE_FILTER_POLE_rps (2.0 * MATH_PI *

USER_VOLTAGE_FILTER_POLE_Hz)

uint_least8_t Ls_qFmt = EST_getLs_qFmt(handle);
_iq fullScaleInductance =

_IQ(USER_IQ_FULL_SCALE_VOLTAGE_V/(USER_IQ_FULL_SCALE_CURRENT_A *
USER_VOLTAGE_FILTER_POLE_rps));

_iq Ls_q_pu = _IQ30toIQ(EST_getLs_q_pu(handle));
_iq pu_to_h_sf = VarShift(fullScaleInductance, 30 - Ls_qFmt);
_iq Ls_q_H = _IQmpy(Ls_q_pu, pu_to_h_sf);

Handle: The estimator (EST) handle

Return: The stator inductance value, pu

EST_getLs_qFmt () extern uint_least8_t EST_getLs_qFmt(EST_Handle handle);

Gets the stator inductance Q format in 8 bit unsigned integer (uint_least8_t).

When the motor is identified by the estimator, the Q format is used to have a wider
range of the identified parameter. This Q format is the difference between the actual Q
format used for the identification and IQ30 which is used internaly during identification of
the motor parameters. To understand how this Q format can be used in user's code,
please refer to the following example, which converts a per units value read from the
estimator to Henries:
#define VarShift(var,nshift) (((nshift) < 0) ? ((var)>>(-
(nshift))) : ((var)<<(nshift)))

#define MATH_PI (3.1415926535897932384626433832795)
#define USER_IQ_FULL_SCALE_VOLTAGE_V (300.0)
#define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
#define USER_VOLTAGE_FILTER_POLE_Hz (335.648)
#define USER_VOLTAGE_FILTER_POLE_rps (2.0 * MATH_PI *

USER_VOLTAGE_FILTER_POLE_Hz)

uint_least8_t Ls_qFmt = EST_getLs_qFmt(handle);
_iq fullScaleInductance =

_IQ(USER_IQ_FULL_SCALE_VOLTAGE_V/(USER_IQ_FULL_SCALE_CURRENT_A *
USER_VOLTAGE_FILTER_POLE_rps));

_iq Ls_q_pu = _IQ30toIQ(EST_getLs_q_pu(handle));
_iq pu_to_h_sf = VarShift(fullScaleInductance, 30 - Ls_qFmt);
_iq Ls_q_H = _IQmpy(Ls_q_pu, pu_to_h_sf);

Handle: The estimator (EST) handle

Return: The stator inductance Q format

EST_getLs_max_pu ()
extern _iq EST_getLs_max_pu(EST_Handle handle);

Gets the maximum stator inductance value from the stator inductance estimator

Handle: The estimator (EST) handle

Return: The maximum stator inductance value, pu

EST_getLs_min_pu ()
extern _iq EST_getLs_min_pu(EST_Handle handle);

Gets the minimum stator inductance value from the stator inductance estimator
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Handle: The estimator (EST) handle

Return: The minimum stator inductance value, pu

EST_getLs_coarse_max_pu ()
extern _iq EST_getLs_coarse_max_pu(EST_Handle handle);

Gets the maximum stator inductance value during coarse estimation in the stator
inductance estimator

Handle: The estimator (EST) handle

Return: The maximum stator inductance value, pu

EST_getMaxAccel_pu ()
extern _iq EST_getMaxAccel_pu(EST_Handle handle);

Gets the maximum acceleration value used in the estimator in per unit (pu), IQ24

The maximum acceleration is a setting of the trajectory module, which sets the speed
reference. The acceleration returned by this function call is used after the motor has
been identified. This value represents how the speed reference is increased or
decreased from an initial value to a target value. The following example shows how
convert the returned value of this function to kilo Hertz per second (kHz/s) and kilo RPM
per second (kRPM/s):
#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)

#define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (10)
#define USER_PWM_FREQ_kHz (15.0)
#define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
#define USER_CTRL_FREQ_Hz

(uint_least32_t)(USER_ISR_FREQ_Hz/USER_NUM_ISR_TICKS_PER_CTRL_TICK)
#define USER_TRAJ_FREQ_Hz

(uint_least32_t)(USER_CTRL_FREQ_Hz/USER_NUM_CTRL_TICKS_PER_TRAJ_TICK)
#define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)
#define USER_MOTOR_NUM_POLE_PAIRS (4)

_iq pu_to_khzps_sf = _IQ((float_t)USER_TRAJ_FREQ_Hz * USER_IQ_FULL_SCALE_FREQ_Hz
/ 1000.0);

_iq khzps_to_krpmps_sf = _IQ(60.0 / (float_t)USER_MOTOR_NUM_POLE_PAIRS);

_iq Accel_pu = EST_getMaxAccel_pu(handle);
_iq Accel_kilo_hz_per_sec = _IQmpy(Accel_pu, pu_to_khzps_sf);
_iq Accel_kilo_rpm_per_sec = _IQmpy(Accel_kilo_hz_per_sec, khzps_to_krpmps_sf);

The default value is set by a user's defined value in user.h, and the default value in per
units is calculated internally as follows:
#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)

#define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (10)
#define USER_PWM_FREQ_kHz (15.0)
#define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
#define USER_CTRL_FREQ_Hz

(uint_least32_t)(USER_ISR_FREQ_Hz/USER_NUM_ISR_TICKS_PER_CTRL_TICK)
#define USER_TRAJ_FREQ_Hz

(uint_least32_t)(USER_CTRL_FREQ_Hz/USER_NUM_CTRL_TICKS_PER_TRAJ_TICK)
#define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)
#define USER_MAX_ACCEL_Hzps (20.0)

_iq hzps_to_pu_sf = _IQ(1.0 / ((float_t)USER_TRAJ_FREQ_Hz *
USER_IQ_FULL_SCALE_FREQ_Hz));

_iq Accel_hertz_per_sec = _IQ(USER_MAX_ACCEL_Hzps);
_iq Accel_pu = _IQmpy(Accel_hertz_per_sec, hzps_to_pu_sf);
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Handle: The estimator (EST) handle

Return: The maximum acceleration value, pu

EST_getMaxAccel_est_pu ()
extern _iq EST_getMaxAccel_est_pu(EST_Handle handle);

Gets the maximum estimation acceleration value used in the estimator in per unit (pu),
IQ24

The maximum acceleration is a setting of the trajectory module, which sets the speed
reference. The acceleration returned by this function call is used during the motor
identification process. This value represents how the speed reference is increased or
decreased from an initial value to a target value. The following example shows how
convert the returned value of this function to kilo Hertz per Second (kHz/s) and kilo RPM
per second (kRPM/s):
#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)

#define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (10)
#define USER_PWM_FREQ_kHz (15.0)
#define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
#define USER_CTRL_FREQ_Hz

(uint_least32_t)(USER_ISR_FREQ_Hz/USER_NUM_ISR_TICKS_PER_CTRL_TICK)
#define USER_TRAJ_FREQ_Hz

(uint_least32_t)(USER_CTRL_FREQ_Hz/USER_NUM_CTRL_TICKS_PER_TRAJ_TICK)
#define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)
#define USER_MOTOR_NUM_POLE_PAIRS (4)

_iq pu_to_khzps_sf = _IQ((float_t)USER_TRAJ_FREQ_Hz * USER_IQ_FULL_SCALE_FREQ_Hz
/ 1000.0);

_iq khzps_to_krpmps_sf = _IQ(60.0 / (float_t)USER_MOTOR_NUM_POLE_PAIRS);

_iq est_Accel_pu = EST_getMaxAccel_est_pu(handle);
_iq est_Accel_kilo_hz_per_sec = _IQmpy(est_Accel_pu, pu_to_khzps_sf);
_iq est_Accel_kilo_rpm_per_sec = _IQmpy(est_Accel_kilo_hz_per_sec,

khzps_to_krpmps_sf);

The default value is set by a user's defined value in user.h, and the default value in per
units is calculated internally as follows:
#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)

#define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (10)
#define USER_PWM_FREQ_kHz (15.0)
#define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
#define USER_CTRL_FREQ_Hz

(uint_least32_t)(USER_ISR_FREQ_Hz/USER_NUM_ISR_TICKS_PER_CTRL_TICK)
#define USER_TRAJ_FREQ_Hz

(uint_least32_t)(USER_CTRL_FREQ_Hz/USER_NUM_CTRL_TICKS_PER_TRAJ_TICK)
#define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)
#define USER_MAX_ACCEL_EST_Hzps (2.0)

_iq hzps_to_pu_sf = _IQ(1.0 / ((float_t)USER_TRAJ_FREQ_Hz *
USER_IQ_FULL_SCALE_FREQ_Hz));

_iq est_Accel_hertz_per_sec = _IQ(USER_MAX_ACCEL_EST_Hzps);
_iq est_Accel_pu = _IQmpy(est_Accel_hertz_per_sec, hzps_to_pu_sf);

Handle: The estimator (EST) handle

Return: The maximum estimation acceleration value, pu

EST_getMaxCurrentSlope_pu ()
extern _iq EST_getMaxCurrentSlope_pu(EST_Handle handle);
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Gets the maximum current slope value used in the estimator in per unit (pu), IQ24

Gets the slope of Id reference. The following example shows how to convert the returned
value into kilo Amperes per second (kA/s):
#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)

#define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (10)
#define USER_PWM_FREQ_kHz (15.0)
#define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
#define USER_CTRL_FREQ_Hz

(uint_least32_t)(USER_ISR_FREQ_Hz/USER_NUM_ISR_TICKS_PER_CTRL_TICK)
#define USER_TRAJ_FREQ_Hz

(uint_least32_t)(USER_CTRL_FREQ_Hz/USER_NUM_CTRL_TICKS_PER_TRAJ_TICK)
#define USER_IQ_FULL_SCALE_CURRENT_A (10.0)

_iq pu_to_kA_per_sec_sf = _IQ((float_t)USER_TRAJ_FREQ_Hz *
USER_IQ_FULL_SCALE_CURRENT_A / 1000.0);

_iq currentSlope_pu = EST_getMaxCurrentSlope_pu(handle);
_iq currentSlope_kAps = _IQmpy(currentSlope_pu, pu_to_kA_per_sec_sf);

The default value is set by a user's defined value in user.h, and the default value in per
units is calculated internally as follows:
#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)

#define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (10)
#define USER_PWM_FREQ_kHz (15.0)
#define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
#define USER_CTRL_FREQ_Hz

(uint_least32_t)(USER_ISR_FREQ_Hz/USER_NUM_ISR_TICKS_PER_CTRL_TICK)
#define USER_TRAJ_FREQ_Hz

(uint_least32_t)(USER_CTRL_FREQ_Hz/USER_NUM_CTRL_TICKS_PER_TRAJ_TICK)
#define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
#define USER_MOTOR_RES_EST_CURRENT (1.0)

_iq A_per_sec_to_pu_sf = _IQ(1.0 / ((float_t)USER_TRAJ_FREQ_Hz *
USER_IQ_FULL_SCALE_CURRENT_A));

_iq currentSlope_Aps = _IQ(USER_MOTOR_RES_EST_CURRENT);
_iq currentSlope_pu = _IQmpy(currentSlope_Aps, A_per_sec_to_pu_sf);

Handle: The estimator (EST) handle

Return: The maximum current slope value, pu

EST_getMaxCurrentSlope_PowerWarp_pu ()
extern _iq EST_getMaxCurrentSlope_PowerWarp_pu(EST_Handle handle);

Gets the maximum PowerWarp current slope value used in the estimator in per unit (pu),
IQ24

Gets the slope of Id reference change when efficient partial load is enabled. This mode
only applies to induction motors. The following example shows how to convert the
returned value into kilo Amperes per second (kA/s):
#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)

#define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (10)
#define USER_PWM_FREQ_kHz (15.0)
#define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
#define USER_CTRL_FREQ_Hz

(uint_least32_t)(USER_ISR_FREQ_Hz/USER_NUM_ISR_TICKS_PER_CTRL_TICK)
#define USER_TRAJ_FREQ_Hz

(uint_least32_t)(USER_CTRL_FREQ_Hz/USER_NUM_CTRL_TICKS_PER_TRAJ_TICK)
#define USER_IQ_FULL_SCALE_CURRENT_A (10.0)

_iq pu_to_kA_per_sec_sf = _IQ((float_t)USER_TRAJ_FREQ_Hz *
USER_IQ_FULL_SCALE_CURRENT_A / 1000.0);
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_iq currentSlope_PowerWarp_pu = EST_getMaxCurrentSlope_PowerWarp_pu(handle);
_iq currentSlope_PowerWarp_kAps = _IQmpy(currentSlope_PowerWarp_pu,

pu_to_kA_per_sec_sf);

The default value is set by a user's defined value in user.h, and the default value in per
units is calculated internally as follows:
#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)

#define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (10)
#define USER_PWM_FREQ_kHz (15.0)
#define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
#define USER_CTRL_FREQ_Hz

(uint_least32_t)(USER_ISR_FREQ_Hz/USER_NUM_ISR_TICKS_PER_CTRL_TICK)
#define USER_TRAJ_FREQ_Hz

(uint_least32_t)(USER_CTRL_FREQ_Hz/USER_NUM_CTRL_TICKS_PER_TRAJ_TICK)
#define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
#define USER_MOTOR_RES_EST_CURRENT (1.0)

_iq A_per_sec_to_pu_sf = _IQ(1.0 / ((float_t)USER_TRAJ_FREQ_Hz *
USER_IQ_FULL_SCALE_CURRENT_A));

_iq currentSlope_PowerWarp_Aps = _IQ(0.3 * USER_MOTOR_RES_EST_CURRENT);
_iq currentSlope_PowerWarp_pu = _IQmpy(currentSlope_PowerWarp_Aps,

A_per_sec_to_pu_sf);

Handle: The estimator (EST) handle

Return: The maximum PowerWarp current slope value, pu

EST_getOneOverDcBus_pu ()
extern _iq EST_getOneOverDcBus_pu(EST_Handle handle);

Gets the inverse of the DC bus voltage in per unit (pu), IQ24

Handle: The estimator (EST) handle

Return: The inverse of the DC bus voltage, pu

EST_getRr_Ohm () extern int32_t EST_getRr_Ohm(EST_Handle handle);

Gets the rotor resistance value in Ohms

Handle: The estimator (EST) handle

Return: The rotor resistance value, Ohm

EST_getRr_pu () extern _iq EST_getRr_pu(EST_Handle handle);

Gets the rotor resistance value in per unit (pu), IQ30

Handle: The estimator (EST) handle

Return: The rotor resistance value, pu

EST_getRr_qFmt () extern uint_least8_t EST_getRr_qFmt(EST_Handle handle);

Gets the rotor resistance Q format in 8 bit unsigned integer (uint_least8_t).

Handle: The estimator (EST) handle

Return: The rotor resistance Q format
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EST_getRs_delta_pu ()
extern _iq EST_getRs_delta_pu(EST_Handle handle);

Gets the delta stator resistance value from the stator resistance estimator

Handle: The estimator (EST) handle

Return: The delta stator resistance value, pu

EST_getRs_Ohm () float_t EST_getRs_Ohm(EST_Handle handle)

Gets the stator resistance value that is used by the angle estimator

Handle: The estimator (EST) handle

Return: The stator resistance value, Ohm

EST_getRs_pu () extern _iq EST_getRs_pu(EST_Handle handle);

Gets the stator resistance value in per unit (pu), IQ30

Handle: The estimator (EST) handle

Return: The stator resistance value, pu

EST_getRs_qFmt () extern uint_least8_t EST_getRs_qFmt(EST_Handle handle);

Gets the stator resistance Q format in 8 bit unsigned integer (uint_least8_t)

Handle: The estimator (EST) handle

Return: The stator resistance Q format

EST_getRs_qFmt () extern void EST_getRsOnLineFilterParams(EST_Handle handle,const
EST_RsOnLineFilterType_e filterType, _iq *pFilter_0_b0,_iq *pFilter_0_a1,_iq
*pFilter_0_y1, _iq *pFilter_1_b0,_iq *pFilter_1_a1,_iq *pFilter_1_y1);

Gets the online stator resistance filter parameters in per unit (pu), IQ24

Handle: The estimator (EST) handle

filterType: The filter type

pFilter_0_b0: The pointer for the filter 0 numerator coefficient value for z^0

pFilter_0_a1: The pointer for the filter 0 denominator coefficient value for z^(-1)

pFilter_0_y1: The pointer for the filter 0 output value at time sample n=-1

pFilter_1_b0: The pointer for the filter 1 numerator coefficient value for z^0

pFilter_1_a1: The pointer for the filter 1 denominator coefficient value for z^(-1)

pFilter_1_y1: The pointer for the filter 1 output value at time sample n=-1

EST_getRsOnLine_Ohm ()
extern int32_t EST_getRsOnLine_Ohm(EST_Handle handle)

Gets the online stator resistance value
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Handle: The estimator (EST) handle

Return: The online stator resistance value, Ohm

EST_getRsOnLine_pu ()
extern _iq EST_getRsOnLine_pu(EST_Handle handle);

Gets the online stator resistance value in per unit (pu), IQ30

Handle: The estimator (EST) handle

Return: The online stator resistance Q format

EST_getRsOnLineId_mag_pu ()
extern _iq EST_getRsOnLineId_mag_pu(EST_Handle handle);

Gets the Id magnitude value used for online stator resistance estimation in per unit (pu),
IQ24

Handle: The estimator (EST) handle

Return: The Id magnitude value, pu

EST_getRsOnLineId_pu ()
extern _iq EST_getRsOnLineId_pu(EST_Handle handle);

Gets the Id value used for online stator resistance estimation in per unit (pu), IQ24

Handle: The estimator (EST) handle

Return: The Id value, pu

EST_getSpeed_krpm ()
_iq EST_getSpeed_krpm(EST_Handle handle)

Gets the speed value in kilo-rpm

Handle: The estimator (EST) handle

Return: The speed value, kilo-rpm

EST_getSignOfDirection ()
extern int_least8_t EST_getSignOfDirection(EST_Handle handle);

Gets the sign of the direction value in 8 bit signed integer (int_least8_t)

Handle: The estimator (EST) handle

Return: The sign of the direction value (-1 for negative, 1 for positive)

EST_getSpeed_krpm ()
_iq EST_getSpeed_krpm(EST_Handle handle)

Gets the speed value in per unit (pu), IQ24

Handle: The estimator (EST) handle

Return: The speed value, kilo-rpm
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EST_getState () EST_State_e EST_getState(EST_Handle handle)

Gets the state of the estimator

Handle: The estimator (EST) handle

Return: The estimator state

EST_getTorque_lbin ()
_iq EST_getTorque_lbin(EST_Handle handle)

Gets the torque value in per unit (pu), IQ24

Handle: The estimator (EST) handle

Return: The torque value, lb*in

EST_getTorque_Nm ()
extern _iq EST_getTorque_Nm(EST_Handle handle);

Gets the torque value in per unit (pu), IQ24

Handle: The estimator (EST) handle

Return: The torque value, N*m

EST_getDir_qFmt () extern uint_least8_t EST_getDir_qFmt(EST_Handle handle);

Gets the direction Q format from the estimator

Handle: The estimator (EST) handle

Return: The direction Q format
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3.3.2.4 EST Run and Compute Functions

EST_computeLr_H ()
extern int32_t EST_computeLr_H(EST_Handle handle,const _iq current);

Computes the rotor inductance in Henries (H)

Handle: The estimator (EST) handle

Current: The current in the rotor

Return: The rotor inductance, H

EST_doCurrentCtrl ()
extern bool EST_doCurrentCtrl(EST_Handle handle);

Determines if current control should be performed during motor identification

Handle: The estimator (EST) handle

Return: A Boolean value denoting whether (true) or not (false) to perform current control

EST_genOutputLimits_Pid_Id ()
extern void EST_genOutputLimits_Pid_Id(EST_Handle handle, const _iq
maxDutyCycle, _iq *outMin,_iq *outMax);

Generated the PID Id controller output limits

Handle: The estimator (EST) handle

maxDutyCycle: The maximum duty cycle, pu

outMin: The pointer to the minimum output value

outMax: The pointer to the maximum output value

EST_genOutputLimits_Pid_Iq ()
extern void EST_genOutputLimits_Pid_Iq(EST_Handle handle, const _iq
maxDutyCycle, const _iq out_Id,_iq *outMin,_iq *outMax);

Generated the PID Iq controller output limits

Handle: The estimator (EST) handle

maxDutyCycle: The maximum duty cycle, pu

out_Id: The Id output value

outMin: The pointer to the minimum output value

outMax: The pointer to the maximum output value

EST_run () extern void EST_run(EST_Handle handle, const MATH_vec2 *pIab_pu, const
MATH_vec2 *pVab_pu, const _iq dcBus_pu, const _iq speed_ref_pu);

Runs the estimator

Handle: The estimator (EST) handle
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pIab_pu: The pointer to the phase currents in the alpha/beta coordinate system, pu

IQ24 pVab_pu: The pointer to the phase voltages in the alpha/beta coordinate system, pu

IQ24 dcBus_pu: The DC bus voltage, pu

IQ24 speed_ref_pu: The speed reference value to the controller, pu IQ24

EST_computeDirection_qFmt ()
extern uint_least8_t EST_computeDirection_qFmt(EST_Handle handle,const
int32_t flux_max);

Computes the direction Q format for the estimator

Handle: The estimator (EST) handle

flux_max: The maximum flux value

Return: The direction Q format
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3.3.2.5 EST Counter Functions

EST_resetCounter_ctrl ()
extern void EST_resetCounter_ctrl(EST_Handle handle);

Resets the control counter

Handle: The estimator (EST) handle

EST_resetCounter_state ()
extern void EST_resetCounter_state(EST_Handle handle);

Resets the state counter

Handle: The estimator (EST) handle
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3.3.2.6 EST State Control and Error Handling Functions

EST_isError () extern bool EST_isError(EST_Handle handle);

Determines if there is an estimator error

Handle: The estimator (EST) handle

Return: A Boolean value denoting if there is an estimator error (true) or not (false)

EST_isIdle () extern bool EST_isIdle(EST_Handle handle);

Determines if the estimator is idle

Handle: The estimator (EST) handle

Return: A Boolean value denoting if the estimator is idle (true) or not (false)

EST_isLockRotor () extern bool EST_isLockRotor(EST_Handle handle);

Determines if the estimator is waiting for the rotor to be locked

Handle: The estimator (EST) handle

Return: A Boolean value denoting if the estimator is waiting for the rotor to be locked (true) or
not (false)

EST_isMotorIdentified ()
EST_State_e EST_isMotorIdentified (EST_Handle handle)

Determines if the motor has been identified

Handle: The estimator (EST) handle

Return: The estimator state

EST_isOnLine () extern bool EST_isOnLine(EST_Handle handle);

Determines if the estimator is ready for online control

Handle: The estimator (EST) handle

Return: A Boolean value denoting if the estimator is ready for online control (true) or not (false)

EST_updateState () extern bool EST_updateState(EST_Handle handle,const _iq Id_target_pu);

Updates the estimator state

Handle: The estimator (EST) handle

Id_target_pu: The target Id current during each estimator state, pu IQ24

Return: A Boolean value denoting if the state has changed (true) or not (false)

EST_useZeroIq_ref ()
extern bool EST_useZeroIq_ref(EST_Handle handle);

Determines if a zero Iq current reference should be used in the controller
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Handle: The estimator (EST) handle

Return: A Boolean value denoting if a zero Iq current reference should be used (true) or not
(false)

133SPRUHJ1F–January 2013–Revised July 2014 InstaSPIN and MotorWare
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


InstaSPIN-FOC API www.ti.com

3.3.3 Hardware Abstraction Layer (HAL) API Functions – hal.c, hal.h, hal_obj.h
The HAL_Obj is a structure that contains the handles to the peripherals on the device. HAL_init() allocates
memory for HAL object, and once the memory is allocated, HAL_setParams() configures the each
peripheral according to the user settings in the object USER_Params.

3.3.3.1 HAL Enumerations and Structures

HAL_AdcData_t

Defines the ADC data This data structure contains the voltage and current values that
are used when performing a HAL_AdcRead and then this structure is passed to the
CTRL controller and the FAST estimator.
typedef struct _HAL_AdcData_t_
{

MATH_vec3 I; //!< the current values

MATH_vec3 V; //!< the voltage values

_iq dcBus; //!< the dcBus value

} HAL_AdcData_t;

HAL_DacData_t

Defines the DAC data This data structure contains the pwm values that are used for the
DAC output on a lot of the hardware kits for debugging.
typedef struct _HAL_DacData_t_
{

_iq value[4]; //!< the DAC data

} HAL_DacData_t;

HAL_PwmData_t

Defines the PWM data This structure contains the pwm voltage values for the three
phases. A HAL_PwmData_t variable is filled with values from, for example, a space
vector modulator and then sent to functions like HAL_writePwmData() to write to the
PWM peripheral.
typedef struct _HAL_PwmData_t_
{

MATH_vec3 Tabc; //!< the PWM time-durations for each motor phase

} HAL_PwmData_t;

HAL_LedNumber_e

Enumeration to define the LEDs on ControlCARD
typedef enum
{

HAL_Gpio_LED2=GPIO_Number_31, //!< GPIO pin number for ControlCARD LED 2
HAL_Gpio_LED3=GPIO_Number_34 //!< GPIO pin number for ControlCARD LED 3

} HAL_LedNumber_e;

GPIO_Number_e

Enumeration to define the general purpose I/O (GPIO) numbers
typedef enum
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{
GPIO_Number_0=0, //!< Denotes GPIO number 0
GPIO_Number_1, //!< Denotes GPIO number 1
GPIO_Number_2, //!< Denotes GPIO number 2

...
GPIO_Number_57, //!< Denotes GPIO number 57
GPIO_Number_58, //!< Denotes GPIO number 58
GPIO_numGpios

} GPIO_Number_e;

HAL_SensorType_e

typedef enum
{

HAL_SensorType_Current=0, //!< Enumeration for current sensor
HAL_SensorType_Voltage //!< Enumeration for voltage sensor

} HAL_SensorType_e;

HAL_Obj

The HAL object contains all handles to peripherals. When accessing a peripheral on a
processor, use a HAL function along with the HAL handle for that processor to access its
peripherals.
typedef struct _HAL_Obj_
{

ADC_Handle adcHandle; //!< the ADC handle

CLK_Handle clkHandle; //!< the clock handle

CPU_Handle cpuHandle; //!< the CPU handle

FLASH_Handle flashHandle; //!< the flash handle

GPIO_Handle gpioHandle; //!< the GPIO handle

OFFSET_Handle offsetHandle_I[3]; //!< the handles for the current offset
estimators

OFFSET_Obj offset_I[3]; //!< the current offset objects

OFFSET_Handle offsetHandle_V[3]; //!< the handles for the voltage offset
estimators

OFFSET_Obj offset_V[3]; //!< the voltage offset objects

OSC_Handle oscHandle; //!< the oscillator handle

PIE_Handle pieHandle; //<! the PIE handle

PLL_Handle pllHandle; //!< the PLL handle

PWM_Handle pwmHandle[3]; //<! the PWM handles

PWMDAC_Handle pwmDacHandle[3]; //<! the PWMDAC handles

PWR_Handle pwrHandle; //<! the power handle

TIMER_Handle timerHandle[3]; //<! the timer handles

WDOG_Handle wdogHandle; //!< the watchdog handle

HAL_AdcData_t adcBias; //!< the ADC bias

_iq current_sf; //!< the current scale factor, amps_pu/cnt

_iq voltage_sf; //!< the voltage scale factor, volts_pu/cnt
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uint_least8_t numCurrentSensors; //!< the number of current sensors
uint_least8_t numVoltageSensors; //!< the number of voltage sensors

AFE_Handle afeHandle; //!< the AFE handle

#ifdef QEP
QEP_Handle qepHandle[1]; //!< the QEP handle

#endif

} HAL_Obj;
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3.3.3.2 HAL – ADC and AFE

HAL_setupAdcs () void HAL_setupAdcs(HAL_Handle handle)

Sets up the ADCs (Analog to Digital Converters)

Handle: The driver (HAL) handle

HAL_setupAfe () void HAL_setupAfe(HAL_Handle halHandle)

Sets up the AFE (Analog Front End)

Handle: The driver (HAL) handle

HAL_acqAdcInt () void HAL_acqAdcInt(HAL_Handle handle,const ADC_IntNumber_e intNumber)

Acknowledges an interrupt from the ADC

Handle: The driver (HAL) handle

intNumber: The interrupt number

HAL_readAdcData() void HAL_readAdcData(HAL_Handle handle,HAL_AdcData_t *pAdcData)

Reads the ADC data into the values pointed to by pAdcData

Reads in the ADC result registers, adjusts for offsets, and scales the values according to
the settings in user.h. The structure gAdcData holds three phase voltages, three line
currents, and one DC bus voltage.

Handle: The driver (HAL) handle

pAdcData: A pointer to the ADC data buffer

HAL_updateAdcBias ()
static inline void HAL_updateAdcBias(HAL_Handle handle)

Updates the ADC bias values This function is called before the motor is started. It sets
the voltage and current measurement offsets.

Handle: The driver (HAL) handle

HAL_setBias () void HAL_setBias (HAL_Handle handle,const HAL_SensorType_e
sensorType,uint_least8_t sensorNumber,const _iq bias)

Sets the ADC bias value

Handle: The driver (HAL) handle

sensorType: The sensor type

sensorNumber: The sensor number

bias: The ADC bias value

HAL_getBias () void HAL_getBias (HAL_Handle handle,const HAL_SensorType_e
sensorType,uint_least8_t sensorNumber)

Gets the ADC bias value
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The ADC bias contains the feedback circuit's offset and bias. Bias is the mathematical
offset used when a bi-polar signal is read into a uni-polar ADC.

Handle: The driver (HAL) handle

sensorType: The sensor type

sensorNumber: The sensor number

Return: The ADC bias value

HAL_cal () extern void HAL_cal(HAL_Handle handle);

Executes calibration routines

Values for offset and gain are programmed into OTP memory by TI factory. This calls
and internal function that programs these offsets and gains into the ADC registers.

Handle: The driver (HAL) handle

HAL_AdcCalConversion ()
uint16_t HAL_AdcCalConversion(HAL_Handle handle);

Reads the converted value from the selected calibration channel

Handle: The driver (HAL) handle

Return: The converted value

HAL_AdcOffsetSelfCal ()
void HAL_AdcOffsetSelfCal(HAL_Handle handle);

Executes the offset calibration of the ADC

Handle: The driver (HAL) handle

HAL_getAdcSocSampleDelay ()
static inline ADC_SocSampleDelay_e HAL_getAdcSocSampleDelay(HAL_Handle
handle, const ADC_SocNumber_e socNumber)

Gets the ADC delay value

Handle: The driver (HAL) handle

socNumber: The ADC SOC number

Return: The ADC delay value

HAL_setAdcSocSampleDelay ()
static inline ADC_SocSampleDelay_e HAL_setAdcSocSampleDelay(HAL_Handle
handle, const ADC_SocNumber_e socNumber)

Sets the ADC delay value

Handle: The driver (HAL) handle

socNumber: The ADC SOC number

sampleDelay: The ADC delay value
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HAL_getCurrentScaleFactor ()
static inline _iq HAL_getCurrentScaleFactor(HAL_Handle handle)

Gets the current scale factor

The current scale factor is defined as
USER_ADC_FULL_SCALE_CURRENT_A/USER_IQ_FULL_SCALE_CURRENT_A. This
scale factor is not used when converting between PU amps and real amps.

Handle: The driver (HAL) handle

Return: The current scale factor

HAL_setCurrentScaleFactor () static inline _iq HAL_setCurrentScaleFactor(HAL_Handle handle)

Sets the current scale factor

The current scale factor is defined as
USER_ADC_FULL_SCALE_CURRENT_A/USER_IQ_FULL_SCALE_CURRENT_A. This
scale factor is not used when converting between PU amps and real amps.

Handle: The driver (HAL) handle

current_sf: The current scale factor

HAL_getVoltageScaleFactor ()
static inline _iq HAL_getVoltageScaleFactor(HAL_Handle handle)

Gets the voltage scale factor

The voltage scale factor is defined as
USER_ADC_FULL_SCALE_VOLTAGE_V/USER_IQ_FULL_SCALE_VOLTAGE_V. This
scale factor is not used when converting between PU volts and real volts.

Handle: The driver (HAL) handle

Return: The voltage scale factor

HAL_setVoltageScaleFactor ()
static inline _iq HAL_setVoltageScaleFactor(HAL_Handle handle)

Sets the voltage scale factor

Handle: The driver (HAL) handle

voltage_sf: The voltage scale factor

HAL_getNumCurrentSensors ()
static inline uint_least8_t HAL_getNumCurrentSensors(HAL_Handle handle)

Gets the number of current sensors

Handle: The driver (HAL) handle

Return: The number of current sensors

HAL_setNumCurrentSensors ()
static inline uint_least8_t HAL_setNumCurrentSensors(HAL_Handle handle)
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Sets the number of current sensors

Handle: The driver (HAL) handle

Return: The number of current sensors

HAL_getNumVoltageSensors ()
static inline uint_least8_t HAL_getNumVoltageSensors(HAL_Handle handle)

Gets the number of voltage sensors

Handle: The driver (HAL) handle

Return: The number of voltage sensors

HAL_setNumVoltageSensors ()
static inline uint_least8_t HAL_setNumVoltageSensors(HAL_Handle handle)

Sets the number of voltage sensors

Handle: The driver (HAL) handle

numVoltageSensors: The number of voltage sensors

Handle: The driver (HAL) handle

Return:

HAL_getOffsetBeta_lp_pu ()
static inline _iq HAL_getOffsetBeta_lp_pu(HAL_Handle handle, const
HAL_SensorType_e sensorType, const uint_least8_t sensorNumber)

Gets the value used to set the low pass filter pole for offset estimation

An IIR single pole low pass filter is used to find the feedback circuit's offsets. This
function returns the value of that pole.

Handle: The driver (HAL) handle

sensorType: The sensor type

sensorNumber: The sensor number

Return: The value used to set the low pass filter pole, pu

HAL_setOffsetBeta_lp_pu ()
static inline _iq HAL_setOffsetBeta_lp_pu(HAL_Handle handle, const
HAL_SensorType_e sensorType, const uint_least8_t sensorNumber)

Sets the value used to set the low pass filter pole for offset estimation

An IIR single pole low pass filter is used to find the feedback circuit's offsets. This
function returns the value of that pole.

Handle: The driver (HAL) handle

sensorType: The sensor type
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sensorNumber: The sensor number

beta_lp_pu: The value used to set the low pass filter pole, pu

HAL_setOffsetInitCond ()
static inline void HAL_setOffsetInitCond(HAL_Handle handle, const
HAL_SensorType_e sensorType, const uint_least8_t sensorNumber, const _iq
initCond)

Sets the offset initial condition value for offset estimation

Handle: The driver (HAL) handle

sensorType: The sensor type

sensorNumber: The sensor number

initCond: The initial condition value

HAL_getOffsetValue ()
static inline _iq HAL_getOffsetValue(HAL_Handle handle, const
HAL_SensorType_e sensorType, const uint_least8_t sensorNumber)

Gets the offset value

The offsets that are calculated during the feedback circuits calibrations are returned from
the IIR filter object.

Handle: The driver (HAL) handle

sensorType: The sensor type

sensorNumber: The sensor number

Return: The offset value

HAL_setOffsetValue ()
static inline _iq HAL_setOffsetValue(HAL_Handle handle, const
HAL_SensorType_e sensorType, const uint_least8_t sensorNumber)

Sets the offset value

Handle: The driver (HAL) handle

sensorType: The sensor type

sensorNumber: The sensor number

Value: The initial offset value

HAL_runOffsetEst () inline void HAL_runOffsetEst(HAL_Handle handle,const HAL_AdcData_t
*pAdcData)

Runs offset estimation

Handle: The driver (HAL) handle

pAdcData: The pointer to the ADC data
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3.3.3.3 HAL – PWM and PWM-DAC

HAL_setupPwms () extern void HAL_setupPwms(HAL_Handle handle, const uint_least16_t
systemFreq_MHz, const float_t pwmPeriod_usec, const uint_least16_t
numPwmTicksPerIsrTick);

Sets up the PWMs (Pulse Width Modulators)

Handle: The driver (HAL) handle

systemFreq_MHz: The system frequency, MHz

pwmPeriod_usec: The PWM period, usec

numPwmTicksPerIsrTick: The number of PWM clock ticks per ISR clock tick

HAL_setupPwmDacs ()
void HAL_setupPwmDacs(HAL_Handle handle)

Sets up the PWM DACs

Handle: The driver (HAL) handle

HAL_readTimerCnt ()
static inline uint32_t HAL_readTimerCnt(HAL_Handle handle,const uint_least8_t
timerNumber)

Turns off the outputs of the EPWM peripherals which will put the power switches into a
high impedance state

Handle: The driver (HAL) handle

HAL_reloadTimer () static inline void HAL_reloadTimer(HAL_Handle handle,const uint_least8_t
timerNumber)

Turns off the outputs of the EPWM peripherals which will put the power switches into a
high impedance state

Handle: The driver (HAL) handle

HAL_readPwmPeriod ()
static inline uint16_t HAL_readPwmPeriod(HAL_Handle handle,const
PWM_Number_e pwmNumber)

Reads PWM period register

Handle: The driver (HAL) handle

pwmNumber: The PWM number

Return: The PWM period value

HAL_disablePwm () void HAL_disablePwm (HAL_Handle handle);

Turns off the outputs of the EPWM peripherals which will put the power switches into a
high-impedance state

Handle: The driver (HAL) handle
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HAL_enablePwm () void HAL_enablePwm (HAL_Handle handle);

Turns on the outputs of the EPWM peripheral which will allow the power switches to be
controlled

Handle: The driver (HAL) handle

HAL_writeDacData ()
static inline void HAL_writeDacData(HAL_Handle handle,HAL_DacData_t
*pDacData)

Writes DAC data to the PWM comparators for DAC (digital-to-analog conversion) output

Handle: The driver (HAL) handle

pDacData: The pointer to the DAC data

HAL_writePwmData()
void HAL_writePwmData (HAL_Handle handle, HAL_PwmData_t *pPwmData)

Writes PWM data to the PWM comparators for motor control

Handle: The driver (HAL) handle

pPwmData: The pointer to the PWM data

HAL_readPwmCmpA ()
static inline uint16_t HAL_readPwmCmpA(HAL_Handle handle,const
PWM_Number_e pwmNumber)

Reads PWM compare register A

Handle: The driver (HAL) handle

pwmNumber: The PWM number

Return: The PWM compare value

HAL_readPwmCmpB ()
static inline uint16_t HAL_readPwmCmpB(HAL_Handle handle,const
PWM_Number_e pwmNumber)

Reads PWM compare register B

Handle: The driver (HAL) handle

pwmNumber: The PWM number

Return: The PWM compare value

HAL_setTrigger () static inline void HAL_setTrigger(HAL_Handle handle,const int16_t minwidth)

Handle: The driver (HAL) handle
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minwidth:

HAL_acqPwmInt () static inline void HAL_acqPwmInt(HAL_Handle handle,const PWM_Number_e
pwmNumber)

Acknowledges an interrupt from the PWM

Handle: The driver (HAL) handle

pwmNumber: The PWM number

HAL_enablePwmInt ()
extern void HAL_enablePwmInt(HAL_Handle handle);

Enables the PWM interrupt

Handle: The driver (HAL) handle

HAL_hvProtection ()
void HAL_hvProtection(HAL_Handle handle)

Runs high voltage protection logic. Sets up the trip registers.

Handle: The driver (HAL) handle
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3.3.3.4 HAL – CPU Timers

HAL_setupClks () void HAL_setupClks (HAL_Handle halHandle)

Sets up the clocks

Handle: The driver (HAL) handle

HAL_setupTimers () void HAL_setupTimers(HAL_Handle handle,const uint_least16_t
systemFreq_MHz);

Setup CPU timers 0 and 1

Handle: The driver (HAL) handle

systemFreq_MHz: The system frequency, MHz

HAL_startTimer () static inline void HAL_startTimer(HAL_Handle handle,const uint_least8_t
timerNumber)

Starts the CPU timer

Handle: The driver (HAL) handle

timerNumber: The CPU timer number; 0, 1 or 2

HAL_stopTimer () static inline void HAL_stopTimer(HAL_Handle handle,const uint_least8_t
timerNumber)

Stops the CPU timer

Handle: The driver (HAL) handle

timerNumber: The timer number; 0, 1 or 2

HAL_setTimerPeriod ()
static inline void HAL_setTimerPeriod(HAL_Handle handle,const uint_least8_t
timerNumber, const uint32_t period)

Sets the CPU timer period

Handle: The driver (HAL) handle

timerNumber: The timer number; 0, 1 or 2

period: The timer period

HAL_getTimerPeriod ()
static inline void HAL_getTimerPeriod(HAL_Handle handle,const uint_least8_t
timerNumber, const uint32_t period)

Gets the CPU timer period

Handle: The driver (HAL) handle

timerNumber: The timer number; 0, 1 or 2

period: The timer period

145SPRUHJ1F–January 2013–Revised July 2014 InstaSPIN and MotorWare
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


InstaSPIN-FOC API www.ti.com

3.3.3.5 HAL – GPIO and LED

HAL_setupGpios () void HAL_setupGpios(HAL_Handle handle)

Sets up the GPIO

Handle: The driver (HAL) handle

HAL_toggleGpio () void HAL_toggleGpio (HAL_Handle handle ,const GPIO_Number_e gpioNumber);

Takes in the enumeration GPIO_Number_e and toggles that GPIO pin.

Handle: The driver (HAL) handle

gpioNumber: The GPIO number

HAL_setGpioHigh () static inline void HAL_setGpioHigh(HAL_Handle handle,const GPIO_Number_e
gpioNumber)

Sets the GPIO pin high. Takes in the enumeration GPIO_Number_e and sets that GPIO
pin high.

Handle: The driver (HAL) handle

gpioNumber: The GPIO number

HAL_setGpioLow () static inline void HAL_setGpioLowHAL_Handle handle,const GPIO_Number_e
gpioNumber)

Sets the GPIO pin low. Takes in the enumeration GPIO_Number_e and sets that GPIO
pin low.

Handle: The driver (HAL) handle

gpioNumber: The GPIO number

HAL_toggleLed

Defines the function to turn LEDs on
#define HAL_toggleLed HAL_toggleGpio
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3.3.3.6 HAL – Miscellaneous

HAL_init() HAL_Handle HAL_init(void *pMemory,const size_t numBytes)

Initializes the driver (HAL) object and returns a handle to the HAL object

pMemory: A pointer to the memory for the driver object

numBytes: The number of bytes allocated for the driver object, bytes

Return: The driver (HAL) object handle

HAL_initIntVectorTable ()
void HAL_initIntVectorTable(HAL_Handle handle)

Initializes the interrupt vector table

Handle: The driver (HAL) handle

HAL_setParams () void HAL_setParams(HAL_Handle handle,const USER_Params *pUserParams)

Sets the hardware abstraction layer parameters

Sets up the microcontroller peripherals. Creates all of the scale factors for the ADC
voltage and current conversions. Sets the initial offset values for voltage and current
measurements.

Handle: The driver (HAL) handle

pUserParams: The pointer to the user parameters

HAL_setupFlash () void HAL_setupFlash(HAL_Handle handle)

Sets up the FLASH.

Handle: The driver (HAL) handle

HAL_setupPie () void HAL_setupPie(HAL_Handle handle)

Sets up the Peripheral Interrupt Expansion (PIE).

Handle: The driver (HAL) handle

HAL_setupPll () void HAL_setupPll(HAL_Handle handle,const PLL_ClkFreq_e clkFreq)

Sets up the Phase-Lock Loop (PLL).

Handle: The driver (HAL) handle

clkFreq: The clock frequency

HAL_setupPeripheralClks ()
void HAL_setupPeripheralClks (HAL_Handle handle)

Sets up the peripheral clocks.

Handle: The driver (HAL) handle
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HAL_getOscTrimValue ()
uint16_t HAL_getOscTrimValue(int16_t coarse, int16_t fine);

Converts coarse and fine oscillator trim values into a single 16-bit word value.

Handle: The driver (HAL) handle

coarse: The coarse trim portion of the oscillator trim

fine: The fine trim portion of the oscillator trim

Return: The combined trim value

HAL_OscTempComp () void HAL_OscTempComp(HAL_Handle handle);

Executes the oscillator 1 and 2 calibration functions.

Handle: The driver (HAL) handle

HAL_osc1Comp () void HAL_osc1Comp(HAL_Handle handle, const int16_t sensorSample);

Executes the oscillator 1 calibration based on input sample.

Handle: The driver (HAL) handle

HAL_osc2Comp ()
void HAL_osc2Comp(HAL_Handle handle, const int16_t sensorSample);

Executes the oscillator 2 calibration based on input sample.

Handle: The driver (HAL) handle

HAL_setupFaults () extern void HAL_setupFaults(HAL_Handle handle);

Configures the fault protection logic

Sets up the trip zone inputs so that when a comparator signal from outside the micro-
controller trips a fault, the EPWM peripheral blocks will force the power switches into a
high-impedance state.

Handle: The driver (HAL) handle

HAL_setParams() void HAL_setParams(HAL_Handle handle,const USER_Params *pUserParams)

Sets the driver parameters

Handle: The driver (HAL) handle

pUserParams: The pointer to the user parameters

HAL_enableDebugInt ()
void HAL_enableDebugInt (HAL_Handle handle);

Enables real-time debug global interrupt

Handle: The driver (HAL) handle
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HAL_enableGlobalInts ()
void HAL_enableGlobalInts(HAL_Handle handle);

Enables global interrupts

Handle: The driver (HAL) handle

HAL_disableGlobalInts ()
void HAL_disableGlobalInts(HAL_Handle handle);

Disables global interrupts

Handle: The driver (HAL) handle

HAL_disableWdog () xtern void HAL_disableWdog(HAL_Handle handle);

Disables the watchdog

Handle: The driver (HAL) handle
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3.3.4 User Settings – user.c, user.h, userParams.h

3.3.4.1 USER Enumerations and Structures

Struct_USER_Params_

Structure for user parameters.
typedef struct _USER_Params_
{

float_t iqFullScaleCurrent_A; //!< Defines the full scale current
for the IQ variables, A

float_t iqFullScaleVoltage_V; //!< Defines the full scale voltage
for the IQ variable, V

float_t iqFullScaleFreq_Hz; //!< Defines the full scale
frequency for IQ variable, Hz

uint_least16_t numIsrTicksPerCtrlTick; //!< Defines the number of
Interrupt Service Routine (ISR) clock ticks per controller clock tick

uint_least16_t numCtrlTicksPerCurrentTick; //!< Defines the number of
controller clock ticks per current controller clock tick

uint_least16_t numCtrlTicksPerEstTick; //!< Defines the number of
controller clock ticks per estimator clock tick

uint_least16_t numCtrlTicksPerSpeedTick; //!< Defines the number of
controller clock ticks per speed controller clock tick

uint_least16_t numCtrlTicksPerTrajTick; //!< Defines the number of
controller clock ticks per trajectory clock tick

uint_least8_t numCurrentSensors; //!< Defines the number of
current sensors

uint_least8_t numVoltageSensors; //!< Defines the number of
voltage sensors

float_t offsetPole_rps; //!< Defines the pole location for
the voltage and current offset estimation, rad/s

float_t fluxPole_rps; //!< Defines the pole location for
the flux estimation, rad/s

float_t zeroSpeedLimit; //!< Defines the low speed limit
for the flux integrator, pu

float_t forceAngleFreq_Hz; //!< Defines the force angle
frequency, Hz

float_t maxAccel_Hzps; //!< Defines the maximum
acceleration for the speed profiles, Hz/s

float_t maxAccel_est_Hzps; //!< Defines the maximum
acceleration for the estimation speed profiles, Hz/s

float_t directionPole_rps; //!< Defines the pole location for
the direction filter, rad/s

float_t speedPole_rps; //!< Defines the pole location for
the speed control filter, rad/s

float_t dcBusPole_rps; //!< Defines the pole location for
the DC bus filter, rad/s

float_t fluxFraction; //!< Defines the flux fraction for
Id rated current estimation

float_t indEst_speedMaxFraction; //!< Defines the fraction of
SpeedMax to use during inductance estimation

float_t powerWarpGain; //!< Defines the PowerWarp gain for
computing Id reference

uint_least16_t systemFreq_MHz; //!< Defines the system clock
frequency, MHz

float_t pwmPeriod_usec; //!< Defines the Pulse Width
Modulation (PWM) period, usec

float_t voltage_sf; //!< Defines the voltage scale
factor for the system

float_t current_sf; //!< Defines the current scale

150 InstaSPIN and MotorWare SPRUHJ1F–January 2013–Revised July 2014
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


www.ti.com InstaSPIN-FOC API

factor for the system
float_t voltageFilterPole_rps; //!< Defines the analog voltage

filter pole location, rad/s
float_t maxVsMag_pu; //!< Defines the maximum voltage

magnitude, pu
float_t estKappa; //!< Defines the convergence factor

for the estimator

MOTOR_Type_e motor_type; //!< Defines the motor type
uint_least16_t motor_numPolePairs; //!< Defines the number of pole

pairs for the motor

float_t motor_ratedFlux; //!< Defines the rated flux of the
motor, V/Hz

float_t motor_Rr; //!< Defines the rotor resistance,
ohm

float_t motor_Rs; //!< Defines the stator resistance,
ohm

float_t motor_Ls_d; //!< Defines the direct stator
inductance, H

float_t motor_Ls_q; //!< Defines the quadrature stator
inductance, H

float_t maxCurrent; //!< Defines the maximum current
value, A

float_t maxCurrent_resEst; //!< Defines the maximum current
value for resistance estimation, A

float_t maxCurrent_indEst; //!< Defines the maximum current
value for inductance estimation, A

float_t maxCurrentSlope; //!< Defines the maximum current
slope for Id current trajectory

float_t maxCurrentSlope_powerWarp; //!< Defines the maximum current
slope for Id current trajectory during PowerWarp

float_t IdRated; //!< Defines the Id rated current
value, A

float_t IdRatedFraction_indEst; //!< Defines the fraction of Id
rated current to use during inductance estimation

float_t IdRatedFraction_ratedFlux; //!< Defines the fraction of Id
rated current to use during rated flux estimation

float_t IdRated_delta; //!< Defines the Id rated delta
current value, A

float_t fluxEstFreq_Hz; //!< Defines the flux estimation
frequency, Hz

uint_least32_t ctrlWaitTime[CTRL_numStates]; //!< Defines the wait times for
each controller state, estimator ticks

uint_least32_t estWaitTime[EST_numStates]; //!< Defines the wait times for
each estimator state, estimator ticks

uint_least32_t FluxWaitTime[EST_Flux_numStates]; //!< Defines the wait times
for each Ls estimator, estimator ticks

uint_least32_t LsWaitTime[EST_Ls_numStates]; //!< Defines the wait times for
each Ls estimator, estimator ticks

uint_least32_t RsWaitTime[EST_Rs_numStates]; //!< Defines the wait times for
each Rs estimator, estimator ticks

uint_least32_t ctrlFreq_Hz; //!< Defines the controller
frequency, Hz

uint_least32_t estFreq_Hz; //!< Defines the estimator
frequency, Hz

uint_least32_t RoverL_estFreq_Hz; //!< Defines the R/L estimation
frequency, Hz

uint_least32_t trajFreq_Hz; //!< Defines the trajectory
frequency, Hz

float_t ctrlPeriod_sec; //!< Defines the controller
execution period, sec

float_t maxNegativeIdCurrent_a; //!< Defines the maximum negative
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current that the Id PID is allowed to go to, A

USER_ErrorCode_e errorCode;
} USER_Params;

USER_ErrorCode_e

Structure for user error codes.
typedef enum
{

USER_ErrorCode_NoError=0, //!< no error error code
USER_ErrorCode_iqFullScaleCurrent_A_High=1, //!< iqFullScaleCurrent_A

too high error code
USER_ErrorCode_iqFullScaleCurrent_A_Low=2, //!< iqFullScaleCurrent_A

too low error code
USER_ErrorCode_iqFullScaleVoltage_V_High=3, //!< iqFullScaleVoltage_V

too high error code
USER_ErrorCode_iqFullScaleVoltage_V_Low=4, //!< iqFullScaleVoltage_V

too low error code
USER_ErrorCode_iqFullScaleFreq_Hz_High=5, //!< iqFullScaleFreq_Hz too

high error code
USER_ErrorCode_iqFullScaleFreq_Hz_Low=6, //!< iqFullScaleFreq_Hz too

low error code
USER_ErrorCode_numPwmTicksPerIsrTick_High=7, //!< numPwmTicksPerIsrTick

too high error code
USER_ErrorCode_numPwmTicksPerIsrTick_Low=8, //!< numPwmTicksPerIsrTick

too low error code
USER_ErrorCode_numIsrTicksPerCtrlTick_High=9, //!< numIsrTicksPerCtrlTick

too high error code
USER_ErrorCode_numIsrTicksPerCtrlTick_Low=10, //!< numIsrTicksPerCtrlTick

too low error code
USER_ErrorCode_numCtrlTicksPerCurrentTick_High=11, //!<

numCtrlTicksPerCurrentTick too high error code
USER_ErrorCode_numCtrlTicksPerCurrentTick_Low=12, //!<

numCtrlTicksPerCurrentTick too low error code
USER_ErrorCode_numCtrlTicksPerEstTick_High=13, //!< numCtrlTicksPerEstTick

too high error code
USER_ErrorCode_numCtrlTicksPerEstTick_Low=14, //!< numCtrlTicksPerEstTick

too low error code
USER_ErrorCode_numCtrlTicksPerSpeedTick_High=15, //!<

numCtrlTicksPerSpeedTick too high error code
USER_ErrorCode_numCtrlTicksPerSpeedTick_Low=16, //!<

numCtrlTicksPerSpeedTick too low error code
USER_ErrorCode_numCtrlTicksPerTrajTick_High=17, //!<

numCtrlTicksPerTrajTick too high error code
USER_ErrorCode_numCtrlTicksPerTrajTick_Low=18, //!<

numCtrlTicksPerTrajTick too low error code
USER_ErrorCode_numCurrentSensors_High=19, //!< numCurrentSensors too

high error code
USER_ErrorCode_numCurrentSensors_Low=20, //!< numCurrentSensors too

low error code
USER_ErrorCode_numVoltageSensors_High=21, //!< numVoltageSensors too

high error code
USER_ErrorCode_numVoltageSensors_Low=22, //!< numVoltageSensors too

low error code
USER_ErrorCode_offsetPole_rps_High=23, //!< offsetPole_rps too

high error code
USER_ErrorCode_offsetPole_rps_Low=24, //!< offsetPole_rps too low

error code
USER_ErrorCode_fluxPole_rps_High=25, //!< fluxPole_rps too high

error code
USER_ErrorCode_fluxPole_rps_Low=26, //!< fluxPole_rps too low

error code
USER_ErrorCode_zeroSpeedLimit_High=27, //!< zeroSpeedLimit too

high error code
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USER_ErrorCode_zeroSpeedLimit_Low=28, //!< zeroSpeedLimit too low
error code

USER_ErrorCode_forceAngleFreq_Hz_High=29, //!< forceAngleFreq_Hz too
high error code

USER_ErrorCode_forceAngleFreq_Hz_Low=30, //!< forceAngleFreq_Hz too
low error code

USER_ErrorCode_maxAccel_Hzps_High=31, //!< maxAccel_Hzps too high
error code

USER_ErrorCode_maxAccel_Hzps_Low=32, //!< maxAccel_Hzps too low
error code

USER_ErrorCode_maxAccel_est_Hzps_High=33, //!< maxAccel_est_Hzps too
high error code

USER_ErrorCode_maxAccel_est_Hzps_Low=34, //!< maxAccel_est_Hzps too
low error code

USER_ErrorCode_directionPole_rps_High=35, //!< directionPole_rps too
high error code

USER_ErrorCode_directionPole_rps_Low=36, //!< directionPole_rps too
low error code

USER_ErrorCode_speedPole_rps_High=37, //!< speedPole_rps too high
error code

USER_ErrorCode_speedPole_rps_Low=38, //!< speedPole_rps too low
error code

USER_ErrorCode_dcBusPole_rps_High=39, //!< dcBusPole_rps too high
error code

USER_ErrorCode_dcBusPole_rps_Low=40, //!< dcBusPole_rps too low
error code

USER_ErrorCode_fluxFraction_High=41, //!< fluxFraction too high
error code

USER_ErrorCode_fluxFraction_Low=42, //!< fluxFraction too low
error code

USER_ErrorCode_indEst_speedMaxFraction_High=43, //!<
indEst_speedMaxFraction too high error code

USER_ErrorCode_indEst_speedMaxFraction_Low=44, //!<
indEst_speedMaxFraction too low error code

USER_ErrorCode_powerWarpGain_High=45, //!< powerWarpGain too high
error code

USER_ErrorCode_powerWarpGain_Low=46, //!< powerWarpGain too low
error code

USER_ErrorCode_systemFreq_MHz_High=47, //!< systemFreq_MHz too
high error code

USER_ErrorCode_systemFreq_MHz_Low=48, //!< systemFreq_MHz too low
error code

USER_ErrorCode_pwmFreq_kHz_High=49, //!< pwmFreq_kHz too high
error code

USER_ErrorCode_pwmFreq_kHz_Low=50, //!< pwmFreq_kHz too low
error code

USER_ErrorCode_voltage_sf_High=51, //!< voltage_sf too high
error code

USER_ErrorCode_voltage_sf_Low=52, //!< voltage_sf too low
error code

USER_ErrorCode_current_sf_High=53, //!< current_sf too high
error code

USER_ErrorCode_current_sf_Low=54, //!< current_sf too low
error code

USER_ErrorCode_voltageFilterPole_Hz_High=55, //!< voltageFilterPole_Hz
too high error code

USER_ErrorCode_voltageFilterPole_Hz_Low=56, //!< voltageFilterPole_Hz
too low error code

USER_ErrorCode_maxVsMag_pu_High=57, //!< maxVsMag_pu too high
error code

USER_ErrorCode_maxVsMag_pu_Low=58, //!< maxVsMag_pu too low
error code

USER_ErrorCode_estKappa_High=59, //!< estKappa too high
error code

USER_ErrorCode_estKappa_Low=60, //!< estKappa too low error
code
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USER_ErrorCode_motor_type_Unknown=61, //!< motor type unknown
error code

USER_ErrorCode_motor_numPolePairs_High=62, //!< motor_numPolePairs too
high error code

USER_ErrorCode_motor_numPolePairs_Low=63, //!< motor_numPolePairs too
low error code

USER_ErrorCode_motor_ratedFlux_High=64, //!< motor_ratedFlux too
high error code

USER_ErrorCode_motor_ratedFlux_Low=65, //!< motor_ratedFlux too
low error code

USER_ErrorCode_motor_Rr_High=66, //!< motor_Rr too high
error code

USER_ErrorCode_motor_Rr_Low=67, //!< motor_Rr too low error
code

USER_ErrorCode_motor_Rs_High=68, //!< motor_Rs too high
error code

USER_ErrorCode_motor_Rs_Low=69, //!< motor_Rs too low error
code

USER_ErrorCode_motor_Ls_d_High=70, //!< motor_Ls_d too high
error code

USER_ErrorCode_motor_Ls_d_Low=71, //!< motor_Ls_d too low
error code

USER_ErrorCode_motor_Ls_q_High=72, //!< motor_Ls_q too high
error code

USER_ErrorCode_motor_Ls_q_Low=73, //!< motor_Ls_q too low
error code

USER_ErrorCode_maxCurrent_High=74, //!< maxCurrent too high
error code

USER_ErrorCode_maxCurrent_Low=75, //!< maxCurrent too low
error code

USER_ErrorCode_maxCurrent_resEst_High=76, //!< maxCurrent_resEst too
high error code

USER_ErrorCode_maxCurrent_resEst_Low=77, //!< maxCurrent_resEst too
low error code

USER_ErrorCode_maxCurrent_indEst_High=78, //!< maxCurrent_indEst too
high error code

USER_ErrorCode_maxCurrent_indEst_Low=79, //!< maxCurrent_indEst too
low error code

USER_ErrorCode_maxCurrentSlope_High=80, //!< maxCurrentSlope too
high error code

USER_ErrorCode_maxCurrentSlope_Low=81, //!< maxCurrentSlope too
low error code

USER_ErrorCode_maxCurrentSlope_powerWarp_High=82, //!<
maxCurrentSlope_powerWarp too high error code

USER_ErrorCode_maxCurrentSlope_powerWarp_Low=83, //!<
maxCurrentSlope_powerWarp too low error code

USER_ErrorCode_IdRated_High=84, //!< IdRated too high error
code

USER_ErrorCode_IdRated_Low=85, //!< IdRated too low error
code

USER_ErrorCode_IdRatedFraction_indEst_High=86, //!< IdRatedFraction_indEst
too high error code

USER_ErrorCode_IdRatedFraction_indEst_Low=87, //!< IdRatedFraction_indEst
too low error code

USER_ErrorCode_IdRatedFraction_ratedFlux_High=88, //!<
IdRatedFraction_ratedFlux too high error code

USER_ErrorCode_IdRatedFraction_ratedFlux_Low=89, //!<
IdRatedFraction_ratedFlux too low error code

USER_ErrorCode_IdRated_delta_High=90, //!< IdRated_delta too high
error code

USER_ErrorCode_IdRated_delta_Low=91, //!< IdRated_delta too low
error code

USER_ErrorCode_fluxEstFreq_Hz_High=92, //!< fluxEstFreq_Hz too
high error code

USER_ErrorCode_fluxEstFreq_Hz_Low=93, //!< fluxEstFreq_Hz too low
error code
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USER_ErrorCode_ctrlFreq_Hz_High=94, //!< ctrlFreq_Hz too high
error code

USER_ErrorCode_ctrlFreq_Hz_Low=95, //!< ctrlFreq_Hz too low
error code

USER_ErrorCode_estFreq_Hz_High=96, //!< estFreq_Hz too high
error code

USER_ErrorCode_estFreq_Hz_Low=97, //!< estFreq_Hz too low
error code

USER_ErrorCode_RoverL_estFreq_Hz_High=98, //!< RoverL_estFreq_Hz too
high error code

USER_ErrorCode_RoverL_estFreq_Hz_Low=99, //!< RoverL_estFreq_Hz too
low error code

USER_ErrorCode_trajFreq_Hz_High=100, //!< trajFreq_Hz too high
error code

USER_ErrorCode_trajFreq_Hz_Low=101, //!< trajFreq_Hz too low
error code

USER_ErrorCode_ctrlPeriod_sec_High=102, //!< ctrlPeriod_sec too
high error code

USER_ErrorCode_ctrlPeriod_sec_Low=103, //!< ctrlPeriod_sec too low
error code

USER_ErrorCode_maxNegativeIdCurrent_a_High=104, //!< maxNegativeIdCurrent_a
too high error code

USER_ErrorCode_maxNegativeIdCurrent_a_Low=105, //!< maxNegativeIdCurrent_a
too low error code

USER_numErrorCodes=106 //!< the number of user
error codes
} USER_ErrorCode_e;
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3.3.4.2 USER Set and Compute Functions

USER_setParams() void USER_setParams(USER_Params *pUserParams)

Sets the user parameter values

pUserParams: A pointer to the user param structure

USER_calcPIgains () void USER_calcPIgains(CTRL_Handle handle)

Updates Id and Iq PI gains

Handle: The controller (CTRL) handle

USER_computeTorque_Ls_Id_Iq_pu_to_Nm_sf ()
_iq USER_computeTorque_Ls_Id_Iq_pu_to_Nm_sf(void);

Computes the scale factor needed to convert from torque created by Ld, Lq, Id and Iq,
from per unit to Nm

Return: The scale factor to convert torque from (Ld - Lq) * Id * Iq from per unit to Nm, in IQ24
format

USER_computeTorque_Flux_Iq_pu_to_Nm_sf ()
_iq USER_computeTorque_Flux_Iq_pu_to_Nm_sf(void);

Computes the scale factor needed to convert from torque created by flux and Iq, from
per unit to Nm

Return: The scale factor to convert torque from Flux * Iq from per unit to Nm, in IQ24 format

USER_computeFlux_pu_to_Wb_sf ()
_iq USER_computeFlux_pu_to_Wb_sf (void);

Computes the scale factor needed to convert from per unit to Wb

Return: The scale factor to convert from flux per unit to flux in Wb, in IQ24 format

USER_computeFlux_pu_to_VpHz_sf () _iq USER_computeFlux_pu_to_VpHz_sf (void);

Computes the scale factor needed to convert from per unit to V/Hz

Return: The scale factor to convert from flux per unit to flux in V/Hz, in IQ24 format

USER_computeFlux () _iq USER_computeFlux(CTRL_Handle handle, const _iq sf);

Computes Flux in Wb or V/Hz depending on the scale factor sent as parameter

Handle: The controller (CTRL) handle

sf: The scale factor to convert flux from per unit to Wb or V/Hz

Return: The flux in Wb or V/Hz depending on the scale factor sent as parameter, in IQ24 format
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USER_computeTorque_Nm ()
_iq USER_computeTorque_Nm(CTRL_Handle handle, const _iq torque_Flux_sf,
const _iq torque_Ls_sf);

Computes Flux in Wb or V/Hz depending on the scale factor sent as parameter

Handle: The controller (CTRL) handle

torque_Flux_sf: The scale factor to convert torque from (Ld - Lq) * Id * Iq from per unit to Nm

torque_Ls_sf: The scale factor to convert torque from Flux * Iq from per unit to Nm

Return: The torque in Nm, in IQ24 format

USER_computeTorque_lbin () _iq USER_computeTorque_lbin(CTRL_Handle handle, const _iq
torque_Flux_sf, const _iq torque_Ls_sf);

Computes Torque in lbin

Handle: The controller (CTRL) handle

torque_Flux_sf: The scale factor to convert torque from (Ld - Lq) * Id * Iq from per unit to Nm

torque_Ls_sf: The scale factor to convert torque from Flux * Iq from per unit to Nm

Return: The torque in Nm, in IQ24 format

157SPRUHJ1F–January 2013–Revised July 2014 InstaSPIN and MotorWare
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


InstaSPIN-FOC API www.ti.com

3.3.4.3 USER Error Handling Functions

USER_checkForErrors ()
void USER_checkForErrors(USER_Params *pUserParams);

Checks for errors in the user parameter values

pUserParams: A pointer to the user param structure

USER_getErrorCode ()
USER_ErrorCode_e USER_getErrorCode(USER_Params *pUserParams);

Gets the error code in the user parameters

pUserParams: A pointer to the user param structure

Return: The error code

USER_setErrorCode ()
void USER_setErrorCode(USER_Params *pUserParams,const USER_ErrorCode_e
errorCode);

Sets the error code in the user parameters

pUserParams: A pointer to the user param structure

Return: The error code
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3.3.5 Miscellaneous Functions

softwareUpdate1p6 ()
void softwareUpdate1p6 (CTRL_Handle handle)

Recalculates inductances with the correct Q Format. A bug fix for InstaSPIN-FOC v1.6,
the software version in ROM on the F2806x devices. This function only applies to
F2806x devices, since F2802x and F2805x have v1.7 which does not need this fix.

Handle: The controller (CTRL) handle

3.4 InstaSPIN-MOTION and the SpinTAC API
InstaSPIN-MOTION combines InstaSPIN-FOC with the SpinTAC Motion Control Suite developed by
LineStream Technologies. These components provide a low maintenance, high-performance, and easy to
use solution for simple motion systems. SpinTAC offers two solutions: one for velocity control applications
and one for position control applications.

The components of the velocity control solution include a motion sequence generator (SpinTAC Velocity
Plan), motion profile generator (SpinTAC Velocity Move), closed-loop disturbance rejecting speed
controller (SpinTAC Velocity Control), and system inertia identification (SpinTAC Velocity Identify).

The SpinTAC motion control library allows you to use multiple instances of each component. It allows for
two instances of SpinTAC Plan and SpinTAC Move. It allows for controlling two motion axes using
SpinTAC Control and one instance of SpinTAC Identify.

Similarly, the components of the position control solution include a signal converter (SpinTAC Position
Convert), position sequence generator (SpinTAC Position Plan), motion profile generator (SpinTAC
Position Move), and closed-loop disturbance rejecting cascaded position and speed controller (SpinTAC
Position Control).

These components are packaged together as the SpinTAC motion control library which can be found in
sw/modules/spintac. The SpinTAC motion control library is designed to be modular. This allows
developers to include only selected SpinTAC components in projects in order to minimize code size. Any
component can be used in conjunction with other SpinTAC components or third party software.

The SpinTAC motion control library allows you to use multiple instances of each component. It allows for
two instances of SpinTAC Plan and SpinTAC Move. It allows for controlling two motion axes using
SpinTAC Control and one instance of SpinTAC Identify.

Figure 3-2 an overview of how the components of the velocity solution of the SpinTAC Motion Suite
connect together and how they interface with InstaSPIN-FOC.

Figure 3-2. InstaSPIN-MOTION Velocity Control
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Figure 3-3 provides an overview of how the components of the position solution of the SpinTAC Motion
Suite connect together and how they interface with InstaSPIN-FOC.
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Figure 3-3. InstaSPIN-MOTION Position Control
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The API for the SpinTAC Motion Control Suite can be broken down into the following components, where
each has a specific prefix for their API functions:

Component Prefix
1. SpinTAC Velocity Control STVELCTL
2. SpinTAC Velocity Move STVELMOVE
3. SpinTAC Velocity Plan STVELPLAN
4. SpinTAC Velocity Identify STVELID
5. SpinTAC Position Convert STPOSCONV
6. SpinTAC Position Control STPOSCTL
7. SpinTAC Position Move STPOSMOVE
8. SpinTAC Position Plan STPOSPLAN

Each component of the SpinTAC Suite contains an initialize function and a run function. The initialize
function is designed to establish the handle that will be used to interface to the SpinTAC component. The
run function is the main calculation function for that component. All variables in these components can be
accessed via get and set functions. The commonly used functions for SpinTAC components are detailed
in Section 3.5.9.
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Figure 3-4. SpinTAC Module Directory Structure

3.4.1 Header Files, Public Library, and ROM Library
The SpinTAC suite is comprised of a public library, and a ROM library. The public library is also known as
the SpinTAC library file. "SpinTAC.lib" is located at /sw/modules/spintac/lib/32b/ and the user must include
this file in the project. If the project requires fpu32 support, use the library file "SpinTAC_fpu32.lib." Note
that this library still uses the fixed point IQMath library. The header files that need to be included in user
code are listed in Table 3-1. Developers can include the header files associated with the desired
components. The source code for this library is not available.
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Table 3-1. User Code Header Files

SpinTAC Component Header File
SpinTAC Velocity Control spintac_vel_ctl.h
SpinTAC Velocity Move spintac_vel_move.h
SpinTAC Velocity Plan spintac_vel_plan.h
SpinTAC Velocity Identify spintac_vel_id.h
SpinTAC Position Convert spintac_pos_conv.h
SpinTAC Position Control spintac_pos_ctl.h
SpinTAC Position Move spintac_pos_move.h
SpinTAC Position Plan spintac_pos_plan.h
SpinTAC Version spintac_version.h

The SpinTAC ROM library is a C-callable library embedded in on-chip execute-only ROM on the
TMS320F2805xM and TMS320F2806xM devices. The source code for this library is not available. The
ROM library implements the core SpinTAC functions that are called by the Public library.

3.4.2 Version Information
For detailed version information about the SpinTAC library, the ST_Ver_t object contains this information.
The structure is detailed in Table 3-2.

Table 3-2. SpinTAC Version Structure

Member Name Data Type Description V2.2.7 Example
Major uint16_t Major version of library 2
Minor uint16_t Minor version of library 2
Revision uint16_t Revision version of library 7
MathType ST_MathType_e Math implementation the library was compiled for. FIXED_POINT32b
SecureROM uint32_t SecureROM version 20010008
Date int32_t Date the library was compiled 20140530
Label uint_least8_t [10] Other information about library TI_C2000

3.4.2.1 Code Example for returning SpinTAC Version Information
There are four steps to returning the SpinTAC version information. These steps are done in each example
lab project. They are included below to show how simple it is to include the SpinTAC version information
in your project.

3.4.2.1.1 Include the Header File
This should be done with the rest of the module header file includes. In the Lab 8a example project this
file is included in the spintac.h header file. For your project, this step can be completed by including
spintac.h.

#include "sw/modules/spintac/src/32b/spintac_version.h"
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3.4.2.1.2 Declare the Global Structure
This should be done with the global variable declarations in the main source file. In the example lab
projects this structure is included in the ST_Obj structure that is declared as part of the spintac.h header
file.

ST_Obj st_obj; // The SpinTAC Object
ST_Handle stHandle; // The SpinTAC Handle

This example is if you do not wish to use the ST_Obj structure that is declared in the spintac.h header file.

ST_Ver_t stVersion; // The SpinTAC Version object
ST_VER_Handle stVersionHandle; // The SpinTAC Version Handle

3.4.2.1.3 Initialize the Configuration Variables
This should be done in the main function of the project ahead of the forever loop. This will load all of the
default values into SpinTAC Version structure. This step can be completed by running the function ST_init
that is declared in the spintac.h header file. If you do not wish to use this function, the code example
below can be used to setup the SpinTAC Version structure.

// Initialize the SpinTAC Speed Controller Component
stVersionHandle = ST_initVersion (&stVersion, sizeof(ST_Ver_t));

3.4.2.1.4 Return the Version Information
Now that the version handle has been defined it can be used to return the version information of the
SpinTAC library.

uint16_t major, minor, revision; // Variables to return the version numbers
ST_getVersionNumbers(stVersionHandle, &major, &minor, &revision);

3.4.3 SpinTAC Structure Names
All structure data type names follow the pattern:

ST_[Object] [Functionality] [Subfunctionality(optional)]_t

For example, the Velocity Control structure type is named ST_VelCtl_t.

The Configuration substructure type of Velocity Control is named ST_VelCtlCfg_t, and is contained inside
the structure ST_VelCtl_t

All the structures and sub structure names of SpinTAC are listed in Table 3-3.

Table 3-3. SpinTAC Structure Names

Component Structure Name Substructure Name Description
ST_VelCtl_t Main structure

Velocity Control
ST_VelCtlCfg_t Configuration substructure

ST_VelMove_t Main structure
Velocity Move ST_VelMoveCfg_t Configuration substructure

ST_VelMoveMsg_t Information substructure
Velocity Plan ST_VelPlan_t Main structure
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Table 3-3. SpinTAC Structure Names (continued)
Component Structure Name Substructure Name Description

ST_VelId_t Main structure
Velocity Identify

ST_VelIdCfg_t Configuration substructure
ST_PosConv_t Main structure

Position Convert
ST_PosConvCfg_t Configuration substructure

ST_PosCtl_t Main structure
Position Control

ST_PosCtlCfg_t Configuration substructure
ST_PosMove_t Main structure

Position Move ST_PosMoveCfg_t Configuration substructure
ST_PosMoveMsg_t Information substructure

Position Plan ST_PosPlan_t Main structure
Version ST_Ver_t Main Structure

3.4.4 SpinTAC Variables
Variables are broadly classified as shown in Table 3-4.

Table 3-4. SpinTAC Variables

Variable Categories Subclasses
System Variables: These are known values that are based on system parameters. Some
examples:
1. Sample time of the interrupt
2. Scaling factor between a mechanical revolution and user unit.
3. The system gain is a special case in that the inertia in the velocity loop or position-velocity

loop is normally obtained by running an inertia estimation function for a constant inertia
system. A constant inertia can be estimated by Inertia Identify in open loop. However, if the
system inertia is gradually changing, it needs to be calculated or estimated outside Velocity
Control and sent to Velocity Control in real time.

Protection Variables: Used to indicate the upper limit or lower limit of other variables. For this
reason, protection variables all have the suffix "Max" or "Min". Some examples:Configuration Variables:
1. OutMax and OutMin are the protection bounds for the variable Out. These bounds come fromVariables used to configure

the fixed-point IQMath calculation limit, from the physical limit, or the safe limit obtainedSpinTAC components.
through experience.

2. VelMax is determined by the maximum allowable velocity for a specific motor, which is a
physical limit.

3. BwMax, the Bandwidth upper limit can be set high in the beginning and then decreased after
a reasonable upper bound is determined through testing.

Tuning Variables: Parameters used to give users flexibility to adjust SpinTAC components'
behavior. Some examples:
1. Control bandwidth of Velocity Control.
2. Velocity, acceleration/deceleration, and jerk limits of Velocity Move.
3. Low pass filter time constant for Velocity Identify.
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Table 3-4. SpinTAC Variables (continued)
Variable Categories Subclasses

Input variables: Interfaces for external signals to be input into a SpinTAC component. They
receive the external signals before the component function is called. Examples include:
1. Reference and feedback signals of Velocity Control
2. Feedback signal of Inertia Identify.
Control Variables: Signals used to control each component. Examples are:
1. ENB and RES are control variables for each SpinTAC component. Generally, when the value

of RES is false, ENB enables a component on the rising edge and disables a component
when it is set to false. When the value of RES is true, the component is disabled (in RESET)
and the value of ENB is held at false.

2. TST is a control variable used to test the Velocity Move component. If the value of TST isInput/Output Variables:
true, Velocity Move only gives the profile information without producing the profile to theVariables that are used to pass
controller; otherwise, it will produce the profile. This control bit can be used by the designersvalues into and out of the
to verify the calculated profile limits and profile time before applying the profile to theSpinTAC components
controller.

Output variables: Contain the outputs of a SpinTAC component. These variables need to be set
to the appropriate external variables after the component function is called. Examples:
1. Control output of Velocity Control and Inertia Identify
2. Profile references of Velocity Move.
Information Variables: Read-only variables, which provide useful information about a SpinTAC
component. Examples include:
1. State and the error code of any SpinTAC component
2. Profile time and the actual limits of Velocity Move.

Internal Variables: The internal variables in the SpinTAC components should not be accessed by customers. It is hazardous to
modify the internal variables.The internal variables are stored in locations declared as bulk memory and are not listed in this
document.

3.5 SpinTAC API
This section describes the Application Program Interface (API) of each of the SpinTAC components
including each component’s internal state machine, primary functions and data structures for control and
configuration. The components of the velocity solution are presented first, then the components of the
position solution.

3.5.1 SpinTAC Velocity Control
The SpinTAC Velocity Controller is different from error-based control designs. The following example is
used to illustrate the difference.

A velocity system can be described with Equation 1:

(1)

In Equation 1, v(t), u(t), and d(t) are system output (velocity), system input (torque), and external
disturbance respectively; f(·) is an unknown nonlinear function, and J is the system inertia. In traditional
control design, a PI controller would be used to control these dynamics with the proportional gain and
integral gains determined experimentally. Model-based controllers, on the other hand, respond to the
dynamics based on a predefined linear or nonlinear model.

The SpinTAC Velocity Controller is unique in that it treats the nonlinear term f(·) as a disturbance that
can be estimated and rejected. The tuning process is also simplified via a parameterization method
that enables high-performance control of dynamical systems using a single tuning parameter: the
control bandwidth.

3.5.1.1 SpinTAC Velocity Control Interface
The SpinTAC Velocity Control interfaces and functions are shown in Figure 3-5.
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Figure 3-5. SpinTAC Velocity Control Interfaces

NOTE: In SpinTAC Velocity Control, the value for inertia can be obtained by the SpinTAC Velocity
Identify component. The switch cfg.FiltEn can be enabled if the feedback is very noisy. The
only controller tuning parameter is the bandwidth which is set via BwScale.

Table 3-5 lists the interface parameters for SpinTAC Velocity Control.

Table 3-5. SpinTAC Velocity Control Interface Parameters

Structure Member
Signal Type Name Data Type Description Value Range Units

cfg.Axis ST_Axis_e SpinTAC Control Axis ID {ST_AXIS0, ST_AXIS1}
cfg.T_sec _iq24 Sampling time (0 , 1] s

Maximum system inertia forcfg.InertiaMax _iq24 (0, 100] PU · s2 / puvelocity loop control
Minimum system inertia forcfg.InertiaMin _iq24 (0, cfg.InertiaMax] PU · s2 / puvelocity loop control

cfg.OutMax _iq24 Maximum control signal [-1 , 1] PU
cfg.OutMin _iq24 Minimum control signal [-1, cfg.OutMax] PU

Maximum reference signalConfig cfg.VelMax _iq24 (maximum velocity of the [-1 , 1] pu / s
system)
Minimum reference signal

cfg.VelMin _iq24 (minimum velocity of the [-1 , cfg.VelMax] pu / s
system)

[0.01, min(100, 0.01/cfg.BwScaleMax _iq24 Bandwidth scale upper limit cfg.T_sec)]
cfg.BwScaleMin _iq24 Bandwidth scale lower limit [0.01, cfg.BwScaleMax]

Enable feedback low pass false: disabled; true:cfg.FiltEn bool filter enabled
Reference signal (velocityVelRef _iq24 [cfg.VelMin, cfg.VelMax] pu / sreference)
Feedforward signalAccRef _iq24 pu / s2
(acceleration reference)

Inputs Feedback signal (velocityVelFdb _iq24 pu / sfeedback)
[cfg.InertiaMin,Inertia _iq24 System Inertia PU · s2 / pucfg.InertiaMax]

Friction _iq24 Friction coefficient [0, 5] PU · s / pu
[cfg.BwScaleMin,Tuning BwScale _iq24 Bandwidth scale cfg.BwScaleMax]
false: disabled; true:ENB bool Enable bit enabled

Control false: not reset; true: reset
RES bool Reset bit ERR_ID, and hold Out as

0
Output Out _iq24 Control output [cfg.OutMin, cfg.OutMax] PU
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Table 3-5. SpinTAC Velocity Control Interface Parameters (continued)
Structure Member

Signal Type Name Data Type Description Value Range Units
Bw_radps _iq20 Controller bandwidth rad/s

{ST_CTL_IDLE,
ST_CTL_INIT,Info STATUS ST_CtlStatus_e Status information ST_CTL_CONF,
ST_CTL_BUSY}

ERR_ID uint16_t Error code See Table 12-2

3.5.1.2 SpinTAC Velocity Control Run Function
The primary function is STVELCTL_run(ST_VELCTL_Handle handle), where handle is a pointer to a
specific ST_VelCtl_t object. This function runs SpinTAC Velocity Control. It is recommended to run this
controller at one-fifth or one-tenth the rate of the current controller.
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IDLE CONF BUSY

ENB rising && RES == 0

ERR_ID !=0

ERR_ID == 0

INIT

RES == 0 && 
ENB == 1 &&

no change in BwScale or 
Inertia or Friction

RES == 1 || ENB == 0

RES == 0 && 
ENB == 1 &&

change in BwScale or 
Inertia or Friction

 RES == 1 ||
ENB not 

rising
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void STVELCTL_run(ST_VELCTL_Handle handle)

Parameters:

No. Type Parameters Description
1 ST_VELCTL_Handle Handle The pointer to a ST_VelCtl_t object

The SpinTAC Velocity Control state transition map is shown in Figure 3-6.

Figure 3-6. SpinTAC Velocity Control State Transition Map

Note in Figure 3-6, the transitions from state IDLE to INIT, INIT to CONF, and CONF to BUSY, happen
within one sample time. Therefore, the controller works directly at the sample time when it is enabled.

The SpinTAC Velocity Control states transitions are described in Table 3-6.

Table 3-6. SpinTAC Velocity Control State Transition

From State To State Transition Condition Action

1. Set ENB = false;
2. Hold Out as zero
Parameter validation
1. Validate the configuration parameters, including

cfg.InertiaMax, cfg.InertiaMin, cfg.BwScaleMax,IDLE
cfg.BwScaleMin, cfg.Axis, cfg.FiltEn, and cfg.T_sec. If any
of the checked variables are invalid, ERR_ID will be
nonzero.

RES == false AND ENB is onINIT rising edge AND ERR_ID == 0
Parameter validation
1. Validate the parameters, including cfg.VelMax, cfg.VelMin,

cfg.OutMax, cfg.OutMin. If any of the checked variables are
INIT invalid, ERR_ID will be nonzero.

IDLE ERR_ID != 0 Set ENB = false
CONF ERR_ID == 0

Saturate Inertia, BwScale, and Friction by the specified bounds.
CONF BUSY If saturation occurs, ERR_ID will be 1012, or 1013, 1014, or

1016.
Generate control signal

IDLE RES == true OR ENB == false Set ENB = false
BUSY RES == false AND ENB ==

CONF true AND changes in BwScale,
Inertia, or Friction
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3.5.2 SpinTAC Velocity Move
SpinTAC Velocity Move generates motion profiles satisfying the specified maximum jerk, acceleration, and
velocity values. The relationships among the generated reference signals are: the velocity reference is the
derivative of position reference; the acceleration reference is the derivative of the velocity reference; and
the jerk reference is the derivative of the acceleration.

3.5.2.1 SpinTAC Velocity Move Interface
The interfaces and functions of SpinTAC Velocity Move are shown in Figure 3-7.

Figure 3-7. SpinTAC Velocity Move Interfaces

Table 3-7 lists the interface parameters for SpinTAC Velocity Move.

Table 3-7. SpinTAC Velocity Move Interfaces

Structure Member
Signal Type Name Data Type Description Value Range Units

cfg.Axis ST_Axis_e SpinTAC Move Axis ID {ST_AXIS0, ST_AXIS1}
{ST_MOVE_CUR_TRAP,ST_MoveCurvecfg.CurveType Curve type ST_MOVE_CUR_SCRV,Type_e ST_MOVE_CUR_STCRV}

cfg.T_sec _iq24 Sampling time (0 , 0.01] s
Maximum velocity of thecfg.VelMax _iq24 (0 , 1] pu / ssystem
Maximum acceleration of theConfig cfg.AccMax _iq24 [0.001 , 120] pu / s2
system

cfg.JrkMax _iq20 Maximum jerk of the system [0.0005, 2000] pu / s3

cfg.VelStart _iq24 Velocity start value [-cfg.VelMax , cfg.VelMax] pu / s
If a profile bound is set false: provide an error
outside the valid value range, code & do not generate a

cfg.IgnoreLimitErrors bool this will saturate the profile profile; true: saturate
limit to within the valid value profile limit & generate a
range profile
Profile time in sample time Samplemsg.ProTime_tick uint_32 counts Counts

Message Maximum acceleration of themsg.Acc _iq24 pu / s2
profile

msg.Jrk _iq20 Maximum jerk of the profile pu / s3

VelEnd _iq24 Velocity end value [-cfg.VelMax , cfg.VelMax] pu / s
Inputs AccLim _iq24 Acceleration limit [0.001 , cfg.AccMax] pu / s2

JrkLim _iq20 Jerk limit [0.0005, cfg.JrkMax] pu / s3

false: profile done or
ENB bool Enable bit disabled;

true: enable and run
false: not reset;
true: reset ERR_ID, andControl RES bool Reset bit hold profile outputs as
previous values
false: not test;

TST bool Profile configuration test bit true: test profile
configuration
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IDLE CONF BUSY

ENB rising && RES == 0
 RES == 1 ||

ENB not 
rising

ERR_ID != 0 || STEP == 0

ERR_ID == 0 &&
STEP != 0

INIT

TST == 1

TST == 0

RES == 0 && 
ENB == 1 &&
 DON == 0 &&

VelEnd unchanged

DON == 1 ||
RES == 1 ||

ENB == 0 &&
VelEnd 

unchanged

HALT

VelEnd 
changed

AccRef != 0

AccRef == 0
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Table 3-7. SpinTAC Velocity Move Interfaces (continued)
Structure Member

Signal Type Name Data Type Description Value Range Units
VelRef _iq24 Velocity reference pu / s

Outputs AccRef _iq24 Acceleration reference pu / s2

JrkRef _iq20 Jerk reference pu / s3

{ST_MOVE_IDLE,
ST_MOVE_INIT,ST_MoveStatusSTATUS Status information ST_MOVE_CONF,_e ST_MOVE_BUSY,

Info ST_MOVE_HALT}
false: running;DON bool Profile done indicator true: profile done or idle

ERR_ID uint16_t Error code See Table 13-1

For simplicity in SpinTAC Velocity Move, all velocity profiles use the configured acceleration for all moves.
For instance, you could have a profile that would technically be decelerating, but SpinTAC Velocity Move
would use the acceleration limit for that profile.

3.5.2.2 SpinTAC Velocity Move Run Function
The main function is STVELMOVE_run(ST_VELMOVE_Handle handle), where handle is a pointer to a
specific ST_VelMove_t object. This function runs SpinTAC velocity move. This function must be run at the
same rate as SpinTAC Velocity Control.

void STVELMOVE_run(ST_VELMOVE_Handle handle)

Parameters:

No. Type Parameters Description
1 ST_VELMOVE_Handle Handle The pointer to a ST_VelMove_t object

The SpinTAC Velocity Move state transition map is shown in Figure 3-8.

Figure 3-8. SpinTAC Velocity Move State Transition Map
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Note in Figure 3-8, the transitions from state IDLE to INIT, and then to CONF, happen within one sample
time. Thus, the profile is generated at the sample time when the profile is enabled.

The states of the SpinTAC Velocity Move are described in Table 3-8.

Table 3-8. SpinTAC Velocity Move State Transition

From State To State Transition Condition(1)(2)(3)(4) Action
Keep IDLE status
1. Set ENB = false;
2. Set DON = true;
3. Hold the values for VelRef, AccRef, and JrkRefIDLE
(The value of cfg.VelStart and VelEnd can only be set in the
IDLE state)

RES == false AND ENB is onINIT rising edge
Parameter validation
1. Validate the configuration parameters, including

cfg.VelMax, cfg.VelStart, VelEnd, cfg.JrkMax, cfg.AccMax,
JrkLim, AccLim, cfg.CUR_MOD, and cfg.T_sec. If any of

INIT the checked variables is invalid, ERR_ID will be nonzero;
2. Calculate velocity step, STEP

IDLE ERR_ID != 0 OR STEP == 0 Set ENB = false
CONF ERR_ID == 0 AND STEP != 0

Determine the profile with the configured parameters
CONF IDLE TST == true Set the value of VelEnd back to the value of cfg.VelStart

BUSY TST == false
Produce the profile
1. Update references VelRef, AccRef, JrkRef at each sample

time;
2. If the profile is finished, set DON as trueBUSY

RES == true OR ENB == falseIDLE Set ENB = falseOR DON == true
HALT VelEnd changed during profile

Reduce AccRef to 0. Update AccRef, JrkRef at each sample
time. Prepare to smoothly move to the new VelEnd.HALT

INIT AccRef == 0

(1) The RES signal provides the ability to place SpinTAC Velocity Move into reset.
(2) If RES is set to true, ENB will be set to false. Any current errors will be discarded. The current profile is discarded, AccRef is set

to 0, VelRef is held as the value from previous sample time, and VelEnd and cfg.VelStart are set with the value of VelRef.
Therefore, when RES is set back to false, a new profile can be started with the held over velocity reference.

(3) The ENB signal provides the start signal to SpinTAC Velocity Move. The ENB signal only functions when RES is set to false.
(4) The purpose of TST bit is to provide the profile information without generating trajectories. The information includes the profile

time and actual maximums for acceleration and jerk. The TST signal is received by the function at the rising edge of ENB in the
INIT state. If TST is true, it is in the test mode. In test mode, the profile output VelRef will keep the value of cfg.VelStart; AccRef
will be 0, not influenced by VelEnd. After the test, the profile information (msg.ProTtime_tick, msg.Acc, and msg.Jrk) is output,
VelEnd is set back to the value of cfg.VelStart, DON will be set to true, and ENB will be set to false.

3.5.3 SpinTAC Velocity Plan
SpinTAC Velocity Plan components provide the functionality to setup and run motion sequences
determined by the user application.

3.5.3.1 SpinTAC Velocity Plan Interface
The interfaces and functions of SpinTAC Velocity Plan are shown in Figure 3-9 and described in Table 3-
9.
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Figure 3-9. SpinTAC Velocity Plan Interfaces

Table 3-9. SpinTAC Velocity Plan Interfaces

Structure Member
Signal Type Name Data Type Description Value Range Units

false: disabled;ENB bool Enable bit true: enabled
Control

false: not reset;RES bool Reset bit true: reset
VelEnd _iq24 Current velocity setpoint [-VelMax , VelMax] pu / s

Outputs AccLim _iq24 Current acceleration limit [0.002 , AccMax] pu / s2

JrkLim _iq20 Current jerk limit [0.001, JrkMax] pu / s3

Time remaining in the currentTimer_tick int32_t state
{ST_PLAN_IDLE,

ST_PlanStatus_ ST_PLAN_INIT,STATUS Status informatione ST_PLAN_CONF,
ST_PLAN_BUSY}

CurState uint16_t Current state index [0, StateNum)
CurTran uint16_t Current transition index [0, TranNum)

Status to indicate if it is in a { ST_FSM_STATE_STAY,Info ST_PlanFsmStaFsmState transition, or in a state, or ST_FSM, _STATE_COND,te_e waiting for a transition ST_FSM _STATE_TRAN }
false: not done;DON bool Plan done indicator true: done

Plan function that caused theERR_ID uint16_t See Table 13-4error
Component index where theCfgError.ERR_idx uint16_t error occurred

CfgError.ERR_code uint16_t Condition that caused error See Table 13-4

3.5.3.2 SpinTAC Velocity Plan Primary Functions
The primary function is STVELPLAN_run(ST_VELPLAN_Handle handle), where handle is a pointer to a
specific ST_VelPlan_t object. This function runs SpinTAC Velocity Plan. This function can be run in the
main loop of the program.

void STVELPLAN_run(ST_VELPLAN_Handle handle)

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The pointer to a ST_VelPlan_t object

The function for SpinTAC Velocity Plan that handles decrementing the state timer is
STVELPLAN_runTick(ST_VELPLAN_Handle handle), where handle is a pointer to a specific
ST_VelPlan_t object. This function decrements the state times for SpinTAC Velocity Plan. This function
must be run at the same rate as SpinTAC Velocity Control.
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IDLE

 RES == 1 ||
ENB not 

rising

BUSY

ENB rising && RES == 0

INIT

 ENB == 1 &&
RES == 0 &&

DON == 0 

WAIT

HALT

 ENB == 0 &&
RES == 0 

 ENB == 1 &&
RES == 0

 Unit Profile Done 
&& RES == 0

 ENB == 0 ||
RES == 1

 ENB == 1 &&
RES == 0 &&
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Unit Profile 
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void STVELPLAN_runTick(ST_VELPLAN_Handle handle)

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The pointer to a ST_VelPlan_t object

The SpinTAC Velocity Plan state transition map is shown in Figure 3-10.

Figure 3-10. SpinTAC Velocity Plan State Transition Map

Note in Figure 3-10, the transitions from state IDLE to INIT, and then to BUSY, happen within one sample
time.

The states of SpinTAC Velocity Plan are described in Table 3-10.

Table 3-10. SpinTAC Velocity Plan State Transition

From State To State Transition Condition(1)(2)(3)(4)(5) Action
Keep IDLE status
1. Set ENB = false;

IDLE 2. Hold the values for VelEnd, AccLim, and JrkLim
RES == false AND ENB is onINIT rising edge

Parameter validation
1. Reset internal status;INIT BUSY
2. Enter state 0 and execute the actions defined for entering

state 0.
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Table 3-10. SpinTAC Velocity Plan State Transition (continued)
From State To State Transition Condition(1)(2)(3)(4)(5) Action

Operate the plan
RES == false AND ENB ==BUSY IDLE Set ENB = falsetrue AND DON == true

HALT RES == true OR ENB == false Load the halt state profile configurations
HALT state Timer up ANDIDLE Load the configurations of state 0RES == true

HALT
HALT state Timer up ANDWAIT RES == false

IDLE RES == true Load the configurations of state 0
WAIT

HALT ENB == true Load the configurations of the last state

(1) The RES signal provides the ability to place SpinTAC Velocity Plan into reset.
(2) The ENB signal controls the operation of SpinTAC Velocity Plan when RES is false.
(3) If ENB is set to false when SpinTAC Velocity Plan is running, SpinTAC Velocity Plan will then send out the velocity setpoint and

limits of the HALT state. When the unit profile is done, SpinTAC Velocity Plan will enter WAIT state, and can only continue the
plan when ENB is set to true.

(4) If RES is set to true, ENB will be set to false. SpinTAC Velocity Plan will then send out the velocity setpoint and limits of state 0,
and SpinTAC Velocity Plan enters IDLE state.

(5) Effectively, ENB functions as a pause/start button, while RES functions as stop.

Table 3-11 lists the functions that can be used to perform operations such as set, get, add, and delete
configuration and runtime parameters of SpinTAC Velocity Plan. These functions are described in more
detail in Section 3.5.9.

Table 3-11. SpinTAC Velocity Plan Additional Functions

Function Group Function Name Description
Initialization STVELPLAN_init Initialize SpinTAC Velocity Plan

STVELPLAN_setCfg Set the system and protection parameters
STVELPLAN_setCfgArray Setup configuration array
STVELPLAN_setCfgHaltState Set the parameters for the HALT state
STVELPLAN_addCfgState Add a new State
STVELPLAN_addCfgVar Add a new VariableConfiguration

Add a new Condition that compares a Variable against staticSTVELPLAN_addCfgCond values
STVELPLAN_addCfgVarCond Add a new Condition that compares two Variables
STVELPLAN_addCfgTran Add a new Transition
STVELPLAN_addCfgAct Add a new Action
STVELPLAN_run Run SpinTAC Velocity Plan. Can run from main loop.
STVELPLAN_runTick Run SpinTAC Velocity Plan Timer function. Must run from ISR.
STVELPLAN_setVar Set the value of a Variable during runtime

Runtime
STVELPLAN_getVar Get the value of a Variable during runtime
STVELPLAN_reset Reset SpinTAC Velocity Plan and configuration
STVELPLAN_setUnitProfDone Sets if the currently running profile is done
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Table 3-11. SpinTAC Velocity Plan Additional Functions (continued)
Function Group Function Name Description

STVELPLAN_getCfgStateNum Get the number of configured States
STVELPLAN_getCfgVarNum Get the number of configured Variables
STVELPLAN_getCfgCondNum Get the number of configured ConditionsPlan modification

and debugging STVELPLAN_getCfgTranNum Get the number of configured Transitions
functions (Provide

STVELPLAN_getCfgActNum Get the number of configured Actionsability to modify
SpinTAC Velocity STVELPLAN_getCfg Get the system & protection parameters
Plan at runtime)

STVELPLAN_getCfgHaltState Get the parameters for the HALT state
Each function with a suffix -Add has three other functions: -Del, -Set, and -Get to delete the item, to set the
item, and to get the item respectively. These functions allow runtime modification of SpinTAC Velocity Plan.

3.5.4 SpinTAC Velocity Identify
SpinTAC Velocity Identify estimates system inertia according to the applied torque profile and the
measured velocity feedback.

Neglecting disturbances and non-linearities, simple motion systems can be described with Equation 2.
(2)

In Equation 2, v(t) and u(t) are the velocity and control input, respectively; J and B are the inertia ratio and
friction coefficient, respectively.

SpinTAC Velocity Identify applies a continuous torque profile and estimates system inertia ratio with
respect to the speed feedback. The estimated inertia and friction should be provided to SpinTAC
controllers. SpinTAC Velocity Identify should be used to estimate the inertia for both velocity and position
solutions.

3.5.4.1 SpinTAC Velocity Identify Interface
The interfaces of SpinTAC Velocity Identify are shown in Section 8.5.2.1.1 and described in Table 3-12.

Figure 3-11. SpinTAC Velocity Identify Interfaces
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Table 3-12. SpinTAC Velocity Identify Interfaces and Parameters

Signal Type Variable Name Data Type Description Value Range Unit
cfg.T_sec _iq24 Sampling time (0 , 0.01] s

Maximum velocity of thecfg.VelMax _iq24 (0 , 1] pu / ssystem
Maximum velocity loopcfg.OutMax _iq24 (0 , 1] PUcontrol signal
Minimum velocity loop controlcfg.OutMin _iq24 [-1, 0) PUsignal

cfg.VelPos _iq24 Velocity positive value (0 , cfg.VelMax] pu / s
Config cfg.OutPos _iq24 Control signal positive value (0 , cfg.OutMax] PU

cfg.OutNeg _iq24 Control signal negative value [cfg.OutMin, 0) PU
Feedback signal low pass Samplecfg.LpfTime_tick int16_t [1 , 100]filter time constant Counts
Maximum time allowed forcfg.TimeOut_sec _iq24 [1, 10] sinertia identification
Time allowed for control

cfg.RampTime_sec _iq24 signal to reach 1.0 PU during [cfg.T, sec 25] s
inertia estimation process

Input VelFdb _iq24 Velocity feedback pu / s
false: disabled; true:ENB bool Enable bit enabled

Control false: not reset; true: reset
RES bool Reset bit ERR_ID, and hold Out as

0
Output Out _iq24 Torque signal PU

InertiaEst _iq24 Estimated inertia PU· s2 / pu
Result

FrictionEst _iq24 Estimated friction coefficient PU· s / pu
{ST_VEL_ID_IDLE,ST_VelIdStatusSTATUS Status ST_VEL_ID_INIT,_e ST_VEL_ID_BUSY }

Info false: running or disabled;Identification completedDON bool true: Identificationindicator complete
ERR_ID uint16_t Error ID See Table 7-1

3.5.4.2 SpinTAC Velocity Identify Run Function
The primary function is STVELID_run(ST_VELID_Handle handle), where handle is the pointer to a specific
ST_VelId_t object. This function needs to be called at the configured sample rate.

void STVELID_run(ST_VELID_Handle handle)

Parameters:

No. Type Parameters Description
1 ST_VELID_Handle handle The pointer to a ST_VelId_t object
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IDLE BUSY
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ERR_ID !=0

ERR_ID == 0

INIT

RES == 0 && 
ENB == 1 &&
DON == 0 &&
ERR_ID == 0

 DON == 1 || RES == 1 || ENB == 0 || ERR_ID != 0

 RES == 1 ||
ENB not 
uprising
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The state transition map is shown in Figure 3-12.

Figure 3-12. SpinTAC Velocity Identify State Transition Map

The state transitions of Inertia Identify are described in Table 3-13.

Table 3-13. SpinTAC Velocity Identify State Transition

From State To State Transition Condition Action

1. Set ENB = false;
2. Hold Out as 0
Parameter validation
1. Validate the configuration parameters, including

IDLE cfg.VelMax, cfg.OutMax, cfg.OutMin, cfg.LpfTime_tick,
cfg.TimeOut_sec, and cfg.T_sec, if any of the checked
variables is invalid, ERR_ID will be nonzero;

RES == false AND ENB is onINIT rising edge AND ERR_ID == 0
Parameter validation
1. Validate the parameters, including cfg.VelPos, cfg.OutPos,

cfg.OutNeg, and cfg.RampTime_sec, if any of the checked
INIT variables is invalid, ERR_ID will be nonzero;

IDLE ERR_ID != 0 Set ENB = false
BUSY ERR_ID == 0

Produce torque profile and monitor velocity feedback
1. Produce torque profile and monitor velocity feedback at

each sample time;
2. If the profile is finished, set DON as true; if the profile times

out, ERR_ID is set to 2004;
3. If the estimated inertia is not positive, ERR_ID is set to

BUSY 2003;
4. If the motor stops during the test, ERR_ID is set to 2006;

1. If RES == true OR ENB == FLASE, Out will steadilyRES == true OR ENB == false
approach zero, and then wait a few seconds to settle.IDLE OR DON == true OR
ERR_ID will be set to 2005.ERR_ID != 0

Set ENB = false
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3.5.5 SpinTAC Position Convert
The SpinTAC Position Convert is required for systems that use an encoder for feedback. It calculates
position and velocity signals from the position encoder feedback. This component is used to provide the
velocity feedback signal [pu/s] for SpinTAC Velocity Identify and SpinTAC Velocity Control when using an
encoder to provide electrical angle to the FOC. It is also used for all position solutions to convert the
encoder electrical angle into a mechanical angle. This component is not required for systems that use the
FAST sensorless estimator. SpinTAC Position Convert will also provide an estimation of the Slip Speed
for AC induction motors.

3.5.5.1 SpinTAC Position Convert Interfaces
The interfaces and functions of SpinTAC Position Convert are shown in Figure 3-13 and described in
Table 3-14.

Figure 3-13. SpinTAC Position Convert Interfaces

Table 3-14. SpinTAC Position Convert Interfaces and Parameters

Structure Member
Signal Type Name Data Type Description Value Range Unit

cfg.T_sec _iq24 Sampling time (0 , 0.01] s
Maximum bound for electricalcfg.ROMax_erev _iq24 [0 , 16] ERevrevolution [ERev]
Minimum bound for electricalcfg.ROMin_erev _iq24 [-16, 0] ERevrevolution [ERev]
Conversion ratio from pu / s /cfg.erev_TO_pu_ps _iq24 electrical revolution [ERev] to (0 , 0.01] ERevvelocity user unit [pu/s]
Conversion ratio from

Config mechanical revolution tocfg.PolePairs _iq24 [1, 32]electrical revolution [Pole
Pairs]

cfg.ROMax_mrev _iq24 Position Rollover Bound [2, 100] MRev
Low-pass filter time constant Samplecfg.LpfTime_tick int16 [1 , 100][ISR ticks] counts

cfg.SampleTimeOverTi Scalar value used in the Slip_iq24 [0, 128.0)meConst Compensator (ACIM Only)
cfg.OneOverFreqTime Scalar value used in the Slip_iq24 [0, 128.0)Const Compensator (ACIM Only)

Saw-tooth electrical angle [cfg.ROMin_erev,Pos_erev _iq24 ERevsignal cfg.ROMax_erev)
Id Current Feedback (ACIMInput Id _iq24 [-1.0, 1.0] PUOnly)
Iq Current Feedback (ACIMIq _iq24 [-1.0, 1.0] PUOnly)

false: disabled; true:ENB bool Enable bit enabledControl
RES bool Reset bit false: not reset; true: reset
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IDLE BUSY

ENB rising && RES == 0

ERR_ID !=0

ERR_ID == 0

INIT

RES == 0 && 
ENB == 1

RES == 1 || ENB == 0

 RES == 1 ||
ENB not 

rising

www.ti.com SpinTAC API

Table 3-14. SpinTAC Position Convert Interfaces and Parameters (continued)
Structure Member

Signal Type Name Data Type Description Value Range Unit
Calculated velocity in userVel _iq24 [-1, 1] pu / sunit (unfiltered)

VelLpf _iq24 Filtered velocity in user unit [-1, 1] pu / s
Saw-tooth mechanical angle [-cfg.ROMax_mrev,Outputs Pos_mrev _iq24 MRevsignal cfg.ROMax_mrev]

PosROCounts int32_t Position roll over counts
Speed of magnetic slip (ACIMSlipVel _iq24 [-1.0, 1.0] ERev / sOnly)

{ST_POS_CONV_IDLE,ST_PosConvStaSTATUS Status information ST_POS_CONV_INIT,tus_eInfo ST_POS_CONV_BUSY}
ERR_ID uint16_t Error code See Table 18-2

3.5.5.2 SpinTAC Position Convert Run Function
The primary function is STPOSCONV_run(ST_POSCONV_Handle handle), where handle is the pointer to
a specific ST_PosConv_t object, this handle needs to be established by the initialize function
STPOSCONV_init.

void STPOSONV_run(ST_POSCONV_Handle handle)

Parameters:

No. Type Parameters Description
1 ST_POSCONV_Handle handle The pointer to a ST_PosConv_t object

The state transition map is shown in Figure 3-14.

Figure 3-14. SpinTAC Position Convert State Transition Map

The state transitions of the SpinTAC Position Convert are described in Table 3-15.
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Table 3-15. SpinTAC Position Convert State Transition

From State To State Transition Condition Action

1. Set ENB = false;
2. Hold Vel, VelLpf, Pos_mrev, and PosROCounts as 0IDLE

RES == false AND ENB is onINIT rising edge
Parameter validation
1. Validate the configuration parameters, including

cfg.ROMax_erev, cfg.ROMin_erev, cfg.erev_TO_pu_ps,
cfg.PolePairs, cfg.ROMax_mrev, cfg.LpfTime_ticks, and

INIT cfg.T_sec, if any of the checked variables is invalid,
ERR_ID will be nonzero;

IDLE ERR_ID != 0 Set ENB = false
BUSY ERR_ID == 0

Calculate sawtooth position signal in [MRev] and velocity signal
in [pu/s]BUSY

IDLE RES == true OR ENB == false Set ENB = false

3.5.6 SpinTAC Position Control
The SpinTAC Position Control is a cascaded controller that controls the position and velocity loops for a
motion system. It allows developers to tune both loops with a single tuning parameter. Similarly to
SpinTAC Velocity Control, SpinTAC Position Control rejects external disturbances, which is represented
by an unknown, nonlinear term in the control equations. The tuning process is also simplified, like in
SpinTAC Velocity Control, via a parameterization method that enables high-performance control of
dynamical systems using a single tuning parameter: bandwidth. This single parameter is used to tune both
the velocity and position loops of SpinTAC Position Control.

3.5.6.1 SpinTAC Position Control Interface
The interfaces and functions of SpinTAC Position Control are shown in Figure 3-15.

Figure 3-15. SpinTAC Position Control Interfaces

Note: in SpinTAC Position Control, the inertia, cfg.Inertia, can be obtained by SpinTAC Velocity Identify.
The switch cfg.RampDist can be enabled if the dominant disturbance is ramp type. The only tuning
parameter of the controller is the bandwidth BwScale.

Table 3-16 lists the interface parameters for SpinTAC Position Control.
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Table 3-16. SpinTAC Position Control Interface Parameters

Structure Member
Signal Type Name Data Type Description Value Range Unit

cfg.Axis ST_Axis_e SpinTAC Control Axis ID {ST_AXIS0, ST_AXIS1}
cfg.T_sec _iq24 Sampling time (0 , 0.01] s
cfg.InertiaMax _iq24 Maximum system inertia (0, 100] PU · s2 / pu
cfg.InertiaMin _iq24 Minimum system inertia (0, cfg.InertiaMax] PU · s2 / pu
cfg.OutMax _iq24 Maximum control signal (0 , 1] PU
cfg.OutMin _iq24 Minimum control signal [-1, 0) PU

Maximum velocity referencecfg.VelMax _iq24 (0 , 1] pu / ssignal
cfg.ROMax_mrev _iq24 Position rollover bound [2, 100] MRev

Conversion ratio fromConfig
cfg.mrev_TO_pu _iq24 mechanical revolution [MRev] [0.002, 1] pu / MRev

to [pu]
Maximum allowable positioncfg.PosErrMax_mrev _iq24 (0, cfg.ROMax_mrev /2] MReverror

false: disabled; true:cfg.RampDist bool Reject ramp disturbance enabled
[0.01, min(50, 0.005/cfg.BwScaleMax _iq24 Bandwidth upper limit cfg.T_sec)]

cfg.BwScaleMin _iq24 Bandwidth lower limit [0, cfg.BwScaleMax]
Enable feedback low pass false: disabled; true:cfg.FiltEn bool filter enabled

[-cfg.ROMax_mrev,PosRef_mrev _iq24 Position reference signal MRevcfg.ROMax_mrev]
VelRef _iq24 Velocity reference signal [-cfg.VelMax, cfg.VelMax] pu / s
AccRef _iq24 Acceleration reference signal [cfg.OutMin, cfg.OutMax] pu / s2

Inputs [-cfg.ROMax_mrev,PosFdb_mrev _iq24 Position feedback signal MRevcfg.ROMax_mrev)
[cfg.InertiaMin,Inertia _iq24 System inertia PU · s2 / pucfg.InertiaMax]

Friction _iq24 System friction [0, 5] PU · s2 / pu
[cfg.BwScaleMin,Tuning BwScale _iq24 Controller bandwidth scale cfg.BwScaleMax]
false: disabled; true:ENB bool Enable bit enabled

Control false: not reset; true: reset
RES bool Reset bit ERR_ID, and hold Out as

0
Output Out _iq24 Control output [cfg.OutMin, cfg.OutMax] PU

Bw_radps _iq20 Controller bandwidth rad/s
{ST_CTL_IDLE,
ST_CTL_INIT,STATUS ST_CtlStatus_e Status information ST_CTL_CONF,Info
ST_CTL_BUSY}

ERR_ID uint16_t Error code See Table 12-3
PosErr_mrev _iq24 Position error MRev

3.5.6.2 SpinTAC Position Control Run Function
The primary function is STPOSCTL_run(ST_POSCTL_Handle handle), where handle is the pointer to a
specific ST_PosCtl_t object, this handle needs to be established by the initialize function STPOSCTL_init.

void STPOSCTL_run(ST_POSCTL_Handle handle)

Parameters:
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IDLE CONF BUSY

ENB rising && RES == 0 && 
ERR_ID == 0

 RES == 1 ||
ENB not rising || 

ERR_ID != 0

ERR_ID !=0

ERR_ID == 0

INIT

RES == 0 && 
ENB == 1 &&

ERR_ID != 2002 &&
no change in 

BwScale or Inertia or Friction

RES == 1 || ENB == 0 || ERR_ID == 2002

RES == 0 && 
ENB == 1 &&          

ERR_ID != 2002 &&
change in BwScale or 

Inertia or Friction
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No. Type Parameters Description
1 ST_POSCTL_Handle Handle The pointer to a ST_PosCtl_t object

The SpinTAC Position Control state transition map is shown in Figure 3-16.

Figure 3-16. SpinTAC Position Control State Transition Map

Note in Figure 3-16, the transitions from state IDLE to INIT, INIT to CONF, and CONF to BUSY, happen
within one sample time. Therefore, the controller works directly at the sample time when it is enabled.

The state transitions of SpinTAC Position Control are described in Table 3-17.

Table 3-17. SpinTAC Position Control State Transition

From State To State Transition Condition Action

1. Set ENB = false;
2. Hold Out as zeroIDLE

RES == false AND ENB is onINIT rising edge AND ERR_ID == 0
Parameter validation
1. Validate the configuration parameters, including

cfg.VelMax, cfg.OutMax, cfg.OutMin, cfg.ROMax_mrev,
cfg.mrev_TO_pu, cfg.PosErrMax_mrev, cfg.InertiaMax,
cfg.InertiaMin, cfg.BwScaleMax, cfg.BwScaleMin,INIT
cfg.DistType, and cfg.T_sec. If any of the checked variables
is invalid, ERR_ID will be nonzero

IDLE ERR_ID != 0 Set ENB = false
CONF ERR_ID == 0

Saturate Inertia and BwScale by the specified bounds. If
CONF BUSY saturation occurs, ERR_ID will be 1012, or 1013, or 1014, or

1015.

1. Generate control signal.
2. If PosErr_mrev exceeds cfg.PosErrMax_mrev, ERR_ID

=2002.
RES == true OR ENB == falseIDLE Set ENB = falseBUSY OR ERR_ID == 2002
RES == false AND ENB ==
true AND changes in BwScaleCONF or Inertia AND ERR_ID !=
2002
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3.5.7 SpinTAC Position Move
SpinTAC Position Move provides two modes: velocity-controlled position profile and position-controlled
position profile. The former mode is suited for ramp signals and profiles switching among different
velocities. The second mode is best suited for point-to-point position moves. cfg.ProfileType is used to
switch between the two modes, which can only be adjusted at the rising edge of the ENB signal. Mode
switching requires cfg.VelStart set to zero and STATUS in the IDLE state.

3.5.7.1 Position Move Interface
The interfaces and functions of SpinTAC Position Move are shown in Figure 3-17.

Figure 3-17. SpinTAC Position Move Interfaces

Table 3-18 lists the interface parameters for SpinTAC Position Move.

Table 3-18. SpinTAC Position Move Interfaces

Structure Member
Signal Type Name Data Type Description Value Range Unit

cfg.Axis ST_Axis_e SpinTAC Move Axis ID {ST_AXIS0, ST_AXIS1}
{ST_POS_MOVE_VEL_TYProfile mode (velocity-ST_PosMovePr PE,cfg.ProfileType controlled or position-ofiletype_e ST_POS_MOVE_POS_TYcontrolled) PE}
{ST_MOVE_CUR_TRAP,ST_MoveCurvecfg.CurveType Curve type ST_MOVE_CUR_SCRV,Type_e ST_MOVE_CUR_STCRV}

cfg.T_sec _iq24 Sampling time (0 , 0.01] s
cfg.ROMax_mrev _iq24 Position rollover bound [2, 100] MRev

Conversion ratio fromcfg.mrev_TO_pu _iq24 [0.002, 1] Pu / MRevmechanical revolution to pu
Maximum velocity of theConfig cfg.VelMax _iq24 (0 , 1] pu / ssystem
Maximum acceleration of thecfg.AccMax _iq24 [0.001 , 120] pu / s2system
Maximum deceleration of thecfg.DecMax _iq24 [0.001 , 120] pu / s2system

cfg.JrkMax _iq20 Maximum jerk of the system [0.0005, 2000] pu / s3
cfg.VelStart _iq24 Velocity start value [-cfg.VelMax , cfg.VelMax] pu / s
cfg.PosStart_mrev _iq24 Position start value [-cfg.ROMax, cfg.ROMax] MRev

If a profile bound is set false: provide an error
outside the valid value range, code & do not generate a

cfg.IgnoreLimitErrors bool this will saturate the profile profile; true: saturate
limit to within the valid value profile limit & generate a
range profile
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Table 3-18. SpinTAC Position Move Interfaces (continued)
Structure Member

Signal Type Name Data Type Description Value Range Unit
Profile time within 1 million Samplemsg.ProTime_tick uint32_t counts Counts

Million
msg.ProTime_mtick uint32_t Profile time million counts Sample

Counts
Maximum velocity of themsg.Vel _iq24 pu / sprofile

Message Maximum acceleration of themsg.Acc _iq24 pu / s2profile
Maximum deceleration of themsg.Dec _iq24 pu / s2profile

msg.Jrk _iq20 Maximum jerk of the profile pu / s3
msg.PosStepMax_mre _iq24 Maximum position step MRevv

[-2147483647,PosStepInt_mrev int32_t Position step integer value MRev2147483647]
PosStepFrac_mrev _iq24 Position step fraction value (-1, 1) MRev
VelLim _iq24 Velocity limit (0, cfg.VelMax] pu / s

Inputs AccLim _iq24 Acceleration limit [0.001 , cfg.AccMax] pu / s2
DecLim _iq24 Deceleration limit [0.001 , cfg.DecMax] pu / s2
JrkLim _iq20 Jerk limit [0.0005, cfg.JrkMax] pu / s3
VelEnd _iq24 Velocity end value [-cfg.VelMax , cfg.VelMax] pu / s

false: profile done or
ENB bool Enable bit disabled; true: enable and

run
false: not reset; true: resetControl RES bool Reset bit ERR_ID, and hold profile
outputs as previous values
false: not test; true: testTST bool Profile configuration test bit profile configuration
{ST_MOVE_IDLE,
ST_MOVE_INIT,ST_MoveStatusSTATUS Status information ST_MOVE_CONF,_e ST_MOVE_BUSY,

Info ST_MOVE_HALT}
false: running; true: profileDON bool Profile done indicator done or idle

ERR_ID uint16_t Error code See Table 13-2
PosRollOver int32_t Position rollover counts
PosRef_mrev _iq24 Position reference MRev

Outputs VelRef _iq24 Velocity reference pu / s
AccRef _iq24 Acceleration reference pu / s2
JrkRef _iq20 Jerk reference pu / s3

3.5.7.2 SpinTAC Position Move Run Function
The SpinTAC Position Move function is STPOSMOVE_run(ST_POSMOVE_Handle handle), where handle
is a pointer to a specific ST_PosMove_t object, this handle needs to be established by the initialize
function STPOSMOVE_init.

void STPOSMOVE_run(ST_POSMOVE_Handle handle)

Parameters:
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No. Type Parameters Description
1 ST_POSMOVE_Handle Handle The pointer to a ST_PosMove_t object

The SpinTAC Position Move_t state transition map is shown in Figure 3-18.

Figure 3-18. SpinTAC Position Move State Transition Map

Note in Figure 3-18, the transitions from state IDLE to INIT, and then to CONF, happen within one sample
time. Thus, the profile is generated at the same sample time that the profile was enabled.

The states of SpinTAC Position Move are described in
Changed Section 13.1, InstaSPIN-MOTION Profile Generation.

Table 3-19. Position Move State Transition

From State To State Transition Condition(1)(2)(3)(4) Action
Keep IDLE status
1. Set ENB = false;
2. Set DON = false;
3. Hold the values for PosRef, VelRef, AccRef, and JrkRefIDLE
(The value of cfg.PosStart_mrev can only be set in the IDLE
state.)

RES == false AND ENB is onINIT rising edge
Parameter validation
1. Validate the configuration parameters, including

cfg.PosStart_mrev, PosStepInt_mrev, PosStepFrac_mrev,
cfg.VelStart, VelEnd, cfg.VelMax, cfg.AccMax, cfg.DecMax,
cfg.JrkMax, AccLim, DecLim, JrkLim, cfg.CurveType,
cfg.ProfileType, and cfg.T_sec. If any of the checked

INIT variables is invalid, ERR_ID will be nonzero;
2. Calculate profile step STEP (velocity step if cfg.ProfileType

== ST_POS_MOVE_VEL_TYPE, or position step if
cfg.ProfileType == ST_POS_MOVE_POS_TYPE).

IDLE ERR_ID != 0 OR STEP == 0 Set ENB = false
CONF ERR_ID == 0 AND STEP != 0
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Table 3-19. Position Move State Transition (continued)
From State To State Transition Condition(1)(2)(3)(4) Action

Determine the profile with the configured parameters
In test mode, no profile is produced
1. If cfg.ProfileType == ST_POS_MOVE_POS_TYPE, setTST == true AND ENB == trueIDLE PosStepInt_mrev and PosStepFrac_mrev as 0; ifAND RES == false

cfg.ProfileType == ST_POS_MOVE_VEL_TYPE, setCONF
VelEnd back to the value of cfg.VelStart

TST == false AND ENB ==BUSY true AND RES == false
HALT RES == true OR ENB == false

Produce the profile
1. Update references PosRef_mrev, VelRef, AccRef, JrkRef at

each sample time;
2. If the profile is finished, DON = true

RES == false AND ENB ==BUSY IDLE Set ENB = falsetrue AND DON == true
Configure a deceleration profile
1. Set cfg.ProfileType = ST_POS_MOVE_VEL_TYPE, VelEndCONF RES == true OR ENB == false

= 0, AccLim = cfg.AccMax, cfg.DecMax, JrkLim =
cfg.JrkMax

Generate a deceleration profile
1. Update references PosRef, VelRef, AccRef, JrkRef at each

sample time;
HALT 2. If the deceleration profile is finished, DON = True

IDLE DON == true Set ENB = false
HALT DON == false

(1) The RES signal provides the ability to place SpinTAC Position Move into reset.
(2) If RES is set to true, ENB will be set to false. Any current errors will be discarded. SpinTAC Position Move will then generate a

deceleration profile to stop all motion of the axis.
(3) The ENB signal provides the start signal to SpinTAC Position Move. The ENB signal only functions when RES is false.
(4) The purpose of the TST bit is to provide the profile information without actually generating trajectories. The information includes

the profile time and actual maximums for velocity, acceleration and jerk.
TST signal is received by the function at the rising edge of ENB in the INIT state. If TST is true, it operates in test mode. In test
mode, the profile output PosRef_mrev will keep the value of cfg.PosStart_mrev; AccRef will be 0, not influenced by
PosStepInt_mrev and PosStepFrac_mrev. After the test, the profile information (msg.ProTime_tick, msg.ProTime_mtick,
msg.Vel, msg.Acc, and msg.Jrk) is output, DON will be set to true, and ENB will be set to false.

3.5.8 SpinTAC Position Plan
SpinTAC Position Plan provides the functionality to setup and run position sequences determined by the
user application.

3.5.8.1 Position Plan Interface
The interfaces and functions of SpinTAC Position Plan are shown in Figure 3-19.

Figure 3-19. SpinTAC Position Plan Interfaces

Table 3-20 lists the interface parameters for SpinTAC Position Plan.
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Table 3-20. SpinTAC Position Plan Interfaces

Structure Member
Signal Type Name Data Type Description Value Range Unit

false: disabled; true:ENB bool Enable bit enabledControl
RES bool Reset bit false: not reset; true: reset

Current Position Step [-2147483647,PosStepInt_mrev uint32_t MRevcommand integer part 2147483647]
Current Position StepPosStepFrac_mrev _iq24 (-1, 1) MRevcommand fraction part

VelLim _iq24 Current velocity limit (0 , VelMax] pu / s
Outputs AccLim _iq24 Current acceleration limit [0.001 , AccMax] pu / s2

DecLim _iq24 Current deceleration limit [0.001 , DecMax] pu / s2
JrkLim _iq20 Current jerk limit [0.0005, JrkMax] pu / s3

Time remaining in the current SampleTimer_tick uint32_t state Counts
{ST_PLAN_IDLE,
ST_PLAN_INIT,ST_PlanStatus_STATUS Status information ST_PLAN_BUSY,e ST_PLAN_HALT,
ST_PLAN_WAIT}

CurState unit16_t Current state index [0, StateNum)
CurTran unit16_t Current transition index [0, TranNum)

Status to indicate if it is in a {ST_FSM _STATE_STAY,ST_PlanFsmStaFsmState transition, or in a state, or ST_FSM _STATE_COND,te_eInfo waiting for a transition ST_FSM_STATE_TRAN }
Time remaining in the current SampleTimer_tick uint32_t state Counts

ERR_ID uint16_t Error code See Table 13-6
DON bool Plan done indicator false: not done; true: done

Index where the errorCfgError.ERR_idx uint16_t occurred
Condition that caused theCfgError.ERR_code uint16_t See Table 13-6error

3.5.8.2 SpinTAC Position Plan Primary Functions
The primary function is STPOSPLAN_run(ST_POSPLAN_Handle handle), where handle is a pointer to a
specific ST_PosPlan_t object, this handle needs to be established by the initialize function
ST_POSPLAN_init. This function can be called from the main-loop of the project.

void STPOSPLAN_run(ST_POSPLAN_Handle handle)

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The pointer to a ST_PosPlan_t object

The ISR function is STPOSPLAN_runTick(ST_POSPLAN_Handle handle), where handle is a pointer to a
specific ST_PosPlan_t object. This function handles the time-critical code of ST_PosPlan. This function
must be called in the main ISR of the project.

void STPOSPLAN_runTick(ST_POSPLAN_Handle handle)

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The pointer to a ST_PosPlan_t object
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The ST_PosPlan state transition map is the same as ST_VelPlan, as shown in Figure 3-10.

The states of ST_PosPlan are described in Table 3-21.

Table 3-21. SpinTAC Position Plan State Transition

From State To State Transition Condition(1)(2)(3)(4) Action
Keep IDLE status
1. Set ENB = false;
2. Keep PosStepInt = 0, PosStepFrac=0, and hold the valuesIDLE for VelLim, AccLim, and JrkLim

RES == false AND ENB is onINIT rising edge
Parameter validation
1. Reset internal status;INIT BUSY
2. Enter state 0 and execute the actions defined for entering

state 0.
Operate the plan

RES == false AND ENB ==BUSY IDLE Set ENB = falseTrue AND DON == true
HALT RES == true OR ENB == false Load the halt state profile configurations

HALT state Timer times upIDLE Load the configurations of state 0AND RES == true
HALT

HALT state Timer times upWAIT AND RES == false
IDLE RES == true Load the configurations of state 0

WAIT
HALT ENB == true Load the configurations of the last state

(1) The RES signal provides the ability to place SpinTAC Position Plan into reset.
(2) The ENB signal controls the operation of SpinTAC Position Plan when RES is false.
(3) If ENB is set to false when SpinTAC Position Plan is running, SpinTAC Position Plan will then send out the position step and

limits of the HALT state. When the unit profile is done, SpinTAC Position Plan will enter WAIT state, and can only continue the
plan when ENB is set to true.
If RES is set to true, ENB will be set to false. SpinTAC Position Plan will then send out the position step and limits of state 0,
and SpinTAC Position Plan enters IDLE state.

(4) Effectively, ENB functions as a pause/start button, while RES functions as stop.

Table 3-22 lists the functions that can be used to do operations like set, get, add, and delete configuration
and runtime parameters of SpinTAC Position Plan. These functions are described in more detail in
Section 3.5.9.

Table 3-22. SpinTAC Position Plan Additional Functions

Function Group Function Name Description
Initialization STPOSPLAN_init Initialize SpinTAC Position Plan

Set the array that SpinTAC Position Plan will use to store theSTPOSPLAN_setCfgArray configuration
STPOSPLAN_setCfg Set the system parameters, protection parameters
STPOSPLAN_setCfgHaltState Set the parameters for the HALT state
STPOSPLAN_addCfgState Add a new State

Configuration STPOSPLAN_addCfgVar Add a new Variable
Add a new Condition that compares a Variable against staticSTPOSPLAN_addCfgCond values

STPOSPLAN_addCfgVarCond Add a new Condition that compares two Variables
STPOSPLAN_addCfgTran Add a new Transition
STPOSPLAN_addCfgAct Add a new Action
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Table 3-22. SpinTAC Position Plan Additional Functions (continued)
Function Group Function Name Description

STPOSPLAN_run Run SpinTAC Position Plan. Can run from main loop.
STPOSPLAN_runTick Run SpinTAC Position Plan Timer. Must run from main ISR
STPOSPLAN_setVar Set the value of a Variable during runtime

Runtime
STPOSPLAN_getVar Get the value of a Variable during runtime
STPOSPLAN_reset Reset SpinTAC Position Plan and configuration
STPOSPLAN_setUnitProfDone Sets if the currently running profile is done
STPOSPLAN_getCfgStateNum Get the number of configured States
STPOSPLAN_getCfgVarNum Get the number of configured Variables
STPOSPLAN_getCfgCondNum Get the number of configured Conditions

Plan modification
STPOSPLAN_getCfgTranNum Get the number of configured Transitionsand debugging

functions (Provide STPOSPLAN_getCfgActNum Get the number of configured Actions
runtime modification

STPOSPLAN_getCfg Get the system & protection parametersability of Plan)
STPOSPLAN_getCfgHaltState Get the parameters for the HALT state
Each function with a suffix -add has three other functions: -del, -set, and -get to delete the item, to set the
item, and to get the item respectively. These functions allow online SpinTAC Position Plan modification.

3.5.9 SpinTAC Functions
The following is a list of commonly used SpinTAC functions. This section is provided as a reference and
prior to the implementation of a component the corresponding section of this document should be read.

void STVELCTL_run(ST_VELCTL_Handle)

Function: This function runs SpinTAC Velocity Control.

Parameters:

No. Type Parameters Description
1 ST_VELCTL_Handle handle The handle to the ST_VelCtl_t datatype

void STVELMOVE_run(ST_VELMOVE_Handle)

Function: This function runs SpinTAC Velocity Move.

Parameters:

No. Type Parameters Description
1 ST_VELMOVE_Handle handle The handle to the ST_VelMove_t datatype

void STVELID_run(ST_VELID_Handle)

Function: This function runs SpinTAC Velocity Identify.

Parameters:

No. Type Parameters Description
1 ST_VELID_Handle handle The handle to the ST_VelId_t datatype

void STVELPLAN_run(ST_VELPLAN_Handle)

Function: This function runs SpinTAC Velocity Plan.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype
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void STVELPLAN_runTick(ST_VELPLAN_Handle)

Function: This function runs SpinTAC Velocity Plan Timer. Must run from an ISR.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype

void STVELPLAN_addCfgAct(ST_VELPLAN_Handle, uint16_t, ST_PlanCond_e , uint16_t , uint16_t,
uint16_t, ST_PlanActOptn_e, _iq24, ST_PlanActTrgr_e)

Function: This function adds an action to SpinTAC Velocity Plan.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype

The index of the state in which the action to2 uint16_t StateIdx be executed
ST_COND_NC: act without condition;
ST_COND_FC: act when the first condition
satisfied;

3 ST_PlanCond_e AndOr ST_COND_AND: act when both conditions
satisfied;
ST_COND_OR: act when either condition
satisfied;

4 uint16_t CondIdx1 The index of the first condition
5 uint16_t CondIdx2 The index of the second condition
6 uint16_t VarIdx The index of the variable to be operated

ST_ACT_EQ: set the value to the variable7 ST_PlanActOptn_e Opt ST_ACT_QDD: add the value to the variable
The value to be set to the variable or added to8 _iq24 Value the variable
ST_ACT_ENTR: execute the action when
entering the state9 ST_PlanActTrgr_e EnterExit ST_ACT_EXIT: execute the action when
exiting the state

void STVELPLAN_setCfgArray(ST_VELPLAN_Handle, uint32_t *, const size_t, uint16_t, uint16_t,
uint16_t, uint16_t, uint16_t)

Function: This function adds an action to SpinTAC Velocity Plan.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype

Pointer to cfgArray used for Plan2 uint32_t * cfgArray configuration.
The number of bytes allocated to the cfgArray

3 const size_t numBytes array. Get number of bytes by calling
sizeof(cfgArray)

4 uint16_t MaxActNum Number of Actions
5 uint16_t MaxCondNum Number of Conditions
6 uint16_t MaxVarNum Number if Variables
7 uint16_t MaxTranNum Number of Transitions
8 uint16_t MaxStateNum Number of States
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ST_VELPLAN_Handle STVELPLAN_init (void *, const size_t)

Function: This function initializes SpinTAC Velocity Plan.

Parameters:

No. Type Parameters Description
The pointer to the memory for a ST_VelPlan_t1 void * pMemory object
The number of bytes allocated to the2 const size_t numBytes ST_VelPlan_t object

Return:
The ST_VelPlan_t object handle

void STVELPLAN_addCfgCond(ST_VELPLAN_Handle, uint16_t, ST_PlanComp_e, _iq24, _iq24)

Function: This function adds a condition to SpinTAC Velocity Plan.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype
2 uint16_t VarIdx The index of the variable to be compared

ST _COMP_NA: Not defined;
ST _COMP_EQ: equal to Value1;
ST _COMP_NEQ: not equal to Value1;
ST__COMP_GT: greater than Value1;
ST_COMP_EGT: equal to or greater than
Value1;
ST_COMP_LW: lower than Value1;
ST_COMP_ELW: equal to or lower than;
ST_COMP_In: belong to the range of (Value1,
Value2);
ST_COMP_Ein: belong to the range of
[Value1, Value2);3 ST_PlanComp_e Comp ST_COMP_InE: belong to the range of
(Value1, Value2];
ST_COMP_EinE: belong to the range of
[Value1, Value2];
ST_COMP_Out: not belong to the range of
[Value1, Value2];
ST_COMP_Eout: not belong to the range of
(Value1, Value2];
ST_COMP_OutE: not belong to the range of
[Value1, Value2);
ST_COMP_EoutE: not belong to the range of
(Value1, Value2)

4 _iq24 Value1 The first value
5 _iq24 Value2 The second value

void STVELPLAN_addCfgVarCond ST_VELPLAN_Handle, uint16_t, uint16_t, ST_PlanComp_e)

Function: This function adds a condition that comapres two variables to SpinTAC Velocity Plan.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype
2 uint16_t VarIdx1 The index of the first variable to be compared

The index of the second variable to be3 uint16_t VarIdx2 compared
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No. Type Parameters Description
ST _COMP_NA: Not defined;
ST _COMP_EQ: equal to Value1;
ST _COMP_NEQ: not equal to Value1;
ST__COMP_GT: greater than Value1;4 ST_PlanComp_e Comp ST_COMP_EGT: equal to or greater than
Value1;
ST_COMP_LW: lower than Value1;
ST_COMP_ELW: equal to or lower than;

void STVELPLAN_setCfgHaltState(ST_VELPLAN_Handle, _iq24, _iq24, _iq20, int32_t)

Function: This function adds a state to SpinTAC Velocity Plan.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype
2 _iq24 VelEnd Velocity set point for the HALT state
3 _iq24 AccLim Acceleration limit for the HALT state
4 _iq20 JrkLim Jerk limit for the HALT state

Timer in [Count] to indicate how long to stay in5 int32_t Timer the HALT state before further operation

void STVELPLAN_setCfg(ST_VELPLAN_Handle, _iq24, _iq24, _iq24, _iq20, bool)

Function: This function sets the SpinTAC Velocity Plan system configuration.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype
2 _iq24 T_sec Sample time in [s]
3 _iq24 VelMax System maximum velocity limit
4 _iq24 AccMax System maximum acceleration limit
5 _iq20 JrkMax System maximum jerk limit

false: plan operates only once and then goes
back to IDLE state6 bool LoopENB true: plan operate again each time entering
IDLES state

void STVELPLAN_addCfgState(ST_VELPLAN_Handle, _iq24, int32_t)

Function: This function adds a state to SpinTAC Velocity Plan.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype
2 _iq24 VelEnd Velocity set point for the state

Timer in [Count] to indicate how long to state3 int32_t Timer_tick in the state

void STVELPLAN_addCfgTran(ST_VELPLAN_Handle, uint16_t, uint16_t, ST_PlanCond_e, uint16_t,
uint16_t, _iq24, _iq20)

Function: This function adds a transaction to SpinTAC Velocity Plan.

Parameters:
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No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype

The index of the state in which the transition2 uint16_t FromState starts
The index of the state in which the transition3 uint16_t ToState to ends
ST_COND_NC: transit without condition;
ST_COND_FC: transit with the first condition
satisfied;

4 ST_PlanCond_e AndOr ST_COND_AND: transit with both conditions
satisfied;
ST_COND_OR: transit with either condition
satisfied;

5 uint16_t CondIdx1 The index of the first condition
6 uint16_t CondIdx2 The index of the second condition
7 _iq24 AccLim The acceleration limit used for this transition
8 _iq20 JrkLim The jerk limit used for this transition

void STVELPLAN_addCfgVar(ST_VELPLAN_Handle, ST_PlanVar_e, _iq24)

Function: This function adds a variable to SpinTAC Velocity Plan.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype

ST_VAR_INOUT: timer type, can be used in
condition
ST_VAR_IN: sensor type, only receive value,2 ST_PlanVar_e Type can be used in condition
ST_VAR_OUT: actuator type, only send value,
cannot be used in condition

3 _iq24 Value Initial value of the variable

void STVELPLAN_setUnitProfDone(ST_VELPLAN_Handle, bool)

Function: This function informs SpinTAC Velocity Plan if the currently running profile is done.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype
2 bool ProDON false: not done; true: done

void STVELPLAN_getVar(ST_VELPLAN_Handle, uint16_t, _iq24 *)

Function: This function returns the value of a variable from SpinTAC Velocity Plan. It is typically used to
send data from SpinTAC Velocity Plan to an external component

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype
2 uint16_t VarIdx The index of the variable to receive the value

The pointer to the external variable to receive3 _iq24 * Value the value
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void STVELPLAN_setVar(ST_VELPLAN_Handle, uint16_t, _iq24)

Function: This function sets the value of a variable in SpinTAC Velocity Plan. It is typically used to pass
sensor data into SpinTAC Velocity Plan.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype
2 uint16_t VarIdx The index of the variable to receive the value
3 _iq24 Value The value to be set to the variable

void STPOSCTL_run(ST_POSCTL_Handle)

Function: This function runs SpinTAC Position Control.

Parameters:

No. Type Parameters Description
1 ST_POSCTL_Handle handle The handle to the ST_PosCtl_t datatype

void STPOSMOVE_run(ST_POSMOVE_Handle)

Function: This function runs SpinTAC Position Move.

Parameters:

No. Type Parameters Description
1 ST_POSMOVE_Handle handle The handle to the ST_PosMove_t datatype

void STPOSCONV_run(ST_POSCONV_Handle)

Function: This function runs SpinTAC Position Convert.

Parameters:
Parameters:

No. Type Parameters Description
1 ST_POSCONV_Handle handle The handle to the ST_PosConv_t datatype

void STPOSPLAN_run(ST_POSPLAN_Handle)

Function: This function runs SpinTAC Position Plan.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype

void STPOSPLAN_runTick(ST_POSPLAN_Handle)

Function: This function runs SpinTAC Position Plan Timer. Must run from an ISR.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype
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void STPOSPLAN_addCfgAct(ST_POSPLAN_Handle, uint16_t, ST_PlanCond_e , uint16_t , uint16_t,
uint16_t, ST_PlanActOptn_e, _iq24, ST_PlanActTrgr_e)

Function: This function adds an action to SpinTAC Position Plan.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype

The index of the state in which the action to2 uint16_t StateIdx be executed
3 uint16_t VarIdx The index of the variable to be operated

ST_COND_NC: act without condition;
ST_COND_FC: act when the first condition
satisfied;

4 ST_PlanCond_e AndOr ST_COND_AND: act when both conditions
satisfied;
ST_COND_OR: act when either condition
satisfied;

5 uint16_t CondIdx1 The index of the first condition
6 uint16_t CondIdx2 The index of the second condition

ST_ACT_EQ: set the value to the variable7 ST_PlanActOptn_e Opt ST_ACT_QDD: add the value to the variable
The value to be set to the variable or added to8 _iq24 Value the variable
ST_ACT_ENTR: execute the action when
entering the state9 ST_PlanActTrgr_e EnterExit ST_ACT_EXIT: execute the action when
exiting the state

void STPOSPLAN_setCfgArray(ST_POSPLAN_Handle, uint32_t *, const size_t, uint16_t, uint16_t,
uint16_t, uint16_t, uint16_t)

Function: This function adds an action to SpinTAC Position Plan.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype

Pointer to cfgArray used for Plan2 uint32_t * cfgArray configuration.
The number of bytes allocated to the cfgArray

3 const size_t numBytes array. Get number of bytes by calling
sizeof(cfgArray)

4 uint16_t MaxActNum Number of Actions
5 uint16_t MaxCondNum Number of Conditions
6 uint16_t MaxVarNum Number if Variables
7 uint16_t MaxTranNum Number of Transitions
8 uint16_t MaxStateNum Number of States

ST_POSPLAN_Handle STPOSPLAN_init(void *, const size_t)

Function: This function initializes SpinTAC Position Plan.

Parameters:

No. Type Parameters Description
The pointer to the memory for a1 void * pMemory ST_PosPlan_t object
The number of bytes allocated to theconst size_t numBytes ST_PosPlan_t object
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Return: The ST_PosPlan_t object handle

void STPOSPLAN_addCfgCond(ST_POSPLAN_Handle, uint16_t, ST_PlanComp_e, _iq24, _iq24)

Function: This function adds a condition to SpinTAC Position Plan.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype
2 uint16_t VarIdx The index of the variable to be compared

ST _COMP_NA: Not defined;
ST _COMP_EQ: equal to Value1;
ST _COMP_NEQ: not equal to Value1;
ST__COMP_GT: greater than Value1;
ST_ COMP_EGT: equal to or greater than
Value1;
ST_ COMP_LW: lower than Value1;
ST_ COMP_ELW: equal to or lower than;
ST_ COMP_In: belong to the range of
(Value1, Value2);
ST_ COMP_Ein: belong to the range of
[Value1, Value2);3 ST_PlanComp_e Comp ST_ COMP_InE: belong to the range of
(Value1, Value2];
ST_ COMP_EinE: belong to the range of
[Value1, Value2];
ST_ COMP_Out: not belong to the range of
[Value1, Value2];
ST_ COMP_Eout: not belong to the range of
(Value1, Value2];
ST_ COMP_OutE: not belong to the range of
[Value1, Value2);
ST_ COMP_EoutE: not belong to the range of
(Value1, Value2)

4 _iq24 Value1 The first value
5 _iq24 Value2 The second value

void STPOSPLAN_addCfgVarCond(ST_POSPLAN_Handle, uint16_t, uint16_t, ST_PlanComp_e)

Function: This function adds a condition that comapres two variables to SpinTAC Position Plan.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype
2 uint16_t VarIdx1 The index of the first variable to be compared

The index of the second variable to be3 uint16_t VarIdx2 compared
ST _COMP_NA: Not defined;
ST _COMP_EQ: equal to Value1;
ST _COMP_NEQ: not equal to Value1;
ST__COMP_GT: greater than Value1;4 ST_PlanComp_e Comp ST_ COMP_EGT: equal to or greater than
Value1;
ST_ COMP_LW: lower than Value1;
ST_ COMP_ELW: equal to or lower than;

void STPOSPLAN_setCfgHaltState(ST_POSPLAN_Handle, int32_t, _iq24,_iq24, _iq24, , int32_t)

Function: This function adds a state to SpinTAC Position Plan.

Parameters:
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No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype
2 int32_t PosStepInt_mrev Position step integer part for the HALT state
3 _iq24 PosStepFrac_mrev Position step fraction part for the HALT state
4 _iq24 VelLim Velocity limit for the HALT state
5 _iq24 AccLim Acceleration limit for the HALT state
6 _iq20 JrkLim Jerk limit for the HALT state

Timer in [Count] to indicate how long to stay in7 Int32_t Timer the HALT state before further operation

void STPOSPLAN_setCfg(ST_POSPLAN_Handle, _iq24, _iq24, _iq24, _iq20, bool)

Function: This function sets the SpinTAC Position Plan system configuration.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype
2 _iq24 T_sec Sample time in [s]
3 _iq24 VelMax System maximum velocity limit
4 _iq24 AccMax System maximum acceleration limit
5 _iq20 JrkMax System maximum jerk limit

false: plan operates only once and then goes
back to IDLE state6 bool LoopENB true: plan operate again each time entering
IDLES state

void STPOSPLAN_addCfgState(ST_POSPLAN_Handle, int32_t, _iq24, int32_t)

Function: This function adds a state to SpinTAC Position Plan.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype
2 int32_t PosStepInt_mrev Position step command integer part value
3 _iq24 PosStepFrac_mrev Position step command fraction part value

Timer in [Count] to indicate how long to state4 int32_t Timer_tick in the state

void STPOSPLAN_addCfgTran(ST_POSPLAN_Handle, uint16_t, uint16_t, ST_PlanCond_e, uint16_t,
uint16_t, _iq24, _iq24, _iq20)

Function: This function adds a transaction to SpinTAC Position Plan.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype

The index of the state in which the transition2 uint16_t FromState starts
The index of the state in which the transition3 uint16_t ToState to ends
ST_COND_NC: transition without condition;
ST_COND_FC: transition when the first
condition satisfied;

4 ST_PlanCond_e AndOr ST_COND_AND: transition when both
conditions satisfied;
ST_COND_OR: transition when either
condition satisfied;
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No. Type Parameters Description
5 uint16_t CondIdx1 The index of the first condition
6 uint16_t CondIdx2 The index of the second condition
7 _iq24 VelLim The velocity limit used for this transition
8 _iq24 AccLim The acceleration limit used for this transition
9 _iq24 DecLim The deceleration limit used for this transition

10 _iq20 JrkLim The jerk limit used for this transition

void STPOSPLAN_addCfgVar(ST_POSPLAN_Handle, ST_PlanVar_e, _iq24)

Function: This function adds a variable to SpinTAC Position Plan.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype

ST_VAR_INOUT: timer type, can be used in
condition
ST_VAR_IN: sensor type, only receive value,2 ST_PlanVar_e Type can be used in condition
ST_VAR_OUT: actuator type, only send value,
cannot be used in condition

3 _iq24 Value Initial value of the variable

void STPOSPLAN_setUnitProfDone(ST_POSPLAN_Handle, bool)

Function: This function informs SpinTAC Position Plan if the currently running profile is done.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype
2 bool ProDON false: not done; true: done

void STPOSPLAN_getVar(ST_POSPLAN_Handle, uint16_t, _iq24 *)

Function: This function returns the value of a variable from SpinTAC Position Plan. It is typically used to
send data from SpinTAC Position Plan to an external component.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype
2 uint16_t VarIdx The index of the variable to receive the value

The pointer to the external variable to receive3 _iq24 * Value the value

void STPOSPLAN_setVar(ST_POSPLAN_Handle, uint16_t, _iq24)

Function: This function returns the value of a variable from SpinTAC Position Plan. It is typically used to
send data from SpinTAC Position Plan to an external component.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype
2 uint16_t VarIdx The index of the variable to receive the value
3 _iq24 Value The value to be set to the variable
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void ST_getVersionNumber(ST_VER_Handle, uint16_t *, uint16_t *, uint16_t *)

Function: This function returns the version number of the SpinTAC library.

Parameters:

No. Type Parameters Description
1 ST_VER_Handle handle The hanlde to the ST_Ver_t datatype
2 uint16_t * major Major version of library
3 uint16_t * minor Minor version of library
4 uint16_t * revision Revision version of library
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Chapter 4
SPRUHJ1F–January 2013–Revised July 2014

User Parameters (user.h)

User.h is where all user parameters are stored. Some of these values can be manipulated through the
GUI or CCStudio during run-time, but must be updated in user.h for permanent saving.
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4.1 Currents and Voltages
User.h contains the public interface for user initialization data for the CTRL, HAL, and EST modules.

4.1.1 USER_IQ_FULL_SCALE_FREQ_Hz
#define USER_IQ_FULL_SCALE_FREQ_Hz (800.0)

This module defines the full scale frequency for IQ variable in Hz. All frequencies are converted into (pu)
based on the ratio to this value. This value MUST be larger than the maximum speed that you are
expecting from the motor.

4.1.2 USER_IQ_FULL_SCALE_VOLTAGE_V
#define USER_IQ_FULL_SCALE_VOLTAGE_V (24.0)

Defines the full-scale value for the IQ30 variable of Voltage inside the system. All voltages are converted
into pu based on the ratio to this value.

CAUTION
• This value MUST be larger than the maximum value of any voltage

calculated inside the control system otherwise the value can saturate and
roll over, causing an inaccurate value.

• This value is OFTEN greater than the maximum measured ADC value,
especially with high Bemf motors operating at higher than rated speeds.

• If you know the value of your Bemf constant, and you know you are
operating at higher than rated speed due to field weakening, be sure to set
this value higher than the expected Bemf voltage

• This value can also be used to calculate the minimum flux that can be
identified by calculating the following formula:

USER_IQ_FULL_SCALE_VOLTAGE_V/USER_EST_FREQ_Hz/0.7

For high-flux motors (i.e., washing machine motors) it is recommended to start with a value ~3x greater
than the USER_ADC_FULL_SCALE_VOLTAGE_V and increase to 4-5x if scenarios where a Bemf
calculation may exceed these limits.

For low-flux motors (i.e., low-inductance high-speed hobby motors) it is recommended to have a value that
allows flux identification as per the equation:

USER_IQ_FULL_SCALE_VOLTAGE_V/USER_EST_FREQ_Hz/0.7

4.1.3 USER_ADC_FULL_SCALE_VOLTAGE_V
#define USER_ADC_FULL_SCALE_VOLTAGE_V (66.32)

This module defines the maximum voltage at the input to the AD converter. The value that will be
represented by the maximum ADC input (3.3V) and conversion (0FFFh). Hardware dependent, this should
be based on the voltage sensing and scaling to the ADC input.

4.1.4 USER_VOLTAGE_SF
#define USER_VOLTAGE_SF
((float_t)((USER_ADC_FULL_SCALE_VOLTAGE_V)/(USER_IQ_FULL_SCALE_VOLTAGE_V)))

This module defines the voltage scale factor for the system.

Compile time calculation for scale factor (ratio) used throughout the system.

4.1.5 USER_IQ_FULL_SCALE_CURRENT_A
#define USER_IQ_FULL_SCALE_CURRENT_A (10.0)

This module defines the full scale current for the IQ variables, A.
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All currents are converted into (pu) based on the ratio to this value.

CAUTION
This value MUST be larger than the maximum current readings that you are
expecting from the motor or the reading will roll over to 0, creating a control
issue.

4.1.6 USER_ADC_FULL_SCALE_CURRENT_A
#define USER_ADC_FULL_SCALE_CURRENT_A (17.30)

This module defines the maximum current at the AD converter.

The value that will be represented by the maximum ADC input (3.3V) and conversion (0FFFh).

Hardware dependent, this should be based on the current sensing and scaling to the ADC input.

4.1.7 USER_CURRENT_SF
#define USER_CURRENT_SF
((float_t)((USER_ADC_FULL_SCALE_CURRENT_A)/(USER_IQ_FULL_SCALE_CURRENT_A)))

This module is the scale factor for the system.

Compile time calculation for scale factor (ratio) used throughout the system.

4.1.8 USER_NUM_CURRENT_SENSORS
#define USER_NUM_CURRENT_SENSORS (3)

This module defines the number of current sensors used.

Defined by the hardware capability present.

May be (2) or (3).

4.1.9 USER_NUM_VOLTAGE_SENSORS
#define USER_NUM_VOLTAGE_SENSORS (3)

This module defines the number of voltage (phase) sensors.

Must be (3).

4.1.10 I_A_offset , I_B_offset , I_C_offset
#define I_A_offset (0. 8661925197)
#define I_B_offset (0.8679816127)
#define I_C_offset (0.8638074994)

This module defines the ADC current offsets for A, B, and C phases.

One-time hardware dependent, though the calibration can be done at run-time as well.

After initial board calibration these values should be updated for your specific hardware so they are
available after compile in the binary to be loaded to the controller.

4.1.11 V_A_offset , V_B_offset , V_C_offset
#define V_A_offset (0.1776982546)
#define V_B_offset (0.1776063442)
#define V_C_offset (0.1771019101)

This module defines the ADC voltage offsets for A, B, and C phases.

One-time hardware dependent, though the calibration can be done at run-time as well.
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After initial board calibration these values should be updated for your specific hardware so they are
available after compile in the binary to be loaded to the controller.

4.2 Clocks and Timers

4.2.1 USER_SYSTEM_FREQ_MHz
#define USER_SYSTEM_FREQ_MHz (90.0) // Maximum frequency for F2805xF/M and F2806xF/M devices
#define USER_SYSTEM_FREQ_MHz (60.0) // Maximum frequency for F2802xF devices

This module defines the system clock frequency, MHz.

4.2.2 USER_PWM_FREQ_kHz
#define USER_PWM_FREQ_kHz (20.0)

This module defines the Pulse Width Modulation (PWM) frequency, kHz.

PWM frequency can be set directly here up to 30 kHz safely (60 kHz MAX in some cases).

For higher PWM frequencies (60 kHz+ typical for low-inductance, high-current ripple motors), it is
recommended to use the ePWM hardware and adjustable ADC SOC to decimate the ADC conversion
done interrupt to the control system. This can be done by using the hardware decimation
USER_NUM_PWM_TICKS_PER_ISR_TICK. If hardware decimation is not used in high PWM
frequencies, there is a risk of missing interrupts and disrupting the timing of the control state machine.

4.2.3 USER_MAX_VS_MAG_PU
#define USER_MAX_VS_MAG_PU (1.0)

Set to 1.0 if a current reconstruction technique is not used. For more information, see the svgen_current
module in Lab10a-x.

Defines the maximum voltage vector (Vs) magnitude allowed. This value sets the maximum magnitude for
the output of the Id and Iq PI current controllers. The Id and Iq current controller outputs are Vd and Vq.

The relationship between Vs, Vd, and Vq is:

Vs = sqrt(Vd^2 + Vq^2).

In this FOC controller, the Vd value is set equal to USER_MAX_VS_MAG*USER_VD_MAG_FACTOR.

Vq = sqrt(USER_MAX_VS_MAG^2 - Vd^2).
• Set USER_MAX_VS_MAG = 1.0 for a pure sinewave with a peak at SQRT(3)/2 = 86.6% duty cycle.

No current reconstruction is needed for this scenario.
• Set USER_MAX_VS_MAG = 2/SQRT(3) = 1.1547 for a pure sinewave with a peak at 100% duty cycle.

Current reconstruction will be needed for this scenario (Lab10a-x).
• Set USER_MAX_VS_MAG = 4/3 = 1.3333 to create a trapezoidal voltage waveform. Current

reconstruction will be needed for this scenario (Lab10a-x).
• For space vector over-modulation, see lab 10 for details on system requirements that will allow the

SVM generator to go all the way to trapezoidal.

4.2.4 USER_PWM_PERIOD_usec
#define USER_PWM_PERIOD_usec (1000.0/USER_PWM_FREQ_kHz)

This module defines the Pulse Width Modulation (PWM) period, usec.

Compile time calculation.

4.2.5 USER_ISR_FREQ_Hz
#define USER_ISR_FREQ_Hz
((float_t)USER_PWM_FREQ_kHz * 1000.0 / (float_t)USER_NUM_PWM_TICKS_PER_ISR_TICK)

This module defines the Interrupt Service Routine (ISR) frequency, Hz.
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Compile time calculation.

4.2.6 USER_ISR_PERIOD_usec
#define USER_ISR_PERIOD_usec

(USER_PWM_PERIOD_usec * (float_t)USER_NUM_PWM_TICKS_PER_ISR_TICK)

This module defines the Interrupt Service Routine (ISR) period, usec.

4.3 Decimation
Decimation defines the number of ticks between module execution.

Controller clock tick (CTRL) is the main clock used for all timing in the software.

Typically the PWM Frequency triggers (can be decimated by the ePWM hardware for less overhead) an
ADC SOC.

ADC SOC triggers an ADC Conversion Done.

ADC Conversion Done triggers ISR.

This relates the hardware ISR rate to the software controller rate.

Typcially want to consider some form of decimation (ePWM hardware, CURRENT or EST) over 16kHz
ISR to insure interrupt completes and leaves time for background tasks.

4.3.1 USER_NUM_PWM_TICKS_PER_ISR_TICK
#define USER_NUM_PWM_TICKS_PER_ISR_TICK (1)

This module defines the number of PWM periods per interrupt.

Relationship between PWM frequency and interrupt frequency.

4.3.2 USER_NUM_ISR_TICKS_PER_CTRL_TICK
#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)

This module defines the number of controller clock ticks per current controller clock tick.

Relationship of controller clock rate to current controller (FOC) rate.

4.3.3 USER_NUM_CTRL_TICKS_PER_CURRENT_TICK
#define USER_NUM_CTRL_TICKS_PER_CURRENT_TICK (1)

This module defines the number of controller clock ticks per estimator clock tick.

Relationship of controller clock rate to estimator (FAST) rate.

4.3.4 USER_NUM_CTRL_TICKS_PER_EST_TICK
#define USER_NUM_CTRL_TICKS_PER_EST_TICK (1)

This module depends on needed dynamic performance, FAST provides very good results as low as 1 kHz
while more dynamic or high speed applications may require up to 15 kHz.

4.3.5 USER_NUM_CTRL_TICKS_PER_SPEED_TICK
#define USER_NUM_CTRL_TICKS_PER_SPEED_TICK (20)

This module defines the number of controller clock ticks per speed controller clock tick.

Relationship of controller clock rate to speed loop rate.

4.3.6 USER_NUM_CTRL_TICKS_PER_TRAJ_TICK
#define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (20)

This module defines the number of controller clock ticks per trajectory clock tick.
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Relationship of controller clock rate to trajectory loop rate.

Typically the same as the speed rate.

4.3.7 USER_CTRL_FREQ_Hz
#define USER_CTRL_FREQ_Hz
(uint_least32_t)(USER_ISR_FREQ_Hz/USER_NUM_ISR_TICKS_PER_CTRL_TICK)

This module defines the controller frequency, Hz.

Compile time calculation.

4.3.8 USER_EST_FREQ_Hz
#define USER_EST_FREQ_Hz
(uint_least32_t)(USER_CTRL_FREQ_Hz/USER_NUM_CTRL_TICKS_PER_EST_TICK)

This module defines the estimator frequency, Hz.

Compile time calculation.

4.3.9 USER_TRAJ_FREQ_Hz
#define USER_TRAJ_FREQ_Hz
(uint_least32_t)(USER_CTRL_FREQ_Hz/USER_NUM_CTRL_TICKS_PER_TRAJ_TICK)

This module defines the trajectory frequency, Hz.

Compile time calculation.

4.3.10 USER_CTRL_PERIOD_usec
#define USER_CTRL_PERIOD_usec (USER_ISR_PERIOD_usec *
USER_NUM_ISR_TICKS_PER_CTRL_TICK)

This module defines the controller execution period, usec.

Compile time calculation.

4.3.11 USER_CTRL_PERIOD_sec
#define USER_CTRL_PERIOD_sec
((float_t)USER_CTRL_PERIOD_usec/(float_t)1000000.0)

This module defines the controller execution period, sec.

Compile time calculation.

4.4 Limits

4.4.1 USER_MAX_NEGATIVE_ID_REF_CURRENT_A
#define USER_MAX_NEGATIVE_ID_REF_CURRENT_A (-0.5 * USER_MOTOR_MAX_CURRENT)

Example, adjust to meet safety needs of your motor:

-0.5 * USER_MOTOR_MAX_CURRENT

This module defines the maximum negative current to be applied in Id reference.

Used in field weakening only, this is a safety setting (e.g. to protect against demagnetization).

User must also be aware that overall current magnitude [√(Id2 + Iq2)] should be kept below any machine
design specifications.

4.4.2 USER_ZEROSPEEDLIMIT
#define USER_ZEROSPEEDLIMIT (1.0 / USER_IQ_FULL_SCALE_FREQ_Hz)
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typical = 0.002 pu, 1-5 Hz

Hz = USER_ZEROSPEEDLIMIT * USER_IQ_FULL_SCALE_FREQ_Hz

This module defines the low speed limit for the flux integrator, pu.

This is the speed range (CW/CCW) at which the ForceAngle object is active, but only if enabled.

Outside of this speed, or if disabled, the ForceAngle will NEVER be active and the angle is provided by
FAST only.

4.4.3 USER_FORCE_ANGLE_FREQ_Hz
#define USER_FORCE_ANGLE_FREQ_Hz (USER_ZEROSPEEDLIMIT * USER_IQ_FULL_SCALE_FREQ_Hz)

Typical force angle start-up speed = 1.0

This module defines the force angle frequency, Hz.

Frequency of stator vector rotation used by the ForceAngle object.

Can be positive or negative

4.4.4 USER_MAX_CURRENT_SLOPE_POWERWARP
#define USER_MAX_CURRENT_SLOPE_POWERWARP

(0.3*USER_MOTOR_RES_EST_CURRENT/USER_IQ_FULL_SCALE_CURRENT_A/USER_TRAJ_FREQ_Hz)

This defines the maximum current slope for Id trajectory during PowerWarp mode.

For Induction motors only, controls how fast Id input can change under PowerWarp control.

4.4.5 USER_MAX_ACCEL_Hzps
#define USER_MAX_ACCEL_Hzps (20.0)

This module defines the starting maximum acceleration and deceleration for the speed profiles, Hz/sec.

Updated in run-time through user functions.

Inverter, motor, inertia, and load will limit actual acceleration capability.

4.4.6 USER_MAX_ACCEL_EST_Hzps
#define USER_MAX_ACCEL_EST_Hzps (2.0)

This module defines maximum acceleration for the estimation speed profiles, Hz/sec.

Only used during Motor ID (commission).

4.4.7 USER_MAX_CURRENT_SLOPE
#define USER_MAX_CURRENT_SLOPE
(USER_MOTOR_RES_EST_CURRENT/USER_IQ_FULL_SCALE_CURRENT_A/USER_TRAJ_FREQ_Hz)

This module defines the maximum current slope for Id trajectory during estimation.

4.4.8 USER_IDRATED_FRACTION_FOR_RATED_FLUX
#define USER_IDRATED_FRACTION_FOR_RATED_FLUX (1.0)

This module defines the fraction of IdRated to use during rated flux estimation.

Default is 1.0; do not change.

4.4.9 USER_IDRATED_FRACTION_FOR_L_IDENT
#define USER_IDRATED_FRACTION_FOR_L_IDENT (1.0)

This module defines the fraction of IdRated to use during inductance estimation.

Default is 1.0; do not change.
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4.4.10 USER_IDRATED_DELTA
#define USER_IDRATED_DELTA (0.00002)

This module defines the IdRated delta to use during estimation.

4.4.11 USER_SPEEDMAX_FRACTION_FOR_L_IDENT
#define USER_SPEEDMAX_FRACTION_FOR_L_IDENT (1.0)

This module defines the fraction of SpeedMax to use during inductance estimation.

4.4.12 USER_FLUX_FRACTION
#define USER_FLUX_FRACTION (1.0)

This module defines flux fraction to use during inductance identification.

4.4.13 USER_POWERWARP_GAIN
#define USER_POWERWARP_GAIN (1.0)

This module defines the PowerWarp gain for computing Id reference.

Induction motors only. Default is 1.0; do not change.

4.4.14 USER_R_OVER_L_EST_FREQ_Hz
#define USER_R_OVER_L_EST_FREQ_Hz (300)

This module defines the R/L estimation frequency, Hz.

4.5 Poles

4.5.1 USER_VOLTAGE_FILTER_POLE_Hz
#define USER_VOLTAGE_FILTER_POLE_Hz (714.14)

This module defines the analog voltage filter pole location, Hz.

Must match the hardware filter for Vph.

4.5.2 USER_VOLTAGE_FILTER_POLE_rps
#define USER_VOLTAGE_FILTER_POLE_rps (2.0 * MATH_PI * USER_VOLTAGE_FILTER_POLE_Hz)

This module defines the analog voltage filter pole location, rad/s.

Compile time calcuation from Hz to rad/s.

4.5.3 USER_OFFSET_POLE_rps
#define USER_OFFSET_POLE_rps (20.0)

This module defines the software pole location for the voltage and current offset estimation, rad/s.

Should not be changed from default of (20.0).

4.5.4 USER_FLUX_POLE_rps
#define USER_FLUX_POLE_rps (100.0)

This module defines the software pole location for the flux estimation, rad/s.

Should not be changed from default of (100.0).

4.5.5 USER_DIRECTION_POLE_rps
#define USER_DIRECTION_POLE_rps (6.0)

This module defines the software pole location for the direction filter, rad/s.
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4.5.6 USER_SPEED_POLE_rps
#define USER_SPEED_POLE_rps (100.0)

This module defines the software pole location for the speed control filter, rad/s.

4.5.7 USER_DCBUS_POLE_rps
#define USER_DCBUS_POLE_rps (100.0)

This module defines the software pole location for the DC bus filter, rad/s.

4.5.8 USER_EST_KAPPAQ
#defineUSER_EST_KAPPAQ (1.5)

This module defines the convergence factor for the estimator.

Do not change from default for FAST.

4.6 User Motor and ID Settings

4.6.1 USER_MOTOR_TYPE
#define USER_MOTOR_TYPE MOTOR_Type_Pm

Motor_Type_Pm (All Synchronous: BLDC, PMSM, SMPM, IPM) or Motor_Type_Induction (Asynchronous
ACI).

4.6.2 USER_MOTOR_NUM_POLE_PAIRS
#define USER_MOTOR_NUM_POLE_PAIRS (4)

PAIRS, not total poles. Used to calculate user RPM from rotor Hz only.

4.6.3 USER_MOTOR_Rr
#define USER_MOTOR_Rr (NULL)

Induction motors only, else NULL.

4.6.4 USER_MOTOR_Rs
#define USER_MOTOR_Rs (2.303403)

Identified phase to neutral resistance in a Y equivalent circuit (Ohms, float).

4.6.5 USER_MOTOR_Ls_d
#define USER_MOTOR_Ls_d (0.008464367)

For PM, Identified average stator inductance (Henry, float).

4.6.6 USER_MOTOR_Ls_q
#define USER_MOTOR_Ls_q (0.008464367)

For PM, Identified average stator inductance (Henry, float).

4.6.7 USER_MOTOR_RATED_FLUX
#define USER_MOTOR_RATED_FLUX (0.38)

Identified TOTAL flux linkage between the rotor and the stator (Webers = Volts* Seconds).

4.6.8 USER_VOLTAGE_FILTER_POLE_Hz
#define USER_MOTOR_MAGNETIZING_CURRENT (NULL)

Induction motors only, else NULL.
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4.6.9 USER_MOTOR_RES_EST_CURRENT
#define USER_MOTOR_RES_EST_CURRENT (1.0)

During Motor ID, maximum current (Amperes, float) used for Rs estimation, 10-20%.

4.6.10 USER_MOTOR_IND_EST_CURRENT
#define USER_MOTOR_IND_EST_CURRENT (-1.0)

During Motor ID, maximum current (negative Amperes, float) used for Ls estimation, use just enough to
enable rotation.

4.6.11 USER_MOTOR_MAX_CURRENT
#define USER_MOTOR_MAX_CURRENT (3.82)

CRITICAL: Used during ID and run-time, sets a limit on the maximum current command output of the
provided Speed PI Controller to the Iq controller.

4.6.12 USER_MOTOR_FLUX_EST_FREQ_Hz
#define USER_MOTOR_FLUX_EST_FREQ_Hz (20.0)

During Motor ID, maximum commanded speed (Hz, float), ~10% rated.

4.6.13 USER_MOTOR_ENCODER_LINES (InstaSPIN-MOTION Only)
#define USER_MOTOR_ENCODER_LINES (2500.0)

Used to setup an encoder, this provides the place to specify the number of lines on the encoder wheel.

4.6.14 USER_MOTOR_MAX_SPEED_KRPM (InstaSPIN-MOTION Only)
#define USER_MOTOR_MAX_SPEED_KRPM (3.0)

Used to set an upper bound on speed reference for position control applications.

4.6.15 USER_SYSTEM_INERTIA (InstaSPIN-MOTION Only)
#define USER_SYSTEM_INERTIA (0.02)

Inertia describes the amount of mass that is rigidly coupled with the motor. This is used by the InstaSPIN-
MOTION controllers as an input. It should be identified with InstaSPIN-MOTION Inertia Identification.

4.6.16 USER_SYSTEM_FRICTION (InstaSPIN-MOTION Only)
#define USER_SYSTEM_FRICTION (0.02)

Friction describes the resistance to motion that is seen by the motor. This is used by the InstaSPIN-
MOTION controllers as an input. It should be identified with InstaSPIN-MOTION Inertia Identification.

4.6.17 USER_SYSTEM_BANDWIDTH_SCALE (InstaSPIN-MOTION Only)
#define USER_SYSTEM_BANDWIDTH_SCALE (1.0)

Bandwidth Scale sets the default bandwidth that is used by the InstaSPIN-MOTION controllers. This
should be updated after completing a tuning process with the InstaSPIN-MOTION controller.
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4.7 SpinTAC Parameters (spintac_velocity.h and spintac_position.h)
The SpinTAC components that make up InstaSPIN-MOTION need to be configured for your specific
application. This is a simple process. The specific configuration details of the SpinTAC components in
InstaSPIN-MOTION will be covered in subsequent sections of this document. The spintac_velocity.h and
spintac_position.h header files provide a singular interface to include the SpinTAC components in your
project. These files contain the macro definitions, type definitions, and function definitions required to
setup the SpinTAC components. Including these files in your project is the first step to using the SpinTAC
components that make up InstaSPIN-MOTION. The file that should be included is dependent on the type
of control. If the application is a velocity application, spintac_velocity.h should be included. If the
application requires position control, spintac_position.h should be included.

4.7.1 Macro Definitions
The macro definitions (#define) provide a simple method for updating your configuration in a large number
of places throughout the Motorware project. The #define directive specifies a macro identifier and a
replacement. The replacement is substituted for every subsequent occurrence of that macro identifier at
compile time. The macro definitions used by SpinTAC components in spintac_velocity.h and
spintac_position.h are described herein.

4.7.1.1 ST_MREV_ROLLOVER (spintac_position.h only)
This defines the maximum and minimum value that will be used to represent mechanical revolutions inside
SpinTAC Position Control. This is used in order to maintain precision. When the value for mechanical
revolutions reaches the value defined in ST_MREV_ROLLOVER, a rollover counter is incremented, and
the value for mechanical revolutions will be set to negative ST_MREV_ROLLOVER.

4.7.1.2 ST_EREV_MAXIMUM (spintac_position.h only)
This defines the maximum value for an electrical revolution. This is the maximum electrical angle value
produced by the encoder or other electrical angle source.

4.7.1.3 ST_POS_ERROR_MAXIMUM_MREV (spintac_position.h only)
This defines the maximum position error allowable in the application. If a position error beyond this
threshold is detected it will force the controller output to zero until the error has been reduced below this
threshold.

4.7.1.4 ST_ISR_TICKS_PER_SPINTAC_TICK
This identifies the decimation factor for the SpinTAC components of InstaSPIN-MOTION. This value
represents the number of ISRs completed in-between each execution of the SpinTAC components. This
value is calculated from parameters defined in user.h. Decimation factors are further explained in
Section 9.2.

4.7.1.5 ST_SPEED_SAMPLE_TIME
This identifies how often the SpinTAC components are executed. This value is calculated from parameters
that are defined in user.h.

4.7.1.6 ST_SPEED_PU_PER_KRPM
This identifies the scaling between kilo-rpm and pu/s speed. This is used to convert from user variables
which are typically in kilo-rpm into scaled speed variables. This ensures that all calculations in InstaSPIN-
MOTION will not cause an overflow. This value is calculated from parameters that are defined in user.h

4.7.1.7 ST_SPEED_KRPM_PER_PU
This identifies the scaling between pu/s and kilo-rpm speed. This is used to convert from scaled speed
variables into user unit variables. This is done to ensure that all calculations in InstSPIN-MOTION will not
cause an overflow. This value is calculated from parameters that are defined in user.h
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4.7.1.8 ST_MOTOR_INERTIA_PU
This identifies the inertia of the system in scaled units. This value is calculated from
ST_MOTOR_INERTIA_A_PER_KRPM and will be provided to SpinTAC Velocity Control or SpinTAC
Position Control.

4.7.1.9 ST_MOTOR_FRICTION_PU
This identifies the inertia of the system in scaled units. This value is calculated from
ST_MOTOR_FRICTION_A_PER_KRPM and will be provided to SpinTAC Velocity Control or SpinTAC
Position Control.

4.7.1.10 ST_MIN_ID_SPEED_RPM
This identifies the minimum speed of the motor prior to running SpinTAC Velocity Identify. This is done to
ensure that the inertia identification process does not begin if the motor is spinning too quickly. This value
is specified in rpm. If there is difficulty in beginning the inertia identification process, and the motor has
trouble holding a zero speed, this value should be increased to widen the bound from which the motor will
start the inertia identification process.

4.7.1.11 ST_MIN_ID_SPEED_PU
This identifies the minimum speed of the motor prior to running SpinTAC Velocity Identify. This value is
calculated from ST_MIN_ID_SPEED_RPM. This is the value that will be compared against in the user
project.

4.7.1.12 ST_ID_INCOMPLETE_ERROR
This error is triggered anytime that SpinTAC Velocity Identify fails and the system inertia remains
unknown. The value refers to the specific error code produced by the SpinTAC Velocity Identify
component. Do not modify this value.

4.7.1.13 ST_VARS_DEFAULTS
This identifies the default values that should be loaded into the ST_Vars_t structure described in
Section 4.7.2.5. These default values are used to initialize the structure and to provide the correct values
at startup. Do not modify these values.

4.7.2 Type Definitions
Type definitions (typedefs) organize the code that calls SpinTAC and simplify the API experience for the
user.

4.7.2.1 VEL_Params_t / POS_Params_t
This structure identifies which SpinTAC component will be used in the project. This structure is included
as part of ST_Obj discussed in Section 4.7.2.2. This structure should not be declared in your project.

4.7.2.2 ST_Obj
This is the main structure of the SpinTAC components. This structure is designed to align the SpinTAC
components around a single motor axis. This structure contains substructures that separate the SpinTAC
components into the portion of the motor axis that they work on. This structure should be declared in the
main source file of your project.

4.7.2.3 ST_Handle
This handle is used to represent the address of the main SpinTAC structure. It should be used in the user
project to pass the address of the main SpinTAC structure into the user functions so that they will not be
operating on a global variable. The lab projects included in MotorWare have examples of how to setup
user functions to use the handle for interfacing.
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4.7.2.4 ST_PlanButton_e
This enumeration identifies the states that can be set to control the operation of SpinTAC Plan. This is
done to construct a small state machine to handle enabling, disabling, and resetting SpinTAC Plan. This
should be used in the main source file to establish a button that can be used to control the operation of
SpinTAC Plan.

4.7.2.5 ST_Vars_t
This is a structure that contains the user interface variables that should be used to operate on the
SpinTAC components. This structure should not be declared in the main source file. It is already declared
as part of MOTOR_Vars_t in main.h and main_position.h. More information about MOTOR_Vars_t can be
found in the lab documentation.

4.7.3 Functions
These functions are used to initialize and configure the SpinTAC components.

4.7.3.1 ST_init
This function initializes the SpinTAC structures. It should be called prior to the forever loop in the main
source file. This function will pass the memory locations of the SpinTAC components and will return a
handle to be used to interface to these components.

4.7.3.2 ST_setupPosConv
This function sets up the default values for the SpinTAC Position Converter. It should be called after
ST_init, but before the forever loop in the main source file. This function extracts configuration values from
the macro definitions in user.h and spintac.h. These values should be modified to fit your system.

4.7.3.3 ST_setupVelCtl (Velocity Control Only)
This function sets up the default values for the SpinTAC Velocity Control. It should be called after ST_init,
but before the forever loop in the main source file. This function extracts configuration values from the
macro definitions in user.h and spintac_velocity.h. These values should be modified to fit your system.

4.7.3.4 ST_setupPosCtl (Position Control Only)
This function sets up the default values for SpinTAC Position Control. It should be called after ST_init, but
before the forever loop in the main source file. This function extracts configuration values from the macro
definitions in user.h and spintac_position.h. These values should be modified to fit your system.

4.7.3.5 ST_setupVelMove (Velocity Control Only)
This function sets up the default values for SpinTAC Velocity Move. It should be called after ST_init, but
before the forever loop in the main source file. This function extracts configuration values from the macro
definitions in user.h and spintac_velocity.h. These values should be modified to fit your system.

4.7.3.6 ST_setupPosMove (Position Control Only)
This function sets up the default values for SpinTAC Position Move. It should be called after ST_init, but
before the forever loop in the main source file. This function extracts configuration values from the macro
definitions in user.h and spintac_position.h. These values should be modified to fit your system.

4.7.3.7 ST_setupVelPlan (Velocity Control Only)
This function is used to setup SpinTAC Velocity Plan. This function should be called after the ST_init
function, and should be declared and written in the main source file of the project. For more information
about how to configure SpinTAC Plan, see Section 13.5.
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4.7.3.8 ST_setupPosPlan (Position Control Only)
This function is used to setup SpinTAC Position Plan. This function should be called after the ST_init
function, and should be declared and written in the main source file of the project. For more information
about how to configure SpinTAC Plan, see Section 13.5.

4.7.3.9 ST_setupVelId (Velocity Control Only)
This function sets up the default values for the SpinTAC Velocity Identify. It should be called after ST_init,
but before the forever loop in the main source file. This function extracts configuration values from the
macro definitions in user.h and spintac_velocity.h. These values should be modified to fit your system.

4.7.3.10 ST_runPosConv
This function is used to run the SpinTAC Position Converter in the ISR. This function should be decimated
at the rate defined in ISR_TICKS_PER_SPINTAC_TICK. This function should be declared and written in
the main source file of the project. The InstaSPIN-MOTION lab projects 12 through 13e provide an
example of how to call the SpinTAC Position Converter as part of your ISR.

4.7.3.11 ST_runVelCtl (Velocity Control Only)
This function is used to run SpinTAC Velocity Control in the ISR. This function should be decimated at the
rate defined in ISR_TICKS_PER_SPINTAC_TICK. This function should be declared and written in the
main source file of the project. The InstaSPIN-MOTION lab projects 05d through 06d provide an example
of how to call SpinTAC Velocity Control as part of your ISR.

4.7.3.12 ST_runPosCtl (Position Control Only)
This function is used to run SpinTAC Position Control in the ISR. This function should be decimated at the
rate defined in ISR_TICKS_PER_SPINTAC_TICK. This function should be declared and written in the
main source file of the project. The InstaSPIN-MOTION lab projects 13a through 13e provide an example
of how to call SpinTAC Position Control as part of your ISR.

4.7.3.13 ST_runVelMove (Velocity Control Only)
This function is used to run SpinTAC Velocity Move in the ISR. This function should be decimated at the
rate defined in ISR_TICKS_PER_SPINTAC_TICK. This function should be declared and written in the
main source file of the project. The InstaSPIN-MOTION lab projects 06a through 06d provide an example
of how to call SpinTAC Velocity Move as part of your ISR.

4.7.3.14 ST_runPosMove (Position Control Only)
This function is used to run SpinTAC Position Move in the ISR. This function should be decimated at the
rate defined in ISR_TICKS_PER_SPINTAC_TICK. This function should be declared and written in the
main source file of the project. The InstaSPIN-MOTION lab projects 13b through 13e provide an example
of how to call SpinTAC Position Move as part of your ISR.

4.7.3.15 ST_runVelPlan (Velocity Control Only)
This function is used to run the main component of SpinTAC Velocity Plan. This function can be called in
either the ISR or in the main loop of the project. This function should be declared and written in the main
source file of the project. The InstaSPIN-MOTION lab projects 06b and 06c provide an example of how to
call SpinTAC Velocity Plan as part of your ISR. The InstaSPIN-MOTION lab project 06d provides an
example of how to call SpinTAC Velocity Plan as part of your main loop.

4.7.3.16 ST_runVelPlanTick (Velocity Control Only)
This function is used to run the timer component of SpinTAC Velocity Plan in the ISR. This function should
be decimated at the rate defined in ISR_TICKS_PER_SPINTAC_TICK. The InstaSPIN-MOTION lab
projects 06b through 06d provide an example of how to call this component of SpinTAC Velocity Plan as
part of your ISR.
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4.7.3.17 ST_runPosPlan (Position Control Only)
This function is used to run the main component of SpinTAC Position Plan. This function can be called in
either the ISR or in the main loop of the project. This function should be declared and written in the main
source file of the project. The InstaSPIN-MOTION lab project 13c provides an example of how to call
SpinTAC Position Plan as part of your ISR. The InstaSPIN-MOTION lab project13d provides an example
of how to call SpinTAC Position Plan as part of your main loop.

4.7.3.18 ST_runPosPlanTick (Position Control Only)
This function is used to run the ISR component of SpinTAC Position Plan in the ISR. This function should
be decimated at the rate defined in ISR_TICKS_PER_SPINTAC_TICK. The InstaSPIN-MOTION lab
projects 13c through 13d provide an example of how to call this component of SpinTAC Position Plan as
part of your ISR.

4.7.3.19 ST_runVelId (Velocity Control Only)
This function is used to run SpinTAC Velocity Identify in the ISR. This function should be decimated at the
rate defined in ST_ISR_TICKS_PER_SPINTAC_TICK. This function should be declared and written in the
main source file of the project. The InstaSPIN-MOTION lab project 05cincluded in MotorWare provides an
example of how to call SpinTAC Velocity Identify as part of the ISR.

4.8 Setting ACIM Motor Parameters in user.h
The parameters provided in user.h for ACIM motors are listed below:

#if (USER_MOTOR == User_ACIM)
#define USER_MOTOR_TYPE MOTOR_Type_Induction
#define USER_MOTOR_NUM_POLE_PAIRS (2)
#define USER_MOTOR_Rr (5.054793)
#define USER_MOTOR_Rs (7.801885)
#define USER_MOTOR_Ls_d (0.03334743)
#define USER_MOTOR_Ls_q (USER_MOTOR_Ls_d)
#define USER_MOTOR_RATED_FLUX (0.8165*230.0/60.0)
#define USER_MOTOR_MAGNETIZING_CURRENT (1.134086)
#define USER_MOTOR_MAX_CURRENT (5.0)

Table 4-1 summarizes all the parameters that are required in user.h header file when ACIM motor
identification is bypassed.

Table 4-1. ACIM Motor Parameters in user.h

ACIM Motor Parameter in user.h ACIM Motor Parameter and Units ACIM Motor Model Symbol
USER_MOTOR_Rr Rotor Resistance (Ω) RR

USER_MOTOR_Rs Stator Resistance (Ω) Rs

USER_MOTOR_Ls_d Stator Series Inductance (H) LσS

USER_MOTOR_RATED_FLUX Rated Rotor Flux (V/Hz) ψR

USER_MOTOR_MAGNETIZING_CURRENT Rated Magnetizing Current (A) isd

The following section covers each of these parameters and how to get them from a typical motor
manufacturer's datasheet.
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4.8.1 Getting Parameters From an ACIM Datasheet
Figure 4-1 corresponds to an ACIM motor datasheet used as an example. The motor's part number is:
56H17T2011A, from company: Marathon Electric (www.marathonelectric.com).

Figure 4-1. Example ACIM Motor Datasheet

4.8.1.1 Number of Pole Pairs
The number of pole pairs is used to calculate speeds in revolutions per minute (RPM) and for some flux
calculations, as shown in the rated flux calculation example. We simply use the number of pole pairs from
the motor's datasheet into user.h as follows. Keep in mind that sometimes this value is provided in number
of poles, so we simply divide number of poles by two to get number of pole pairs:

#define USER_MOTOR_NUM_POLE_PAIRS (2)

4.8.1.2 Entering ACIM Motor Parameters From a Datasheet to user.h
With the information we have in the motor's name plate we can enter these values into user.h with the
following parameter conversion, assuming a rated frequency of 60 Hz for the impedance calculations.

Where:

R1: Stator resistance (Ω)
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R2: Stator referenced rotor resistance (Ω)

X1: Stator leakage reactance (Ω)

X2: Stator referenced rotor leakage reactance (Ω)

XM: Magnetizing reactance (Ω)

f: Rated frequency of the motor (Hz)

RR: Stator referenced scaled rotor resistance (Ω)

Rs: Stator resistance (Ω)

LσS: Stator series inductance (H)

Note that in order to convert reactance (X) to inductance (L) the user must use the same frequency that
was used to define the reactance value itself, which is typically the rated frequency of the motor. In this
example, the rated frequency of the motor is 60 Hz, hence f = 60 Hz.

With these values we can then enter motor's parameters in user.h:

#define USER_MOTOR_Rr (6.8031)
#define USER_MOTOR_Rs (9.25)
#define USER_MOTOR_Ls_d (0.0352)
#define USER_MOTOR_Ls_q (USER_MOTOR_Ls_d)

There are cases where the ACIM motor parameters are provided in terms of inductance values instead of
reactance values. For example, if we convert the values from the motor's datasheet into inductances, we
would have the following values:

And now the conversion from these set of values to what we need in user.h is as follows:

Where:

Lσs: Stator leakage inductance (H)

Lσr: Stator referenced rotor leakage inductance (H)

Lm: Magnetizing inductance (H)
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4.8.1.3 Getting the Rated Magnetizing Current of an ACIM
To get the rated magnetizing current of an ACIM motor, we can calculated from the no load current
specified in a motor's name plate. In this particular example, the no load current is 0.7 A, which is
usually a value provided in RMS. Usually this no load current is approximately the same as the rated
magnetizing current with iq ≅ 0. The value we need to define in user.h is in maximum amplitude, so
we calculate it as follows:

Now we can enter this value in user.h:

#define USER_MOTOR_MAGNETIZING_CURRENT (0.9899)

4.8.1.4 Getting the Rated Flux of an ACIM
To get the rated flux of an ACIM, we need to calculate the rated stator flux based on the name plate
values, and subtract the flux produced by the inductance to get the rated rotor flux. The following equation
is used to calculate the rated rotor flux:

Now we can set this value in user.h:

#define USER_MOTOR_RATED_FLUX (2.9107)
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Chapter 5
SPRUHJ1F–January 2013–Revised July 2014

Managing Motor Signals

For the InstaSPIN FAST observer (flux, rotor flux angle, shaft speed and torque), voltage and current
signals from the motor are required to be measured by the ADC. The accuracy of these signals has direct
impact on the performance of the observer. This section discusses the required signals, which parameters
in the InstaSPIN software are used to configure for these signals and their related circuits. The following
sections are considered "prerequisites", required software and hardware configuration for a successful
motor identification and the running of InstaSPIN.

Topic ........................................................................................................................... Page

5.1 Software Prerequisites ...................................................................................... 221
5.2 Hardware Prerequisites ..................................................................................... 226
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5.1 Software Prerequisites
Below are the parameters that require configuration by in the user's software to manage the motor signals
required by InstaSPIN's FAST observer. Each parameter is discussed in this section.
• IQ full-scale frequency - set to motor's max electrical frequency with 20-30% headroom
• IQ full-scale voltage - set to motor's max voltage with 20-30% headroom
• IQ full-scale current - set to motor's max measureable current with 20-30% headroom
• Max Current - set to motor manufacturer's max current (peak) with 0% headroom
• Decimation rates - multiple loop rates and settings
• System Frequency - set to MCU's max CPU clock speed
• PWM Frequency - default is 20 KHz, increase with lower inductance motors
• Max Duty Cycle - 100% duty use 3-shunt current measurements

5.1.1 IQ Full-Scale Frequency
IQ Full-Scale Frequency represents the electrical frequency of the motor in a per unit value. In other
words, the electrical frequency of the motor is normalized with the value in this define. It is recommended
to have a value of IQ full-scale frequency equal to the absolute maximum electrical frequency that the
motor will run in the application.

Set IQ full-scale frequency equal to the motor's absolute maximum electrical frequency.
To illustrate a typical example of this value, consider a PMSM motor with four pole pairs, running at an
absolute maximum speed of 15,000 RPM. In this case, the absolute maximum frequency of the motor is
15000/60*4 = 1000 Hz. The following setting of the IQ full-scale frequency is recommended in this case:

//! \brief Defines the full-scale frequency for IQ variable, Hz
#define USER_IQ_FULL_SCALE_FREQ_Hz (1000.0)

It is important to note that this value must be higher than any allowable frequency in the motor, so it is
recommended to add 20-30% headroom to this value, higher than the maximum expected frequency of
the motor.

5.1.2 IQ Full-Scale Voltage
Similar to IQ Full-Scale Frequency, the IQ full-scale voltage value is used to normalize all the voltage
terms inside of the library to a per unit value. For that reason, this define must be greater than any voltage
provided to the motor windings, including voltages present inside the motor. These voltages inside the
motor can be greater than the input voltage itself in cases where the motor is operated in field weakening,
which is operating the motor beyond its rated speed.

Voltages inside the motor can be greater than the input voltage. Set IQ Full-Scale Frequency
greater than any voltage inside the motor.
To illustrate, consider a PMSM motor with a rated speed of 4000 RPM. If the motor is driven with a 24V
power supply, and no field weakening is used, all the voltages outside and inside the motor will be equal
or less than 24V. However, if field weakening is used to double the speed of the motor to a maximum of
8000 RPM, then inside the motor, the back EMF voltage might be up to twice the input voltage of 24V,
reaching up to 48V. In this scenario it is recommended to set the IQ full-scale voltage define to 48V as
shown in the following code example:

//! \brief Defines the full-scale voltage for the IQ variable, V
#define USER_IQ_FULL_SCALE_VOLTAGE_V (48.0)
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CAUTION

In the following flux calculation of , if any of these two values is
equal to or greater than 2.0, a numerical overflow condition will occur, since this
value is represented in a numeric format that has a max integer range of 2
(IQ30 actually has a max value very close to 2 which is (2 - 2-30), see the
IQmath library for more details on this format).

In the above example, both inductances are the same (Ls_d = Ls_q), hence the voltage must be greater
than:

It is recommended to have 20-30% headroom on top of this minimum value. In the example above, the
motor can be operated up to 48 V, and since this voltage is greater than (with headroom) we can
just simply set 48 V for our full-scale voltage:

//! \brief Defines the full-scale voltage for the IQ variable, V
#define USER_IQ_FULL_SCALE_VOLTAGE_V (48.0)

User must select parameters so that this overflow is prevented. If the inductance is unknown, a rough
estimation must be used in the above calculation to know if there will be an overflow condition.

In addition to a minimum value set in USER_IQ_FULL_SCALE_VOLTAGE_V, there is a maximum value
to be set here also. The maximum value relates to the minimum flux that can be identified by InstaSPIN.
The minimum flux that can be identified is calculated as follows:

Minimum Flux (V/Hz) = USER_IQ_FULL_SCALE_VOLTAGE_V/USER_EST_FREQ_Hz/0.7

For example, if a motor has a flux of 0.001 V/Hz (this value is not unusual when working with hobby
motors with extremely low flux values), and running the estimator at 20 kHz, then the maximum
USER_IQ_FULL_SCALE_VOLTAGE_V that can be used to identify this motor is:

USER_IQ_FULL_SCALE_VOLTAGE_V < 0.001 * 20000 / 0.7 = 28.57 V

222 Managing Motor Signals SPRUHJ1F–January 2013–Revised July 2014
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


www.ti.com Software Prerequisites

30% of headroom is recommended to allow a stable identification. So in the above example, a
USER_IQ_FULL_SCALE_VOLTAGE_V of 20.0V is recommended.

5.1.3 IQ Full-Scale Current
IQ full-scale current serves the same purpose as the previous IQ full-scale values for the frequency and
voltage, but for the current feedback. IQ full-scale current is used to normalize the current feedback into a
per unit value. This value must be greater than any measurable current.

IQ full-scale current must be greater than any measurable current
For example, if the motor has a peak current value of 8 A per phase, the IQ full-scale value should be set
to a higher value with 20-30% headroom, in this example, to 10 A.

//! \brief Defines the full-scale current for the IQ variables, A
#define USER_IQ_FULL_SCALE_CURRENT_A (10.0)

CAUTION
If the measured current is greater than the IQ full-scale current at any point,
there might be a numerical overflow condition in the software. Make sure the
measurable current is less than this value to avoid an undesirable software
behavior. In order to avoid this issue, user must make sure that
(USER_IQ_FULL_SCALE_CURRENT_A * 2) is always greater that the
measurable current by the ADC. The "multiply by 2" factor is because the
USER_IQ_FULL_SCALE_CURRENT_A parameter ranges from zero to
maximum amplitude (peak), while the USER_ADC_FULL_SCALE_
CURRENT_A is from peak to peak.

Following the guideline below prevents numerical overflow on the current measurement:

(USER_IQ_FULL_SCALE_CURRENT_A * 2) >= USER_ADC_FULL_SCALE_CURRENT_A

5.1.4 Max Current
Max Current defines the maximum output of the speed controller, different from the IQ Full-Scale Current
which defines a normalization factor of currents measured with the ADC converter. Max Current must
always be lower than IQ Full-Scale Current since Max Current is a software limit only, while IQ Full-Scale
Current represents a maximum software representation of a maximum hardware input.

Max Current must always be lower than IQ Full-Scale Current.
The definition of the maximum current sets a maximum software limit. It indicates that the maximum
current commanded by the speed controller will be clamped to the maximum current definition. For
example, if the maximum current definition is set to 4.2 A, and the speed controller requires an increase
on the torque demand through the current controllers, the maximum commanded current will be 4.2 A, or
whatever is set in this definition. It is recommended to have a maximum current less than or equal to the
maximum recommended current by the motor manufacturer to avoid damage to the motor.

Max current less than or equal to motor manufacturer's recommended max current.
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For example, the Anaheim motor provided with the DRV8312 Revision D board has a rated torque of 21
oz-in and a torque constant of 5 oz-in/A, which leads us to a rated current of 4.2 A to produce rated
torque. 4.2 A is set to the motor maximum current (peak current amplitude) is shown in the following code
example:

#define USER_MOTOR_MAX_CURRENT (4.2)

Note that the Max Current defined in user.h does not provide a hardware limitation or protection against
over currents. In other words, this is not a hardware current limit, instead, this is a software limit that only
limits the maximum input of the current controllers, and not their output.

Figure 5-1 shows a representation of where this USER_MOTOR_MAX_CURRENT is used in InstaSPIN.
As can be seen in the diagram, the maximum current does not limit a current cycle by cycle, but it
provides a saturation of the speed controller integral portion output as well as a saturation of the overall
speed controller output before providing the reference to the current controller.

Figure 5-1. USER_MOTOR_MAX_CURRENT in InstaSPIN

5.1.5 Decimation Rates
Decimation rates allow the user to configure each loop rate to meet their code execution requirements. It
is recommended to use the default decimation rates as a starting point. The user must verify real-time
scheduling is met, verifying that a single interrupt period allows execution of all software in the ISR. This
can be done by simply toggling (2) GPIO pins, one at the start and the other at the end of the ISR, and
observing on an oscilloscope. If real-time scheduling is not met then InstaSPIN performance is not
predictable.

Real-time scheduling is required for consistent InstaSPIN performance.
Below are the default decimation rates:

// Defines the number of pwm clock ticks per isr clock tick
// Note: Valid values are 1, 2 or 3 only
#define USER_NUM_PWM_TICKS_PER_ISR_TICK (1)
// Defines the number of isr ticks (hardware) per controller clock tick (software)
#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)
// Defines the number of controller clock ticks per estimator clock tick
#define USER_NUM_CTRL_TICKS_PER_EST_TICK (1)
// Defines the number of controller clock ticks per current controller clock tick
#define USER_NUM_CTRL_TICKS_PER_CURRENT_TICK (1)
// Defines the number of controller clock ticks per speed controller clock tick
#define USER_NUM_CTRL_TICKS_PER_SPEED_TICK (10)
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// Defines the number of controller clock ticks per trajectory clock tick
#define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (10)

If the interrupt period does not allow these decimation rates to complete, see Section 9.1 to learn more
about changing the decimation rates.

5.1.6 System Frequency
System Frequency is the clock rate of the MCU. It is recommended to run at the highest frequency
possible so that the code is executed as fast as possible. There are two sections where user must
configure the system frequency to the maximum.

Configure MCU to fastest CPU clock for best real-time performance.
The first section is in user.h file. This #define will make sure the calculations for all the timing blocks are
calculated accordingly.

The second section is in the file hal.c using the function HAL_setParams, see the code example shown in
Table 5-1 configuring the PLL to run at a maximum frequency of 90 MHz for the 2806x device, and 60
MHz for the 2805x and 2802x devices.

Table 5-1. hal.c Configuring the PLL

Fastest
System

Device Frequency user.h hal.c
2806x 90 MHz #define USER_SYSTEM_FREQ_MHz (90) HAL_setupPll(handle,PLL_ClkFreq_90_

MHz)

2805x 60 MHz #define USER_SYSTEM_FREQ_MHz (60) HAL_setupPll(handle,PLL_ClkFreq_60_
MHz)

2802x 60 MHz #define USER_SYSTEM_FREQ_MHz (60) HAL_setupPll(handle,PLL_ClkFreq_60_
MHz)

5.1.7 PWM Frequency
PWM Frequency is set in the file user.h. Some motors require more PWM frequency than others,
depending on the motor inductance. As a general rule, the lower the inductance of the motor, the higher
the PWM frequency needed to avoid too much current ripple. In general, 20 kHz is recommended for the
majority of motors, special cases where the PWM frequency is suggested to be higher are discussed in
subsequent sections of this document.

Lower inductance motors require higher PWM frequency.
The following code example shows how to set the software for 20 kHz PWM frequency:

//! \brief Defines the Pulse Width Modulation (PWM) frequency, kHz
#define USER_PWM_FREQ_kHz (20.0)

5.1.8 Max Voltage Vector
Maximum voltage vector is set in the file user.h and is used to set the maximum magnitude for the output
of the Id and Iq PI current controllers. The Id and Iq current controller outputs are Vd and Vq. The
relationship between Vs, Vd, and Vq is:

Vs = sqrt(Vd^2 + Vq^2)
Vq = sqrt(USER_MAX_VS_MAG^2 - Vd^2)

In this FOC controller, the Vd value is set equal to:
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USER_MAX_VS_MAG*USER_VD_MAG_FACTOR.

USER_MAX_VS_MAG_PU can go up to 1.0, in global IQ format, or _IQ(1.0), if current reconstruction is
not used. For further discussion and examples, see Labs 10a-x.

//! \brief Defines the voltage vector magnitude
#define USER_MAX_VS_MAG_PU (1.0)

Besides this definition of the maximum voltage vector magnitude, a member of the controller object can be
changed to allow changing the output of the current controllers, which is then the input of the space vector
modulation (SVM). This is important to note, because even though the maximum voltage vector magnitude
is defined in user.h to be a maximum of 1.0 (or 100%), the inputs to the SVM can go up to 4.0/3.0 =
1.3333 allowing overmodulation. An input into the SVM above 1.0 is in the overmodulation region. An
input of 2/SQRT(3) = 1.1547 is where the crest of the sine wave touches the 100% duty cycle. At an input
of 1.3333, the SVM generator produces a trapezoidal waveform. The following code example changing the
output of the current controllers to 1.3333 allowing maximum overmodulation:

// Set the maximum current controller output for the Iq and Id current
// controllers to enable overmodulation.
CTRL_setMaxVsMag_pu(ctrlHandle, _IQ(pUserParams->maxVsMag_pu));

Table 5-2 describes the different ranges of the maximum SVM input and what it means for the space
vector modulation module (SVM).

Table 5-2. Maximum SVM Input Ranges

#define USER_MAX_VS_MAG_PU CTRL_setMaxVsMag_pu(handle, Duty Cycle on Current
(value) value) EPWM at Peak Waveform Type Reconstruction
(1.0) Perfect86.6% Not neededIQ(1.0) Sinusoidal

Quasi-100.0% Required_IQ(2/SQRT(3)) Sinusoidal

100.0% Trapezoidal Required_IQ(1.3333)

When operating in the overmodulation region, voltage waveforms start turning from sinusoidal to
trapezoidal depending on how much overmodulation is applied. Motor vibration and torque ripple should
be expected as motor operation goes deeper into overmodulation. The SVM module is explained in detail
in Table 8-1.

Maximum Voltage Magnitude that causes a peak duty cycle of 100% requires three shunt current
measurement.
The actual duty cycle range caused by the maximum voltage magnitude depends on the number of shunt
resistors used to sample the currents. If 100% duty cycles are required by the application, user must use
three shunt resistors to sample the phase currents of the motor. Having only two shunt resistors limits the
duty cycle to be less than 100%. The maximum duty cycle allowed when using two shunt resistors
depends on the OPAMP parameters and the layout itself. The details of choosing the right components for
the current feedback are covered in Chapter 17.

5.2 Hardware Prerequisites
There are a few hardware dependent parameters that need to be set correctly in order to identify the
motor properly and run the motor effectively using InstaSPIN. The following parameters are related to this,
each will be discussed in detail:
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• Current feedback gain - maximize ADC input range
• Current feedback polarity - match software with hardware polarity
• Voltage feedback
• Voltage filter pole
• Number of shunt resistors
• Deadtime configuration
• Analog inputs configuration
• PWM outputs configuration

The following sections describe each one of these parameters.

5.2.1 Current Feedback Gain
In order to measure bidirectional currents, that is, positive and negative currents, the circuits below require
a reference voltage of 1.65 V. This voltage is generally not available in 3.3-V systems, but can be created
very easily by a voltage follower. Figure 5-2 is a circuit example that generates a 1.65-V reference from a
3.3-V input, which is available in 3.3-V systems. For subsequent circuits connecting to 1.65 V, this circuit
is assumed to be used.

Figure 5-2. 1.65-V Reference from 3.3-V Input Circuit Example

Figure 5-3 shows a typical differential amplifier configuration for the current measurement.

Figure 5-3. Typical Differential Amplifier Circuit

The transfer function of this circuit is given by Equation 3.

(3)
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In order to illustrate some values on this circuit, let's consider a motor with a maximum phase current
defined to be 10 A. The maximum current to be measured by the microcontroller in this example is ±10 A
with this circuit producing a maximum voltage of 1.65V (±1.65V) to support the 3.3 V ADC input range.

For the worst case of 10A, consider a 0.01-Ohm shunt resistor.

(4)

Now if we let the input resistance be 1.0 kOhm, we can calculate the feedback resistance based on the
input resistance and the required ratio.

(5)

The calculated resistance values lead to the circuit shown in Figure 5-4, providing a voltage range of 0-3.3
V to represent a measured phase current of ±10 A.

Figure 5-4. Calculated Resistance Values Circuit

As shown in this example, the maximum peak to peak current measurable by the microcontroller is 20 A,
which is the peak to peak value of ±10 A. The following code snippet shows how this is defined in user.h:

//! \brief Defines the maximum current at the AD converter
#define USER_ADC_FULL_SCALE_CURRENT_A (20.0)

The slew rate of the OPAMP plays an important role in the current measurement quality. For more details,
see Chapter 17.

5.2.2 Current Feedback Polarity
Correct polarity of the current feedback is also important so that the microcontroller has an accurate
current measurement.

5.2.2.1 Positive Feedback
In this hardware configuration, the negative pin of the shunt resistor, which is connected to ground, is also
connected to the inverting pin of the operational amplifier. Figure 5-5 shows a positive polarity in
hardware and its configuration in software. The highlighted sign is required to be configured in order to
have positive polarity for the current feedback in software. Function HAL_updateAdcBias is located in
hal.h file.
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Figure 5-5. Positive Feedback

//! \brief Updates the ADC bias values
//! \param[in] handle The driver (HAL) handle
inline void HAL_updateAdcBias(HAL_Handle handle)
{

uint_least8_t cnt;
HAL_Obj *obj = (HAL_Obj *)handle;
_iq bias;

// update the current bias
for(cnt=0;cnt<HAL_getNumCurrentSensors(handle);cnt++)

{
bias = HAL_getBias(handle,HAL_SensorType_Current,cnt);

bias -= OFFSET_getOffset(obj->offsetHandle_I[cnt]);

HAL_setBias(handle,HAL_SensorType_Current,cnt,bias);
}

// update the voltage bias
for(cnt=0;cnt<HAL_getNumVoltageSensors(handle);cnt++)

{
bias = HAL_getBias(handle,HAL_SensorType_Voltage,cnt);

bias += OFFSET_getOffset(obj->offsetHandle_V[cnt]);

HAL_setBias(handle,HAL_SensorType_Voltage,cnt,bias);
}

return;
} // end of HAL_updateAdcBias() function

5.2.2.2 Negative Feedback
On the other hand, Figure 5-6 represents a negative feedback. In this hardware configuration, the
negative pin of the shunt resistor, which is connected to ground, is also connected to the non inverting
pin of the operational amplifier. The code needed to configure negative feedback shows a highlighted sign
that needs to be configured in order to have a negative feedback in software. Function
HAL_updateAdcBias is located in hal.h file.
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Figure 5-6. Negative Feedback

//! \brief Updates the ADC bias values
//! \param[in] handle The driver (HAL) handle
inline void HAL_updateAdcBias(HAL_Handle handle)
{

uint_least8_t cnt;
HAL_Obj *obj = (HAL_Obj *)handle;
_iq bias;

// update the current bias
for(cnt=0;cnt<HAL_getNumCurrentSensors(handle);cnt++)

{
bias = HAL_getBias(handle,HAL_SensorType_Current,cnt);

bias += OFFSET_getOffset(obj->offsetHandle_I[cnt]);

HAL_setBias(handle,HAL_SensorType_Current,cnt,bias);
}

// update the voltage bias
for(cnt=0;cnt<HAL_getNumVoltageSensors(handle);cnt++)

{
bias = HAL_getBias(handle,HAL_SensorType_Voltage,cnt);

bias += OFFSET_getOffset(obj->offsetHandle_V[cnt]);

HAL_setBias(handle,HAL_SensorType_Voltage,cnt,bias);
}

return;
} // end of HAL_updateAdcBias() function

5.2.3 Voltage Feedback
Voltage feedback is needed in the FAST estimator to allow the best performance at the widest speed
range. Other algorithms rely on software variables which fail to represent the voltage phases accurately. In
FAST, phase voltages are measured directly from the motor phases instead of a software estimate. This is
why the hardware setting for voltage feedback is another prerequisite for InstaSPIN and motor
identification. This software value (USER_ADC_FULL_SCALE_VOLTAGE_V) depends on the circuit that
senses the voltage feedback from the motor phases. Figure 5-7 is an example of a voltage feedback
circuit based on resistor dividers.
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Figure 5-7. Voltage Feedback Circuit

The maximum phase voltage feedback measurable by the microcontroller in this example can be
calculated as follows, considering the maximum voltage for the ADC input is 3.3V:

(6)

With that voltage feedback circuit, the following setting is done in user.h:

//! \brief Defines the maximum voltage at the input to the AD converter
#define USER_ADC_FULL_SCALE_VOLTAGE_V (66.3)

If we consider 20-30% headroom for this value, the maximum voltage input to the system is recommended
to be between 66.3*0.7 = 46.4 V and 66.3*0.8 = 53, so for a motor of 48 V this voltage feedback resistor
divider is ideal.

An example of a different nominal voltage is given next. If the motor to be driven has a nominal voltage of
24 V, then the voltage feedback circuit needs to be modified so that the ADC resolution is maximized for
the measured voltage. Following the same recommendation for headroom, consider a nominal of 24 V,
and a headroom value of 30%. This gives us a USER_ADC_FULL_SCALE_VOLTAGE_V of 24*1.3 = 31.2
V which is represented in Equation 7, where we fix one of the resistors to leave only one variable.

(7)

That would give us the maximum voltage of 31.2 V configured as follows:
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//! \brief Defines the maximum voltage at the input to the AD converter
#define USER_ADC_FULL_SCALE_VOLTAGE_V (31.2)

The voltage feedback circuit with those values is represented in Figure 5-8.

Figure 5-8. Voltage Feedback Circuit

5.2.4 Voltage Filter Pole
The voltage filter pole is needed by the FAST estimator to allow an accurate detection of the voltage
feedback. The filter should be low enough to filter out the PWM signals, and at the same time allow a high
speed voltage feedback signal to pass through the filter.

As a general guideline, a cutoff frequency of a few hundred Hz is enough to filter out a PWM frequency of
10 to 20 kHz. The hardware filter should only be changed when ultra high speed motors are run, which
generate phase voltage frequencies in the order of a few kHz.

In this example, consider the motor provided with the DRV8312 Revision D board, which is an Anaheim
PMSM motor with a maximum speed of about 8,000 RPM with 4 pole pairs. This gives a voltage
frequency of 8000/60*4 = 533.3 Hz. The voltage filter of around this frequency of 533 Hz should be
enough cutoff frequency for this motor and speed.

Looking at the DRV8312 Revision D hardware, consider the same voltage feedback circuit shown in
Figure 5-8.

The filter pole setting can be calculated as follows:

(8)

The following code example shows how this is defined in user.h:

//! \brief Defines the analog voltage filter pole location, Hz
#define USER_VOLTAGE_FILTER_POLE_Hz (714.15)
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Tips and Tricks:
• For best results, keep the filter pole > 200 Hz
• The filter pole must be > IQ_FULLSCALE_FREQUENCY_Hz / 4.0 to avoid numerical

saturation.

5.2.5 Number of Shunt Resistors
An important hardware configuration choice is the number of shunt resistors to use. This number is
ultimately used by the Clarke transform to convert from a three phase system to a two phase system.
Three shunt resistors are used if all of the phases have a shunt resistor from the bottom transistor to
ground as shown in Figure 5-9.

Figure 5-9. Shunt Resistors

If this configuration is present, the user should define three shunt resistors in the software for best results.
The following code example shows how to configure the software to use three shunt resistors:

//! \brief Defines the number of current sensors used
#define USER_NUM_CURRENT_SENSORS (3)

If the hardware has two shunt resistors to measure the currents, the software must be configured for only
two shunt resistors as follows:

//! \brief Defines the number of current sensors used
#define USER_NUM_CURRENT_SENSORS (2)

For more details about shunt resistor measurement requirements of InstaSPIN, see Chapter 17.

5.2.6 Deadtime Configuration
Depending on the hardware used, the deadtime must be configured correctly in order to avoid shoot
through between high-side and low-side transistors within the inverter (see Figure 5-10). For more details
about EPWM module and deadtime configuration, see the MCU's Technical Reference Manual.
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Figure 5-10. Deadtime Configuration

Deadtime depends on the transistor and gate driver circuit used, and is configured as shown in the
following code example, assuming a 2.0 µs is needed for the deadtime, with a 90-MHz system frequency
running on F2805xF and F2806xF devices:

//! \brief Defines the system clock frequency, MHz
//!
#define USER_SYSTEM_FREQ_MHz (90)

//! \brief Defines the PWM dead band in terms of the number of system clocks
//!
#define USER_PWM_DBCNT_INIT_STATE \

((uint16_t)(2.0 * (float_t)USER_SYSTEM_FREQ_MHz))

And with a 60-MHz system frequency running on a F2802xF device:

//! \brief Defines the system clock frequency, MHz
//!
#define USER_SYSTEM_FREQ_MHz (60)
//! \brief Defines the PWM dead band in terms of the number of system clocks
//!
#define USER_PWM_DBCNT_INIT_STATE \

((uint16_t)(2.0 * (float_t)USER_SYSTEM_FREQ_MHz))
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Trip zones and comparators used to protect the hardware against overcurrent or overvoltage conditions
depend on the particular hardware configuration used, and it is the responsibility of the end user to make
use of all the available feature of the EPWM and ADC modules to protect the hardware. Also, alternative
deadtime implementation scenarios can be accomplished with the flexibility of the EPWM module,
however, the scope of this document is limited to the functionality of InstaSPIN software, and does not
cover all the EPWM implementation scenarios.

5.2.7 Analog Inputs Configuration
The analog pins must be configured in the software. To illustrate this, consider Figure 5-11, representing
how the analog pins are connected when using a F2806xF device with a DRV8312 Revision D
development board.

Figure 5-11. Analog Connections

For more details about the ADC configuration, see the TMS320x2806x Piccolo Technical Reference Guide
(SPRUH18), the TMS320x2805x Piccolo Technical Reference Guide (SPRUHE5), and the
TMS320F2802x, TMS320F2802xx Piccolo System Control and Interrupts Reference Guide (SPRUFN3).
For more details about pins related to specific packages, see the TMS320F2806x Piccolo Microcontrollers
data manual (SPRS698), the TMS320F2805x Piccolo Microcontrollers data manual (SPRS797), and the
TMS320F2802x, TMS320F2802xx Piccolo Microcontrollers data manual (SPRS523).

The following code example shows how to configure the ADC input pins to represent the previous
diagram. The lines of code doing the actual configuration are highlighted in the code example. This code
is part of the function HAL_setupAdcs of hal.c file.

ADC_setSocChanNumber (obj->adcHandle,ADC_SocNumber_0,ADC_SocChanNumber_A1);
ADC_setSocTrigSrc(obj->adcHandle,ADC_SocNumber_0,ADC_SocTrigSrc_EPWM1_ADCSOCA);
ADC_setSocSampleDelay(obj->adcHandle,ADC_SocNumber_0,ADC_SocSampleDelay_9_cycles);

ADC_setSocChanNumber(obj->adcHandle,ADC_SocNumber_1,ADC_SocChanNumber_B5);
ADC_setSocTrigSrc(obj->adcHandle,ADC_SocNumber_1,ADC_SocTrigSrc_EPWM1_ADCSOCA);
ADC_setSocSampleDelay(obj->adcHandle,ADC_SocNumber_1,ADC_SocSampleDelay_9_cycles);

ADC_setSocChanNumber(obj->adcHandle,ADC_SocNumber_2,ADC_SocChanNumber_A5);
ADC_setSocTrigSrc(obj->adcHandle,ADC_SocNumber_2,ADC_SocTrigSrc_EPWM1_ADCSOCA);
ADC_setSocSampleDelay(obj->adcHandle,ADC_SocNumber_2,ADC_SocSampleDelay_9_cycles);

ADC_setSocChanNumber(obj->adcHandle,ADC_SocNumber_3,ADC_SocChanNumber_B7);
ADC_setSocTrigSrc(obj->adcHandle,ADC_SocNumber_3,ADC_SocTrigSrc_EPWM1_ADCSOCA);
ADC_setSocSampleDelay(obj->adcHandle,ADC_SocNumber_3,ADC_SocSampleDelay_9_cycles);
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ADC_setSocChanNumber(obj->adcHandle,ADC_SocNumber_4,ADC_SocChanNumber_A7);
ADC_setSocTrigSrc(obj->adcHandle,ADC_SocNumber_4,ADC_SocTrigSrc_EPWM1_ADCSOCA);
ADC_setSocSampleDelay(obj->adcHandle,ADC_SocNumber_4,ADC_SocSampleDelay_9_cycles);

ADC_setSocChanNumber(obj->adcHandle,ADC_SocNumber_5,ADC_SocChanNumber_B4);
ADC_setSocTrigSrc(obj->adcHandle,ADC_SocNumber_5,ADC_SocTrigSrc_EPWM1_ADCSOCA);
ADC_setSocSampleDelay(obj->adcHandle,ADC_SocNumber_5,ADC_SocSampleDelay_9_cycles);

ADC_setSocChanNumber(obj->adcHandle,ADC_SocNumber_6,ADC_SocChanNumber_B2);
ADC_setSocTrigSrc(obj->adcHandle,ADC_SocNumber_6,ADC_SocTrigSrc_EPWM1_ADCSOCA);
ADC_setSocSampleDelay(obj->adcHandle,ADC_SocNumber_6,ADC_SocSampleDelay_9_cycles);

5.2.8 PWM Outputs Configuration
Figure 5-12 represents a configuration of the PWM pins, where phase A of the motor is driven by
EPWM1A/EPWM1B, motor phase B by EPWM2A/EPWM2B, and motor phase C by EPWM3A/EPWM3B.
This configuration in hardware is the same as the DRV8312 Revision D board, and it is taken as an
example in this document.

Figure 5-12. PWM Pin Configuration

For more details about the EPWM configuration, see the TMS320x2806x Piccolo Technical Reference
Guide (SPRUH18), the TMS320x2805x Piccolo Technical Reference Guide (SPRUHE5), and the
TMS320F2802x, TMS320F2802xx Piccolo System Control and Interrupts Reference Guide (SPRUFN3).
For more details about pins related to specific packages, see the TMS320F2806x Piccolo Microcontrollers
data manual (SPRS698), the TMS320F2805x Piccolo Microcontrollers data manual (SPRS797), and the
TMS320F2802x, TMS320F2802xx Piccolo Microcontrollers data manual (SPRS523).

The following code example shows how to setup the PWM pins for the diagram shown above. This code
example is part of the initialization of the driver object (HAL_init), contained in hal.c file. Once the handles
are initialized to use the first three EPWM pairs, the rest of the PWM configuration is done to the initialized
handles:

// initialize PWM handle
obj->pwmHandle[0] = PWM_init((void *)PWM_ePWM1_BASE_ADDR,sizeof(PWM_Obj));
obj->pwmHandle[1] = PWM_init((void *)PWM_ePWM2_BASE_ADDR,sizeof(PWM_Obj));
obj->pwmHandle[2] = PWM_init((void *)PWM_ePWM3_BASE_ADDR,sizeof(PWM_Obj));

The highlighted text indicates the correspondence between:
• pwmHandle[0] = EPWM1A/EPWM1B, which will drive phase A of the motor
• pwmHandle[1] = EPWM2A/EPWM2B, which will drive phase B of the motor
• pwmHandle[2] = EPWM3A/EPWM3B, which will drive phase C of the motor.
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Chapter 6
SPRUHJ1F–January 2013–Revised July 2014

Motor Identification and State Diagrams

We will look at the motor identification function comparing the process differences with identifying ACIM
and PMSM, looking at the detail of each process, and discussing the special cases that require non-typical
procedures.

Some sensorless motor control applications rely on a motor model. This motor model requires knowledge
of certain motor parameters in order to have an accurate representation of the motor. This model is then
used to run an estimator, which will then provide the unknown variables such as rotor flux angle or speed.
A problem occurs when the motor parameters are unknown, or if the parameters change over time.
Typically a well-defined motor is used for an end application, but in some cases, the motor has not been
defined or there are several motors used during the product's life.

A way to determine the motor parameters and keep track of them is to have software that measures motor
parameters. Although identifying the motor is not a must for all applications, it provides an easy and better
out of the box experience to run any given motor sensorlessly. Other algorithms in the marketplace require
an intensive tuning process upfront, even before running the motor in closed loop at all.

The following sections describe in detail the process of motor identification with the InstaSPIN solution.
Significant efforts have been spent on ensuring both the algorithms and steps describe will successfully
identify a large number of motor types. But, one should not expect that the algorithms and steps described
will always successfully identify all motors or motor types. The troubleshooting section mentions a few
specific motor types that require special attention.
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6.1 InstaSPIN Motor Identification
The highlighted blocks in Figure 6-1 are related to the InstaSPIN Motor Identification feature.

Figure 6-1. InstaSPIN Motor Identification Components

Motor identification is a feature added to InstaSPIN-FOC that allows the identification of the parameters
needed by the estimator to run in closed loop sensorlessly. If the motor parameters are well known by the
user, motor identification is optional. The motor identification feature of InstaSPIN enables users to run
their motor to its highest performance even when motor parameters are unknown. In the case of a known
motor or a previously identified motor, running InstaSPIN's motor identification is optional, since the
required motor parameters can be recorded in a header file. An example of such a header file is user.h.
The following example shows the required parameters for PMSM motors when bypassing motor
identification:

#if (USER_MOTOR == User_PMSM)
#define USER_MOTOR_Rs (2.83)
#define USER_MOTOR_Ls_d (0.0115)
#define USER_MOTOR_Ls_q (0.0135)
#define USER_MOTOR_RATED_FLUX (0.502)

The following example shows the required parameters for ACIM motors when bypassing motor
identification:

#elif (USER_MOTOR == User_ACIM)
#define USER_MOTOR_Rr (5.5)
#define USER_MOTOR_Rs (10.7)
#define USER_MOTOR_Ls_d (0.053)
#define USER_MOTOR_Ls_q USER_MOTOR_Ls_d
#define USER_MOTOR_MAGNETIZING_CURRENT (1.4)
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For more details about the motor parameters needed for PMSM and ACIM motors see Chapter 4.

Motor identification can be run with both full and minimum implementation of InstaSPIN, see Figure 6-2
and Figure 6-3. When running motor identification with InstaSPIN's minimum implementation users must
include the provided blocks for field oriented control (FOC) included in InstaSPIN open source library.

Figure 6-2. Full Implementation of InstaSPIN-FOC (F2805xF, F2805xM, F2806xF, and F2806xM Devices
Only)
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Figure 6-3. Minimum Implementation of InstaSPIN-FOC (F2802xF, F2805xF, F2805xM, F2806xF, and
F2806xM Devices)

6.2 Motor Identification Process Overview

6.2.1 Controller (CTRL) State Machine
Table 6-1 summarizes all the states shown in Figure 6-4, with a brief description. A more detailed
description is given in this document when the detailed motor identification process is explained.
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Figure 6-4. Controller (CTRL) State Diagram

Table 6-1. Controller (CTRL) States

Controller State Brief Description
The start state is only shown as a starting point of the entire state machine. However it does notStart actually exist in the controller state machine.
This state is present when the controller is waiting for user's input to start. This state is alsoIdle present when the system is waiting for user's input to start doing the locked rotor test whenCTRL_State_Idle identifying AC Induction Motors.

Offline The hardware offsets calibration is done during this state of the controllerCTRL_State_OffLine

Online Motor is running in closed loop, or is being identified. The entire estimator (EST) state machine is
run when the controller (CTRL) state machine is OnlineCTRL_State_OnLine

Table 6-2 summarizes all the state transition conditions shown in Figure 6-4.

Table 6-2. State Transitions for Controller (CTRL) State Diagram

Condition Brief Explanation
This condition is present when the controller has not been enabled, can be checked with the
following instruction:
if(CTRL_getFlag_enableCtrl(ctrlHandle)== FALSE)Controller Disabled Also, the controller can be disabled at any time with user's code by calling the following function
with the indicated parameter:
CTRL_setFlag_enableCtrl(ctrlHandle,FALSE);

This condition is present when the controller has been enabled, can be checked with the following
instruction:

Controller Enabled if(CTRL_getFlag_enableCtrl(ctrlHandle)== TRUE)
The controller can be enabled by using:
CTRL_setFlag_enableCtrl(ctrlHandle,TRUE);

This condition is present when the estimator state is any state other than Idle. Can be checked
with the following instruction:Estimator Not Idle
if(EST_getState(obj->estHandle)!=EST_State_Idle)
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Table 6-2. State Transitions for Controller (CTRL) State Diagram (continued)
Condition Brief Explanation

This condition is present when the estimator state is in the Idle state. Can be checked with the
following instruction:Estimator Is Idle
if(EST_getState(obj->estHandle)==EST_State_Idle)

This condition is internally checked in the state machine of the estimator, and is not publiclyDon't Perform Locked Rotor accessible with user's code. This condition is only checked internally when the motor type is set toTest induction motor.
Perform Locked Rotor Test Same explanation as above for "Don't Perform Locked Rotor Test."

This condition is true when the motor has not been identified, or when user motor's parameters
haven't been loaded into the controller object. The Motor Not Identified condition can be checkedMotor Not Identified by using the following example:
if(EST_isMotorIdentified(obj->estHandle)== FALSE)

After motor identification is completed, or after user motor's parameters are loaded into the
controller, the motor identified condition is true. This condition can also be checked by using theMotor Identified following example:
if(EST_isMotorIdentified(obj->estHandle)==TRUE)

This condition is true when the hardware offsets recalibration has been enabled. Offsets
recalibration is enabled by default. This can be checked with the following instruction example:Offset Recalibration Enabled
if(CTRL_getFlag_enableOffset(ctrlHandle)==TRUE)

When hardware offsets recalibration has been disabled, this condition is true. It can be checked
using the following example:Offset Recalibration Disabled
if(CTRL_getFlag_enableOffset(ctrlHandle)==FALSE)

This is an internal condition which is checked while the offset recalibration is being executed. The
time taken by the offset recalibration is defined by the following instruction in user.c file:

Wait Not Expired pUserParams->ctrlWaitTime[CTRL_State_OffLine] =
(uint_least32_t)( 5.0 * USER_CTRL_FREQ_Hz);

Where the USER_CTRL_FREQ_Hz is defined in user.h.
This condition is present when the estimator state machine is not in locked rotor test. Such
condition can be checked by the user using the following instruction example:Estimator Not In Locked Rotor
if(EST_getState(obj->estHandle) !=EST_State_LockRotor);

The state transitions that have time dependencies are based on an internal counter compared to
the value stored in the respective wait time in user.c:Wait Expired
uint_least32_t ctrlWaitTime[CTRL_numStates];
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6.2.2 Estimator (EST) State Machine
Table 6-3 summarizes all the states shown in Figure 6-5, with a brief description. A more detailed
description is given in this document when the detailed motor identification process is explained.

Figure 6-5. Estimator (EST) State Diagram

Table 6-3. Estimator (EST) States

Estimator State Brief Description
The start state is only shown as a starting point of the entire state machine. However it doesStart not actually exist in the estimator state machine.

Idle During the idle state, the estimator state machine does not execute any code. It is simply
waiting for the controller state machine to change the state of the estimator.EST_State_Idle

The R over L state of the estimator is executed during the motor identification process inRoverL order to measure the electrical constant of the motor. The resulting R over L ratio is used atEST_State_RoverL the end of this state to calculate the ID and IQ current controller gains.
The estimator is in the Rs state when identifying the stator resistance of the motor for theRs first time, or when it is recalibrating the stator resistance after the motor has been fullyEST_State_Rs identified.
The online state of the estimator is present when the motor is operating in closed loop. In

Online order to be in this state, the motor had to be fully identified or motor parameters had to be
provided to a header file in user.h, and the controller had been run. This is the state whereEST_State_OnLine
the speed reference can be changed, and when full load can be applied to the motor's shaft.
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Table 6-3. Estimator (EST) States (continued)
Estimator State Brief Description

The ramp up state of the estimator is to get the motor spinning up to a configured frequency
Ramp Up in order to perform other identification tasks, such as flux and inductance identification.

During this state, there aren't any parameters estimated, it only spins the motor up to aEST_State_RampUp
certain frequency.

Rated Flux OL This is a transitional state of the estimator prior to identifying the rated flux of the machine.EST_State_RatedFluxOL

Rated Flux During this state, the flux linkage of the motor from the rotor to the stator is identified.EST_State_RatedFlux

Id Rated Only applicable to ACIM motors, this state is present when the motor's magnetizing current
is being identified for the commanded flux defined in user.h.EST_State_IdRated

Ls The stator inductance is identified during this state of the estimator.EST_State_Ls

Rr Only applicable to ACIM motors, during this state, the rotor resistance is identified. The rotor
must be locked in order to perform the rotor resistance identification.EST_State_Rr

This state is used to let users know that the rotor must be locked, and then controller mustLock Rotor be re-enabled after rotor is locked, to proceed with the rest of the identification process. TheEST_State_LockRotor controller is put in idle when the estimator is in lock rotor state.
After all parameters of the motor have been identified, the ramp down state is present to

Ramp Down allow some time to remove the currents flowing through the motor windings. No parameters
are identified during this state since it is only a transitional state before the end of theEST_State_RampDown
identification process.
The motor identified state is also a transitional state to let the estimator state machine know

Motor Ident that the motor is fully identified, and after this state is done, the state machine is put back in
idle. The controller state machine is also put in idle state after the motor identified state isEST_State_MotorIdentified
finished.

Table 6-4 summarizes all the state transition conditions shown in Figure 6-5.

Table 6-4. State Transitions for Estimator (EST) State Diagram

Condition Brief Explanation
Motor Is Not Identified Explained in the controller state machine
Motor Is Identified Explained in the controller state machine

The stator resistance recalibration feature of InstaSPIN, also known as Rs Offline recalibration, is
used when the motor is at stand still, right before running the motor in closed loop when the motor
has been fully identified, or when motor parameters have been provided by the user in user.h file.
This condition where the Rs recalibration is disabled is present when this feature has been
disabled, which can be checked using the following code example:

Rs Recalibration Disabled if(EST_getFlag_enableRsRecalc(obj->estHandle)==FALSE)
The Rs recalibration feature can be disabled by calling this function with the indicated parameter
before enabling the controller:
EST_setFlag_enableRsRecalc(obj->estHandle, FALSE);
The Rs recalibration feature is enabled by default.
This condition where the Rs recalibration is enabled is present when this feature has been
enabled, which can be checked using the following code example:
if(EST_getFlag_enableRsRecalc(obj->estHandle)==TRUE)

Rs Recalibration Enabled The Rs recalibration feature can be enabled by calling this function with the indicated parameter
before enabling the controller:
EST_setFlag_enableRsRecalc(obj->estHandle, TRUE);
The Rs recalibration feature is enabled by default.

Controller Disabled Explained in the controller state machine
Controller Enabled Explained in the controller state machine

This condition is true when the motor type is not an ACIM, which can be checked by the following
example:Motor Is Not an ACIM
if(CTRL_getMotorType(ctrlHandle)!=MOTOR_Type_Induction)

This condition is true when the motor type is an ACIM, which can be checked by the following
example:Motor Is an ACIM
if(CTRL_getMotorType(ctrlHandle)==MOTOR_Type_Induction)
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Table 6-4. State Transitions for Estimator (EST) State Diagram (continued)
Condition Brief Explanation

The state transitions that have time dependencies are based on an internal counter compared to
the value stored in the respective wait time in user.c:
uint_least32_t estWaitTime[EST_numStates];

Wait Expired uint_least32_t FluxWaitTime[EST_Flux_numStates];
uint_least32_t LsWaitTime[EST_Ls_numStates];
uint_least32_t RsWaitTime[EST_Rs_numStates];

6.2.3 Controller (CTRL) and Estimator (EST) State Machine Dependencies
The controller state machine governs the estimator state machine. In fact, all of the estimator state
transitions happen only when the controller state is Online. To illustrate this, consider the following
simplified controller state machine (Figure 6-6), with a magnified online state showing the entire state
machine of the estimator inside of it.

Figure 6-6. Controller and Estimator State Diagrams - Dependency Shown
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6.3 Differences between PMSM and ACIM Identification Process
There are certain states during the identification of the motors that differ between a PMSM and an ACIM
motor. Figure 6-7 highlights the states that are related to PMSM motors, the ones related to ACIM motors,
and also the states that are related to both.

Figure 6-7. PMSM and ACIM States in EST State Diagram

As a supplement to Figure 6-7, consider Table 6-5, listing all the states, and the motors to which they
apply.

Table 6-5. Listing of PMSM and ACIM EST States

Motors the State Applies to Estimator States
Idle, Online, R over L, Rs, Ramp Up, Rated Flux, Ls, Ramp Down andBoth PMSM and ACIM Motor Identified

ACIM Only Id Rated, Lock Rotor and Rr
PMSM Only Rated Flux OL
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6.4 Prerequisites
There are several prerequisites in order to have a successful identification of a PMSM motor. The
following sections describe these prerequisites grouped in three main areas: mechanical, hardware and
software prerequisites.

6.4.1 Mechanical Prerequisites

6.4.1.1 Motor Connection
Before running motor identification, the motor must be connected to the driver board. This board can be a
development board or a user's board, in either case the software needs to be configured to operate with
the specific board.

6.4.1.2 Order of the Phases
The order of the phases to be connected to the board does not matter for controlling the dynamics of the
motor, except direction. If direction is important, it is recommended to connect the motor for the required
direction prior to starting identification. If the direction of the motor rotation is not the desired direction,
swap two of the motor phases, and the direction will reverse. Then try the identification again.

6.4.1.3 Minimum Mechanical Load
It is also important to have as minimum mechanical load as possible. This is because the identification
runs a series of motor tests, some of them in open loop. These open loop tests do not have the ability to
produce maximum torque on the motor's shaft hence it is required to have the motor's shaft with as little
load as possible, knowing that no load is ideal. Section 6.9.2.1 covers some guidelines to follow when
identifying motors when the mechanical load cannot be removed, such as in a compressor or direct drive
washing machine.

6.4.2 Hardware Prerequisites
For more details, see Chapter 5.

6.4.3 Software Prerequisites
For more details, see Chapter 5.

6.4.4 Software Configuration for PMSM Motor Identification
• Motor Type
• Number of Pole Pairs
• Frequency for Rhf and Lhf
• Current for Rs
• Current for Ls
• Frequency for Ls and Flux

6.4.4.1 Motor Type
User must know their motor type in order to run motor identification. For PMSM motor identification, set
the following definition to PMSM motor type (MOTOR_Type_Pm) as shown below. This definition is in
user.h:

#define USER_MOTOR_TYPE MOTOR_Type_Pm
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If the wrong motor is selected, for example a PMSM when an ACIM motor is connected, the estimator will
not be able to identify the correct parameters. Motor identitication cannot identify what type of motor is
connected, instead it identifies the motor parameters. Having the correct motor definition specified is
required, otherwise motor identification will not work.

6.4.4.2 Number of Pole Pairs
The number of pole pairs is not critical but should be set correctly in order to have a correct measurement
of speed in revolutions per minute (RPM) and torque. For example, consider a motor with four pole pairs.
The following code example shows how this is set in user.h:

#define USER_MOTOR_NUM_POLE_PAIRS (4)

6.4.4.3 Frequency for Rhf and Lhf
This frequency is used by the motor identification algorithm to estimate initial values for stator resistance
and stator inductance in order to calculate current controller gains. This estimation is done at this
frequency, set by default to 100 Hz as shown in the following code example from user.h:

//! \brief Defines the R/L estimation frequency, Hz
//!
#define USER_R_OVER_L_EST_FREQ_Hz (100)

This frequency will be covered in more detail in the identification procedure discussed in upcoming
sections of this document.

6.4.4.4 Current for Rs
The stator resistance is estimated by injecting a constant current, which is set by this parameter. Although
this part of the identification process will be explained in detail, a general guideline to set this value is 10%
to 20% of the rated phase current of the motor. For example, if a motor requires 4 A to produce rated
torque, then the current to estimate the stator resistance (Rs) should be around 0.5 A.

#define USER_MOTOR_RES_EST_CURRENT (0.5)

Later in the motor identification process, this current is also used to get the motor spinning in open loop. If
the motor does not spin through the entire ramp up process, increase in 10% of the rated current
increments until the shaft is in motion during the entire ramp up process.

6.4.4.5 Current for Ls
As a general rule, the current commanded to estimate the stator inductance (Ls) should be 10% to 20% of
the rated phase current (negative current). Considering the same example as the resistance estimation, if
we consider the same motor, with 4 A of rated current, the recommended current would be about -0.5A,
as shown below:

#define USER_MOTOR_IND_EST_CURRENT (-0.5)
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Keep in mind that the current used to estimate Ls is independent of the current used for Rs identification.
Even though the general guideline for both currents is 10-20% of the rated current of the motor, if the
motor required more current for Rs in order to get it through the open loop ramp, the Ls current might not
need to as high since the motor is already spinning.

6.4.4.6 Frequency for Ls and Flux
This frequency is used to ramp up the motor being identified to estimate the stator inductance (Ls) and
flux. Typically, for PMSM motors a frequency of 20 Hz is high enough to estimate a stator inductance from
a few tens of µH and higher. If the inductance is known to be in the single digits of µH and lower, then a
higher frequency is recommended, up to 60 Hz for very low inductances. As an example, consider the
Anaheim motor from the DRV8312 kit (Revision D board):

#define USER_MOTOR_FLUX_EST_FREQ_Hz (20.0)

If the typical value of 20 Hz exceeds the rated speed of the motor, set the frequency lower to stay less
than the motor's rated speed.

6.4.5 Software Configuration for ACIM Motor Identification
• Motor Type
• Number of Poles
• Frequency for Rhf and Lhf
• Rated Flux
• Current for Rs
• Frequency for IdRated, Ls and Rr

6.4.5.1 Motor Type
As stated earlier, user must know their motor type in order to run motor identification. For ACIM motor
identification, set the following definition to ACIM motor type (MOTOR_Type_Induction) as shown below.
This definition is in user.h:

#define USER_MOTOR_TYPE MOTOR_Type_Induction

6.4.5.2 Number of Pole Pairs
The same criteria needs to be followed as explained in Section 6.4.4.2.

6.4.5.3 Frequency for Rhf and Lhf
The same criteria needs to be followed as explained in Section 6.4.4.3.

6.4.5.4 Rated Flux
The rated flux for an ACIM motor is required for a full identification. This rated flux is set in user.h as
follows:

#define USER_MOTOR_RATED_FLUX (0.8165*220.0/60.0)

249SPRUHJ1F–January 2013–Revised July 2014 Motor Identification and State Diagrams
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


1 220VAC 220VAC
RatedFlux 2 0.8165 3.5926V / Hz

50Hz 50Hz3
= ´ ´ = ´ =

1 220VAC 220VAC
RatedFlux 2 0.8165 2.9938

60Hz 60Hz3
= ´ ´ = ´ =

Full Identification of PMSM Motors www.ti.com

The way this flux is calculated is by the name plate of the motor. For example, if the motor is rated for
single phase 220VAC and 60 Hz then this value is calculated as follows:

(9)

Another example is a motor with the same input voltage of 220 VAC but a rated frequency of 50 Hz. This
would result in a rated flux of:

(10)

The 2 sqrt 2 term is to convert single phase RMS voltage value to peak voltage, and the 1 3 1 over sqrt 3
term is to convert motor line-to-line voltage to motor line-to-neutral voltage. Based on the rated flux of a
given motor, it is to identify the Id Rated current for half of the rated flux. In such a case, simply enter the
desired flux or a portion of it. Notice that the voltage needed to calculate rated flux is in the motor line to
motor neutral, hence the conversion from 220 VAC (motor line to motor line) to VDC (from motor line to
motor line), and then from VDC (from motor line to motor line) to VDC (from motor line to motor neutral).

6.4.5.5 Current for Rs
The same criteria needs to be followed as explained in Section 6.4.4.4.

6.4.5.6 Frequency for IdRated, Ls and Rr
This frequency is used to ramp up the motor being identified, in order to estimate the Id Rated current,
stator inductance and rotor resistance of the ACIM motor. A typical frequency used for induction motors is
5 Hz:

#define USER_MOTOR_FLUX_EST_FREQ_Hz (5.0)

6.5 Full Identification of PMSM Motors
When running full identification of PMSM motors, Figure 6-8 shows the sequence of events that happen
inside of the controller and estimator state machines.
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Figure 6-8. Full PMSM Identification - CTRL and EST Sequence of States

Prior to enabling the controller, the code knows that a full motor identification will be done when these two
conditions are true:
1. motor has not been identified
2. no parameters are used from user.h.
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if( (EST_isMotorIdentified(obj->estHandle) == FALSE) &&
(CTRL_getFlag_enableUserMotorParams(ctrlHandle) == FALSE))

In the next sections of this document, each state during the identification will be explained in detail.

6.5.1 CTRL_State_Idle and EST_State_Idle
Before the controller is enabled both the controller and estimator state machines are in the idle state,
denoted by CTRL_State_Idle and EST_State_Idle. This is also known as the inactive state of both state
machines.

6.5.2 CTRL_State_OffLine and EST_State_Idle (Hardware Offsets Calibrated)
As soon as the controller is enabled, and full identification starts, the first task performed by the controller
state machine is the offset calculation. This is denoted by the state of the controller state machine named:
CTRL_State_OffLine. The estimator state stays in the idle state (EST_State_Idle) during the controller
offline state.

The offsets calculation is done in order to set the zeros for current measurements and voltage
measurements. In order to calculate the offsets, a 50% duty cycle is set on the EPWM pins for a pre-
configured period of time. The time in which these offsets are calculated can be changed by the user, and
it is configured in user.c file as shown below:

pUserParams->ctrlWaitTime[CTRL_State_OffLine]=(uint_least32_t)(5.0*USER_CTRL_FREQ_Hz);

In the example above, the offsets calibration is done for a period of 5 seconds. Although 5 seconds for
offset calibration is enough for most of the hardware, if the user requires a shorter or longer time for their
particular needs, simply change the 5.0 value of the line of code above, and the time to do offset
calibration will change according to the new setting.

Once the offset calibration is done, the final result will be stored in the driver object (HAL_Obj). For more
details about HAL_Obj, see Table 8-1. Figure 6-9 shows the final results of calibrating the offsets for the
DRV8312 Revision D board.

Figure 6-9. CCStudio Watch Window after Offset Calibration

The current offsets, also known as bias values, ideally should be:
(11)

Note: for definitions of the variables used in the following equations, see Section 4.1.

252 Motor Identification and State Diagrams SPRUHJ1F–January 2013–Revised July 2014
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


Start Idle RoverL

Motor Is Not 

Identified

EST States

Offset Recalibration 

for 5 seconds

At 50% Duty Cycle

CTRL_State_Idle

EST_State_Idle

CTRL_State_OnLine

EST_State_RoverL

CTRL_State_OffLine

EST_State_Idle

24

2Voltage_Bias
Ideal

1.3817 = 0.25
66.32

= ´

VBUS

2Voltage_Bias
Ideal

USER_VOLTAGE_SF
USER_ADC_FULL_SCALE_VOLTAGE_V

= ´ = 0.25

USER_ADC_FULL_SCALE_VOLTAGE_V
USER_VOLTAGE_SF 1.3817

USER_IQ_FULL_SCALE_VOLTAGE_V
= = =

66.32

48.0

1.65
Current_Bias

Ideal

3.3
= ´ USER_CURRENT_SF = 0.5 1.769 = 0.8845´

USER_ADC_FULL_SCALE_CURRENT_A
USER_CURRENT_SF 1.769

USER_IQ_FULL_SCALE_CURRENT_A
= = =

17.69

10.0

www.ti.com Full Identification of PMSM Motors

This current scale factor (Current_sf or USER_CURRENT_SF) is calculated in the following example with
values for the DRV8312 board revision D:

(12)

The 0.5 value comes from the fact that the current feedback circuit is bidirectional, providing an ideal zero
at VDD/2, or 1.65V.

The voltage bias is calculated as follows. First, the voltage scale factor is done as shown here:

(13)

The ideal voltage bias is based on the fact that when introducing a 50% duty cycle to measure these
offsets, the phase voltage will present a voltage close to VBUS * 50%, and then this is scaled down
depending on the maximum voltage measured by the ADC. Considering a DRV8312 revision D board with
a VBUS of 24V, the ideal voltage bias results in 0.25, as shown below:

(14)

In the oscilloscope plot shown in Figure 6-10, the 50% duty cycle is shown, as well as the cursors
measuring the 5 second period to do the offset calibration. On the left plot, no PWM can be seen due to
the resolution of the horizontal scaling. On the left side, 1.65 V of amplitude is shown, which represents a
50% duty cycle of a 3.3 V signal. On the right side, the actual PWM signal is shown zoomed in to 50 µs
per division.

Figure 6-10. 50% PWM Duty for Offset Calculation

6.5.3 CTRL_State_OnLine and EST_State_RoverL
Once the offsets, also known as bias, are calibrated, the estimator is enabled and the following state of
the identification process is started. The first state of the estimator state machine to be executed after
being idle, is known as the R-over-L state, or RoverL (Figure 6-11).

Figure 6-11. RoverL EST State
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This state of the estimator is used to measure the electrical time constant of the stator circuit by dividing
the measured resistance and inductance. The RoverL time constant is used by the controller object in
order to set the current controller gains, KP and KI of both IQ and ID current controllers. If the motor
identification is bypassed, parameters provided in user.h are used to set the current controller gains.

The process of measuring the RoverL time constant is done by injecting a current of fixed amplitude, at a
fixed frequency to the stator windings. Each of the injected current parameters is described below:
amplitude, frequency and measurement time.

6.5.3.1 Amplitude of Injected Current for RoverL
In order to determine the amplitude of the current to be injected into the stator, the following parameter
from user.h (USER_MOTOR_RES_EST_CURRENT) is divided by 2.

For example, the following parameter in user.h having a value of 1.0 for
USER_MOTOR_RES_EST_CURRENT would inject ½ of the value, or 0.5 A. The ramp rate of this
injected current is 0.5 seconds to reach the target current amplitude.

#define USER_MOTOR_RES_EST_CURRENT (1.0)

As a general guideline this current needs to be high enough to produce significant number of bits in the
ADC measurement, but not too high that causes motor motion or motor overheating. This general rule
results in a current of approximately 10% to 20% of the rated phase current of the motor.

6.5.3.2 Frequency of Injected Current for RoverL
The frequency of the current injection used to calculate RoverL is set by the following parameter in user.h,
specifying the frequency in Hz.

//! \brief Defines the R/L estimation frequency, Hz
//!
#define USER_R_OVER_L_EST_FREQ_Hz (100)

For high speed motors, the default value of 100 Hz might cause the motor to spin or move back and forth.
If that is the case for the motor under test, increase this frequency to a higher value using 50 Hz
increments until the motor does not move at all during the R over L state.

6.5.3.3 Measurement Time for RoverL
The third parameter to consider when doing the R over L measurement is the time to do this
measurement. This is configured in user.c as follows, and can be changed if needed, although the default
setting would work for most of the cases:

pUserParams->estWaitTime[EST_State_RoverL] = (uint_least32_t)(5.0 * USER_EST_FREQ_Hz);

Figure 6-12 shows how this current is injected. The configured parameters are highlighter in red, 5
seconds duration, 1.0 A / 2 = 0.5 A of current amplitude, and 100 Hz.
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Figure 6-12. Injected Current for Measuring RoverL EST State

The resulting value of the R-over-L state can be read from the estimator by calling the following function,
returning the RoverL ratio.

// Code example to get RoverL into a variable
float_t RoverL = CTRL_getRoverL(ctrlHandle);

Another method of checking the resulting estimation of the RoverL state is by calling two functions, one for
the high frequency resistance estimation (Rhf) and one for the high frequency inductance estimation (Lhf).
The following code example uses these two functions to have local copies of the resulting value during the
RoverL state:

// Code example to get high frequency R (Rhf) and high frequency inductance
// (Lhf) to variables
float_t Rhf = CTRL_getRhf(ctrlHandle);
float_t Lhf = CTRL_getLhf(ctrlHandle);
float_t RoverL = Rhf/Lhf;

The resulting RoverL calculated in the above code example is identical to what the function
CTRL_getRoverL() returns.

If motor identification is bypassed, users can use the following code example to calculate RoverL constant
based on parameters provided in user.h file:

// Code example to get RoverL into a variable based on user.h parameters
#define USER_MOTOR_Rs (4.0)
#define USER_MOTOR_Ls_d (0.03)
float_t RoverL = USER_MOTOR_Rs/USER_MOTOR_Ls_d;
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Ultimately, the RoverL ratio is used by the controller object (CTRL_Obj) to initialize the current controller
gains according to this ratio. Figure 6-13 shows how the current controller gains are internally set by the
controller object (CTRL_Obj). The code listing shown here is for illustration purposes only, to show the
math behind the initial setting of the current controllers. Since the code is implemented internally in the
controller, user does not need to implement it.

// get the full scale current and voltage values from #defines in user.h
#define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
#define USER_IQ_FULL_SCALE_VOLTAGE_V (48.0)

// deriving controller period in seconds from #defines in user.h
#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)
#define USER_PWM_FREQ_kHz (15.0)
#define USER_PWM_PERIOD_usec (1000.0/USER_PWM_FREQ_kHz)
#define USER_ISR_PERIOD_usec USER_PWM_PERIOD_usec
#define USER_CTRL_PERIOD_usec (USER_ISR_PERIOD_usec*USER_NUM_ISR_TICKS_PER_CTRL_TICK)
#define USER_CTRL_PERIOD_sec ((float_t)USER_CTRL_PERIOD_usec/(float_t)1000000.0)

// get Lhf and RoverL from the controller object
float_t RoverL = CTRL_getRoverL(ctrlHandle);
float_t Lhf = CTRL_getLhf(ctrlHandle);

// get full scale current and voltage values in local variables
float_t fullScaleCurrent = USER_IQ_FULL_SCALE_CURRENT_A;
float_t fullScaleVoltage = USER_IQ_FULL_SCALE_VOLTAGE_V;

// get the controller period in seconds in a local variable
float_t ctrlPeriod_sec = USER_CTRL_PERIOD_sec;

// get the controller object handle
CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;

// set the Id controller gains
Kp = _IQ((0.25*Lhf*fullScaleCurrent)/(ctrlPeriod_sec*fullScaleVoltage));
Ki = _IQ(RoverL*ctrlPeriod_sec);
Kd = _IQ(0.0);
PID_setGains(obj->pidHandle_Id,Kp,Ki,Kd);
PID_setUi(obj->pidHandle_Id,_IQ(0.0));
CTRL_setGains(ctrlHandle,CTRL_Type_PID_Id,Kp,Ki,Kd);

// set the Iq controller gains
Kp = _IQ((0.25*Lhf*fullScaleCurrent)/(ctrlPeriod_sec*fullScaleVoltage));
Ki = _IQ(RoverL*ctrlPeriod_sec);
Kd = _IQ(0.0);
PID_setGains(obj->pidHandle_Iq,Kp,Ki,Kd);
PID_setUi(obj->pidHandle_Iq,_IQ(0.0));
CTRL_setGains(ctrlHandle,CTRL_Type_PID_Iq,Kp,Ki,Kd);

Figure 6-13. Internal Code that Sets Kp and Ki Initial Gains for Current Controllers

6.5.3.4 Troubleshooting Current Controller Stability During RoverL Identification
See Section 6.9.
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6.5.3.5 Adjusting Resulting Current Controller Gains for High-Speeds
As can be seen, both ID and IQ current controllers are initialized with the same gains, calculated from
RoverL and Lhf. The 0.25 factor is also introduced in the proportional gain of these two controllers. This
factor is to set the proportional gain to ¼ of the theoretical limit. In applications where the motor needs to
be run at much higher speeds compared to its rated speed, i.e. with field weakening, the proportional
gains of both Id and Iq current controllers need to be scaled up to 4 times to get the gains to the
theoretical limit. A simple way to scale these gains up to 4 is by using the following code example:

_iq Kp_Id = CTRL_getKp(handle,CTRL_Type_PID_Id);
_iq Kp_Iq = CTRL_getKp(handle,CTRL_Type_PID_Iq);
CTRL_setKp(handle,CTRL_Type_PID_Id, _IQmpy(Kp_Id, _IQ(4.0)));
CTRL_setKp(handle,CTRL_Type_PID_Iq, _IQmpy(Kp_Iq, _IQ(4.0)));

If the user would like to confirm that the current controller gains are set after the RoverL time constant has
set the current controller, the following code example can be used:

// declare global variables for the Id controller gains
_iq gKp_Id, gKi_Id, gKd_Id;
// declare global variables for the Iq controller gains
_iq gKp_Iq, gKi_Iq, gKd_Iq;

// get the current controller gains for the Id controller
CTRL_g etGains(ctrlHandle,CTRL_Type_PID_Id,&gKp_Id,&gKi_Id,&gKd_Id);
// get the current controller gains for the Iq controller
CTRL_g etGains(ctrlHandle,CTRL_Type_PID_Iq,&gKp_Iq,&gKi_Iq,&gKd_Iq);

If the user chooses to bypass the gains set by the RoverL constant and decides to use their own gains,
user simply needs to use the following functions to set the current controller gains, which are implemented
in ctrl.h:

void CTRL_setKi(CTRL_Handle handle,const CTRL_Type_e ctrlType,const _iq Ki);
void CTRL_setKp(CTRL_Handle handle,const CTRL_Type_e ctrlType,const _iq Kp);
void CTRL_setGains(CTRL_Handle handle,const CTRL_Type_e ctrlType,

const _iq Kp,const _iq Ki,const _iq Kd);

6.5.4 CTRL_State_OnLine and EST_State_Rs
This state of the identification process performs the identification of the stator resistance (Figure 6-14).

Figure 6-14. Rs EST State

A DC current is injected into the D-axis with the amplitude defined in user.h as follows:

#define USER_MOTOR_RES_EST_CURRENT (1.0)
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Note that this current is the same definition used for RoverL state, although RoverL uses half of this value,
and the Rs state uses the full value in the definition. The injected current should be high enough to
generate a significant measurement in the ADC converter, and at the same time low enough to avoid
motor overheating. Typically, 10% to 20% of the rated current of the motor is enough to produce an
accurate estimation of the stator resistance.

The time interval for this state is set by three time values in user.c, as follows:
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pUserParams->RsWaitTime[EST_Rs_State_RampUp] = (uint_least32_t)(1.0*USER_EST_FREQ_Hz);
pUserParams->RsWaitTime[EST_Rs_State_Coarse] = (uint_least32_t)(2.0*USER_EST_FREQ_Hz);
pUserParams->RsWaitTime[EST_Rs_State_Fine] = (uint_least32_t)(4.0*USER_EST_FREQ_Hz);

By default, the entire process of identifying the stator resistance, Rs, takes 7 seconds. The first part of the
Rs identification process is a ramp-up time of 1 second. During this time, the defined DC current is
injected into the D-axis. Once the ramp-up time is expired, the Rs identification process starts with a
coarse tuning of the identified Rs. The coarse process takes the time defined previously by the time stored
in RsWaitTime [EST_Rs_State_Coarse]. By default this time is set to 2 seconds, and it is known to be
enough time to do a coarse calibration of all the motors tested for the InstaSPIN library release. However
the time setup is flexible so users can tune if required, although tuning is not foreseen to be required.

Once the coarse process has finished, the fine Rs recalibration starts. The time taken by the identification
process to complete the fine Rs recalibration is set by default to 4 seconds, and again the user has
flexibility to change this by modifying the value stored in RsWaitTime [EST_Rs_State_Fine].

Figure 6-15 shows the entire Rs identification process, highlighting ramp times, amplitudes and duration of
the process.

Figure 6-15. Phase Current During Rs Identification EST State

The user can monitor how the resistance is being estimated using the following code example. This is
useful especially when tuning the amount of time spent identifying the resistance.

// get the stator resistance
gMotorVars.Rs_Ohm = EST_getRs_Ohm(obj->estHandle);

For example, monitoring the resistance value while it is being identified gives the user feedback on the
amount of time required for the identified resistance to be stable. The time for the identified resistance to
be stable can be configured in file user.c so next time the motor is identified the process is faster.
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6.5.4.1 Troubleshooting Current Controller Stability During Rs Identification
See Section 6.9.

6.5.5 CTRL_State_OnLine and EST_State_RampUp
After the stator resistance is done, a new estimator state is executed. This next state is called the Ramp-
Up state, or EST_State_RampUp. During this state of the identification process, the motor is accelerated
to a certain speed to start identification of other parameters. During this state, there is no identification of
any parameters, but the conditions are started. Several factors influence this state.

6.5.5.1 Ramp-Up Current Amplitude
The first one is the amplitude of the currents used for the ramp-up process. This current is again the
amplitude used for the stator resistance identification. Figure 6-16 shows a definition of this current, and in
this case, 1 A is used for the ramp:

#define USER_MOTOR_RES_EST_CURRENT (1.0)

Figure 6-16. Ramp-Up EST State

6.5.5.1.1 Troubleshooting Motor Shaft Stopping During Ramp-Up
See Section 6.9.

6.5.5.2 Ramp-Up Time and Acceleration
The next parameter during the ramp-up state is the period of time while the motor is ramped up (Figure 6-
17). This is set by default to 20 seconds as shown in the next code example from user.c file:

pUserParams->estWaitTime[EST_State_RampUp] = (uint_least32_t)(20.0*USER_EST_FREQ_Hz);
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Figure 6-17. Ramp-Up Timing

This time can be changed to any desired value. Figure 6-18, taken using a current probe to measure
phase current, shows the ramp up state time.

Figure 6-18. Phase Current During RampUp EST State

The acceleration of this ramp is another parameter set in user.c, which can be changed according to user
requirements. In the same example of a high inertia load, this acceleration can be changed. The default
value of the ramp-up acceleration is set to 2.0 Hz/s as shown below:

//! \brief Defines maximum acceleration for the estimation speed profiles, Hz/s
#define USER_MAX_ACCEL_EST_Hzps (2.0)

6.5.5.2.1 Troubleshooting Motor Shaft for Smoother Ramp
See Section 6.9.
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6.5.5.3 Ramp-Up Final Speed for PMSM
The final speed after the ramp-up is set in user.h as part of the motor parameters. This speed, specified in
Hz, should be set depending on the phase inductance range. For single digit µH inductances this value
should be around 50 Hz. For tens to hundreds of µH inductances, a value of 20 Hz should be enough to
allow an accurate identification of the inductance.

// During Motor ID, maximum commanded speed in Hz
#define USER_MOTOR_FLUX_EST_FREQ_Hz (20.0)

Keep in mind that increasing this frequency might require increasing the ramp up time, so that the ramp
up state is long enough to allow reaching the final frequency with the specified acceleration. The previous
plot also shows the final frequency of 20 Hz.

Figure 6-19. RampUp Timing with change in Acceleration and Final Speed

6.5.6 CTRL_State_OnLine and EST_State_RatedFlux
Once the motor is running at a commanded frequency set in user.h, the rated flux identification process
starts (Figure 6-20).

Figure 6-20. PMSM Rated Flux EST State
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6.5.6.1 Current Ramp-Down
The first thing that happens when identifying the flux is for a closed-loop to be enabled internally by the
motor identification state machine. This closed-loop is not enabled by the user. Current consumption
lowers to a minimum current value needed to keep the mechanical load spinning at the same frequency
when this closed-loop is enabled. The slope at which current is lowered is a fixed value, Rs estimation per
second divided by 3. The dividing factor of 3 was selected during design of the motor identification
process to provide a slower slope.

In order to calculate this slope, users can use the following equation. In this example, 1 A was used for
resistance identification:

(15)

The 0.33 A/s slope can be seen in Figure 6-21, showing how current is reduced as soon as the Rated
Flux state is present. Also in the same plot, the time it takes to identify the rated flux is also highlighted.

Figure 6-21. Phase Current During Rated Flux EST State

6.5.6.2 Total Measurement Time
The time shown in this plot is based on the default setting of 3 seconds for the current ramp-down
(EST_Flux_State_CL1, CL1 stands for Closed Loop 1) and 4 seconds for the fine tuning of the rated flux
(EST_Flux_State_Fine), for a total of 7 seconds. Both of these values are set in by function calls in file
user.c, as shown below:

pUserParams->FluxWaitTime[EST_Flux_State_CL1] =(uint_least32_t)(3.0*USER_EST_FREQ_Hz);
pUserParams->FluxWaitTime[EST_Flux_State_Fine]=(uint_least32_t)(4.0*USER_EST_FREQ_Hz);

These default values are known to work for all the motors tested during the validation of the algorithm.
Users can confirm that the time to identify is enough by monitoring the rated flux identified by the
algorithm, and make sure that the identified value is stable while the state of the estimator is in
EST_State_RatedFlux.
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The following code example shows how to monitor the value of the identified flux, and if the value does
not vary more than a typical variation of about 5% in the watch window, the identified flux can be
considered to be stable:

// get the flux
gMotorVars.Flux_VpHz = EST_getFlux_VpHz(obj->estHandle);

6.5.6.3 Troubleshooting Flux Measurement
See Section 6.9.

6.5.7 CTRL_State_OnLine and EST_State_Ls
Once the rated flux is measured the stator inductance identification process starts (Figure 6-22).

Figure 6-22. Stator Inductance EST State

In order to identify the stator inductance of the PMSM motor, the algorithm injects a current into the D-
axis, also known as ID. The current must be negative, and it is set in user.h. As a general rule, this current
should be between 10% and 20% of the rated current of the motor, negative in sign. The following value is
set for a 4 A motor, hence the current used to identify the stator inductance was set to -0.5 A as shown:

#define USER_MOTOR_IND_EST_CURRENT (-0.5)

And the time spent for stator inductance identification is configured in user.c as follows:

pUserParams->LsWaitTime[EST_Ls_State_Init] = (uint_least32_t)( 3.0*USER_EST_FREQ_Hz);
pUserParams->LsWaitTime[EST_Ls_State_Fine] = (uint_least32_t)(30.0*USER_EST_FREQ_Hz);
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Figure 6-23 shows the time it takes to run the inductance identification state. It also shows the current
amplitude injected. Although we set the current to be -0.5 A this current is injected into the D-axis, so it will
be noticed in the phase current waveform as an amplitude of 0.5 A plus the current needed to keep the
load moving. Since it is required to move all the mechanical load from the shaft, the current amplitude will
be close to 0.5 A as shown.

Figure 6-23. Injected Current for Ls Identification

6.5.7.1 Ramp-Up Current
The initial slope, when the current builds up to the specified current, is set by the current used for the
resistance estimation for every second. For example, consider a resistance estimation current of 1 A
configured as follows:

#define USER_MOTOR_RES_EST_CURRENT (1.0)

And -0.5 A for the inductance estimation configured as follows:

#define USER_MOTOR_IND_EST_CURRENT (-0.5)

With these two configurations, it will take a total of 0.5 s to build up 0.5 A of current into the D-axis, as
shown in Figure 6-24.
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Figure 6-24. Current Ramp for Ls Identification

6.5.7.2 Troubleshooting Ls Identification
See Section 6.9.

6.5.7.3 Ls_d and Ls_q, Direct and Quadrature Stator Inductance
Keep in mind that the estimated inductance will be stored in both Ls_d and Ls_q, even if these values are
different for a given motor. In other words, this version of InstaSPIN does not identify Ls_d and Ls_q
separately, but it identifies an average Ls, which is then stored into Ls_d and Ls_q with the same value. In
the future, when InstaSPIN identified Ls_d and Ls_q individually, then both functions will return a different
value. If motor parameters are set in user.h with different Ls_d and Ls_q, and motor identification is
bypassed, then the current version of InstaSPIN will also return different values when calling both
functions EST_getLs_d_H and EST_getLs_q_H.

6.5.8 CTRL_State_OnLine and EST_State_RampDown
This state does not perform any particular action as far as the estimation process goes. It can be
considered as a transition period of the state machine. Although there is a time associated with this state,
as shown below, changing this time does not affect the identified variables.

pUserParams->estWaitTime[EST_State_RampDown] = (uint_least32_t)(2.0*USER_EST_FREQ_Hz);
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6.5.9 CTRL_State_OnLine and EST_State_MotorIdentified
The final state of the identification process is also a transitional state to let the internal state machine know
that the motor has been identified. After the transitional state of EST_State_MotorIdentified is over, both
state machines, CTRL and EST state machines, are put back to Idle. Users can check if the motor has
been identified by calling the following function. If this function returns a TRUE, it means that the motor
has been identified, either by going through all the described states, or by using motor parameters from a
header file:

gMotorVars.Flag_MotorIdentified = EST_isMotorIdentified(obj->estHandle);

Once the motor has been fully identified, if users require running the motor identification process again,
the controller must be re-initialized to set the state machines to an initial state with the motor identified flag
back to FALSE. The following function call re-initializes the controller back to the initial state and the motor
identified flag back to FALSE:

// set the default controller parameters
CTRL_setParams(ctrlHandle,&gUserParams);

To summarize the complete state machine of the identification process, see Figure 6-25.

Figure 6-25. Complete PMSM Motor ID Process in EST State Diagram

The entire process of PMSM motor identification is also shown in Figure 6-26, where one phase current is
plotted.

267SPRUHJ1F–January 2013–Revised July 2014 Motor Identification and State Diagrams
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


C
T

R
L_

S
ta

te
_

O
ff

Li
n

e

E
S

T
_

S
ta

te
_

R
o

v
e

rL

E
S

T
_

S
ta

te
_

R
s

EST_State_RampUp

E
S

T
_

S
ta

te
_

R
a

te
d

F
lu

x

EST_State_Ls

~83 s

Full Identification of PMSM Motors www.ti.com

Figure 6-26. Phase Current Measurement of Entire PMSM Motor ID Process

6.5.10 CTRL_State_Idle and EST_State_Idle
After the motor is fully identified, both state machines are set to Idle.

6.6 Full Identification of ACIM Motors
When running full identification of ACIM motors, Figure 6-27 shows the sequence of events that happen
inside of the controller and estimator state machines.
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Figure 6-27. Full ACIM Identification - CTRL and EST Sequence of States

Prior to enabling the controller, the code knows that a full motor identification will be done when these two
conditions are true:
1. motor has not been identified
2. no parameters are used from user.h.

if( (EST_isMotorIdentified(obj->estHandle) == FALSE) &&
(CTRL_getFlag_enableUserMotorParams(ctrlHandle) == FALSE))
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In the next sections of this document, each state during the identification will be explained in detail.

6.6.1 CTRL_State_Idle and EST_State_Idle
The idle state of the controller and the estimator state machines are the same for both motors. For more
information about this state, see Section 6.5.1.

6.6.2 CTRL_State_OffLine and EST_State_Idle
When the controller is in the Offline state, offsets are calibrated. For more information about this state, see
Section 6.5.2.

6.6.3 CTRL_State_OnLine and EST_State_RoverL
In order to calculate the current controller gains, the same process and operations are done as in the
PMSM motor. For more information about this state, see Section 6.5.3.

6.6.4 CTRL_State_OnLine and EST_State_Rs
When the estimator is in Rs state, the stator resistance is calibrated. For more information about this state,
see Section 6.5.4.

6.6.5 CTRL_State_OnLine and EST_State_RampUp
After the stator resistance is done, a new estimator state is executed. This next state is called the Ramp-
Up state, or EST_State_RampUp (Figure 6-28). During this state of the identification process, the motor is
accelerated to a certain speed to start identification of other parameters. During this state, there is no
identification of any parameters, but the conditions are started. Several factors influence this state.

In terms of functionality, for a detailed description of what happens during the EST_State_RampUp state,
see Section 6.5.5.

Figure 6-28. Ramp-Up EST State

6.6.5.1 Ramp-Up Final Speed for ACIM
The only difference between the PMSM and ACIM motor identification process in this state is that for
ACIM motors a typical frequency of 5 Hz is used, as opposed to a typical of 20 Hz used for PMSM motors.

// During Motor ID, maximum commanded speed in Hz
#define USER_MOTOR_FLUX_EST_FREQ_Hz (5.0)
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The following oscilloscope plot shows a zoomed in plot of a phase current, where the frequency is ramped
up to 5 Hz. Note that the default ramp-up acceleration of 2.0 Hz/s, shown previously for PMSM in
Section 6.5.5, is used for the ACIM example shown in Figure 6-7.

Figure 6-29. Oscilloscope Plot of ACIM RampUp Acceleration

6.6.6 CTRL_State_OnLine and EST_State_IdRated
Once the motor is running at a commanded frequency set in user.h, the IdRated identification process
starts (Figure 6-30).

Figure 6-30. ACIM Id Rated EST State

In the EST_State_IdRated state, the estimator is used to calculate the current needed to produce a certain
flux.
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During this state, several parameters in user.h and user.c are taken into account. The first one is the
duration of this state which is configured in user.c file as follows:

pUserParams->estWaitTime[EST_State_IdRated]=(uint_least32_t)(20.0*USER_EST_FREQ_Hz);

During this time, the injected Id will start growing by increments defined by USER_IDRATED_DELTA in
user.h:

//! \brief Defines the IdRated delta to use during estimation
//!
#define USER_IDRATED_DELTA (0.00002)

Using the above delta, the current injected in the d-axis will increase until the produced flux has reached
the value specified by USER_MOTOR_RATED_FLUX in user.h:

#define USER_MOTOR_RATED_FLUX (0.8165*220.0/60.0)

For details on setting the rated flux for ACIM motors, see Section 6.4.5.4.

When the IdRated state starts the current will increase until the desired flux is present in the motor.
Figure 6-31 shows the current is increase and then stabilize.

Figure 6-31. Oscilloscope Plot of Phase Current During Id Rated EST State

272 Motor Identification and State Diagrams SPRUHJ1F–January 2013–Revised July 2014
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


IdRated Oscillation a= 125 mA

E
S
T
_
S
t
a
t
e
_
R
a
m
p
U
p

EST_State_IdRated

www.ti.com Full Identification of ACIM Motors

The time at which the Id current settles is motor dependent and it is recommended that the time
configured in pUserParams->estWaitTime[EST_State_IdRated]is adjusted to allow the current to stabilize
to a certain value without excessive oscillation.

6.6.6.1 Reducing Oscillation to Improve Id Rated Measurement
Another parameter to tune while doing IdRated identification is the delta increments for this current. If this
value is too high for a particular motor, a remaining oscillation will be present even when doing IdRated
identification for a long period. For example, Figure 6-32 shows the current when the following parameter
is used.

//! \brief Defines the IdRated delta to use during estimation
//!
#define USER_IDRATED_DELTA (0.0001)

Figure 6-32. Phase Current Oscillation During Id Rated Measurement

As can be seen in the oscilloscope plot, even though the current grows much faster, the remaining
oscillation does not allow the Id Rated to settle to a stable value. Trying a smaller value, 0.00002 instead
of 0.0001 increases the stability of the steady state current as shown in Figure 6-33.
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Figure 6-33. Reduced Phase Current Oscillation During Id Rated Measurement

6.6.6.2 Reading Id Rated Final Value
At the end of this state, users can read the identified Id Rated, also known as the rated magnetizing
current of the ACIM motor, by using the following function:

// get the Id Rated, or rated magnetizing current
IdRated = EST_getIdRated(obj->estHandle);

6.6.7 CTRL_State_OnLine and EST_State_RatedFlux
Once the Id Rated has been identified, the next state is the Rated Flux state (Figure 6-34).
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Figure 6-34. ACIM Rated Flux EST State

During this state, the previously identified Id Rated current is used in a closed loop system inside the
estimator to calculate the flux linkage between rotor and stator. Only 50% of IdRated is used. At the end of
this state, the computed rated flux using the Id Rated current is saved as the rated flux of the machine.

For the Rated Flux state, the current ramp-down and total measurement time are the same for both
motors. For more information, see Section 6.5.6.1 and Section 6.5.6.2.

Figure 6-35 shows how the loop is closed, the current is much more stable than the IdRated state, and
user might double check the estimated flux in the watch window to confirm that the flux estimation is what
the original setting in user.h was.

Figure 6-35. Phase Current During Id Rated EST State
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6.6.7.1 Troubleshooting Flux Measurement
See Section 6.9.

6.6.8 CTRL_State_OnLine and EST_State_RampDown
In order to remove the current from the motor windings, an intermediate state is run to ramp down the
current flowing through the motor (Figure 6-36). This state is the RampDown state, with the duration set
by the following in user.c file:

pUserParams->estWaitTime[EST_State_RampDown]=(uint_least32_t)(2.0*USER_EST_FREQ_Hz);

Figure 6-36. ACIM Ramp Down EST State

Figure 6-37, taken from the previous state, shows phase current being removed from the motor gradually
to allow a smooth stop of the motor.
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Figure 6-37. Ramp Down of ACIM Phase Current Prior to LockRotor State

6.6.9 CTRL_State_Idle and EST_State_LockRotor
During the Lock Rotor state, the state machine waits for the user to re-enable the controller once the
motor's shaft has been locked (Figure 6-38). Locking the rotor is required to identify the rest of the ACIM
motor parameters: series inductance (Ls) and rotor resistance (Rr).

Figure 6-38. ACIM Lock Rotor EST State
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The state machine will remain in this state indefinitely until the user re-enables the controller by calling the
following instruction:

// enable or disable the control
CTRL_setFlag_enableCtrl(ctrlHandle, TRUE);

6.6.9.1 Troubleshooting Locked Rotor Test
See Section 6.9.

6.6.10 CTRL_State_OnLine and EST_State_Ls
Once the locked rotor parameters are measured the stator inductance process starts (Figure 6-39).

Figure 6-39. ACIM Stator Inductance EST State

For the Stator Inductance state, the steps are the same for both motors. For more information, see
Section 6.5.7.

Figure 6-40 shows how the current for an ACIM motor during the Ls state and leading into the next states.
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Figure 6-40. ACIM Current for the Stator Inductance EST State

6.6.11 CTRL_State_OnLine and EST_State_Rr
Once the stator inductance measurement is complete the rotor resistance process starts (Figure 6-41).

Figure 6-41. Rotor Resistance EST State
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The identification of the rotor resistance of the ACIM motor will be done for a period of time configured in
this array member configured in user.c:

pUserParams->estWaitTime[EST_State_Rr]=(uint_least32_t)(5.0*USER_EST_FREQ_Hz);

Figure 6-42 shows the current being injected for Rr identification. In fact, there is no difference in the
current waveform between Ls and Rr identification.

Figure 6-42. Injected Current for Rr Identification

6.6.12 CTRL_State_OnLine and EST_State_RampDown
Once the rotor resistance measurement is complete the ramp down process starts (Figure 6-43).
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Figure 6-43. ACIM Ramp Down EST State after Completing Rr

Figure 6-44 of the ACIM current waveform after full identification, note the current is removed from the
motor with a ramp. For more information about this state, see Section 6.5.8.

Figure 6-44. ACIM Current During Rr and RampDown
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6.6.13 CTRL_State_OnLine and EST_State_MotorIdentified
When the estimator is in the Motor Identified state, the full motor identification of the ACIM motor is
complete (Figure 6-45). For more information about this state, see Section 6.5.9.

Figure 6-45. Complete ACIM Motor ID Process in EST State Diagram

The entire process of ACIM motor identification is also shown in Figure 6-46, where one phase current is
plotted.
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Figure 6-46. Phase Current of Entire ACIM Motor ID Process

6.6.14 CTRL_State_Idle and EST_State_Idle
After the motor is fully identified, both state machines are set to Idle.

6.7 Recalibration of PMSM and ACIM Motor Identification
Recalibration is part of the motor identification because it identifies and tunes two parameters: the offsets
and the stator resistance of the motor.

6.7.1 Recalibration of PMSM and ACIM Motors After Full Identification
This section covers the recalibration of PMSM and ACIM motors. Motor recalibration is used to fine tune
or recalibrate hardware offsets and stator resistance. In comparison with a full calibration of PMSM and
ACIM motors, recalibration only covers three states of the estimator state machine as shown in
Equation 49. The recalibration for PMSM and ACIM motors are identical. Recalibration for board Offsets
and Stator Resistance can be individually enabled or disabled as explained in next sections of this
document.
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Figure 6-47. PMSM and ACIM Recalibration - CTRL and EST Sequence of States

The motor runs in closed loop when both state machines are Online, and will stay Online until the
controller is disabled as shown in Figure 6-48.

Motor recalibration is executed in two cases, when the motor has been through a full identification
process, and when the motor parameters have been provided through a header file, user.h. In both
scenarios the states executed are identical and will be explained in detail next.

Prior to enabling the controller, the code knows that a motor recalibration will be done when these two
conditions are true, when the motor has been identified and no parameters are used from user.h:

if( (EST_isMotorIdentified(obj->estHandle) == TRUE) &&
(CTRL_getFlag_enableUserMotorParams(ctrlHandle) == FALSE))
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Figure 6-48. Motor Recalibration EST States

6.7.1.1 Start-Up Time Consideration
Even though recalibration takes time to execute, it is recommended to always enable both Offset
Recalibration and Rs Recalibration to make sure the parameters are more accurate before running the
motor, especially if the motor has been in idle for a long time. If the motor has not been run by the code
for long periods of time, it is likely that ambient temperature affects the stator resistance of the motor, so
Rs recalibration is recommended. Board offset recalibration is not as critical since it is hardware
dependent, however, longevity of passive components and temperature variations could potentially affect
the hardware offsets, so it is recommended that these offsets are tuned periodically.

6.7.1.2 CTRL_State_Idle and EST_State_Idle
Before the controller is enabled, both state machines, the controller and the estimator, are in the idle state,
denoted by CTRL_State_Idle and EST_State_Idle. This is also known as the inactive state of both state
machines.

6.7.1.3 CTRL_State_OffLine and EST_State_Idle
The controller is taken out of idle state by enabling it, by using the following function:

CTRL_s etFlag_enable Ctrl(ctrlHandle, TRUE);

Once the controller is enabled and with the motor already identified, the very first task performed by the
controller state machine is the Offset recalibration. This only occurs if the offset calculations are enabled.
To check if the offset recalibration flag is enabled, users can use the following code example:

if(CTRL_getFlag_enableOffset(ctrlHandle) == TRUE)

The motor identified flag is internally checked and can also be checked by the user with the following code
example:
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if(EST_isMotorIdentified(obj->estHandle) == TRUE)

Offset recalibration is enabled by default, although the following code example can be used to enable it
before the controller is enabled:

CTRL_s etFlag_enableOffset(ctrlHandle, TRUE);

And the following code example is used to disable offset recalibration.

CTRL_s etFlag_enableOffset(ctrlHandle, FALSE);

This state (CTRL_State_OffLine and EST_State_Idle) as explained in Section 6.2 is denoted by the state
of the controller state machine named: CTRL_State_OffLine. The estimator state stays in the idle state
(EST_State_Idle) during the controller offline state. Offset recalibration can be bypassed but offset
calibration is a requirement during full motor identification. It cannot be bypassed when doing full
identification of the motor.

For details of offset calibration as part of the full motor identification process, see Section 6.5.2. As seen in
Figure 6-48, the "RoverL" state is not part of the recalibration process.

Figure 6-49 shows the corresponding states of the the phase current oscilloscope plots.

Figure 6-49. Phase Current during Offset Recalibration

6.7.1.4 CTRL_State_OnLine and EST_State_Rs
The Rs state is reached exiting the EST Idle state with the motor identified and Rs recalibration enabled
(see Figure 6-48). Note that when the controller is Offline (motor is at standstill) and Offset Recalibration is
enabled, offset recalibration will occur before entering the Rs state. Once the estimator state machine is in
Rs state (EST_State_Rs), stator resistance recalibration is started.

Rs recalibration when the motor is at stand still is also known as Offline Stator Resistance Recalibration. A
second Rs recalibration when the motor is spinning is covered in Chapter 15.
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Even though the enable Rs flag is checked internally by the state machine, users can use the following
code example to check that flag:

if(EST_getFlag_enableRsRecalc(obj->estHandle) == TRUE)

Although Rs recalibration is enabled by default, the following code example can be used to enable it
before enabling the controller:

EST_ setFlag_enableRsRecalc(obj->estHandle, TRUE);

And the following code example can be used to disable Rs recalibration before enabling the controller:

EST_ setFlag_enableRsRecalc(obj->estHandle, FALSE);

6.7.1.4.1 Managing Time Required for Rs Recalibration
Once the estimator is in Rs state (EST_State_Rs), the stator resistance recalibration will start. The
EST_State_Rs contains three states which are executed during full motor identification:
• EST_Rs_State_RampUp
• EST_Rs_State_Coarse
• EST_Rs_State_Fine

During stator resistance recalibration only two states are executed: EST_Rs_State_RampUp and
EST_Rs_State_Fine hence the recalibration time will be shorter than the full calibration during motor
identification. In order to calculate the EST_State_Rs execution time during motor recalibration, consider
the following two wait times configured in the user.c file:

pUserParams->RsWaitTime[EST_Rs_State_RampUp] = (uint_least32_t)(1.0*USER_EST_FREQ_Hz);
pUserParams->RsWaitTime[EST_Rs_State_Fine] = (uint_least32_t)(3.0*USER_EST_FREQ_Hz);

Figure 6-50 shows the stator resistance recalibration. It shows the time it takes, as well as the states
before and after Rs recalibration.
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Figure 6-50. Phase Current Showing Rs Recalibration Timing

6.7.1.4.2 Software configuration for Rs recalibration
Configuration steps for a successful stator resistance recalibration are the same steps used during the Rs
measurement of motor identification, for details, see Section 6.5.4. The same software configuration is
used for both Rs recalibration (after motor is identified) and Rs calibration (during motor identification).

6.7.1.5 CTRL_State_OnLine and EST_State_OnLine
After the offset recalibration (if enabled) the controller state is set to Online, and after Rs recalibration (if
enabled) the estimator state is set to Online. When both the controller and estimator state machines are in
the Online state, the motor is running in closed loop, using the estimated angle to run the field oriented
control (FOC) functional blocks, as well as the estimated speed for the speed controller.
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6.7.1.5.1 Transitioning to Online State from CTRL Online and EST Rs

Figure 6-51. Transitioning to Online from EST Rs

Figure 6-52 shows the current of one phase with the transition from Rs recalibration to the online state.

Figure 6-52. Phase Current Transitioning from EST Rs to Online

As can be seen in the plot, the phase current slopes from the current injected to recalibrate Rs to the
current needed by the load. From the plot this takes 0.75 s.

In the case of no mechanical load on the motor's shaft, we can clearly see the current slope to be the
current injected for Rs recalibration per second. For example, if 1 A was used to recalibrate the stator
resistance, it will take 1 second for the controller to remove that current from the D-axis (ID) all the way to
zero. The current remaining in the motor phases will be the IQ current, which will depend on the motor's
mechanical load.
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6.7.1.5.2 Transitioning to Online state from (CTRL Idle or CTRL Offline) and EST Idle
Another transition into the online state is when the resistance recalibration is disabled. In this case, no
previous current is injected into the motor. The previous state is either offline (if the offsets recalibration is
enabled) or idle, as shown in Figure 6-53 and Figure 6-54.

Figure 6-53. Transitioning to Online from EST Idle

Figure 6-54. Phase Current Transitioning from EST Idle to Online

6.7.1.6 CTRL_State_Idle and EST_State_Idle
The state will remain in Online until the controller is disabled by calling the following function:

CTRL_s etFlag_enable Ctrl(ctrlHandle, FALSE);
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Calling the above function will disable the controller and will set both state machines for the controller and
the estimator to the idle state.

Figure 6-55 shows current and output voltage for each state. The first state is the Offsets Recalibration
state and the second is Rs Recalibration. The third stage is the online state when the commanded speed
or torque is followed in closed-loop.

Figure 6-55. Timing of Complete Recalibration

6.7.2 Recalibration of PMSM and ACIM Motors after Using Parameters from user.h
This section covers the recalibration of PMSM and ACIM motors when motor parameters have been
provided through a header file. The exact state machine used in Section 6.7.1 applies to this section.

Prior to enabling the controller, the code knows that a motor recalibration will be done using motor
parameters from user.h when this condition is true:

if(CTRL_getFlag_enableUserMotorParams(ctrlHandle) == TRUE)

The same state, state transition conditions and functionality as described in Section 6.7.1 for Recalibration
after Full Identification are also used for this case, recalibration using parameters from user.h.

6.8 Setting PMSM Motor Parameters in user.h
The parameters provided in user.h for PMSM motors are listed below:

#if (USER_MOTOR == User_PMSM)
#define USER_MOTOR_TYPE MOTOR_Type_Pm
#define USER_MOTOR_NUM_POLE_PAIRS (4)
#define USER_MOTOR_Rs (2.83)
#define USER_MOTOR_Ls_d (0.0115)
#define USER_MOTOR_Ls_q (0.0135)
#define USER_MOTOR_RATED_FLUX (0.502)

291SPRUHJ1F–January 2013–Revised July 2014 Motor Identification and State Diagrams
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


sq
sq s sq m sq msd sdV

di
R i L i L

dt
= + w + + w y

sd
sd s sd m sq sq sd

di
V R i L i L

dt
= - w +

Setting PMSM Motor Parameters in user.h www.ti.com

#define USER_MOTOR_MAX_CURRENT (4.0)

Table 6-6 summarizes all the parameters that are required in user.h header file when PMSM motor
identification is bypassed.

Table 6-6. PMSM Motor Parameters in user.h

PMSM Motor
PMSM Motor Parameter in user.h PMSM Motor Parameter and Units Model Symbol
USER_Motor_Rs Stator Resistance (Ω) Rs

USER_Motor_Ls_d Stator Direct Inductance (H) Lsd

USER_Motor_Ls_q Stator Quadrature Inductance (H) Lsq

USER_Motor_RATED_FLUX Rated Flux (V/Hz) ψ

The following PMSM model can be referenced when pulling motor parameters from a motor's datasheet:

(16)

Where:

Rs: Stator resistance

Lsd: D-axis stator inductance

Lsq: Q-axis stator inductance

ψ: Rotor flux

vsd: D-axis voltage component

vsq: Q-axis voltage component

isd: D-axis current component

isq: Q-axis current component

ωm: Angular frequency of the magnetic field

The following section will cover each of these parameters, and how to get them from a typical motor
manufacturer's datasheet.

6.8.1 Getting Parameters from a PMSM Datasheet
Figure 6-56 corresponds to a PMSM motor datasheet used as an example. The motor's part number is:
2310P, from company: Teknic, Inc. (www.teknic.com)
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Figure 6-56. Example PMSM Motor Datasheet

6.8.1.1 Number of Pole Pairs
The number of pole pairs is used to calculate speeds in revolutions per minute (RPM) and for some flux
calculations, as shown in the rated flux calculation example. We simply use the number of pole pairs from
the motor's datasheet into user.h as follows:

#define USER_MOTOR_NUM_POLE_PAIRS (4)

6.8.1.2 Stator Resistance (Rs)
The stator resistance from phase to phase shown in the previous motor's datasheet is 0.72Ω. What we
need in user.h file is the phase to neutral resistance in a Y connected motor. In this case, the operation is
a simple divide by 2 to convert from phase to phase resistance to phase to neutral resistance since the
motor is known to be connected in Y configuration. The operation from line to line (Y connected motor) to
line to neutral is as follows:

(17)

The resulting value is then written in user.h as follows:

#define USER_MOTOR_Rs (0.36)

In the motor, if delta connected as opposed to Y connected, then a conversion from delta to Y needs to be
done to set the resistance value. For example, if the delta Rs (delta) value is known to be 3 Ohms, the Rs
(Y) value would be Rs (Y) = Rs (delta) / 3 = 1 Ohms.

6.8.1.3 Stator Inductance (Ls_d and Ls_q)
In the case of a non-salient PMSM motor, Ls_d and Ls_q are equal. In this example, a phase-to-phase
stator inductance is shown with a value of 0.40 mH. We need to convert that value to phase-to-neutral
inductance in a Y connected motor, following the same procedure as used with the previous parameter we
simply divide by 2 as follows:
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(18)

The resulting value is then written in user.h as follows:

#define USER_MOTOR_Ls_d (0.0002)
#define USER_MOTOR_Ls_q (0.0002)

In the case of different Ls_d and Ls_q, simply set the corresponding value to the correct definition in
user.h. In the motor, if delta connected as opposed to Y connected, then a conversion from delta to Y
needs to be done to set the resistance value. For example, if the delta Ls_d (delta) value is known to be
0.3 mH, the Ls_d (Y) value would be Ls_d (Y) = Ls_d (delta) / 3 = 0.1 mH.

6.8.1.4 Rated Flux (ψ)
The last parameter required from the motor's datasheet is the rated flux. This particular one can be
calculated from the provided parameter, Back EMF constant, or Ke, which is provided in Vpeak/kRPM.
The following unit conversion is needed in order to set the value correctly the header file:

(19)

The resulting value is then written in user.h as follows:

#define USER_MOTOR_RATED_FLUX (0.0402)

It is also common that the rated flux of the motor is not provided by the motor manufacturer's datasheet,
and an alternative way to measure the rated flux is by measuring the phase-to-phase voltage when the
motor to be measured is spun by another motor. In other words, we run the motor in generator mode, and
connect an oscilloscope on the motor phases to see the voltage production at a given speed. The speed
to run the motor in generator mode to measure flux should be high enough to overcome any cogging
torque. For example, considering the same motor, we run it with another motor connected to its shaft, and
plot the phase to phase voltage. In this example we run the motor at about 1000 RPM, but can be any
speed as long as the motor runs at a constant speed. Figure 6-57 shows the result.
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Figure 6-57. Determining Motor Flux from Phase Voltage of Motor in Generator Mode

Considering 4 pole pairs, and the fact that Ke is in Vpeak/kRPM, the measured Ke with the oscilloscope
is:

(20)

And to calculate what we configure in user.h is as follows, based on the measured value:

(21)

This can also be calculated straight from the oscilloscope measurement as follows:

(22)

#define USER_MOTOR_RATED_FLUX (0.0404)

6.9 Troubleshooting Motor Identification

6.9.1 General Checklist
[Coming in next release of user's guide]
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6.9.2 Troubleshooting PMSM Motor Identification

6.9.2.1 Identifying PMSM Motors When Load Cannot be Detached
InstaSPIN-FOC requires a few parameters from the motor to run with best performance. The majority of
the time this is only done once, and requires the motor to be removed from any mechanical load so it is
able to spin freely. A few steps during the identification process require motor rotation in open loop. That
is the reason why we require no mechanical load in the motor since it is easy to stall a motor when
running in open loop control. When motor can be removed from mechanical load, there is no issue with
InstaSPIN-FOC's identification process, and at the end, motor parameters are available in a watch window
for future use.

On the other hand, some applications are, by definition, attached to a mechanical load. Examples of these
applications are compressors, some direct drive washing machines, geared motors with sealed
enclosures, etc. For those applications, the user requires to run motor identification differently in order to
extract motor parameters with no or minimum motor rotation.

6.9.2.2 Can Motor Rotate with the Attached Load?
The first step is to make sure that the motor doesn't rotate with load. In some cases, the open loop tests
can in fact rotate the motor even with some load. If the motor stalls at any point during the identification
process, proceed to next step.

6.9.2.3 Run First Three Steps of Identification
During motor identification, there are three initial steps that don't require rotation of the shaft. The first one
calculates hardware offsets. The second one injects a high frequency current sine wave to identify what
we call high frequency resistance (Rhf) and high frequency inductance (Lhf). The third step is to identify
the stator resistance (Rs) by injecting a DC current. During this step, take note of the high frequency
inductance (Lhf) and stator resistance (Rs). The two required variables in this step are available by using
the following function calls from the library:

// get Lhf
gLhf = CTRL_getLhf(ctrlHandle);
// get the stator resistance
gRs = EST_getRs_Ohm(obj->estHandle);

6.9.2.4 Run Using Motor Parameters from user.h
Even though there are ways to calculate the flux of the machine without motor identification (see
Section 6.8.1.4), this process describes a completely unknown motor. So far we have two parameters we
can use, a rough estimate of inductance (Lhf) and an accurate stator resistance (Rs). We are missing one
parameter from PMSM motors, the flux of the machine. For this step of the identification process, we will
use the two known parameters and an arbitrary value of the flux. Keep in mind that once the motor runs in
closed loop, the estimated flux will converge to the actual flux of the machine, so we only need to get the
first guess close enough to make it converge to the real value.

Take a look at specific defines from user.h.

#define USER_MOTOR_NUM_POLE_PAIRS (3)
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The number of poles is only important to get the correct RPM reading from the library, but all the library
cares about is electrical Hz, and this is not affected by the number of pole pairs. Take your best guess on
this parameter. Once the motor is running, this can be changed with the correct number of poles, by
commanding a speed reference of 60 RPM, and making sure the motor rotates one revolution in one
second.

#define USER_MOTOR_Rs (0.8)

This parameter should be the one obtained in step 2, from variable gRs.

#define USER_MOTOR_Ls_d (0.01)

#define USER_MOTOR_Ls_q (0.01)

For the inductance, we need to use the high frequency inductance obtained in step 2. This is a rough
approximation of the inductance of the motor. Having a different inductance compared to the real one
limits the performance during high dynamics. For example, if motor needs to run with torque steps, or
speed steps, not having the right inductance can be an issue, but having full torque operation with slow
dynamics can be done using high frequency inductance instead of the real inductance. So for this step,
copy the value obtained from gLhf in both Ls_d and Ls_q.

#define USER_MOTOR_RATED_FLUX (0.5)

Flux is estimated by the libraries, so user needs a value which is close enough to the real one in order to
have the real flux of the machine based on the estimator output. Using an arbitrary number can cause
some saturation of the estimated flux, since this value is limited internally. This can be easily done by
looking at the estimated flux using the following function:

// get the flux
gFlux_VpHz = EST_getFlux_VpHz(obj->estHandle);

If gFlux_VpHz is clamped to a lower than original value set in user.h, decrease the value in half, and if it is
clamped to a higher than original value, increase it by doubling the value. Once the motor runs in closed
loop with a value on the gFlux_VpHz that varies slightly, then take note of this value and put it back into
the USER_MOTOR_RATED_FLUX.

6.9.2.5 Troubleshooting Current Controller Stability during RoverL Identification
[TBD]
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6.9.2.6 Troubleshooting Motor Shaft Stopping During Ramp-Up
The motor shaft needs to start moving at all times during the ramp-up process. This means that in case of
motors with some load on the shaft, as well as motors with high cogging torque, the current used to ramp
up the motor might have to be increased, as high as needed to keep the shaft moving. Start with 10% of
the rated current of the motor, and increase by increments of 10% of the rated current until the motor shaft
is in continuous motion during the entire ramp-up process.

#define USER_MOTOR_RES_EST_CURRENT (1.0) //increase in 10% steps as needed

6.9.2.7 Troubleshooting Motor Shaft for Smoother Ramp
If the time required to ramp-up is extended, users should also consider setting a slower ramp-up
acceleration to allow a smoother ramp. For example, for high inertia loads such as direct drive washing
machines, the ramp up time can be extended to allow a smoother ramp up, as can be seen in Figure 6-
58.

Figure 6-58. RampUp Timing with change in Acceleration

Figure 6-59, taken during the ramp up start, shows the acceleration in Hz/s.

Figure 6-59. PMSM RampUp Acceleration
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6.9.2.8 Troubleshooting Flux Measurement
The monitored value of flux is considered unstable if any of the following is observed:
• saturating and not varying
• any negative value
• more than 10% variation, when the estimator state machine moves on to the next state, EST_State_Ls

If it is unstable, it is recommended to increase the time where the fine tuning of the rated flux is done
(pUserParams->FluxWaitTime[EST_Flux_State_Fine]) in user.c.

If the motor stops spinning at any point during the identification of the flux, halt the identification process
and retry it with a higher frequency by changing the following value set in user.h:

// During Motor ID, maximum commanded speed in Hz
#define USER_MOTOR_FLUX_EST_FREQ_Hz (20.0) (40.0)

The default frequency is set to 20 Hz and this will work for most PMSM motors. Increase with increments
of 10 Hz until the motor does not stop spinning during flux identification.

6.9.2.9 Troubleshooting Ls Identification
It is important that the motor is spinning during the entire inductance identification process. If at any point
during the identification of the inductance the motor stops, increase the frequency used for Flux and
inductance estimation, for example, if 20 Hz was used, try 40 Hz. Also, the Flux estimation frequency must
be increased when the motor is known to have a low inductance. In this context, low inductance is
considered when a single digit µH motor is used. This frequency is used for both the identification of the
flux, and the identification of the inductance.

// During Motor ID, maximum commanded speed in Hz
#define USER_MOTOR_FLUX_EST_FREQ_Hz (20.0) (40.0)

If a shorted identification time is needed per user's requirements, the inductance can be monitored in
order to know when the inductance identification stabilizes. A stable identified inductance would be when
the watch window value does not vary more than 5% as a general guideline. User can measure the time
from the start of the EST_State_Ls state up to when the identification of the inductance shows a stable
number using the following code example:

// get the stator inductance in the direct coordinate direction
gMotorVars.gLsd_H = EST_getLs_d_H(obj->estHandle);

// get the stator inductance in the quadrature coordinate direction
gMotorVars.gLsq_H = EST_getLs_q_H(obj->estHandle);

Once the time for a stable Ls is known, this time can be then entered into the following time so that the
overall motor identification process is shorter: pUserParams->LsWaitTime[EST_Ls_State_Fine].

6.9.2.9.1 Identifying Low Inductance PMSM Motors
There are several considerations to take into account for low-inductance PMSM motors. Some
considerations are regarding the hardware used for motor identification and some other considerations are
related to the configuration of the software.
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6.9.2.9.1.1 Hardware Considerations
When identifying low-inductance PMSM motors, it is recommended to have the voltage divider for the
voltage feedback as low as possible. For example if the voltage used to run the motor is 24 V, then the
voltage resistor divider should be 26 V or so. This allows the maximum number of bits of the ADC
converter when measuring the voltage feedback.

Once the hardware has been changed, update the USER_ADC_FULL_SCALE_VOLTAGE_V definition in
user.h.

Usually, the low-inductance motors are high-speed motors, so the flux is small. The user needs to update
the USER_IQ_FULL_SCALE_VOLTAGE_V to a value that lets the identification process identify the flux
of the motor. The following equation can be used to determine a value for the definition of
USER_IQ_FULL_SCALE_VOLTAGE_V:

Minimum Flux that can be identified (V/Hz) = USER_IQ_FULL_SCALE_VOLTAGE_V/
USER_EST_FREQ_Hz/0.7 (23)

6.9.2.9.1.2 Software Considerations
As far as the software configuration is concerned, it is recommended to identify R/L constant with a higher
frequency. For majority of the low inductance motors tested, a 300 Hz frequency for R/L is enough.
Updates to R/L frequency need to be updated in:
#define USER_R_OVER_L_EST_FREQ_Hz (300)

The second consideration is to have a higher frequency to identify the inductance of the motor. This is part
of the motor parameters. The following example is used to identify a motor with a few tens of µH.
#define USER_MOTOR_FLUX_EST_FREQ_Hz (60.0)

The third consideration is to call a function that overwrites a limitation on the current control loops. This
function needs to be called out of the ISR. The name of the function is: CTRL_recalcKpKi().

The fourth consideration is to call a function that calculates what the initial estimated inductance should be
for a particular motor based on the R/L information. This function also needs to be called out of the ISR,
and the name of this function is: CTRL_calcMax_Ls_qFmt().

The fifth consideration is to call a function that takes the calculated inductance from
CTRL_calcMax_Ls_qFmt() function call and initializes the estimated inductance when inductance
identification is performed. The new function call needs to be called at the end of the ISR and the name of
this function is: CTRL_resetLs_qFmt().

6.9.2.9.2 Identifying Inductance of Salient PMSM Motors
There are several considerations to take into account for low-inductance PMSM motors. Some
considerations are regarding the hardware used for motor identification, and some other considerations
are related to the configuration of the software.

6.9.2.9.2.1 Hardware Considerations
When identifying low-inductance PMSM motors, it is recommended to have the voltage divider for the
voltage feedback as low as possible. For example, if the voltage used to run the motor is 24 V, then the
voltage resistor divider should be 26 V, or so. This allows the maximum number of bits of the ADC
converter when measuring the voltage feedback.

Once the hardware has been changed, update USER_ADC_FULL_SCALE_VOLTAGE_V definition in
user.h.

Usually the low-inductance motors are high-speed motors, so the flux is small. The user needs to update
the USER_IQ_FULL_SCALE_VOLTAGE_V to a value that lets the identification process identify the flux
of the motor. The following equation can be used to come up with a value for the definition of
USER_IQ_FULL_SCALE_VOLTAGE_V:

Minimum Flux that can be identified (V/Hz) = USER_IQ_FULL_SCALE_VOLTAGE_V/
USER_EST_FREQ_Hz/0.7
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6.9.2.9.2.2 Software Considerations
As far as the software configuration is concerned, it is recommended to identify R/L constant with a higher
frequency. For the majority of the low-inductance motors tested, a 300-Hz frequency for R/L is enough.
Updates to R/L frequency need to be updated in:

#define USER_R_OVER_L_EST_FREQ_Hz (300)

The second consideration is to have a higher frequency to identify the inductance of the motor. This is part
of the motor parameters. The following example is used to identify a motor with a few tens of µH.
#define USER_MOTOR_FLUX_EST_FREQ_Hz (60.0)

The third consideration is to call a function that overwrites a limitation on the current control loops. This
function needs to be called out of the ISR. The name of the function is: CTRL_recalcKpKi().

The fourth consideration is to call a function that calculates what the initial estimated inductance should be
for a particular motor based on the R/L information. This function also needs to be called out of the ISR,
and the name of this function is: CTRL_calcMax_Ls_qFmt().

The fifth consideration is to call a function that takes the calculated inductance from
CTRL_calcMax_Ls_qFmt() function call, and initializes the estimated inductance when inductance
identification is performed. The new function call needs to be called at the end of the ISR, and the name
of this function is: CTRL_resetLs_qFmt().

6.9.2.9.3 Identifying Inductance of Salient PMSM Motors
[TBD]

6.9.2.10 Identifying High-Speed PMSM Motors
Adjusting resulting current controller gains for high-speeds. [TBD]

6.9.2.11 Identifying High-Cogging Torque PMSM Motors
For a discussion on this topic, see Section 6.9.2.6.

6.9.3 Troubleshooting ACIM Motor Identification

6.9.3.1 Identifying Low-Voltage and High-Current ACIM Motors
[TBD]

6.9.3.2 Identifying Low-Inductance ACIM Motors
[TBD]

6.9.3.3 Troubleshooting Flux Measurement
Troubleshooting the flux measurement is the same for both motors. For more information, see
Section 6.5.3. The default frequency is set to 20 Hz and will also work for most ACIM motors. As with
PMSM motors, increase with increments of 10 Hz until the motor does not stop spinning during flux
identification.

6.9.3.4 Troubleshooting Locked Rotor Test
Is it very important to lock the rotor completely, avoiding any motion of the shaft. This is the only way the
internal variables will produce accurate motor parameters in subsequent states of the estimator state
machine.
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Inertia Identification

In classical mechanics, moment of inertia, also called mass moment of inertia, or rotational inertia, is the
resistance of an object to rotational acceleration around an axis. This value is typically calculated as the
ratio between the torque applied to the motor and the acceleration of the mass ridigly coupled with that
motor.

There is a common misunderstanding that inertia is equivalent to load. Load usually presents as load
inertia and load torque, where load inertia is the mass that will spin simultaneously with the motor rotor,
while the load torque appears as an external torque applied on the motor rotor shaft. An easy way to
differentiate the load inertia from load torque is to consider whether the load will spin together with the
rotor shaft if the rotor shaft changes spinning direction. Direct couplers and belt pulleys with the mass
rigidly mounted to the load shaft are examples of load inertia. Load inertia and motor rotor inertia
contribute to the system inertia. Example of load torque include: gravity of a mass applied to one side of
the motor rotor shaft, distributed clothes in a washing machine drum during the spin cycle, and the fluid
viscosity of a pump. Load inertia of a system should be estimated with the load torque eliminated or
minimized.

Figure 7-1 shows an example of a simple motion system. In this system, the Rotating Mass is rigidly
coupled with the Motor. This means that the Rotating Mass rotates along with the motor and is considered
as part of the inertia. The Non-Rotating Mass is not rigidly coupled with the motor and is considered as
part of the load. During the inertia identification process, this Non-Rotating Mass should not be attached to
the motor.

Figure 7-1. Example of Identifying Inertia in a Simple Motion System
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7.1 InstaSPIN-MOTION Inertia Identification
Inertia is an important piece of information needed to precisely control the mechanical system. InstaSPIN-
MOTION provides a robust inertia identification feature via SpinTAC Velocity Identify that obtains an
accurate estimation of inertia, while accounting for the influence of friction within the sensorless
application. Currently, SpinTAC Velocity Identify does not actively consider the load torque. In order to get
the appropriate value, the load torque, such as gravity for crane-type applications or compressed fluid in
compressor applications, needs to be removed or minimized.

SpinTAC Velocity Identify estimates the inertia in the units A / [krpm/s]. This is different from the traditional
unit for inertia of Kg * m2. The unit A / [krpm/s] represents the amount of torque required to accelerate the
system. It is proportional to the SI unit Kg * m2. The relationship is based on the amount of torque that the
motor can produce. The SpinTAC controller needs to know how much torque is required to accelerate the
system and thus uses this non-traditional unit for inertia.

SpinTAC Velocity Identify produces a very accurate inertia result. Figure 7-2 is a plot of the inertia
identification result of the same motor for 100 tests of the inertia identification process. As you can see the
inertia identification is extremely repeatable. The maximum and minimum values for these trials are within
0.5% of the average value for 100 tests. Once SpinTAC Velocity Identify is correctly estimating your
system inertia it will produce a result with similar levels of repeatability.

Figure 7-2. Histogram of 100 Inertia Identification Trials

The estimated inertia is an input to both SpinTAC speed and position controllers. However, the SpinTAC
controller is extremely robust and can tolerate a wide range of inertia variation. This feature is valuable in
applications where the inertia of the system changes over time.
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Figure 7-3 compares the performance of the SpinTAC speed controller with a range of wrong inertia
setting. This was tested by applying a torque disturbance to a motor system. The inertia value provided to
the SpinTAC speed controller was set to different values to highlight the range of inertia error that can be
tolerated by the controller. This shows that the SpinTAC speed controller can tolerate an inertia mismatch
of up to eight times. The best performance is realized when the inertia value is match with the application,
but if the inertia of the system changes the SpinTAC speed controller remain stable.

Figure 7-3. SpinTAC Speed Controller Inertia Tolerance

SpinTAC Velocity Identify provides a method to quickly and easily estimate the system inertia. It applies a
continuous torque profile to the motor and uses the speed feedback to calculate the motor inertia. This is
an open loop test that is designed to run as part of the development process. Once the inertia is identified,
it can be set as the default value and does not need to be estimated again unless there is a change in
your system.

During inertia identification, the motor spins in a positive direction and will then spin briefly in a negative
direction. If this cannot be accomplished in your system there are special considerations that will need to
be taken into account. The description of these considerations in discussed in Section 7.5.

7.2 Inertia Identification Process Overview
The SpinTAC Inertia Identification process is very quick. It needs to accelerate and decelerate the motor
in order to build an estimate of the system inertia. Prior to the inertia identification process a couple of
conditions need to be satisfied.
• The motor should not be spinning, or should be spinning very slowly.

The estimate of the inertia could be incorrect if it begins the torque profile while the motor is already
moving.

• The InstaSPIN-FOC PI speed controller must be disabled.
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SpinTAC Velocity Identify needs to provide the Iq reference in order to test the inertia. This can be
achieved only if the InstaSPIN-FOC PI speed controller is disabled.

• A positive speed reference must be set in FAST.
The FAST estimator needs to know the spinning direction of the motor via speed reference in order for
it to correctly estimate the speed. The value can be any positive value for speed reference setting.

• Force Angle must be enabled.
The Force Angle provides a good start from zero speed, and produces better inertia estimates.

Figure 7-4 is a flowchart that shows the steps required prior to enabling SpinTAC Velocity Identify.

Figure 7-4. Flowchart for SpinTAC Velocity Identify Process

Figure 7-5 is a plot of the continuous torque curve that is applied to the motor. Both positive and negative
torque is applied during the SpinTAC Velocity Identify process. Torque is initially applied to the motor in
order for the motor rotor to be properly aligned prior to the inertia identification process.
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Figure 7-5. SpinTAC Velocity Identify Torque Reference

This results in the motor spinning as described in Figure 14-35. It is important that the motor is spinning
continuously during the inertia identification process. If the motor stops during the inertia identification trial,
the configuration parameters should be adjusted and the inertia identification process should be repeated.
For more information about how to correct for common configuration errors during inertia identification,
see Section 7.4.

Figure 7-6. SpinTAC Velocity Identify Speed Feedback

This represents the typical case. For more information about how to identify the system inertia for motors
with high cogging force or large friction, see Section 7.5.
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7.3 Software Configuration for SpinTAC Velocity Identify
Configuring SpinTAC Velocity Identify requires four steps. Lab 5c — InstaSPIN-MOTION Inertia
Identification — is an example project that implements the steps required to use SpinTAC Velocity Identify
to estimate the system inertia. The header file spintac_velocity.h, included in MotorWare, allows you to
quickly include the SpinTAC components in your project.

7.3.1 Include the Header File
This should be done with the rest of the module header file includes. In the Lab 5c example project, this
file is included in the spintac_velocity.h header file. For your project, this step can be completed by
including spintac_velocity.h.

#include "sw/modules/spintac/src/32b/spintac_vel_id.h"

7.3.2 Declare the Global Variables
This should be done with the global variable declarations in the main source file. In the Lab 5c project, this
structure is included in the ST_Obj structure that is declared as part of the spintac_velocity.h header file.

ST_Obj st_obj; // The SpinTAC Object
ST_Handle stHandle; // The SpinTAC Handle

If you do not wish to use the ST_Obj structure that is declared in the spintac_velocity.h header file, use
the example below.

ST_VelId_t stVelId; // The SpinTAC Velocity Identify object
ST_VELID_Handle stVelIdHandle; // The SpinTAC Inertia Identify handle

7.3.3 Initialize the Configuration Variables
This should be done in the main function of the project ahead of the forever loop. This will load all of the
default values into SpinTAC Velocity Identify. This step can be completed by running the functions ST_init
and ST_setupVelId that are declared in the spintac_velocity.h header file. If you do not wish to use these
two functions, the code example below can be used to configure the SpinTAC Velocity Identify
component. This configuration of SpinTAC Velocity Identify represents the typical configuration that should
work for most motors.

// Initialize the SpinTAC Velocity Identify Component
stVelIdHandle = STVELID_init(&stVelId, sizeof(stVelId));

// Setup SpinTAC Velocity Identify Component
// Sample time [s]
STVELID_setSampleTime_sec(stVelIdHandle, _IQ(ST_SPEED_SAMPLE_TIME));
// System speed limit [pu/s], (0, 1]
STVELID_setVelocityMax(stVelIdHandle, _IQ(1.0));
// System maximum (0,1] & minimum [-1,0) control signal [PU]
STVELID_setOutputMaximums(stVelIdHandle, maxCurrent_PU, -maxCurrent_PU);
// Goal Speed of the inertia identification process [pu/s], (0, 1]
STVELID_setVelocityPositive(stVelIdHandle, _IQmpy(_IQ(0.4), _IQ(1.0)));
// System control signal high (0, OutMax] & low [OutMin, 0) limit [PU]
STVELID_setOutputLimits(stVelIdHandle, maxCurrent_PU, -maxCurrent_PU);
// Low pass filter constant to smooth the speed feedback signal [tick], [1, 100]
STVELID_setLowPassFilterTime_tick(stVelIdHandle, 1);
// Configure the time out for inertia identification process [s], [100*T, 10.0]
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STVELID_setTimeOut_sec(stVelIdHandle, _IQ(10.0));// Rate at which torque is applied to the
motor [s], [T, 25.0]
STVELID_setTorqueRampTime_sec(stVelIdHandle, _IQ(5.0));
// Initially ST_VelId is not in reset
STVELID_setReset(stVelIdHandle, false);
// Initially ST_VelId is not enabled
STVELID_setEnable(stVelIdHandle, false);

7.3.4 Call SpinTAC Velocity Identify
This should be done in the main ISR. This function needs to be called at the proper decimation rate for
this component. The decimation rate is established by ST_ISR_TICKS_PER_SPINTAC_TICK declared in
the spintac_velocity.h header file; for more information, see Section 4.7.1.4. Before calling the SpinTAC
Velocity Identify function the speed feedback must be updated. It is also important to notice that this
example implements the flowchart from Figure 7-4 in order to make sure the system is ready to identify
inertia.

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle; // Get pointer to CTRL object
_iq speedFeedback = EST_getFm_pu(obj->estHandle); // Get the mechanical speed in pu/s
_iq iqReference = 0;
if(gMotorVars.SpinTAC.VelIdRun != false) {

// if beginning the SpinTAC Velocity Identify process
// set the speed reference to zero
gMotorVars.SpeedRef_krpm = 0;
// wait until the actual speed is zero
if((_IQabs(speedFeedback) < _IQ(ST_MIN_ID_SPEED_PU))

&& (STVELID_getEnable(stVelIdHandle) == false)) {
gMotorVars.Flag_enableForceAngle = true;
EST_setFlag_enableForceAngle(obj->estHandle, gMotorVars.Flag_enableForceAngle);
// set the GoalSpeed
STVELID_setVelocityPositive(stVelIdHandle, gMotorVars.VelIdGoalSpeed);
// set the Torque Ramp Time
STVELID_setTorqueRampTime_sec(stVelIdHandle, gMotorVars.VelIdTorqueRampTime);
// Enable SpinTAC Velocity Identify
STVELID_setEnable(stVelIdHandle, true);
// Set a positive speed reference to FAST to provide direction information
gMotorVars.SpeedRef_krpm = _IQ(0.001);
CTRL_setSpd_ref_krpm(ctrlHandle, gMotorVars.SpeedRef_krpm);

}
}

// Run SpinTAC Velocity Identify
STVELID_setVelocityFeedback(stVelIdHandle, speedFeedback);
STVELID_run(stVelIdHandle);

if(STVELID_getDone(stVelIdHandle) != false) {
// If inertia identification is successful
// update the inertia setting of SpinTAC Velocity Controller
// EXAMPLE:
// STVELCTL_setInertia(stVelCtlHandle, STVELID_getInertiaEstimate(stVelIdHandle));
gMotorVars.VelIdRun = false;
// return the speed reference to zero
gMotorVars.SpeedRef_krpm = _IQ(0.0);
CTRL_setSpd_ref_krpm(ctrlHandle, gMotorVars.SpeedRef_krpm);

}
else if((STVELID_getErrorID(stVelIdHandle) != false)

&& (STVELID_getErrorID(stVelIdHandle) != ST_ID_INCOMPLETE_ERROR)) {
// if not done & in error, wait until speed is less than 1RPM to exit
if(_IQabs(speedFeedback) < _IQ(ST_MIN_ID_SPEED_PU)) {

gMotorVars.VelIdRun = false;
// return the speed reference to zero
gMotorVars.SpeedRef_krpm = _IQ(0.0);
CTRL_setSpd_ref_krpm(ctrlHandle, gMotorVars.SpeedRef_krpm);
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}
}

// Set the Iq reference that came out of SpinTAC Identify
iqReference = STVELID_getTorqueReference(stVelIdHandle);
CTRL_setIq_ref_pu(ctrlHandle, iqReference);

7.4 Troubleshooting Inertia Identification
SpinTAC Velocity Identify has been tested on a wide variety of motors. Non-typical motors can have
difficulty with the inertia identification process and result in an error. This error is represented by a value in
the ERR_ID field of the SpinTAC Velocity Identify global structure. Common errors and correcting for them
is discussed below.

7.4.1 ERR_ID
ERR_ID provides an error code for users. A list of errors defined for SpinTAC Velocity Identify and the
solutions for these errors are shown in Table 7-1.

Table 7-1. SpinTAC Velocity Identify Error Code

ERR_ID Problem Solution
1 Invalid sample time value Set cfg.T_sec within (0, 0.01]
2 Invalid system maximum velocity value Set cfg.VelMax within (0, 1]

Invalid velocity loop control signal maximum4 Set cfg.OutMax within (0, 1]value
5 Invalid velocity loop control signal minimum value Set cfg.OutMin within [-1, 0)
22 Invalid velocity value Set cfg.VelPos within (0, cfg.VelMax]
23 Invalid velocity loop control signal positive value Set cfg.OutPos within (0, cfg.OutMax]
24 Invalid velocity loop control signal negative value Set cfg.OutNeg within [cfg.OutMin, 0)
34 Invalid acceleration ramp time value Set cfg.RampTime_sec within [cfg.T_sec, 25]
36 Invalid value for feedback type Set cfg.Sensorless within {false, true}

Invalid velocity feedback low pass filter time1010 Set cfg.LptTime_tick within [1, 100]constant
1011 Invalid time out value Set cfg.TimeOut_sec within [1, 10]
2003 Invalid inertia estimate value Adjust the configuration parameters and repeat
2004 Inertia identification process timed out Adjust the configuration parameters and repeat

Identification process is discarded by setting2005 No actionRES = 1 or ENB = 0
2006 Motor stopped during identification process Adjust the configuration parameters and repeat
4001 Invalid SpinTAC license Use the chip with valid license

Use a chip with a valid ROM version or use the SpinTAC4003 Invalid ROM Version library that is compatible with the current ROM version.

7.4.2 2003 Error
This error indicates that the estimated inertia value is incorrect. This is commonly caused by motors that
have a large friction or a high cogging force. To correct for this error, decrease the RampTime_sec
parameter in the configuration section of the global structure. Decreasing this parameter will increase the
rate at which torque is applied to the motor during the inertia identification process.

If the identified inertia is a valid number and the friction coefficient is a very small negative number, this
error might be caused by the precision of the calculation when the friction coefficient is very small. In such
a case, the identified inertia may still be valid.
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7.4.3 2004 Error
This error represents that the inertia identification process timed out prior to completion. There are a
couple of different causes for this event.

7.4.3.1 Motor Spins Continuously
If the motor spins continuously and the inertia identification process results in this error it means that the
goal speed of the identification process is too high. This is commonly caused by the motor having a low
rated speed. The way to correct this error is to decrease the VelPos parameter in the configuration section
of the global structure. This parameter represents the goal speed of the identification process. If the
VelPos value is set too low it can result in inaccurate inertia identification.

7.4.3.2 Motor Does Not Spin Initially
If the motor does not spin initially and the inertia identification process results in this error it means that the
torque applied to the motor was too low. This is commonly caused by the motor requiring a large amount
of current to begin motion. The way to correct for this error is to increase the OutPos parameter in the
configuration section of the global structure. This parameter represents the maximum torque that is
applied during the identification process.

7.4.4 2006 Error
This error indicates that the motor failed to spin continuously during the inertia identification process. It is
important that the motor does not stop spinning until the inertia identification process is complete. The
error is commonly caused by the RampTime_sec parameter being set too high. When the motor stops
during the inertia identification process it can cause the estimated inertia value to be larger than the actual
inertia value. Decreasing the RampTime_sec parameter will increase the rate at which torque is applied to
the motor during the inertia identification process.

7.5 Difficult Applications for Inertia Identification
Some applications have features that make it difficult to identify the system inertia. The default
configuration of SpinTAC Velocity Identify is designed to work with applications that use typical motors.
Applications where the motor feature any of the following conditions, some changes need to be made to
the SpinTAC Velocity Identify configuration.
• Large Cogging Force
• Large Friction
• Low-Rated Speed
• Large Back EMF
• Large Start-Up Current

7.5.1 Automotive Pumps (Large-Cogging Force / Large Friction)
Many automotive pumps feature a large amount of cogging force or have a very large friction. For these
applications it is important to decrease the RampTime_sec parameter. This parameter is located in the
configuration structure of the SpinTAC Velocity Identify global structure. The RampTime_sec value
represents the amount of time in seconds it takes to ramp the Iq reference from 0 to 1.0 PU. Decreasing
this value means that Iq reference will increase more quickly during inertia identification. This ensures that
the motor decelerates properly. If the motor does not properly decelerate, the inertia identification process
will produce a bad result.

Figure 7-7 is the speed feedback during the inertia identification process for an automotive pump with
large friction. When RampTime_sec is set to 10.0 the inertia identification process does not complete
successfully. It is important to notice that the larger RampTime_sec has a delayed start to the process and
the motor stops in the middle of the test. Both of these conditions cause the inertia identification to fail with
the ERR_ID set to 2003. When RampTime_sec is set to 3.0, the inertia identification does not have a
delayed start, and the motor does not stop during the test. Both of these conditions need to be satisfied in
order for the inertia identification to complete successfully.
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Figure 7-7. Speed Feedback for Inertia Identification for an Automotive Pump

7.5.2 Direct Drive Washing Machines (Low-Rated Speed and Large Back EMF)
Most direct drive washing machine use motors with a low rated speed. In these applications it is important
to decrease the VelPos parameter. This parameter is located in the configuration structure of the SpinTAC
Velocity Identify global structure. The VelPos value represents the goal speed in pu/s of the inertia
identification process. If the goal speed is greater than twice the rated speed of the motor, inertia
identification will fail because the motor will not be able to achieve enough speed. Decreasing VelPos
means that the goal speed of the inertia identification process will be lower and will allow the process to
succeed. Using field weakening to increase the speed of the motor during the inertia identification process
is not recommended. Field weakening will impact the relationship between speed and torque.

Figure 7-8 is the speed feedback during the inertia identification process for a direct drive washing
machine. You should notice that the motor spins at its rated speed of approximately 360 rpm for longer
than 5 seconds. This means that the motor never reached the goal speed specified in the VelPos
configuration parameter and SpinTAC Velocity Identify timed out and ended the inertia identification
process.
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Figure 7-8. Speed Feedback for Inertia Identification for a Direct Drive Washing Machine

Direct drive washing machines also feature a large amount of back emf and rapid deceleration could
cause an over-voltage condition on the DC bus. Reducing the Goal Speed will cause the motor to have
less deceleration and will generate less voltage on the DC bus. The Goal Speed is set by the VelPos
parameter.

Figure 7-9 is a plot that shows the voltage on the DC bus during the inertia identification process. The
speed feedback is provided for reference. You should notice that the DC bus rises to 400 volts during the
inertia identification process when the Goal Speed is set to 400 RPM. In order to eliminate this large rise
in voltage, the VelPos configuration parameter is decreased. When the Goal Speed is set to 200 RPM, the
DC bus stays below 350 volts during the entire inertia identification process.
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Figure 7-9. DC Bus Voltage for Inertia Identification for a Direct Drive Washing Machine

7.5.3 Compressors (Large Start-Up Current)
Compressors often cannot have the load torque completely eliminated. This causes the motor to require a
large amount of Iq reference to begin spinning. For these applications it is important to increase the
PosOut parameter. This parameter is located in the configuration structure of the SpinTAC Velocity
Identify global structure. The PosOut value represents the amount of Iq reference, in PU, that will be
applied as part of the inertia identification process. Increasing this value will apply more current to the
motor during the process. It might also be important to decrease the RampTime_sec parameter. This will
increase the rate at which the Iq reference is applied to the system.

Figure 7-10 is the speed feedback during the inertia identification process for a compressor. You should
notice that the speed does not accelerate up to the goal speed very quickly. It takes a long time for it to
build up to the goal speed. This indicates that the motor needs additional torque in order to reach the goal
speed. The configuration parameter that needs to be adjusted is PosOut. This parameter should be
increased in order to supply more torque to the motor during the inertia identification process. The inertia
identification process will only use as much torque as is required to reach the goal speed. It is better to
have the PosOut parameter be larger than what is required.
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Figure 7-10. Speed Feedback for Inertia Identification for a Compressor

Many compressors cannot run in the negative direction. The inertia identification process applies negative
Iq reference to the system in order to decelerate the motor. Even though negative Iq reference is being
applied, the motor still does not end up rotating in the negative direction due to the inertia identification
process ending before the motor would spin in the negative direction.
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Chapter 8
SPRUHJ1F–January 2013–Revised July 2014

MCU Considerations

In this section we will review the MCU-specific considerations required to successfully implement
InstaSPIN-FOC and InstaSPIN-MOTION:
• List of devices that are enabled with InstaSPIN and describing their specific requirements
• Memory map considerations
• Clock rates

This section provides details the microcontroller resources required by the InstaSPIN libraries. Two
implementations of InstaSPIN are discussed in this document depending on how much of the
functionality is run from secured ROM, or what functionality is run from user's memory, either RAM or
FLASH:
– All of InstaSPIN-FOC from ROM, also known as full implementation.
– Only FAST™ from ROM, also known as minimum implementation.
Also, a distinction must be made depending on where the code is placed and executed from in user's
memory. Two categories are discussed:
– Library executing from ROM and loading and executing user's code from RAM
– Library executing from ROM and loading and executing user's code from FLASH

• Specifically for the library implementation and where the code is loaded and executed from, the
following resources categories are discussed in this document:
– CPU Utilization
– Memory Allocation
– Stack Utilization

• A common section at the end lists the Digital and Analog Pins Utilization, which is common to every
mode of operation of InstaSPIN.
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8.1 InstaSPIN-Enabled Devices
The devices that currently include InstaSPIN-FOC or InstaSPIN-MOTION in ROM are shown in Table 8-1.

Table 8-1. InstaSPIN-Enabled Devices

InstaSPIN-FOC in InstaSPIN-
Device ROM MOTION in ROM InstaSPIN TRM Device Datasheet Device TRM
TMS320F28069M V1.6 V2.1.8 SPRUHJ0 SPRS698 SPRUH18
TMS320F28069F V1.6 not included SPRUHI9 SPRS698 SPRUH18
TMS320F28068M V1.6 V2.1.8 SPRUHJ0 SPRS698 SPRUH18
TMS320F28068F V1.6 not included SPRUHI9 SPRS698 SPRUH18
TMS320F28062F V1.6 not included SPRUHI9 SPRS698 SPRUH18
TMS320F28054M V1.7 V2.1.8 SPRUHW1 SPRS797 SPRUHE5
TMS320F28054F V1.7 not included SPRUHW0 SPRS797 SPRUHE5
TMS320F28052M V1.7 V2.1.8 SPRUHW1 SPRS797 SPRUHE5
TMS320F28052F V1.7 not included SPRUHW0 SPRS797 SPRUHE5
TMS320F28027F V1.7 not included SPRUHP4 SPRS523 SPRUFN3
TMS320F28026F V1.7 not included SPRUHP4 SPRS523 SPRUFN3

The devices have remained exactly the same except that InstaSPIN technology has been added to a
specific region of ROM. For detailed information on the device, see the device-specific data sheets and
errata for complete details on the device that you are using.

8.1.1 softwareUpdate1p6() - Function is Required in User Code
The function softwareUpdate1p6() is a work-around for a bug in InstaSPIN-FOC v1.6 to correct how
inductance is converted from Henries to per unit value when using the inductance from user.h. This
function needs to be called whenever motor parameters are loaded from user.h when using InstaSPIN-
FOC v1.6.

The following fixes are in this patch:
• Added a maximum per inductance value. Thus, we wanted the per unit inductance values scaled with

respect to this maximum value. This would impact the Q format of the inductance value as well.
• Set the current controller gain values (Id/Iq current controllers) based on these new per unit inductance

values.

Below is the source code to the patch, it is used in every InstaSPIN-FOC v1.6 and InstaSPIN-MOTION lab
example.

void softwareUpdate1p6(CTRL_Handle handle)
{

CTRL_Obj *obj = (CTRL_Obj *)handle;

float_t fullScaleInductance = EST_getFullScaleInductance(obj->estHandle);
float_t Ls_coarse_max = _IQ30toF(EST_getLs_coarse_max_pu(obj->estHandle));
int_least8_t lShift = ceil(log(obj-

>motorParams.Ls_d/(Ls_coarse_max*fullScaleInductance))/log(2.0));
uint_least8_t Ls_qFmt = 30 - lShift;
float_t L_max = fullScaleInductance * pow(2.0,lShift);
_iq Ls_d_pu = _IQ30(obj->motorParams.Ls_d / L_max);
_iq Ls_q_pu = _IQ30(obj->motorParams.Ls_q / L_max);

float_t RoverL = obj->motorParams.Rs/obj->motorParams.Ls_d;
float_t fullScaleCurrent = EST_getFullScaleCurrent(obj->estHandle);
float_t fullScaleVoltage = EST_getFullScaleVoltage(obj->estHandle);
float_t ctrlPeriod_sec = CTRL_getCtrlPeriod_sec(ctrlHandle);
_iq Kp = _IQ((0.25*obj->motorParams.Ls_d*fullScaleCurrent)/(ctrlPeriod_sec*fullScaleVoltage));
_iq Ki = _IQ(RoverL*ctrlPeriod_sec);
_iq Kd = _IQ(0.0);
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// store the results
EST_setLs_d_pu(obj->estHandle,Ls_d_pu);
EST_setLs_q_pu(obj->estHandle,Ls_q_pu);
EST_setLs_qFmt(obj->estHandle,Ls_qFmt);

// set the Id controller gains
PID_setKi(obj->pidHandle_Id,Ki);
CTRL_setGains(ctrlHandle,CTRL_Type_PID_Id,Kp,Ki,Kd);

// set the Iq controller gains
PID_setKi(obj->pidHandle_Iq,Ki);
CTRL_setGains(ctrlHandle,CTRL_Type_PID_Iq,Kp,Ki,Kd);

return;
} // end of softwareUpdate1p6() function

8.2 ROM and User Memory Overview

8.2.1 InstaSPIN-FOC Full Implementation in ROM
When application requirements allow to run all of the field oriented control (FOC) blocks from ROM, and
no additional functionality is required (that is, a specialized current control algorithm, or Clarke transform,
and so on), a full implementation is recommended. This implementation will make use of the entire library
contents placed in ROM, and will execute the complete suite of functions and blocks, known as
InstaSPIN-FOC. Full implementation not only includes the FAST algorithm, but it also contains the rest of
the FOC blocks. The following block diagram shows how the full implementation contains several blocks
allowing the entire FOC code to run from ROM, freeing up more memory resources, and taking advantage
of the 0-wait state execution from ROM. The ROM is also execute-only ROM, providing an additional level
of security, since the memory cannot be written or read, only executed.

For F2802xF devices, some of the functional blocks are loaded in user memory due to reduced ROM size.
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Figure 8-1. InstaSPIN-FOC Full Implementation in ROM

8.2.1.1 Executing from ROM and RAM
Even though the entire InstaSPIN library is executed from ROM, there are a few functions that need to be
loaded and run from users' memory. These functions are the interface from the library to the hardware
peripherals, as shown in Figure 8-1. All functions related to the driver object (HAL_Obj) interface to the
hardware and need to be placed in user's memory. The performance data will depend on where these
user's functions are implemented. This section shows performance data when all users' functions are
placed and run out of RAM.

From a CPU performance standpoint, loading and executing users' functions from RAM presents the
biggest advantage since RAM does not require wait states. On the other hand, loading users' functions to
RAM consumes volatile memory space, so users would have to consider total available RAM for variables.
The stack utilization and pins used by the library is independent of where the users' code resides, RAM or
FLASH.

8.2.1.2 Executing from ROM and FLASH
Loading users' functions to FLASH helps on the RAM consumption aspect, although a portion of the
available RAM is still needed for variables and stack. Another consideration when loading users' code
from FLASH is the CPU execution time, since FLASH requires wait states.

Due to reduced ROM size for the F2802xF devices, it is impossible to execute InstaSPIN-FOC fully from
ROM. For details on running the minimum implementation of InstaSPIN-FOC, see Section 8.2.2.
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Stack usage as well as pins used is the same as loading users' code to RAM. We are still listing those
parameters here to provide a complete list of resources usage for a particular implementation.

8.2.2 InstaSPIN-FOC Minimum Implementation in ROM
Some applications require more control of what the field oriented control is doing. Applications with this
requirement can use the minimum implementation of InstaSPIN, which consists in running only the FAST
estimator from ROM with any of the other software blocks moveable to user memory. The estimator must
remain in ROM since the source code is proprietary to TI.

Figure 8-2 highlights in different colors what runs from ROM and users' memory.

Figure 8-2. InstaSPIN-FOC Minimum Implementation in ROM

Notice that only the function that runs the estimator (Est_run) is executed from ROM. Everything else is
executed from users' memory, either RAM or FLASH. In the following subsections, the performance of
InstaSPIN is described when a minimum implementation is used.

8.2.2.1 Executing from ROM and RAM
When the users' functions are loaded and executed from RAM, code executes faster than from FLASH,
with the penalty of using a portion of the available RAM for code. If a particular application requires
maximum execution speed, and the available RAM satisfies non volatile memory requirements, this is the
best option.
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8.2.2.2 Executing from ROM and FLASH
As mentioned in previous sections, loading users' functions to FLASH helps on the RAM consumption
aspect. However, the disadvantage of FLASH execution is the speed, since FLASH requires wait states to
operate properly; hence, affecting execution speed.

8.2.3 InstaSPIN-MOTION in ROM
InstaSPIN-MOTION, currently available on F2806xM devices, is designed in a modular structure.
Customers can determine which functions will be included in Flash memory when their system is
deployed.

InstaSPIN-MOTION Control, Identify, and Move components are available in ROM InstaSPIN-MOTION
Plan and Public Library are available in RAM.

Figure 8-3. InstaSPIN-MOTION in ROM

8.2.3.1 Executing InstaSPIN-MOTION in the Main Interrupt
The InstaSPIN-MOTION components are individually executed in the main interrupt service routine. Each
InstaSPIN-MOTION component should be called at a fixed decimation from the main ISR. It is
recommended that the InstaSPIN-MOTION components be called at a rate at least 10 times slower than
the PWM interrupt ISR or main ISR.

The InstaSPIN-MOTION core functions, including Control, Identify and Move, can only be executed from
ROM. The user-included library and Plan can be executed from RAM or flash.

8.2.3.2 Executing Library from RAM
Loading and executing the public library from RAM presents a CPU performance advantage since RAM
does not require wait states. However, for applications that require large amounts of RAM, executing the
library from flash could be a better option.
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8.2.3.3 Executing Library from Flash
Loading and executing the public library from flash helps to decrease RAM consumption, although some
RAM will be used by variables and stack. An important consideration is the flash wait states.

8.3 Details on CPU Load and Memory Footprint Measurements

8.3.1 CPU Utilization Measurement Details
In order to measure the CPU cycles as accurate as possible, one of the three available CPU timers was
used. The timer was clocked as fast as possible in order to provide the maximum number of counts per
execution. So the input clock of the timer was set to the same clock as the CPU with no prescaler. The
following code example shows how the timer's count is reloaded and then read after the function of
interest is executed:

// reload the CPU timer
HAL_reloadTimer0(halHandle);

// run the controller
CTRL_run(ctrlHandle,halHandle,&gAdcData,&gPwmData);

// get the CPU timer count
timercount = HAL_getCountTimer0(halHandle);

Even though the functions that reload and read the timer count are as efficient as possible, there is an
overflow of about 5 CPU cycles which have to be considered when using the data provided in the
following sections.

The CPU utilization tables have a minimum column (Min) calculated by running hundreds of thousands of
interrupts, and comparing each interrupt cycle time against a minimum, and if it is smaller, the minimum is
updated. The same approach was followed to calculate the maximum number of cycles, or the Max
column. The Average column was calculated by an accumulative number of cycles, and also counting the
number of interrupts used for the accumulation, and then dividing the two numbers. Similarly to the Min
and Max column, the Average is calculated over hundreds of thousands interrupts to generate a stable
average.

The CPU utilization tables list a few optional configurations, changing three main things:
• The Interrupt vs. Controller (ISR vs CTRL) decimation rate, or tick rate
• The Controller vs. Estimator (CTRL vs EST) decimation rate, or tick rate
• The Rs Online recalibration feature

For the first two, related to the decimation rates, Figure 8-4 shows the entire software execution clock tree
of InstaSPIN. This diagram shows how the clocks are divided all the way from the CPU clock to the
estimator. We are only changing the highlighted tick rates, since these two are the main contributors of the
CPU usage. Changing the speed controller, current controller or trajectory generation tick rates does not
change the CPU usage significantly, so those are kept constant throughout the CPU utilization
measurements.
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Figure 8-4. InstaSPIN Software Execution Clock Tree

For more information about InstaSPIN software execution clock tree, see the Section 9.1.

The third parameter that is enabled and disabled for the CPU utilization measurement is the Rs Online
recalibration feature.

This is also considered since it impacts the CPU utilization considerably. To learn more about Rs Online
recalibration, see Chapter 15.

8.3.2 Memory Allocation Measurement Details
Memory allocation depends on several factors. Here are some factors that affect how the memory is
allocated as well as the configuration used for each item:
• Compiler Version: 6.1.0

• Optimization Settings: Level 4

• Additional User's Code: None. Minimal code was used to interface InstaSPIN libraries.

The entire command line showing the options of the compiler is also here:

-v28 -ml -mt -O4 -g

In order to have a minimum set of variables to interface InstaSPIN libraries, here is a list of must have
global variables in your code:

CTRL_Handle ctrlHandle;

HAL_Handle halHandle;

USER_Params gUserParams;

HAL_PwmData_t gPwmData;
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HAL_AdcData_t gAdcData;

For a complete description of these variables and the data type, see the labs. Some other variables might
be useful to control the flow of the software, such as flags to enable or disable the system, as well as
other global variables to display motor parameters. Those variables are not included in the project built to
measure memory allocation, since they are not needed for the functionality of the libraries.

There are five different sections in the memory allocation tables:
• Library Interface (.ebss). This section of the table indicates the variables, in uninitialized memory area,

or .ebss, used to interface the InstaSPIN libraries wherever they are, in user's memory or ROM.
• Library (.ebss). This one refers to the variables used for the InstaSPIN library itself, and the memory

consumption for this area doesn't change.
• Code (.text). This section refers to the actual code being executed in user's memory. This code area

will change depending on where the code is loaded (RAM or FLASH). It would also change if the
compiler optimization settings are changed. Also, if the user is running most of the code from ROM,
this code section will be minimized.

• IQmath (.text). The memory allocated for the code related to IQmath depends on the location of the
InstaSPIN libraries. For a full implementation of InstaSPIN, where the majority of the code is in ROM,
the IQmath code is minimized, since the ROM code itself has its own math code, and does not use
user's memory for IQmath operations. For a minimum implementation of InstaSPIN, where a more
math intensive code is operated from user's memory, some additional IQmath functions are needed in
user's memory so the memory allocated to IQmath code increases for a minimum implementation of
InstaSPIN.

• Max Stack Used (.ebss). This memory area is explained in a later section of this document.

8.3.3 IQ Math Built in ROM
The libraries in ROM were built with IQmath library version 1.5c. All code executable from ROM uses
functions implemented in ROM itself, so the ROM code does not rely on externally added IQ math
functionality.

However, code executed from user's memory with IQ math operations need an IQ math library to be
added. This externally added IQ math library can be any released library version, not 1.5c necessarily.
Users can mix their own version of IQ math library, and still execute code from ROM which uses IQ math
library version 1.5c. All example code includes a full IQ math library in the CCStudio project.

8.3.4 Stack Utilization Measurement Details
The stack utilization was measured by the following procedure:
• Device is reset.
• The entire memory section where the stack is placed by the linker is initialized with known values,

(0x5555AAAA, 0x12345678, 0x0BADF00D, 0xCAFEBABE, 0xFEEDFACE, and so on).
• Run the code for a few minutes, exercising all branches.
• Analyze the memory area where the stack is allocated and look for the last value changed, before the

initialized values are present.
• Calculate the memory area modified.

Although the stack utilization method does not guarantee an absolute number of words needed for the
stack, it gives a good idea of the stack area needed. However, it is recommended to have a stack section
bigger than the minimum requirement to provide more robustness to the entire project. For additional
details on this topic, see the Online Stack Overflow Detection on the TMS320C28x DSP application report
(SPRA820).

The number on the tables listed in the following sections represent the maximum stack utilized, not the
stack area reserved by the build options. As mentioned in this section, it is recommended to have a
greater stack area reserved to avoid potential stack overflow conditions, especially when adding more
code, other interrupts, or simply more variables.
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8.3.5 InstaSPIN Main Interrupt
The InstaSPIN library is executed at a fixed frequency from a single interrupt service routine. By default
this main ISR is triggered by an end of conversion interrupt from the ADC. This conversion is first started
by the PWM module at a fixed rate. Once in the ISR, mainISR() for this example, a series of function calls
are needed in order to get data from the ADC and to call the functions in ROM. The following code is an
example of this:
interrupt void mainISR(void)
{

// acknowledge the ADC interrupt
HAL_acqAdcInt(halHandle,ADC_IntNumber_1);

// convert the ADC data
HAL_readAdcData(halHandle,&gAdcData);

// run the controller
CTRL_run(ctrlHandle,halHandle,&gAdcData,&gPwmData);

// run the driver -- set the pwm compare values
HAL_writePwmData(halHandle,&gPwmData);

// setup the controller
CTRL_setup(ctrlHandle);

return;
} // end of mainISR() function

In order to describe the performance of InstaSPIN we will consider a top-level approach first, including
these five function calls from the main ISR (see Figure 8-5).

Figure 8-5. Function Calls from the Main ISR

8.3.6 Clock Rate
InstaSPIN-FOC and InstaSPIN-MOTION are real-time control systems and thus its performance is directly
linked with the CPU clock rate of the processor it is executing on. The CPU clock rate can be reduced and
the performance of InstaSPIN-FOC and InstaSPIN-MOTION can be tested to see if it meets the
application requirements. Aspects of CPU loading are covered in Section 8.5 and the software clock tree
of InstSPIN-FOC and InstaSPIN-MOTION is covered in Chapter 9.
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8.4 Memory Footprint
InstaSPIN-FOC is stored in a region of the device ROM that is execute-only (EXE-only) memory such that
it is not readable by software or IDE.

Table 8-2. Allocated Memory for InstaSPIN-FOC Library

Features 2806xF 2806xM 2805xF 2805xM 2802xF
FAST Yes Yes Yes Yes Yes
SpinTAC No Yes No Yes No
Maximum Number of Motors that can 2 2 2 2 1
be controlled
Relocalable Controller Structure No No Yes Yes Yes
FAST Version 1.6 1.6 1.7 1.7 1.7
Public Library needs to be added to No No No No Yes
project
ROM Library Start [address, hex] 3F 8000 3F 8000 3F 8808 3F 8808 3F C000
Library Required RAM [size, hex, 800 800 800 800 200
words]
Library Start RAM [address, hex] 01 3800 01 3800 00 8000 00 8000 00 0600

8.4.1 Device Memory Map

8.4.1.1 F2806xF and F2806xM Devices
For the F2806xF and F2806xM devices, InstaSPIN-FOC v1.6 and SpinTAC v2.1.8 is stored in address
range of 0x3F8000 to 0x3FBFFF and the last part of L8-RAM is reserved for InstaSPIN variables, address
range 0x013800 to 0x013FFF. Note that the InstaSPIN-FOC and InstaSPIN-MOTION variable range is
fixed and must not be used. The rest of L8-RAM is available to the user (0x012000 to 0x0137FF); see
Figure 8-6.

Figure 8-6. F2806xF and F2806xM Allocated Memory for InstaSPIN-FOC and SpinTAC Library

In addition to InstaSPIN-FOC v1.6 and SpinTAC v2.1.8 stored in ROM, several tables in ROM have
moved to new addresses. If you are porting existing code that references for example IQmath tables in
ROM, your linker command file will require an update of the addresses as shown in Table 8-3.

326 MCU Considerations SPRUHJ1F–January 2013–Revised July 2014
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


See Datasheet

FAST + SPIN 
Variables

See Datasheet

FAST + SPIN 
Libraries

See Datasheet

L0 RAM

Execute 
Only 
ROM

0x008000

0x000000

0x008800

0x3F8808

0x3FC52F

0x3FFFFF

www.ti.com Memory Footprint

Table 8-3. ROM Table Addresses

Starting Address in ROM F2806x F2806xF and F2806xM
FPUTABLES 0x03fd860 0x03fd590
IQTABLES 0x03fdf00 0x03fdc30
IQTABLES2 0x03fea50 0x03fe780
IQTABLES3 0x03feadc 0x03fe8b6

8.4.1.2 F2805xF and F2805xM Devices
For the 2805xF and 2805xM devices, InstaSPIN-FOC v1.7 and SpinTAC v2.1.8 is stored in address range
of 0x3F8808 to 0x3FC52F and L0-RAM is reserved for InstaSPIN variables, address range 0x008000 to
0x0087FF; see Figure 8-7.

Figure 8-7. F2805xF and F2805xM Allocated Memory for InstaSPIN-FOC and SpinTAC Library

8.4.1.3 F2802xF Devices
For the 2802xF devices, InstaSPIN-FOC v1.7 is stored in address range of 0x3FC000 to 0x3FDFFF and
the last part of M1-RAM is reserved for InstaSPIN variables, address range 0x000600 to 0x0007FF. Note
that the InstaSPIN-FOC variable range is fixed and must not be used. The rest of M1-RAM is available to
the user (0x000400 to 0x0005FF); see Figure 8-8
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Figure 8-8. F2802xF Allocated Memory for InstaSPIN-FOC Library

8.4.2 InstaSPIN Memory Footprint

8.4.2.1 F2806xF and F2805xF Devices
Table 8-4 summarizes the memory used for the four configurations discussed in this document. Note the
code size increase as fewer functions in ROM are used.

Table 8-4. Total Memory Usage of InstaSPIN-FOC for F2806xF and F2805xF Devices

Code Configurations Memory Sizes (16-bit Words) Maximum Stack Used
ROM Code User Code RAM Flash Total (16-bit Words)

Full Implementation RAM 0x1870 0x0000 0x1870 0x0120
Full Implementation FLASH 0x001E 0x186C 0x188A 0x0120
Min Implementation RAM 0x1F31 0x0000 0x1F31 0x0120
Min Implementation FLASH 0x001E 0x1F2D 0x1F4B 0x0120

8.4.2.2 F2802xF Devices
Table 8-5 summarizes the memory used for the only configuration available for F2802xF devices.

Table 8-5. Total Memory Usage of InstaSPIN-FOC for F2802xF Devices

Code Configurations Memory Sizes (16-bit Words) Maximum Stack Used
ROM Code User Code RAM Flash Total (16-bit Words)

Min Implementation FLASH 0x06B2 0x2DD8 0x348A 0x0120

8.4.2.3 F2806xM and F2805xM Devices
To calculate the memory usage for InstaSPIN-MOTION, add the InstaSPIN-FOC memory usage to the
SpinTAC memory usage in Table 8-6. The different memory requirements of SpinTAC Velocity Plan and
SpinTAC Position Plan represent how many configuration functions are used in the project. RAM size is
taken from the linker section ".ebss" and FLASH size from ".text".
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Table 8-6. Code Size and RAM Usage for SpinTAC Components

Component Code (.text) (16-Bit Words) RAM (.ebss) (16-Bit Words)
Velocity Control 0X2E6 0x4C
Velocity Move 0x488 0x5C
Velocity Plan (Min) 0x666 0x4E
Velocity Plan (Max) 0x14BA 0x4E
Velocity Identify 0x392 0x3C
Position Converter 0x21C 0x4C
Position Control 0x416 0x62
Position Move 0x13A4 0xCC
Position Plan (Min) 0x7AE 0x60
Position Plan (Max) 0x16F4 0x60

Section 14.1.1.5 breaks down the maximum stack utilization of SpinTAC components when run
individually. The stack consumption of InstaSPIN-FOC is included.

Table 8-7. Stack Utilization of SpinTAC Components +
InstaSPIN-FOC

Configuration Maximum Stack Used
(InstaSPIN-FOC is running in all cases) (16-bit Words)
Velocity Control 0x0120
Velocity Move 0x0120
Velocity Plan + Move + Control 0x0120
Velocity Identify 0x0120
Position Converter 0x0120
Position Control 0x0120
Position Move 0x0120
Position Plan + Move + Control 0x0120

8.4.3 Memory Wait-States
For additional wait-state options, refer to the device-specific data sheet for the device that you are using.

8.4.3.1 F2806xF/M Devices
The wait states shown in Table 8-8 were set for the CPU execution time measurements when executing
code from FLASH at 90 MHz for the F2806xF/M devices.

Table 8-8. CPU Execution Time Wait States (F2806xF and F2806xM Devices)

Page Wait State Random Wait State OTP Wait State
3 3 5

8.4.3.2 F2805xF/M Devices
The wait states shown in Table 8-9 were set for the CPU execution time measurements when executing
code from FLASH at 60 MHz for the F2805xF/M devices.

Table 8-9. CPU Execution Time Wait States (F2805xF and F2805xM Devices)

Page Wait State Random Wait State OTP Wait State
2 2 3
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8.4.3.3 F2802xF Devices
The wait states shown in Table 8-10 were set for the CPU execution time measurements when executing
code from FLASH at 60 MHz for the F2802xF devices.

Table 8-10. CPU Execution Time Wait States (F2802xF Devices)

Page Wait State Random Wait State OTP Wait State
2 2 3

8.4.4 Flash Configuration Required Even for RAM-Only Execution
InstaSPIN-FOC and InstaSPIN-MOTION execute from ROM, but also access the OTP on the F2806xF
and F2806xM and the OTP is a flash-based technology which requires the flash memory to be configured.
Therefore, when you are running the labs from this guide you will notice that the file Flash.c is included in
the project. The function FLASH_init() is called from HAL_init() which is called from main() in the lab.
MotorWare provides drivers for all the peripherals on the device, including flash.

8.4.5 Debug (IDE) of EXE-Only Memory
Even though InstaSPIN-FOC and InstaSPIN-MOTION are stored in EXE-only ROM the debug experience
is much the same except that you will not be able to see the contents of memory. Viewing memory from
CCStudio using the Memory Browser, contents of EXE-only memory will be all 0s.

If you single-step through EXE-only memory with the Disassembly window open, it will display the opcode
for reading all 0s (ITRAP0). Below is an example of this, single-stepping into the function CTRL_initCtrl()
from Lab02A.
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8.5 CPU Load

8.5.1 F2806xF Devices

8.5.1.1 CPU Cycles
The following tables summarize all of the performance data per function, when users' code is loaded and
executed from FLASH, on a minimum implementation of InstaSPIN library. Note that the number of cycles
does not change significantly between the different implementations since the FAST estimator block
remains in ROM for each of these configurations. This estimator block consumes the most cycles of all the
InstaSPIN-FOC blocks. For more details on managing execution time in the ISR, see Section 9.1.

8.5.1.1.1 User Code in RAM

8.5.1.1.1.1 Full Implementation

Table 8-11. Full Implementation Memory Usage Executing in RAM

Memory Usage (16-bit Words)
Section RAM Flash
Library Interface (.ebss) 0x018C ×
Library (.ebss) 0x0800 ×
Code (.text) 0x1870 ×
IQmath (.text) 0x0014 ×

Table 8-12 summarizes all of the performance data per function, when users' code is loaded and executed
from RAM, on a full implementation of InstaSPIN library.
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Table 8-12. Full Implementation Executing in RAM

CPU Cycles Executed From
Function Name Min Avg Max ROM RAM FLASH
HAL_acqAdcInt 23 23 23 × ✓ ×
HAL_readAdcData 106 106 106 × ✓ ×
Ctrl_run
Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 2345 2355 24251

CTRL vs EST = 2 1154 1760 2425
CTRL vs EST = 3 1154 1562 2425

ISR vs CTRL = 2, CTRL vs EST = 1 58 1207 2425
CTRL vs EST = 2 58 909 2425
CTRL vs EST = 3 58 810 2425

ISR vs CTRL = 3, CTRL vs EST = 1 58 824 2425
CTRL vs EST = 2 58 626 2425
CTRL vs EST = 3 58 560 2425 ✓ × ×

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 2807 2821 28941
CTRL vs EST = 2 1154 1993 2894
CTRL vs EST = 3 1154 1717 2894

ISR vs CTRL = 2, CTRL vs EST = 1 58 1439 2894
CTRL vs EST = 2 58 1025 2894
CTRL vs EST = 3 58 887 2894

ISR vs CTRL = 3, CTRL vs EST = 1 58 979 2894
CTRL vs EST = 2 58 702 2894
CTRL vs EST = 3 58 610 2894

HAL_writePwmData 62 62 62 × ✓ ×
CTRL_setup 37 51 178 ✓ × ×

8.5.1.1.1.2 Minimum Implementation

Table 8-13. Minimum Implementation Memory Usage Executing in RAM

Memory Usage (16-bit Words)
Section RAM Flash
Library Interface (.ebss) 0x018C ×
Library (.ebss) 0x0800 ×
Code (.text) 0x1F31 ×
IQmath (.text) 0x0064 ×

Table 8-14 summarizes all of the performance data per function, when users' code is loaded and executed
from RAM, on a minimum implementation of InstaSPIN library. Notice that CTRL_run is executed from
both ROM and RAM. That is because CTRL_run has some function calls to the estimator. For instance,
the EST_run function call is executed from CTRL_run, so that will be executed from ROM. Similarly,
CTRL_setup has some code that calls some InstaSPIN state machine code, which needs to be executed
from ROM because it contains some interaction with the FAST estimator. The difference in Code from the
full implementation running from RAM is an additional Offset object added as well as the entire FOC code
inlined in the code.
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Table 8-14. Minimum Implementation Executing in RAM

CPU Cycles Executed From
Function Name Min Avg Max ROM RAM FLASH
HAL_acqAdcInt 23 23 23 × ✓ ×
HAL_readAdcData 106 106 106 × ✓ ×
Ctrl_run
Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 2361 2372 24541

CTRL vs EST = 2 1171 1777 2454
CTRL vs EST = 3 1171 1579 2454

ISR vs CTRL = 2, CTRL vs EST = 1 59 1215 2454
CTRL vs EST = 2 59 918 2454
CTRL vs EST = 3 59 819 2454

ISR vs CTRL = 3, CTRL vs EST = 1 59 830 2454
CTRL vs EST = 2 59 631 2454
CTRL vs EST = 3 59 565 2454 ✓ × ×

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 2825 2840 29251
CTRL vs EST = 2 1171 2012 2925
CTRL vs EST = 3 1171 1736 2925

ISR vs CTRL = 2, CTRL vs EST = 1 59 1450 2925
CTRL vs EST = 2 59 1035 2925
CTRL vs EST = 3 59 897 2925

ISR vs CTRL = 3, CTRL vs EST = 1 59 986 2925
CTRL vs EST = 2 59 710 2925
CTRL vs EST = 3 59 618 2925

HAL_writePwmData 62 62 62 × ✓ ×
CTRL_setup 36 50 178 ✓ ✓ ×

8.5.1.1.2 User Code in FLASH

8.5.1.1.2.1 Full Implementation

Table 8-15. Full Implementation Memory Usage Executing in FLASH

Memory Usage (16-bit Words)
Section RAM Flash
Library Interface (.ebss) 0x018C ×
Library (.ebss) 0x0800 ×
Code (.text) 0x001E 0x186C
IQmath (.text) × 0x0014

Table 8-16 shows the resource utilization when a full implementation of InstaSPIN is done, as well as
users' code is loaded to FLASH. The Code section now adds a couple of functions that initialize the
FLASH memory, which need to be run from RAM (loaded under ram functions). That is the reason of the
new code from RAM, and not all of it from FLASH. There is a memCopy function added to the code when
running from FLASH, which increases the code section as well.
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Table 8-16. Full Implementation Executing in FLASH

CPU Cycles Executed From
Function Name Min Avg Max ROM RAM FLASH
HAL_acqAdcInt 25 25 25 × × ✓
HAL_readAdcData 108 108 108 × × ✓
Ctrl_run
Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 2345 2355 24251

CTRL vs EST = 2 1154 1760 2425
CTRL vs EST = 3 1154 1562 2425

ISR vs CTRL = 2, CTRL vs EST = 1 58 1207 2425
CTRL vs EST = 2 58 909 2425
CTRL vs EST = 3 58 810 2425

ISR vs CTRL = 3, CTRL vs EST = 1 58 824 2425
CTRL vs EST = 2 58 626 2425
CTRL vs EST = 3 58 560 2425 ✓ × ×

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 2807 2821 28941
CTRL vs EST = 2 1154 1993 2894
CTRL vs EST = 3 1154 1717 2894

ISR vs CTRL = 2, CTRL vs EST = 1 58 1439 2894
CTRL vs EST = 2 58 1025 2894
CTRL vs EST = 3 58 887 2894

ISR vs CTRL = 3, CTRL vs EST = 1 58 979 2894
CTRL vs EST = 2 58 702 2894
CTRL vs EST = 3 58 610 2894

HAL_writePwmData 64 64 64 × × ✓
CTRL_setup 37 51 178 ✓ × ×

8.5.1.1.2.2 Minimum Implementation

Table 8-17. Minimum Implementation Memory Usage Executing in FLASH

Memory Usage (16-bit Words)
Section RAM Flash
Library Interface (.ebss) 0x018C ×
Library (.ebss) 0x0800 ×
Code (.text) 0x001E 0x1F2D
IQmath (.text) × 0x0064

Table 8-18 shows the resource utilization when a minimum implementation of InstaSPIN is done and the
users' code is loaded to FLASH.

Table 8-18. Minimum Implementation Executing in FLASH

CPU Cycles Executed From
Function Name Min Avg Max ROM RAM FLASH
HAL_acqAdcInt 25 25 25 × × ✓
HAL_readAdcData 108 108 108 × × ✓
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Table 8-18. Minimum Implementation Executing in FLASH (continued)
CPU Cycles Executed From

Function Name Min Avg Max ROM RAM FLASH
Ctrl_run
Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 2447 2459 25441

CTRL vs EST = 2 1257 1864 2544
CTRL vs EST = 3 1257 1665 2544

ISR vs CTRL = 2, CTRL vs EST = 1 71 1265 2544
CTRL vs EST = 2 71 967 2544
CTRL vs EST = 3 71 868 2544

ISR vs CTRL = 3, CTRL vs EST = 1 71 867 2544
CTRL vs EST = 2 71 668 2544
CTRL vs EST = 3 71 602 2544 ✓ × ✓

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 2911 2927 30151
CTRL vs EST = 2 1258 2098 3015
CTRL vs EST = 3 1258 1822 3015

ISR vs CTRL = 2, CTRL vs EST = 1 71 1499 3015
CTRL vs EST = 2 71 1084 3015
CTRL vs EST = 3 71 946 3015

ISR vs CTRL = 3, CTRL vs EST = 1 71 1022 3015
CTRL vs EST = 2 71 746 3015
CTRL vs EST = 3 71 654 3015

HAL_writePwmData 64 64 64 × × ✓
CTRL_setup 46 60 188 ✓ × ✓

8.5.1.2 CPU Load with PWM = 10 kHz

Table 8-19. Full Implementation Executing from ROM and FLASH

F2806xF CPU = 90 MHz
Available MIPs = 90 MIPs CPU Utilization MIPs Used MIPS Available

PWM = 10 kHz [%] [MIPS] [MIPS]
Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 1 28.86 25.97 64.03

CTRL vs EST = 2 22.24 20.02 69.98
CTRL vs EST = 3 20.04 18.04 71.96

ISR vs CTRL = 2, CTRL vs EST = 1 16.1 14.49 75.51
CTRL vs EST = 2 12.79 11.51 78.49
CTRL vs EST = 3 11.69 10.52 79.48

ISR vs CTRL = 3, CTRL vs EST = 1 11.84 10.66 79.34
CTRL vs EST = 2 9.64 8.68 81.32
CTRL vs EST = 3 8.91 8.02 81.98

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 1 34.03 30.63 59.37
CTRL vs EST = 2 24.83 22.35 67.65
CTRL vs EST = 3 21.77 19.59 70.41

ISR vs CTRL = 2, CTRL vs EST = 1 18.68 16.81 73.19
CTRL vs EST = 2 14.08 12.67 77.33
CTRL vs EST = 3 12.54 11.29 78.71

ISR vs CTRL = 3, CTRL vs EST = 1 13.57 12.21 77.79
CTRL vs EST = 2 10.49 9.44 80.56
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Table 8-19. Full Implementation Executing from ROM and FLASH (continued)
F2806xF CPU = 90 MHz

Available MIPs = 90 MIPs CPU Utilization MIPs Used MIPS Available
PWM = 10 kHz [%] [MIPS] [MIPS]

CTRL vs EST = 3 9.47 8.52 81.48

Table 8-20. Minimum Implementation Executing from ROM and FLASH

F2806xF CPU = 90 MHz
Available MIPs = 90 MIPs CPU Utilization MIPs Used MIPS Available

PWM = 10 kHz [%] [MIPS] [MIPS]
Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 1 30.01 27.01 62.99

CTRL vs EST = 2 23.4 21.06 68.94
CTRL vs EST = 3 21.19 19.07 70.93

ISR vs CTRL = 2, CTRL vs EST = 1 16.74 15.07 74.93
CTRL vs EST = 2 13.43 12.09 77.91
CTRL vs EST = 3 12.33 11.1 78.9

ISR vs CTRL = 3, CTRL vs EST = 1 12.32 11.09 78.91
CTRL vs EST = 2 10.11 9.1 80.9
CTRL vs EST = 3 9.38 8.44 81.56

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 1 35.21 31.69 58.31
CTRL vs EST = 2 26 23.4 66.6
CTRL vs EST = 3 22.93 20.64 69.36

ISR vs CTRL = 2, CTRL vs EST = 1 19.34 17.41 72.59
CTRL vs EST = 2 14.73 13.26 76.74
CTRL vs EST = 3 13.2 11.88 78.12

ISR vs CTRL = 3, CTRL vs EST = 1 14.04 12.64 77.36
CTRL vs EST = 2 10.98 9.88 80.12
CTRL vs EST = 3 9.96 8.96 81.04

8.5.1.3 CPU Load with PWM = 20 kHz

Table 8-21. Full Implementation Executing from ROM and FLASH

F2806xF CPU = 90 MHz
Available MIPs = 90 MIPs CPU Utilization MIPs Used MIPS Available

PWM = 20 kHz [%] [MIPS] [MIPS]
Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 1 57.71 51.94 38.06

CTRL vs EST = 2 44.49 40.04 49.96
CTRL vs EST = 3 40.09 36.08 53.92

ISR vs CTRL = 2, CTRL vs EST = 1 32.2 28.98 61.02
CTRL vs EST = 2 25.58 23.02 66.98
CTRL vs EST = 3 23.38 21.04 68.96

ISR vs CTRL = 3, CTRL vs EST = 1 23.69 21.32 68.68
CTRL vs EST = 2 19.29 17.36 72.64
CTRL vs EST = 3 17.82 16.04 73.96

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 1 68.07 61.26 28.74
CTRL vs EST = 2 49.67 44.7 45.3
CTRL vs EST = 3 43.53 39.18 50.82

ISR vs CTRL = 2, CTRL vs EST = 1 37.36 33.62 56.38
CTRL vs EST = 2 28.16 25.34 64.66
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Table 8-21. Full Implementation Executing from ROM and FLASH (continued)
F2806xF CPU = 90 MHz

Available MIPs = 90 MIPs CPU Utilization MIPs Used MIPS Available
PWM = 20 kHz [%] [MIPS] [MIPS]

CTRL vs EST = 3 25.09 22.58 67.42
ISR vs CTRL = 3, CTRL vs EST = 1 27.13 24.42 65.58

CTRL vs EST = 2 20.98 18.88 71.12
CTRL vs EST = 3 18.93 17.04 72.96

Table 8-22. Minimum Implementation Executing from ROM and FLASH

F2806xF CPU = 90 MHz
Available MIPs = 90 MIPs CPU Utilization MIPs Used MIPS Available

PWM = 20 kHz [%] [MIPS] [MIPS]
Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 1 60.02 54.02 35.98

CTRL vs EST = 2 46.8 42.12 47.88
CTRL vs EST = 3 42.38 38.14 51.86

ISR vs CTRL = 2, CTRL vs EST = 1 33.49 30.14 59.86
CTRL vs EST = 2 26.87 24.18 65.82
CTRL vs EST = 3 24.67 22.2 67.8

ISR vs CTRL = 3, CTRL vs EST = 1 24.64 22.18 67.82
CTRL vs EST = 2 20.22 18.2 71.8
CTRL vs EST = 3 18.76 16.88 73.12

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 1 70.42 63.38 26.62
CTRL vs EST = 2 52 46.8 43.2
CTRL vs EST = 3 45.87 41.28 48.72

ISR vs CTRL = 2, CTRL vs EST = 1 38.69 34.82 55.18
CTRL vs EST = 2 29.47 26.52 63.48
CTRL vs EST = 3 26.4 23.76 66.24

ISR vs CTRL = 3, CTRL vs EST = 1 28.09 25.28 64.72
CTRL vs EST = 2 21.96 19.76 70.24
CTRL vs EST = 3 19.91 17.92 72.08

8.5.1.4 CPU Load Examples
From the tables discussed in the previous section, CPU usage can be computed by adding up the cycles
and calculating a percentage of use.

8.5.1.4.1 Example 1
Consider the following scenario:
• CPU Clock = 90 MHz
• Available MIPS = 90 MIPS
• PWM Frequency = 10 kHz
• InstaSPIN Implementation:

– Full implementation, libraries in ROM and user's code in RAM (Section 8.2.1)
– Rs Online Disabled
– ISR vs CTRL = 1
– CTRL vs EST = 1

The percentage of CPU used by the interrupt is calculated, where:
Maximum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup
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Maximum % of CPU Used by InstaSPIN =
100% * ((Maximum Cycles) / 90 MHz) * PWM Frequency =
100% * ((23 + 106 + 2425 + 62 + 178) / 90 MHz) * 10 kHz =
31.04%

Average % of CPU Used by InstaSPIN =
100% * ((Average Cycles) / 90 MHz) * PWM Frequency =
100% * ((23 + 106 + 2355 + 62 + 51) / 90 MHz) * 10 kHz =
28.86%

Another useful calculation is the number of MIPS used by the application. This can be calculated as
follows:

Average MIPS used by InstaSPIN =
(Average % of CPU Used by InstaSPIN/100%) * Available MIPS =
(28.86% / 100%) * 90 MIPS =
25.97 MIPS

And then, we can calculate the average available MIPS for other tasks:
Average user's available MIPS =
Total Available MIPS – Average MIPS used by InstaSPIN =
90 MIPS – 25.97 MIPS =
64.03 MIPS Available for other tasks

8.5.1.4.2 Example 2
Typically Rs Online needs to be enabled and often the PWM frequency needs to be increased. To free-up
CPU bandwidth, ISR vs CTRL is set to 2.

Consider the following conditions:
• CPU Clock = 90 MHz
• Available MIPS = 90 MIPS
• PWM Frequency = 20 kHz
• InstaSPIN Implementation:

– Minimum implementation, libraries in ROM and user's code in RAM (Section 8.2.2)
– Rs Online Enabled
– ISR vs CTRL = 2
– CTRL vs EST = 1

First, we need to calculate the average MIPS used by InstaSPIN under the given conditions:
Average % of CPU Used by InstaSPIN =
100% * ((Average Cycles) / 90 MHz) * PWM Frequency =
100% * ((23 + 106 + 1450 + 62 + 50) / 90 MHz) * 20 kHz =
37.58%

Second, the number of average MIPS used by InstaSPIN under the given conditions:
Average MIPS used by InstaSPIN =
(Average % of CPU Used by InstaSPIN/100%) * Available MIPS =
(37.58% / 100 %) * 90 MIPS =
33.82 MIPS

And then, we can calculate the average available MIPS for other tasks:
Average user's Available MIPS =
Total Available MIPS - Average MIPS used by InstaSPIN =
90 MIPS – 33.82 =
56.18 MIPS Available for other tasks
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8.5.2 F2806xM Devices

8.5.2.1 CPU Cycles
InstaSPIN-MOTION combines the functionality of InstaSPIN-FOC with the SpinTAC Motion Control Suite
from LineStream Technologies. CPU usage can be computed by adding the InstaSPIN-FOC cycles and
the SpinTAC cycles presented in the following sections, and calculating a percentage of use. Examples
are provided in subsequent sections.

8.5.2.1.1 RAM Execution - SpinTAC Library and User Code
Table 8-23 summarizes all of the performance data per function, when the SpinTAC library is loaded and
executed from RAM. Note that each function makes calls into the ROM memory to run core SpinTAC
functions. The typical cases for each component are highlighted in bold.

Table 8-23. CPU Cycle Utilization for SpinTAC with Library Executing in RAM on F2806xM Devices

CPU Cycles Executed From
Function Name Min Avg Max ROM RAM FLASH
STVELCTL_run (Velocity Control)

RES = 0, ENB = 0 158 158 158
RES = 0, ENB = 1 573 573 573
First call after ENB = 1 1010 1010 1010

✓ ✓ ×
786 786 786

Change Inertia parameter 786 786 786
RES = 1, ENB = 1 289 289 289

STVELMOVE_run (Velocity Move)
RES = 0, ENB = 0 202 202 202

stcurve RES = 0, ENB = 1 675 704 1346
scurve RES = 0, ENB = 1 638 669 1312 ✓ ✓ ×
trap RES = 0, ENB = 1 509 576 1039

RES = 1, ENB = 1 421 421 421
STVELPLAN_run (Velocity Plan)

RES = 1, ENB = 0 159 159 159
RES = 0, ENB = 1 169 169 169
First call after ENB = 1 285 285 285
STAY FSM State 194 194 194
Condition FSM State 374 (fixed) ✓ ✓ ×Calculation must be done for + 274 * Number of Transitions
each State + 334 * Number of EXIT Actions
Transition FSM State 229 (fixed)
Calculation must be done for + 378 * Number of ENTER Actions
each State

STVELPLAN_runTick (Velocity Plan) 58 78 78
STVELID_run (Velocity Identify)

RES = 0, ENB = 0 142 142 142
RES = 0, ENB = 1 332 341 658

✓ ✓ ×
First call after ENB = 1 1063 1063 1063
RES = 1, ENB = 1 249 249 249

STPOSCONV_run (Position Converter)
RES = 0, ENB = 0 110 110 110
RES = 0, ENB = 1 322 341 343

✓ ✓ ×
First call after ENB = 1 1060 1060 1060
RES = 1, ENB = 1 118 118 118
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Table 8-23. CPU Cycle Utilization for SpinTAC with Library Executing in RAM on F2806xM
Devices (continued)

CPU Cycles Executed From
Function Name Min Avg Max ROM RAM FLASH
STPOSCTL_run (Position Control)

RES = 0, ENB =0 166 166 166
RES = 0, ENB = 1 1120 1125 1140
First call after ENB = 1 1903 1903 1903

✓ ✓ ×
Change Bandwidth parameter 1611 1611 1611
Change Inertia parameter 1611 1611 1611
RES = 1, ENB = 1 385 385 385

STPOSMOVE_run (Position Move)
RES = 0, ENB = 0 406 406 406

stcurve RES = 0, ENB = 1 616 1383 2733
First call after ENB = 1 1270 1377 2368

scurve RES = 0, ENB = 1 616 1333 2561
✓ ✓ ×

First call after ENB = 1 1219 1337 2324
trap RES = 0, ENB = 1 616 1253 2501

First call after ENB = 1 1319 1608 2049
RES = 1, ENB = 1 877 877 877

STPOSPLAN_run (Position Plan)
RES = 1, ENB = 0 166 166 166
RES = 0, ENB = 1 201 201 201
First call after ENB = 1 325 325 325
STAY FSM State 209 209 209
Condition FSM State 436 (fixed) ✓ ✓ ×Calculation must be done for + 276 * Number of Transitions
each State + 334 * Number of EXIT Actions
Transition FSM State 245 (fixed)
Calculation must be done for + 378 * Number of ENTER Actions
each State

STPOSPLAN_runTick (Position Plan) 58 78 78

8.5.2.1.2 FLASH Execution - SpinTAC Library and User Code
Table 8-24 summarizes all of the performance data per function, when the SpinTAC library is loaded and
executed from Flash. InstaSPIN-FOC is in Full Implementation.

Table 8-24. CPU Cycle Utilization for SpinTAC Library Executing in Flash on F2806xM Devices

CPU Cycles Executed From
Function Name Min Avg Max ROM RAM FLASH
STVELCTL_run (Velocity Control)

RES = , ENB = 0 216 216 216
RES = 0, ENB = 1 672 672 672
First call after ENB = 1 1183 1183 1183

✓ × ✓
Change Bandwidth 925 925 925
Change Inertia parameter 925 925 925
RES = 1, ENB = 1 396 396 396
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Table 8-24. CPU Cycle Utilization for SpinTAC Library Executing in Flash on F2806xM
Devices (continued)

CPU Cycles Executed From
Function Name Min Avg Max ROM RAM FLASH
STVELMOVE_run (Velocity Move)

RES = 0, ENB = 0 258 258 258
stcurve RES = 0, ENB = 1 780 816 1625
scurve RES = 0, ENB = 1 743 781 1589 ✓ × ✓
trap RES = 0, ENB = 1 616 700 1309

RES = 1, ENB = 1 554 554 554
STVELPLAN_run (Velocity Plan)

RES = 1, ENB = 0 219 219 219
RES = 0, ENB = 1 266 266 266
First call after ENB = 1 393 393 393
STAY FSM State 280 280 280

✓ × ✓Transition FSM State 488 (fixed)
Calculation must be done for + 368 * Number of Transitions
each State + 440 * Number of EXIT Actions
Condition FSM State 337 (fixed)
Calculation must be done for + 503 * Number of ENTER Actions
each State

STVELPLAN_runTick (Velocity Plan) 91 119 119
STVELID_run (Velocity Identify)

RES = 1, ENB = 0 198 198 198
RES = 0, ENB = 1 311 332 822

✓ × ✓
First call after ENB = 1 1366 1366 1366
RES = 1, ENB = 1 338 338 338

STPOSCONV_run (Position Converter)
RES = 0, ENB = 0 145 145 145
RES = 0, ENB = 1 443 448 450

✓ × ✓
First call after ENB = 1 1372 1372 1372
RES = 1, ENB = 1 170 170 170

STPOSCTL_run (Position Control)
RES = 0, ENB =0 246 246 246
RES = 0, ENB = 1 1311 1316 1326
First call after ENB = 1 2236 2236 2236

✓ × ✓
Change Bandwidth parameter 1909 1909 1909
Change Inertia parameter 1909 1909 1909
RES = 1, ENB = 1 509 509 509

STPOSMOVE_run (Position Move)
RES = 0, ENB = 0 520 520 520

stcurve RES = 0, ENB = 1 790 1611 3630
First call after ENB = 1 1467 1588 2778

scurve RES = 0, ENB = 1 790 1564 3205
✓ × ✓

First call after ENB = 1 1415 1551 2734
trap RES = 0, ENB = 1 790 1501 3130

First call after ENB = 1 1540 1903 2438
RES = 1, ENB = 1 1100 1100 1100
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Table 8-24. CPU Cycle Utilization for SpinTAC Library Executing in Flash on F2806xM
Devices (continued)

CPU Cycles Executed From
Function Name Min Avg Max ROM RAM FLASH
STPOSPLAN_run (Position Plan)

RES = 1, ENB = 0 229 229 229
RES = 0, ENB = 1 297 297 297
First call after ENB = 1 450 450 450
STAY FSM State 297 297 297

✓ × ✓Condition FSM State 548 (fixed)
Calculation must be done for + 363 * Number of Transitions
each State + 450 * Number of EXIT Actions
Transition FSM State 345 (fixed)
Calculation must be done for + 508 * Number of ENTER Actions
each State

STPOSPLAN_runTick (Position Plan) 86 115 115 ✓ × ✓

8.5.2.2 CPU Load Examples

8.5.2.2.1 Example 1
Consider the following scenario:
• CPU Clock = 90 MHz
• Available MIPS = 90 MIPS
• PWM Frequency = 10 kHz
• InstaSPIN Implementation:

– InstaSPIN-FOC: Full implementation, libraries in ROM and user's code in RAM (Section 8.2.1)
– SpinTAC Library: Velocity Control. Library in ROM and user library code in RAM.
– Rs Online Disabled
– ISR vs CTRL = 1
– CTRL vs SPEED = 10

The percentage of CPU used by the interrupt is calculated, where:
Minimum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup
Maximum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup +
STVELCTL_run
Minimum Cycles = 23 + 106 + 2355 + 62 + 51 = 2597 cycles
Maximum Cycles = 23 + 106 + 2355 + 62 + 51 + 573 = 3170 cycles
For each millisecond, the Minimum Cycles are used 9 times and the Maximum Cycles are used once.
Cycles in 1 millisecond = 2597 * 9 + 3170 * 1 = 26543 cycles
The CPU usage is now
100% * (26543 / 90 MHz) * (10 kHz / 10) = 29.49%

Another useful calculation is the number of MIPS used by InstaSPIN. This can be calculated as follows:
Average MIPS used by InstaSPIN =
(Average % of CPU Used by InstaSPIN/100%) * Available MIPS =
(29.49 % / 100 %) * 90 MIPS =
26.54 MIPS

And then, we can calculate the average available MIPS for other tasks:
Average user's available MIPS =
Total Available MIPS – Average MIPS used by InstaSPIN(FOC + MOTION) =
90 MIPS – 26.54 MIPS =
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63.46 MIPS Available for other tasks

8.5.2.2.2 Example 2
For example, consider the following scenario:
• CPU Clock = 90 MHz
• Available MIPS = 90 MIPS
• PWM Frequency = 10 kHz
• InstaSPIN Implementation:

– InstaSPIN-FOC: Full implementation, libraries in ROM and user's code in RAM (Section 8.2.1)
– SpinTAC Library: Velocity Control + Velocity Move (stcurve). Library in ROM and user library code

in RAM.
– Rs Online Disabled
– ISR vs CTRL = 1
– CTRL vs SPEED = 10

The percentage of CPU used by the interrupt is calculated, where:
Minimum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup
Maximum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup +
STVELCTL_run + STVELMOVE_run
Minimum Cycles = 23 + 106 + 2355 + 62 + 51 = 2597 cycles
Maximum Cycles = 23 + 106 + 2355 + 62 + 51 + 573 + 704 = 3874 cycles
For each millisecond, the Minimum Cycles are used 9 times and the Maximum Cycles are used once.
Cycles in 1 millisecond = 2597 * 9 + 3874 * 1 = 27247 cycles
The CPU usage is now
100% * (27247 / 90 MHz) * (10 kHz / 10) = 30.27%

Another useful calculation is the number of MIPS used by the application. This can be calculated as
follows:

Average MIPS used by InstaSPIN =
(Average % of CPU Used by InstaSPIN/100%) * Available MIPS =
(30.27 % / 100 %) * 90 MIPS =
27.24 MIPS

And then, we can calculate the average available MIPS for other tasks:
Average user's available MIPS =
Total Available MIPS – Average MIPS used by InstaSPIN(FOC + MOTION) =
90 MIPS – 27.24 MIPS =
62.76 MIPS Available for other tasks

8.5.2.2.3 Example 3
For this example, consider the following scenario:
• CPU Clock = 90 MHz
• Available MIPS = 90 MIPS
• PWM Frequency = 10 kHz
• InstaSPIN Implementation:

– InstaSPIN-FOC: Full implementation, libraries in ROM and user's code in RAM (Section 8.2.1)
– SpinTAC Library: Velocity Control + Velocity Move (stcurve) + Velocity Plan. Library in ROM and

user library code in RAM.
– Rs Online Disabled
– ISR vs CTRL = 1
– CTRL vs SPEED = 10
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SpinTAC Velocity Plan is used to generate a motion sequence between 4 states (see Figure 8-9). Note
that in this example, both the Plan functions STVELPLAN_run and STVELPLAN_runTick are being run
from the ISR. In a final implementation, STVELPLAN_run can be run from a slower ISR or background
loop.

Figure 8-9. SpinTAC Velocity Plan Example

The maximum cycles for STVELPLAN_run are contributed either by the Condition FSM state or the
Transition FSM state but never both at the same time.
1. Maximum cycles in Condition FSM state are determined by:

• The number of transitions that originate from a given state.
• The number of conditions being checked for a transition (worst case is two conditions)
• The conditions compare a variable to a value or a variable to another variable (worst case)
• The number of EXIT actions configured for that state.
If the code is running in RAM, then Maximum cycles = 374 (fixed cycles for Condition FSM state) +
(Number of Transitions * 274) + (Number of EXIT actions * 334).
The example plan in Figure 8-9 configures three transitions leaving State 0. All transitions check
conditions that compare variables with variables (worst case), and 2 EXIT actions are configured to
this state. So the maximum cycles occurs when the last transition is taken = 374 + (3 * 274) + (2 * 334)
= 1864.

2. Maximum cycles in Transition FSM state are determined by the number of ENTER actions that are
configured to the state being entered.
If the code is running in RAM, then Maximum cycles = 229 (fixed cycles for Transition FSM state) +
Number of ENTER actions * 378.
The above example shows the State3 having 3 ENTER actions. This will cause the Transition FSM
State to have maximum cycles = 229 + (3 * 378) = 1368.
Compare the two cases that can cause maximum cycles for STVELPLAN_run. In this instance, the
maximum possible cycles are 1330, contributed by the Condition FSM state. Use that value as the
worst case when calculating the percentage of CPU used by the interrupt.
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The percentage of CPU used by the interrupt is calculated, where:
Minimum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup
Maximum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup +
STVELCTL_run + STVELMOVE_run + STVELPLAN_runTick + STVELPLAN_run
Minimum Cycles = 23 + 106 + 2355 + 62 + 51 = 2597 cycles
Maximum Cycles = 23 + 106 + 2355 + 62 + 51 + 573 + 704 + 78 + 1864 = 5738 cycles
For each millisecond, the Minimum Cycles are used 9 times and the Maximum Cycles are used once.
Cycles in 1 millisecond = 2597 * 9 + 5738 * 1 = 29111 cycles
The CPU usage is now
100% * (29111 / 90 MHz) * (10 kHz / 10) = 32.35%

The above calculation is where the main component of SpinTAC Velocity Plan is being ran from the
ISR. When SpinTAC Velocity Plan is called from the background loop, the percentage of CPU used by
the interrupt is calculated below:

Maximum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup +
STVELCTL_run + STVELMOVE_run + STVELPLAN_runTick
Maximum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup +
STVELCTL_run + STVELMOVE_run + STVELPLAN_runTick + STVELPLAN_run
Minimum Cycles = 23 + 106 + 2355 + 62 + 51 = 2597 cycles
Maximum Cycles = 23 + 106 + 2355 + 62 + 51 + 573 + 704 + 78 = 3952 cycles
For each millisecond, the Minimum Cycles are used 9 times and the Maximum Cycles are used once.
Cycles in 1 millisecond = 2597 * 9 + 5738 * 1 = 27325 cycles
The CPU usage is now
100% * (27325 / 90 MHz) * (10 kHz / 10) = 30.36%

8.5.2.2.4 Example 4 (SpinTAC Position)
For this example, consider the following scenario:
• CPU Clock = 90 MHz
• Available MIPS = 90 MIPS
• PWM Frequency = 10 kHz
• InstaSPIN Implementation:

– InstaSPIN-FOC: Full implementation, libraries in ROM and user's code in RAM (Section 8.2.1)
– SpinTAC Library: Position Converter + Position Control + Position Move (stcurve). Library in ROM

and user library code in RAM.
– Rs Online Disabled
– ISR vs CTRL = 1
– CTRL vs SPEED = 10

The percentage of CPU used by the interrupt is calculated, where:
Minimum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup
Maximum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup +
STPOSCONV_run + STPOSCTL_run + STPOSMOVE_run
Minimum Cycles = 23 + 106 + 2355 + 62 + 51 = 2597 cycles
Maximum Cycles = 23 + 106 + 2355 + 62 + 51 + 341 + 1125 + 1383 = 5446 cycles
For each millisecond, the Minimum Cycles are used 9 times and the Maximum Cycles are used once.
Cycles in 1 millisecond = 2597 * 9 + 5446 * 1 = 28819 cycles
The CPU usage is now
100% * (28819 / 90 MHz) * (10 kHz / 10) = 32.02%

Another useful calculation is the number of MIPS used by the application. This can be calculated as
follows:

Average MIPS used by InstaSPIN =
(Average % of CPU Used by InstaSPIN/100%) * Available MIPS =
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(32.02 % / 100 %) * 90 MIPS =
28.82 MIPS

And then, we can calculate the average available MIPS for other tasks:
Average user's available MIPS =
Total Available MIPS – Average MIPS used by InstaSPIN(FOC + MOTION) =
90 MIPS – 28.82 MIPS =
61.18 MIPS Available for other tasks

8.5.3 F805xF Devices

8.5.3.1 CPU Cycles
The F2805xF cycle count will be essentially the same as the F2806xF cycle.

8.5.3.2 CPU Load with PWM = 10 kHz

Table 8-25. Full Implementation Executing from ROM and FLASH

F2805xF CPU = 60 MHz
Available MIPs = 60 MIPs MIPS Available

PWM = 10 kHz CPU Utilization [%] MIPs Used [MIPS] [MIPS]
Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 1 43.28 25.97 34.03

CTRL vs EST = 2 33.37 20.02 39.98
CTRL vs EST = 3 30.07 18.04 41.96

ISR vs CTRL = 2, CTRL vs EST = 1 24.15 14.49 45.51
CTRL vs EST = 2 19.18 11.51 48.49
CTRL vs EST = 3 17.53 10.52 49.48

ISR vs CTRL = 3, CTRL vs EST = 1 17.77 10.66 49.34
CTRL vs EST = 2 14.47 8.68 51.32
CTRL vs EST = 3 13.37 8.02 51.98

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 1 51.05 30.63 29.37
CTRL vs EST = 2 37.25 22.35 37.65
CTRL vs EST = 3 32.65 19.59 40.41

ISR vs CTRL = 2, CTRL vs EST = 1 28.02 16.81 43.19
CTRL vs EST = 2 21.12 12.67 47.33
CTRL vs EST = 3 18.82 11.29 48.71

ISR vs CTRL = 3, CTRL vs EST = 1 20.35 12.21 47.79
CTRL vs EST = 2 15.73 9.44 50.56
CTRL vs EST = 3 14.20 8.52 51.48

8.5.3.3 CPU Load with PWM = 20 kHz

Table 8-26. Full Implementation Executing from ROM and FLASH

F2805xF CPU = 60 MHz
Available MIPs = 60 MIPs MIPS Available

PWM = 20 kHz CPU Utilization [%] MIPs Used [MIPS] [MIPS]
Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 1 86.57 51.94 8.06

CTRL vs EST = 2 66.73 40.04 19.96
CTRL vs EST = 3 60.13 36.08 23.92

ISR vs CTRL = 2, CTRL vs EST = 1 48.3 28.98 31.02
CTRL vs EST = 2 38.37 23.02 36.98

346 MCU Considerations SPRUHJ1F–January 2013–Revised July 2014
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


www.ti.com CPU Load

Table 8-26. Full Implementation Executing from ROM and FLASH (continued)
F2805xF CPU = 60 MHz

Available MIPs = 60 MIPs MIPS Available
PWM = 20 kHz CPU Utilization [%] MIPs Used [MIPS] [MIPS]

CTRL vs EST = 3 35.07 21.04 38.96
ISR vs CTRL = 3, CTRL vs EST = 1 35.53 21.32 38.68

CTRL vs EST = 2 28.93 17.36 42.64
CTRL vs EST = 3 26.73 16.04 43.96

Rs Online Enabled, ISR vs CTRL = 1
CTRL vs EST = 2 74.5 44.7 15.3
CTRL vs EST = 3 65.3 39.18 20.82

ISR vs CTRL = 2, CTRL vs EST = 1 56.03 33.62 26.38
CTRL vs EST = 2 42.23 25.34 34.66
CTRL vs EST = 3 37.63 22.58 37.42

ISR vs CTRL = 3, CTRL vs EST = 1 40.7 24.42 35.58
CTRL vs EST = 2 31.47 18.88 41.12
CTRL vs EST = 3 28.4 17.04 42.96

8.5.4 F2805xM Devices

8.5.4.1 CPU Cycles

8.5.4.1.1 FLASH Execution - SpinTAC Library and User Code

Table 8-27. CPU Cycle Utilization for SpinTAC Library Executing in Flash on F2805xM Device

CPU Cycles Executed From
Function Name Min Avg Max ROM RAM FLASH
STVELCTL_run (Velocity Control)

RES = 1, ENB = 0 189 189 189
RES = 0, ENB = 1 614 614 614
First call after ENB = 1 1077 1077 1077

✓ × ✓
Change Bandwidth 842 842 842
Change Inertia parameter 842 842 842
RES = 1, ENB = 1 347 347 347

STVELMOVE_run (Velocity Move)
RES = 1, ENB = 0 220 220 220

stcurve RES = 0, ENB = 1 724 759 1468
scurve RES = 0, ENB = 1 687 724 1435 ✓ × ✓
trap RES = 0, ENB = 1 561 636 1167

RES = 1, ENB = 1 494 494 494
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Table 8-27. CPU Cycle Utilization for SpinTAC Library Executing in Flash on F2805xM
Device (continued)

CPU Cycles Executed From
Function Name Min Avg Max ROM RAM FLASH
STVELPLAN_run (Velocity Plan)

RES = 1, ENB = 0 183 183 183
RES = 0, ENB = 1 238 238 238
First call after ENB = 1 333 333 333
STAY FSM State 238 238 238
Transiation FSM State 436 (fixed) ✓ × ✓Calculation must be done for + 320 * Number of Transitions
each State + 388 * Number of EXIT Actions
Condition FSM State 283 (fixed)Calculation must be done for + 438 * Number of ENTER Actionseach State

STVELPLAN_runTick (ISR function) 76 100 100
STVELID_run (Velocity Identify)

RES = 1, ENB = 0 198 198 198
RES = 0, ENB = 1 256 278 723

✓ × ✓
First call after ENB = 1 1196 1196 1196
RES = 1, ENB = 1 292 292 292

STPOSCOV_run (Position Converter)
RES = 1, ENB = 0 127 127 127
RES = 0, ENB = 1 391 398 400

✓ × ✓
First call after ENB = 1 1209 1209 1209
RES = 1, ENB = 1 140 140 140

STPOSCTL_run (Position Control)
RES = 0, ENB =0 201 201 201
RES = 0, ENB = 1 1207 1212 1225
First call after ENB = 1 2043 2043 2043

✓ × ✓
Change Bandwidth parameter 1729 1729 1729
Change Inertia parameter 1729 1729 1729
RES = 1, ENB = 1 449 449 449

STPOSMOVE_run (Position Move)
RES = 0, ENB = 0 520 520 520

stcurve RES = 0, ENB = 1 790 1611 3630
Velocity Controlled Profile 1467 1588 2778

scurve RES = 0, ENB = 1 790 1564 3205
✓ × ✓

Velocity Controlled Profile 1415 1551 2734
trap RES = 0, ENB = 1 790 1501 3130

Velocity Controlled Profile 1540 1903 2438
RES = 1, ENB = 1 996 996 996
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Table 8-27. CPU Cycle Utilization for SpinTAC Library Executing in Flash on F2805xM
Device (continued)

CPU Cycles Executed From
Function Name Min Avg Max ROM RAM FLASH
STPOSPLAN_run (Position Plan)

RES = 1, ENB = 0 202 202 20
RES = 0, ENB = 1 255 255 255
First call after ENB = 1 373 373 373
STAY FSM State 255 255 255
Condition FSM State 501 (fixed) ✓ × ✓Calculation must be done for + 323 * Number of Transitions
each State + 382 * Number of EXIT Actions
Transition FSM State 301 (fixed)Calculation must be done for + 432 * Number of ENTER Actionseach State

STPOSPLAN_runTick (ISR function) 86 115 115

Note: The difference in the CPU cycles is due to the lower flash wait states in the F2805xM device as
compared to the F2806xM device.

8.5.5 F2802xF Devices

8.5.5.1 CPU Cycles

Table 8-28. Minimum Implementation Memory Usage Executing in FLASH

Memory Usage (16-bit Words)
Section RAM Flash
Library Interface (.ebss) 0x0326 ×
Library (.ebss) 0x0200 ×
Code (.text) 0x06B6 0x2ED7
.cinit × 0x007A
Constants (.econst) × 0x0080
IQmath (.text) × 0x00C9

Section 12.3.5.3 summarizes all of the performance data per function, when users' code is loaded and
executed from FLASH, on a minimum implementation of InstaSPIN library. Note that the number of cycles
does not change significantly between the different implementations since the FAST estimator block
remains in ROM for each of these configurations. This estimator block consumes the most cycles of all the
InstaSPIN-FOC blocks. For more details on managing execution time in the ISR, see Section 9.1.

Table 8-29. Minimum Implementation Executing in FLASH

CPU Cycles Executed From
Function Name Min Avg Max ROM RAM FLASH
HAL_acqAdcInt 17 17 17 × ✓ ×
HAL_readAdcData 94 94 94 × ✓ ×
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Table 8-29. Minimum Implementation Executing in FLASH (continued)
CPU Cycles Executed From

Function Name Min Avg Max ROM RAM FLASH
Ctrl_run
Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 2320 2331 24131

CTRL vs EST = 2 1131 1735 2413
CTRL vs EST = 3 1131 1536 2413

ISR vs CTRL = 2, CTRL vs EST = 1 51 1191 2413
CTRL vs EST = 2 51 893 2413
CTRL vs EST = 3 51 793 2413

ISR vs CTRL = 3, CTRL vs EST = 1 51 811 2413
CTRL vs EST = 2 51 612 2413
CTRL vs EST = 3 51 544 2413 ✓ ✓ ✓

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 2766 2781 28821
CTRL vs EST = 2 1129 1969 2882
CTRL vs EST = 3 1129 1692 2882

ISR vs CTRL = 2, CTRL vs EST = 1 51 1424 2882
CTRL vs EST = 2 51 1010 2882
CTRL vs EST = 3 51 871 2882

ISR vs CTRL = 3, CTRL vs EST = 1 51 966 2882
CTRL vs EST = 2 51 689 2882
CTRL vs EST = 3 51 596 2882

HAL_writePwmData 110 110 110 × ✓ ×
CTRL_setup 26 36 188 × ✓ ✓

8.5.5.2 CPU Load with PWM = 10 kHz

Table 8-30. Minimum Implementation Executing from ROM, RAM, and FLASH

F2802xF CPU = 60 MHz
Available MIPs = 60 MIPs CPU Utilization MIPs Used MIPS Available

PWM = 10 kHz [%] [MIPS] [MIPS]
Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 1 43.13 25.88 34.12

CTRL vs EST = 2 33.2 19.92 40.08
CTRL vs EST = 3 29.88 17.93 42.07

ISR vs CTRL = 2, CTRL vs EST = 1 24.13 14.48 45.52
CTRL vs EST = 2 19.17 11.5 48.5
CTRL vs EST = 3 17.5 10.5 49.5

ISR vs CTRL = 3, CTRL vs EST = 1 17.8 10.68 49.32
CTRL vs EST = 2 14.48 8.69 51.31
CTRL vs EST = 3 13.35 8.01 51.99

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 1 50.63 30.38 29.62
CTRL vs EST = 2 37.1 22.26 37.74
CTRL vs EST = 3 32.48 19.49 40.51

ISR vs CTRL = 2, CTRL vs EST = 1 28.02 16.81 43.19
CTRL vs EST = 2 21.12 12.67 47.33
CTRL vs EST = 3 18.8 11.28 48.72

ISR vs CTRL = 3, CTRL vs EST = 1 20.38 12.23 47.77
CTRL vs EST = 2 15.77 9.46 50.54
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Table 8-30. Minimum Implementation Executing from ROM, RAM, and FLASH (continued)
F2802xF CPU = 60 MHz

Available MIPs = 60 MIPs CPU Utilization MIPs Used MIPS Available
PWM = 10 kHz [%] [MIPS] [MIPS]

CTRL vs EST = 3 14.22 8.53 51.47

8.5.5.3 CPU Load with PWM = 20 kHz

Table 8-31. Minimum Implementation Executing from ROM, RAM and FLASH

F2802xF CPU = 60 MHz
Available MIPs = 60 MIPs CPU Utilization MIPs Used MIPS Available

PWM = 20 kHz [%] [MIPS] [MIPS]
Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 1 86.27 51.76 8.24

CTRL vs EST = 2 66.4 39.84 20.16
CTRL vs EST = 3 59.77 35.86 24.14

ISR vs CTRL = 2, CTRL vs EST = 1 48.27 28.96 31.04
CTRL vs EST = 2 38.33 23 37
CTRL vs EST = 3 35 21 39

ISR vs CTRL = 3, CTRL vs EST = 1 35.6 21.36 38.64
CTRL vs EST = 2 28.97 17.38 42.62
CTRL vs EST = 3 26.7 16.02 43.98

Rs Online Enabled, ISR vs CTRL = 1,
CTRL vs EST = 2 74.2 44.52 15.48
CTRL vs EST = 3 64.97 38.98 21.02

ISR vs CTRL = 2, CTRL vs EST = 1 56.03 33.62 26.38
CTRL vs EST = 2 42.23 25.34 34.66
CTRL vs EST = 3 37.6 22.56 37.44

ISR vs CTRL = 3, CTRL vs EST = 1 40.77 24.46 35.54
CTRL vs EST = 2 31.53 18.92 41.08
CTRL vs EST = 3 28.43 17.06 42.94

8.6 Digital and Analog Pins

8.6.1 Pin Utilization
Table 8-32 lists the pins used by InstaSPIN.

Table 8-32. Pin Utilization Per Motor

Pins Usage Per Motor
Pin Type Pin Name Min Max

Digital PWM1A 3 7
(Requires External Fault andPWM1B (Optional) External Complementary Mode

PWM2A with Dead Time)
PWM2B (Optional)

PWM3A
PWM3B (Optional)

TZ1 (Optional)
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Table 8-32. Pin Utilization Per Motor (continued)
Pins Usage Per Motor

Pin Type Pin Name Min Max
Analog IA 5 7

(Only two currents and noIB VBUS ripple compensation)
IC (Optional)

VA
VB
VC

VBUS (Optional)

8.6.2 F2805x Analog Front-End (AFE)

8.6.2.1 Consideration of AFE Module
In InstaSPIN applications, motor line current and phase voltage are required by the algorithm. Before
these analog signals are sampled by the processor, all signals are processed by an analog circuit. The
external analog circuits add component cost and increase board size. The 2805x series of processors
addresses this issue by adding internal analog conditioning components for the motor feedback signals,
called the analog front end (AFE).

For more detailed information about the 2805x device, see TMS320x2805x Piccolo Technical Reference
Manual (SPRUHE5).

8.6.2.2 Routing Current Signals
Before addressing about the implementation and usage of the PGAs and comparators, it is recommended
to consider how current feedback signals are routed from the shunt and then to the input of the PGA.
When a shunt resistor is used to measure line current, its value must be small to reduce the amount of
power dissipated in the shunt. Because the value is small, so is the resulting voltage drop across the
shunt. There is a significant amount of current flowing through the shunt resistors. Copper traces that
connect the shunts from the bottom of the power device and then to ground become a resistor in series
with the shunt. The parasitic resistance that forms on the copper trace must be taken into consideration
when measuring motor line currents with a shunt resistor.

The AFE can have up to three different grounds. The 2805x device has multiple groups of amplifier
blocks. Each group of amplifiers has a different ground. M1 ground is used for the group of three PGAs
that will feedback three-phase motor currents for this document. For systems with power factor correction,
there is another single PGA and its ground is PFC ground. The fixed-gain amplifier block uses M2 ground
for its reference and is used in this document for three motor voltage feedbacks.

Two options for the feedback of motor shunt current signals to the M1 PGA block of the AFE are
discussed. The first option is to use only the internal op-amps for the current feedback as shown in
Figure 8-10. All three op-amps share the same ground for the inverting input and therefore a differential
signal of the shunt current cannot be created. With single-ended signals, careful layout must be done
when grounding the shunts to reduce the amount of differing trace resistance between shunts. It is
advised to have the shunt grounds as close together as possible. A trace must run from the point that the
shunts come together to the M1gnd pin of the integrated circuit. Because common mode noise can be
added to the amplifier, the M1gnd pin and PGA inputs must be made as short as possible. The three
phase current traces must be routed as close to the M1gnd trace as possible to reduce the size of the
Faraday loop. The Faraday loop is created around the phase current trace that starts from the top of the
shunt to the IC and then back on the M1gnd trace to the bottom of the shunt, through the shunt and back
to the top of the shunt.
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Figure 8-10. Current Signal Routing Directly to PGAs With Single-Ended Connections

The second, and most noise immune option, is to use external op-amps in a differential amplifier
configuration. A true Kelvin connection can feedback directly to the differential amplifier, and then the
output of the differential amplifier is sent into the PGA input. Figure 8-11 shows a typical layout when
using external differential op-amps. Since the Kelvin connection has low impedance and is a truly
differential signal, it provides excellent noise immunity. The external op-amp circuit converts the differential
circuit into a single-ended output. The single-ended output is more susceptible to noise and therefore it is
best to place the output of the op-amp as close to the AFE input of the processor.
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Figure 8-11. Feedback of Phase Currents Using External Differential Amplifiers

Why use the PGAs when external amplifiers are already being used? One case would be if many different
current rated motors are powered with the same inverter. Amplification of the current signal can be
adjusted to best suit the motor size that is controlled. The output of the PGA block is the input of the
comparator windows. The PGA still needs to be connected to enable the use of the fault detection
circuitry.

8.6.2.3 Voltage Reference Connection
Current can flow through the shunt in both positive and negative directions which will create both a
positive and negative voltage that is fed back to the shunt amplifier circuit. Most cost-effective motor
inverters do not have both positive and negative power supplies that can handle this bipolar signal. A
bipolar current signal is brought into an amplifier that will only be effective from zero to the positive voltage
supply. To allow the unipolar op-amp circuit to measure a bipolar signal, a voltage reference is summed
into the non-inverting side of the current feedback op-amps. The AFE of the 2805x device contains a 6-bit
DAC with a voltage follower for providing an output reference for this reason. A circuit configuration that
can use a voltage reference to measure the bipolar current signal is shown in Figure 8-12.
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Figure 8-12. Using the AFE's Built-In Voltage Reference For Measuring a Bipolar Signal

Equation 24 shows how to calculate the voltage at VPGA. As an example, set the PGA gain = 3. VADCIN will
be 2VBIPOLAR + VREF. Assume the system's VREFHI is 3.3 V. To allow for maximum voltage swing in both
directions, VREF is set to 1.65 V. Now the maximum peak VBIPOLAR voltage that can be measure is ±0.825 V.

(24)

Suppose the same hardware is used and a higher resolution is required. The PGA gain = 6. VADCIN is
4VBIPOLAR + 2VREF. VREF must be adjusted to be 0.825 V. The maximum peak VBIPOLAR voltage that can be
measured is ±0.4125 V.

The voltage reference output is adjusted by a 6-bit DAC. The VREFOUTCTL register controls the DAC's
voltage output by Equation 25 below.

(25)

8.6.2.4 Routing Voltage Signals
In sinusoidal motor control drives, the voltage signals vary slowly when compared to current signals.
Therefore, larger hardware filters can be applied to the voltage feedback signal which helps to make it less
susceptible to noise. Voltage signals are unipolar, so no special circuit and reference have to be used.
Lower voltage motors (under 400 VDCBUS) typically only require resistor dividers with a capacitive low-pass
filter. For a brushless DC motor control the voltage needs as little phase shift as possible and, therefore,
the low-pass filtering depends on the maximum speed achieved by the motor. The only critical layout of
voltage feedback signals is that the low-pass filter capacitor must be located as close to the AFE or A/D
input pin as possible.
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9.1 InstaSPIN Software Execution Clock Tree
There are several clock decimations when using InstaSPIN. The first clock that needs to be considered is
the interrupt clock, which is generated by a peripheral clocked with the CPU clock. Typically, the interrupt
service routine (ISR) is triggered by the end of conversion (EOC) of the ADC. This conversion is triggered
by the PWM module.

First of all, let us review how the PWM frequency is configured based on user's parameters from user.h.
Starting from the CPU clock, user defines, in MHz, what the CPU clock rate is:

//! \brief Defines the system clock frequency, MHz (6xF and 6xM devices)
//!
#define USER_SYSTEM_FREQ_MHz (90)

//! \brief Defines the system clock frequency, MHz (2xF devices)
//!
#define USER_SYSTEM_FREQ_MHz (60)

Then, the PWM frequency in kHz is defined, which results in the interrupt frequency.

//! \brief Defines the Pulse Width Modulation (PWM) frequency, kHz
//!
#define USER_PWM_FREQ_kHz (15.0)

//! \brief Defines the Pulse Width Modulation (PWM) period, usec
//!
#define USER_PWM_PERIOD_usec (1000.0/USER_PWM_FREQ_kHz)

//! \brief Defines the Interrupt Service Routine (ISR) frequency, Hz
//!
#define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)

//! \brief Defines the Interrupt Service Routine (ISR) period, usec
//!
#define USER_ISR_PERIOD_usec USER_PWM_PERIOD_usec

So far, the CPU clock sets the PWM frequency, which also sets the frequency of the ISR. Now the ISR is
actually not triggered by the PWM timer itself, but it is triggered by the end of conversion of the ADC
which was started by the PWM timer.

Figure 9-1 is a timing diagram of the clocks from the CPU all the way to the ISR generation.

357SPRUHJ1F–January 2013–Revised July 2014 Real-Time Structure
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


InstaSPIN Software Execution Clock Tree www.ti.com

Figure 9-1. Clock Timing - CPU to ISR Generation

This timing diagram represents the interrupt triggering scenario that Texas Instruments delivers for
InstaSPIN software package because this is the safest way the conversions will be ready when fetching
the interrupt. Other scenarios might be considered by the user, such as ADC early interrupt, PWM
interrupt or CPU timer interrupt. The only requirement is that those interrupts are generated at a fixed
period.

Note that the execution time can be measured in several different ways. Here are some examples on how
to measure execution time:
• GPIO Toggle. An easy but not so accurate execution time measurement is to simply set a GPIO at the

very beginning of the code to be measured and the clearing the same GPIO right after it. This method
is very graphical since it can be displayed in a scope, and sine the interrupts are periodic, it will give a
good trigger for the scope to measure execution time. The time can then be converted to CPU cycles if
needed. One thing to consider using this method though is the time it takes for a particular architecture
to set and clear a GPIO, as well as the interrupt fetch and return times.

• CPU Timer Capture. A much more accurate execution time measurement is with a CPU timer. This
can be done by running a CPU timer at the same clock as the CPU clock, with no prescaler or
postcaler, and then read the timer after the code has been executed. This will give us the CPU cycles
needed to execute the code of interest.

From the InstaSPIN execution timing, there are several decimation values, also known as tick rates that
allow different execution clock rates for different portions of control code within InstaSPIN. The following
tick rates are available for InstaSPIN:

//! \brief Defines the number of pwm clock ticks per isr clock tick
//! Note: Valid values are 1, 2 or 3 only
#define USER_NUM_PWM_TICKS_PER_ISR_TICK (1)

//! \brief Defines the number of isr ticks per controller clock tick
//!
#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)

//! \brief Defines the number of controller clock ticks per current controller clock tick
//!
#define USER_NUM_CTRL_TICKS_PER_CURRENT_TICK (1)
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//! \brief Defines the number of controller clock ticks per estimator clock tick
//!
#define USER_NUM_CTRL_TICKS_PER_EST_TICK (1)

//! \brief Defines the number of controller clock ticks per speed controller clock tick
//!
#define USER_NUM_CTRL_TICKS_PER_SPEED_TICK (10)

//! \brief Defines the number of controller clock ticks per trajectory clock tick
//!
#define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (10)

In order to show all these tick rates, see Figure 9-2. The following acronyms are defined for easier
reference within the software execution clock tree diagram:

USER_NUM_PWM_TICKS_PER_ISR_TICK -> /ETPS

USER_NUM_ISR_TICKS_PER_CTRL_TICK -> /ISRvsCTRL

USER_NUM_CTRL_TICKS_PER_CURRENT_TICK -> /CTRLvsCURRENT

USER_NUM_CTRL_TICKS_PER_EST_TICK -> /CTRLvsEST

USER_NUM_CTRL_TICKS_PER_SPEED_TICK -> /CTRLvsSPEED

USER_NUM_CTRL_TICKS_PER_TRAJ_TICK -> /CTRLvsTRAJ

In the case of the F2806x device, the software execution clock tree starts with a SYSCLKOUT of 90 MHz,
and everything else is decimated from that clock. For the F2805x amd F2802x devices, the maximum
frequency is 60 MHz, instead of 90 MHz.

After a clock prescaler, which is set to one by default, to get the best resolution of the PWM generator, we
have the TBPRD register (see Figure 9-2). This register has a period value so that the output creates the
PWM frequency.

Figure 9-2. Software Execution Clock Tree
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The first decimation of the software execution clock tree is in hardware. Depending on the value of the
ETPS register (Event Trigger Prescale Register), the PWM frequency can be divided 1, 2 or 3 times. This
is useful when the ADC start of conversion signal needs to be triggered every PWM cycle, or every 2 or
every 3 PWM cycles. This hardware decimation is controlled by the
USER_NUM_PWM_TICKS_PER_ISR_TICK definition in user.h.

The second decimation block is done in software and will be explained in detail in the following section.

9.2 Decimating in Software for Real-Time Scheduling
The highlighted software tick rates shown in Figure 9-3 are used to decimate the execution of InstaSPIN in
software, also known as real-time scheduling tick rates.

Figure 9-3. Real-Time Scheduling Tick Rates

9.2.1 USER_NUM_ISR_TICKS_PER_CTRL_TICK
The first tick rate defines the main rate at which InstaSPIN as a whole will be executed from the end of
conversion ISR. When this tick rate is greater than one, every time InstaSPIN is executed there will be a
check in an internal counter, and if this counter hasn't reached the tick rate value, it will return from
InstaSPIN execution. There is no code executed inside InstaSPIN library other than the check of this
counter. Figure 9-4 shows how the tick counter is checked in the ISR.
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Figure 9-4. Tick Counter Flowchart

Figure 9-5 shows InstaSPIN execution with a tick rate of 2.

Figure 9-5. InstaSPIN Timing

Figure 9-6 can also be represented as a software execution clock tree as follows.

Figure 9-6. InstaSPIN Timing Software Execution Clock Tree
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Notice how the highlighted block has a value of two, causing a divide by two in the software execution
clock tree.

There are two main reasons why a tick rate from the interrupt to the controller might be higher than 1:
• The first reason is to reduce the CPU usage.
• The second one is to allow a higher PWM frequency and reduce the tick rate so that InstaSPIN can

still be executed at higher frequencies.

For example, if the PWM frequency is 50 kHz, if no hardware decimation is used (which will be discussed
later in this document) the end of conversion ISR is at the same rate, 50 kHz. There needs to be enough
time in 1/50 kHz = 20 µs to execute all the functions. If the functions within the ISR take 30 µs, then:

Execution time > ISR Period → 30 µs > 20 µs

This will lead to interrupt overrun, causing ADC samples to be overwritten, and control timing will also be
affected.

In cases where the interrupt is shorter than the execution time, it is safe to use different ISR to CTRL tick
rates if the following guidelines are taken into consideration.

Verify there is enough time in the interrupt to execute InstaSPIN.
This is because when executing InstaSPIN in the interrupt service routine there has to be enough time to
avoid conversion overrun. For example, if an ISR hasn't been serviced, and a second one comes in, the
first one was completely lost, and the timing is affected. A good example is shown in Figure 9-7, when the
ISR has enough time so that InstaSPIN completes execution with no ISR overrun.

Figure 9-7. InstaSPIN Timing Completes Execution with No ISR Overrun

Figure 9-8 shows the software execution clock tree representation of this timing diagram.

Figure 9-8. InstaSPIN Timing Software Execution Clock Tree - No ISR Overrun
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Another example using decimation rates with a higher PWM frequency, leads to a shorter ISR, but even
though one ISR is not serviced right away, it eventually does with no ISR overrun (Figure 9-9). This would
work ok as well, without affecting performance.

Figure 9-9. InstaSPIN Timing with a Higher PWM Frequency

On the other hand, if the PWM frequency is setup too high, the end of conversion interrupt might be
overrun by a second interrupt. An overrun condition is undesirable since it will cause a complete set of
ADC samples to be lost. In addition to that, an interrupt overrun causes a complete interrupt to be missed
and as a result of that, the timing of the InstaSPIN state machine will be wrong, since it depends on the
periodicity of the interrupts. Not keeping a good timing schedule in the InstaSPIN library causes issues
such as angle estimation not being accurate, speed estimation being off, speed and current controllers not
performing as desired, just to list a few. The following example shows an interrupt overrun condition. Keep
in mind that InstaSPIN execution is the same, what we are changing is the PWM frequency (hence the
end of conversion interrupt frequency) and the decimation number. The first example of interrupt overrun
is without decimation, so all of InstaSPIN executed at every interrupt (Figure 9-10).

Figure 9-10. Interrupt Overrun without Decimation Timing

Figure 9-11 shows the software execution clock tree values of this timing diagram.
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Figure 9-11. Interrupt Overrun without Decimation Software Execution Clock Tree

Notice how after a few interrupts a complete interrupt is overrun. The problem with this is that now the
timing is shifted, so internally in the InstaSPIN state machine and controllers, timing is now slower than it
really is.

Another example is using decimation rates. In Figure 9-12 a decimation rate of 2 is used, and as you can
see, even using decimation rates we have the limitation of interrupt overrun.

Figure 9-12. Interrupt Overrun with Decimation Timing

Figure 9-13 shows the software execution clock tree values of this timing diagram.

Figure 9-13. Interrupt Overrun with Decimation Software Execution Clock Tree
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Set frequency of InstaSPIN to at least 10 times the electrical frequency of the motor.
The second aspect to be considered when setting PWM frequency and ISR vs. CTRL tick rate is the
number of InstaSPIN runs versus the electrical frequency of the motor. This is because when running in a
closed loop system, where field oriented control depends on an electrical angle, there should be enough
estimated angle updates per electrical cycle to keep the field properly oriented. An analogy of this
requirement is when an AC signal needs to be digitally sampled. This is related to Nyquist frequency,
where a frequency just above the sampled frequency is enough to avoid aliasing. In a field oriented control
system Nyquist frequency is not enough to provide an efficient motor control. The recommended
InstaSPIN run rate is at least 10 times of the electrical frequency of the motor. In order to know the
electrical frequency of a motor, i.e. for a Permanent Magnet Synchronous Motor (PMSM) we need to know
the speed and the number of poles. For example:

Pole Pairs: 4

Speed: 7500 RPM

Electrical Frequency: Speed in RPM * Pole Pairs / 60 = 7500 * 4 / 60 = 500 Hz

Minimum Recommended InstaSPIN run rate = 10 * Electrical Frequency = 5000 Hz

In this example, we have chosen an ISR vs. CTRL tick rate of 3, resulting in an ISR frequency of 5000 * 3
= 15000 Hz.

Figure 9-14 shows the resulting waveforms from this example.

Figure 9-14. ISR Frequency Waveforms

Figure 9-15 shows the software execution clock tree numbers for this example.

365SPRUHJ1F–January 2013–Revised July 2014 Real-Time Structure
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA
/ETPS

= 1

PWMFREQ
/ISRvsCTRL

= 3

ISR
/CTRLvsEST

= 1

/CTRLvsCURRENT

= 1

/CTRLvsSPEED

= 10

/CTRLvsTRAJ

= 10

CTRL

EST

CURRENT

SPEED

TRAJ

ADC

90 MHz 90 MHz 15 kHz 15 kHz 15 kHz 5 kHz 5 kHz

5 kHz

500 Hz

500 Hz

Decimating in Software for Real-Time Scheduling www.ti.com

Figure 9-15. Software Execution Clock Tree for ISR Waveforms

9.2.2 USER_NUM_CTRL_TICKS_PER_CURRENT_TICK
The second tick rate to be discussed is the controller tick per current tick. This tick rate is used to slow
down the current controllers with respect to the InstaSPIN execution rate. This tick rate only reduces the
rate at which the current controllers are executed, which doesn't really help alleviate the CPU loading
since there are only two PI controllers. It does reduce the current control performance though, so it is
recommended to keep this tick rate equal to one, which means that the current controllers will be executed
at the same rate as InstaSPIN execution. In order to show an example of how this tick rate can be used,
consider the Figure 9-16. Also in this example we have chosen an ISR tick per CTRL tick rate of 3 to
show how the CTRL per current tick is cascaded from the first tick rate.

Figure 9-16. Tick Rate Timing

Figure 9-17 shows the values for this example in highlighted boxes.
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Figure 9-17. Tick Rate Software Execution Clock Tree

9.2.3 USER_NUM_CTRL_TICKS_PER_EST_TICK
The third decimation rate is to execute the estimator inside of InstaSPIN, also known as the FAST™
algorithm. This is one of the most popular tick rates available in InstaSPIN since it decimates the most
time consuming part of InstaSPIN, which is the FAST estimator. As shown in the previous tick rate that
decimates the current controllers, this tick rate decimates the estimator execution. To show an example of
how this is cascaded from the InstaSPIN execution clock, consider Figure 9-18. It shows an ISR per CTRL
tick rate of 1, a CTRL per CURRENT tick rate of 2, and a CTRL per EST tick rate of 2 as well. This shows
how several tick rates can be combined to achieve a desired CPU bandwidth, and it also shows
dependencies of other clocks within InstaSPIN.

Figure 9-18. FAST Estimator Tick Rate Timing

Figure 9-19 represents the values of this timing diagram in highlighted boxes.
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Figure 9-19. FAST Estimator Tick Rate Software Execution Clock Tree

9.2.4 Practical Example
A case example is shown next, where the CPU loading is restricted by the application and the PWM
frequency requirement is fixed. For example, consider the following parameters for our case study:

InstaSPIN Execution time only checking the tick rate counters: 2.7 µs

FAST estimator execution time: 12.9 µs

InstaSPIN Execution time without the FAST estimator: 14.2 µs

Total of InstaSPIN with FAST: 27.1 µs = 12.9 µs + 14.2 µs

PWM Frequency requirements: 50 kHz (TISR = 20 µs)

A typical example where such a high PWM frequency is needed is when the motor has a very low
inductance. Having a low PWM frequency would create undesirable current ripple due to the low
inductance. A solution for these applications is to have a higher PWM frequency. In the example a 50 kHz
PWM frequency is required.

The first configuration we should try is with the ISR to CTRL, CTRL to CURRENT and CTRL to EST all to
1, so that we get the best performance. If we try these tick rates to one, we get Figure 9-20.

Figure 9-20. Tick Rates Timing

As can be seen from the timing diagram, the interrupt is shorter than what needs to be executed, so this
will lead to interrupt overrun, hence undesirable behavior.
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TISR < TInstaSPIN → 20 µs < 27.1 µs → this leads to ISR overrun, hence unexpected InstaSPIN results

Figure 9-21 represents the values of this timing diagram in highlighted boxes.

Figure 9-21. Tick Rates Software Execution Clock Tree

Notice how the interrupt time is not enough to execute InstaSPIN at the same rate and it never catches up
with execution. In fact, after a few interrupts there are missing interrupts, which will cause unexpected
results. A solution to this problem is to use the tick rates so that the FAST estimator runs at a lower rate
compared to the rest of InstaSPIN. In Figure 9-22, let's see if we can solve the overrun problem with a
CTRL vs. EST tick rate of 2.

Figure 9-22. CTRL vs. EST Timing - Tick Rate = 2

In this case two interrupts have to be considered to measure timing since there is a tick rate of two being
used for the estimator, and as can be seen from the diagram, the time for 2 interrupts is shorter than what
needs to be executed without and with FAST, so this will lead to interrupt overrun, hence undesirable
behavior.

2 * TISR < (TInstaSPIN without FAST + TInstaSPIN with FAST) → 40 µs < 41.3 µs → unexpected InstaSPIN results

Figure 9-23 represents the values of this timing diagram in highlighted boxes.
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Figure 9-23. CTRL vs. EST Software Execution Clock Tree - Tick Rate = 2

As can be shown, every time InstaSPIN with FAST is executed there is an increasing latency. In three
cycles we see how this latency increases from 0 µs, to 1.3 µs and then 2.6 µs. We can predict that in a
few more cycles there will be an interrupt overrun, since the execution time is not catching up with the
interrupt rate.

The solution for this case study is to increase the CTRL vs. EST tick rate even further, to three, so that the
latency is back to zero every InstaSPIN cycle as can be shown in Figure 9-24.

Figure 9-24. CTRL vs. EST Timing - Tick Rate = 3

In this case three interrupts have to be considered to measure timing since there is a tick rate of three
being used for the estimator, and as can be seen from the diagram, the time for 3 interrupts is longer than
what needs to be executed without and with FAST, so this will avoid interrupt overrun.

3 * TISR < (2 * TInstaSPIN without FAST + TInstaSPIN with FAST) → 60 µs > 55.5 µs → expected InstaSPIN results

The available CPU for other tasks outside the ISR or other lower priority interrupts can be calculated as
follows:

3 * TISR - (2 * TInstaSPIN without FAST + TInstaSPIN with FAST) = 4.5 µs
CPU % left = 100 % * 4.5 µs / 60 µs = 7.5 %
2806x MIPS left = CPU % left * Max MIPS = 7.5 % * 90 MIPS = 6.75 MIPS

Figure 9-25 represents the values of this timing diagram in highlighted boxes.
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Figure 9-25. CTRL vs. EST Software Execution Clock Tree - Tick Rate = 3

Another solution to this problem is to change the ISR vs. CTRL tick rate to 2. Considering an InstaSPIN
run of 2.7 µs when only the tick counters are checked, we have
Changed paragraph in Section 18.2.3, Set Digital IO to connect to QEP Peripheral. As can be seen,
selecting a tick rate of 2 for the ISR vs. CTRL tick rate is enough to avoid any conversion overrun.

Figure 9-26. ISR vs. CTRL Timing - Tick Rate = 2

In this case two interrupts have to be considered to measure timing since there is a tick rate of two being
used for the controller (CTRL), and as can be seen from the diagram, the time for 2 interrupts is longer
than what needs to be executed without and with the controller, so this will avoid interrupt overrun.

2 * TISR < (TInstaSPIN without CTRL + TInstaSPIN with CTRL) → 40 µs > 29.8 µs → expected InstaSPIN results

The available CPU for other tasks outside the ISR or other lower priority interrupts can be calculated as
follows:

2 * TISR - (TInstaSPIN without CTRL + TInstaSPIN with CTRL) = 10.2 µs
CPU % left = 100 % * 10.2 µs / 40 µs = 25.5 %
2806x MIPS left = CPU % left * Max MIPS = 25.5 % * 90 MIPS = 22.95 MIPS

Figure 9-27 represents the values of this timing diagram in highlighted boxes.
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Figure 9-27. ISR vs. CTRL Software Execution Clock Tree - Tick Rate = 2

9.2.5 USER_NUM_CTRL_TICKS_PER_SPEED_TICK
This decimation rate is to execute the speed controller inside of InstaSPIN with respect to the controller
(CTRL). A typical value of the speed controller tick rate is between 5 and 10. This is to allow the current
controllers to settle at a faster rate compared to a speed controller. The time constant of the speed
controller is set by the mechanical load coupled to the motor's shaft, which is much slower than the time
constant set by the inductances in the motor. The following example shows a typical value of 10 in the
speed controller tick rate, and the timing diagram shows how this is decimated from the controller (CTRL).

A typical value of 10 is used, so that the current controllers are executed at a rate 10 times faster than the
speed controller. This is typical since the speed controller usually sets the reference of the current
controller, and current controller needs to have some time to control to a specific set point.

Figure 9-28 shows how a speed controller tick rate of 10 is used.

Figure 9-28. Speed Controller Timing - Tick Rate = 10

Figure 9-29 represents the values of this timing diagram in highlighted boxes.
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Figure 9-29. Speed Controller Software Execution Clock Tree - Tick Rate = 10

9.2.6 USER_NUM_CTRL_TICKS_PER_TRAJ_TICK
The last decimation rate in the software is related to the trajectory generation within InstaSPIN. The
trajectory module is used in the library to provide timing. One example of the trajectories used inside the
library is to create a ramp of the speed reference. Another example of the trajectories used is when the
motor is being accelerated during the identification process. All of these timings are done by trajectories
inside InstaSPIN. All these times are based on the CTRL vs. TRAJ tick rate. Having a different decimation
value in this tick rate does not help very much with CPU loading, so it is recommended to match the
Speed Controller rate (default of 10) for this tick rate. For illustration purposes, Figure 9-30 shows the
CTRL vs TRAJ tick rate.

Figure 9-30. CTRL vs TRAJ Tick Rate Timing

Figure 9-31 represents the values of this timing diagram in highlighted boxes.
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Figure 9-31. CTRL vs TRAJ Tick Rate Software Execution Clock Tree

In summary, all the tick rates, and their dependencies are shown in Figure 9-32 with the following times
referenced in the diagram.

SYSCLKOUT = 90 MHz

FOC (InstaSPIN without FAST) = 14.2 µs

FAST = 12.9 µs

Current Control = 1.0 µs

Speed Control = 0.5 µs

Trajectory Run = 0.4 µs
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Figure 9-32. All Tick Rates and Dependencies Timing

Figure 9-33 represents the values of this timing diagram in highlighted boxes.

Figure 9-33. All Tick Rates and Dependencies Software Execution Clock Tree

9.3 Decimating in Hardware
The highlighted tick rate shown in Figure 9-34 is used to decimate the execution of InstaSPIN in hardware.
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Figure 9-34. Hardware Decimation Software Execution Clock Tree

The only decimation in hardware possible is to trigger the conversions of the ADC at a different rate, other
than every PWM cycle. The following configuration in file <user.h>:

//! \brief Defines the number of pwm clock ticks per isr clock tick
//! Note: Valid values are 1, 2 or 3 only
#define USER_NUM_PWM_TICKS_PER_ISR_TICK (1)

With the above example, a start of conversion (SOC) event is triggered every single PWM period, leading
to Figure 9-35.

Figure 9-35. SOC Event Timing
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Figure 11-3 represents the values of this timing diagram in highlighted boxes.

Figure 9-36. SOC Event Software Execution Clock Tree

If a requirement to have a higher PWM frequency in the application, a way of doing this in hardware is by
triggering conversions every second or every third PWM cycle. The following example shows how to
configure the PWM to trigger conversions on every second PWM cycle:

//! \brief Defines the number of pwm clock ticks per isr clock tick
//! Note: Valid values are 1, 2 or 3 only
#define USER_NUM_PWM_TICKS_PER_ISR_TICK (2)

Figure 9-37 shows the respective timing diagram.

Figure 9-37. PWM Converions on Every Second PWM Cycle Timing
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Figure 9-38 represents the values of this timing diagram in highlighted boxes.

Figure 9-38. PWM Converions on Every Second PWM Cycle Software Execution Clock Tree

If even higher frequency is required, the PWM module can also trigger conversions every third PWM
cycles, configured as follows:

//! \brief Defines the number of pwm clock ticks per isr clock tick
//! Note: Valid values are 1, 2 or 3 only
#define USER_NUM_PWM_TICKS_PER_ISR_TICK (3)

Section 18.3.1.2 shows the respective timing diagram.

Figure 9-39. PWM Converions on Every Third PWM Cycle Timing
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Figure 9-40 represents the values of this timing diagram in highlighted boxes.

Figure 9-40. PWM Converions on Every Third PWM Cycle Software Execution Clock Tree

Notice how the interrupt period changes with respect to the PWM period. This allows a higher PWM
frequency maintaining a higher interrupt period. A higher interrupt period allows InstaSPIN to execute in
time, even though the PWM frequency is higher.
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Chapter 10
SPRUHJ1F–January 2013–Revised July 2014

Managing Startup Time

Once the motor has been fully identified, or motor parameters have been loaded from user.h file, there are
four possible startup times depending on the enabled recalibration features. These recalibration features
are:
• Offset Recalibration
• Stator Resistance (Rs) Recalibration

These two features can be enabled or disabled independently from each other. The main motivation for
the user to experiment with different startup methods is to meet the startup requirements of an application.
For more details about enabling or disabling these recalibration features, as well as configuring the times
and currents for each recalibration feature, see Section 6.7.

Topic ........................................................................................................................... Page

10.1 Startup with Offsets and Rs Recalibration ........................................................... 381
10.2 Startup with Only Offsets Recalibration............................................................... 382
10.3 Startup with Rs Recalibration............................................................................. 383
10.4 Startup with No Recalibration ............................................................................ 385
10.5 Bypassing Inertia Estimation ............................................................................. 386

380 Managing Startup Time SPRUHJ1F–January 2013–Revised July 2014
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


Offsets Recalibration Rs Recalibration

Id
le

C
lo

se
d

 L
o

o
p

Fixed 50% Duty Cycle Variable Duty Cycle

PWM Phase A

Current Phase A

Idle

CTRL_State_Idle

Offline

CTRL_State_OffLine

Online

CTRL_State_OnLine

Idle

EST_State_Idle

Rs

EST_State_Rs

Online

EST_State_OnLine

CTRL State Machine EST State Machine

Idle

Offsets
Recalibration

Rs
Recalibration

Motor Running 
Closed-loop

www.ti.com Startup with Offsets and Rs Recalibration

10.1 Startup with Offsets and Rs Recalibration
This is the slowest but most accurate startup. It consists of three stages before the motor is spun to a
commanded torque or speed reference. Figure 10-1 shows the controller and estimator state machines
when a startup is done with offsets and Rs recalibration enabled.

Figure 10-1. Startup with Offsets and Rs Recalibration

Figure 10-2 shows current and output voltage for each state. The first state is the Offsets Recalibration
state and the second is Rs Recalibration. The third stage is the online state when the commanded speed
or torque is followed in closed-loop.

Figure 10-2. Current and Output Voltage for Each State

The timing associated with each state, as well as the current used for Rs recalibration is explained in
detail in Chapter 6. In order to enable both offset and Rs recalibration the following two functions must be
called prior to enabling the controller:
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// Enable Offset Recalibration
CTRL_setFlag_enableOffset(handle, TRUE);

// Enable Rs Recalibration
EST_setFlag_enableRsRecalc(obj->estHandle, TRUE);

The controller is enabled by calling the following function:

// enable the controller
CTRL_setFlag_enableCtrl(ctrlHandle, TRUE);

10.2 Startup with Only Offsets Recalibration
This startup method, with Rs recalibration disabled, is commonly utilized when offsets might have
changed, but the motor has not changed. A typical scenario when this approach is used is when different
boards run the same motor. Another example is when the same board has been running for a long period
of time and the hardware components for the voltage and current feedback might have changed in value
due to ambient conditions or component tolerances. In this last example it is recommended to run the
offsets recalibration as needed depending on the quality of the hardware components used in a particular
board.

Figure 10-3 shows the states when running only offsets recalibration before running in closed loop.

Figure 10-3. Startup with Only Offsets Recalibration

Figure 10-4 shows the current and output voltage waveform associated with the offset state. Before
running the motor in closed loop, the offsets are recalibrated with a fixed 50% duty cycle. After that, the
motor is then run in closed loop, where the voltage and current would depend on the commanded speed
as well as the mechanical load.
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Figure 10-4. Offset State Current and Output Voltage

The timing associated with the offset state is explained in detail in Chapter 6. In order to enable offset
recalibration and disable Rs recalibration the following two functions must be called prior to enabling the
controller:

// Enable Offset Recalibration
CTRL_setFlag_enableOffset(handle, TRUE);

// Disable Rs Recalibration
EST_setFlag_enableRsRecalc(obj->estHandle, FALSE);

The controller is enabled by calling the following function:

// enable the controller
CTRL_setFlag_enableCtrl(ctrlHandle, TRUE);

10.3 Startup with Rs Recalibration
This startup method, with offsets recalibration disabled, is typical when resistance has changed but the
offsets have not changed. An example of this condition is if the ambient temperature has changed,
causing the stator resistance to change. Also, if the system has been in the field for a long time, it is
recommended to run periodic updates to the stator resistance to make sure the software has an accurate
representation of the motor model before startup up the motor in closed loop. Figure 10-5 shows the
states before closing the loop when only the stator resistance (Rs) is recalibrated
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Figure 10-5. Startup with Rs Recalibration

Figure 10-6 shows the current and output voltage waveforms when only Rs is recalibrated before running
in closed loop.

Figure 10-6. Rs Recalibration Current and Output Voltage

The timing associated with the Rs recalibration state as well as the current used to recalibrate Rs is
explained in detail in Chapter 6. In order to disable offset recalibration and enable Rs recalibration the
following two functions must be called prior to enabling the controller:

// Disable Offset Recalibration
CTRL_setFlag_enableOffset(handle, FALSE);

// Enable Rs Recalibration
EST_setFlag_enableRsRecalc(obj->estHandle, TRUE);
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The controller is enabled by calling the following function:

// enable the controller
CTRL_setFlag_enableCtrl(ctrlHandle, TRUE);

10.4 Startup with No Recalibration
This startup approach is the fastest method to get the motor running in closed loop. It does not recalibrate
offsets or resistance. As soon as the controller is enabled, the motor is run in closed loop. This method
should only be used when the offsets and stator resistance are well known. For details of how to handle
full-load conditions at start-up, see Chapter 14. Figure 10-7 shows how the motor is run in closed loop
right after the idle state, without any recalibration.

Figure 10-7. Startup with No Recalibration

Figure 10-8 shows the current and output voltage waveforms when offsets and Rs recalibration is
bypassed.
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Figure 10-8. Rs Recalibration Bypass Current and Output Voltage

In order to disable both offset and Rs recalibration the following two functions must be called prior to
enabling the controller:

// Disable Offset Recalibration
CTRL_setFlag_enableOffset(handle, FALSE);

// Disable Rs Recalibration
EST_setFlag_enableRsRecalc(obj->estHandle, FALSE);

The controller is enabled by calling the following function:

// enable the controller
CTRL_setFlag_enableCtrl(ctrlHandle, TRUE);

10.5 Bypassing Inertia Estimation
If the motor inertia has been previously estiamted, or the motor inertia is known, you can accelerate the
system start-up time by bypassing the inertia estimation process. The inertia estimation process should be
done during development with a representative inertia attached to the motor shaft. Since the motor inertia
is configured during development, SpinTAC Velocity Identify does not need to be included in the final
product.

The motor inertia is required for the SpinTAC speed controller. In MotorWare labs, motor inertia is
configured as a default value in ST_MOTOR_INERTIA_A_PER_KRPM, located in spintac.h. This
definition is covered in greater detail in Section 4.7.1.1. More information on SpinTAC Velocity Identify can
be found in Chapter 7.

If your project does not use MotorWare, the motor inertia is set in the SpinTAC speed controller during the
initialization process using the Inertia parameter in the SpinTAC speed controller global structure. The unit
for Inertia is PU/(pu/s2). Where PU is the user unit for current [A] and pu/s2 is the user unit for acceleration
[krpm/s]. Typically inertia is specified in Kg*m2 or N*m*s2. The user must convert the real world inertia unit
into the scaled unit that is used by the SpinTAC speed controller.
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Equation 26 can be used to convert between inertia specified in Kg*m2 and the scaled units that are
needed for the SpinTAC speed controller. The result of this equation should be provided as the Inertia
input to the SpinTAC speed controller.

(26)

In this equation, the following symbols are used:
• ωNORM is defined as the scale between frequency in Hz and frequency in pu. The value is defined as

USER_IQ_FULL_SCALE_FREQ_Hz in user.h. For more information, see Section 4.1.1.
• φEMF is defined as the Back EMF in Webers of the motor. This value is defined as

USER_MOTOR_RATED_FLUX in user.h. For more information, see Section 4.6.7.
• ANORM is defined as the scale between current in amps and current in PU. The value is defined as

USER_IQ_FULL_SCALE_CURRENT_A in user.h. For more information, see Section 4.1.5.
• PP is defined as the number of pole pairs in the motor. The value is defined as

USER_MOTOR_NUM_POLE_PAIRS in user.h. For more information, see Section 4.6.2.

While you can use this equation to calculate the inertia of your system, it is always preferred to use
SpinTAC Velocity Identify to estimate the system inertia. This will provide the most accurate value of the
system inertia and will take into account objects that might be difficult to calculate the inertia of.
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Tuning Regulators
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11.1 PI Controllers Introduction
Looking back at some history, this is how the PI controller was invented in the 1920s. An engineer named
Nicolas Minorsky was designing automatic steering systems for the US Navy in the early 1920s by
observing how a helmsman steered a ship under different conditions. According to Wikipedia.org, he
noticed that the actions of the helmsman could be approximated by a simple amplification of the error
signal under calm conditions, but this simple model was inadequate to describe the helmsman's response
during a steady disturbance like a stiff gale. This finally led to the addition of an integral term to correct for
continuous steady-state errors. Later, the derivative term was added to improve controllability even further.

Continuing with the Wikipedia.org narrative, test trials of his automatic steering system based on a PI
controller were carried out on the USS New Mexico. After some adjustments, he was able to control the
angular error to less than two degrees. When the D term was added, the error improved to within one
sixth of a degree, which was better than what most helmsmen could achieve manually. Minorsky
published his findings (also in the early 1920s). We know today that his discovery launched a new era in
the design of control systems.

Figure 11-1. USS New Mexico Around the Time it was Retrofitted with PID Control

A very common question we get in our seminars is, "How do you tune a PI controller?" We typically show
Bode plots or show some simulation data to show that the process is somewhat empirical, and very
subjective to the kind of response for which you are looking.

This section of InstaSPIN User's Guide is put together to help customers design and tune PI control loops
(regardless of whether they are speed loops or current loops) in a much more deterministic way. Granted,
there are still plenty of degrees of freedom depending on what kind of response users are looking for, as
well as an endless litany of subtle variations on the basic PI structure itself. But by following some basic
rules that will be explained later in this document, users should be able to tune a PI loop.

This analysis is limited to loads having only real poles. If the load under consideration has prominent
complex poles resulting from excessive torsional resonance between the motor and load, then the
controller will have to be more sophisticated than a simple PI structure anyway to cancel the resonance
effects. But in most cases, a stiff shaft coupler should tame the torsional resonance to the point where the
use of a standard PI control structure is acceptable. Also, it is assumed that the load has no viscous
damping. In most designs these assumptions are valid. However, if the tuning process described in this
section does not work for a given design, it is likely that complex poles or viscous damping exist
somewhere in the load which is affecting the results.
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Figure 11-2 shows a parallel path topology of a PI controller. The error signal is split into two separate
paths: one which is directly amplified and the other is amplified and then integrated. The integrator is
included to drive the steady-state error of the system to zero, since any non-zero steady-state error will
result in a boundless integrator output. These two signal paths are then combined at the output once
again via a simple addition operation.

Figure 11-2. Parallel Path Topology

But how do you set the values for Kp and Ki? This has been the subject for much debate, and it is rather
difficult to intuitively understand the effect that each term has on your motor control system. The Kp term
sets the high frequency gain of the control loop, as shown above. The Ki term sets the low frequency gain,
and theoretically has infinite gain at DC. The frequency which delineates the high frequencies from the low
frequencies is referred to as the "zero" of the controller and corresponds to the inflection point in the
frequency plot.

While the integrator plays a crucial role in the operation of the PI controller, it also brings a set of
challenges with it. For example, let's say that the error in your control loop is zero, which means the
controlled signal is equal to the commanded signal. Now add a small offset to the controlled signal and
watch what happens. Since the error signal is no longer zero, the integrator output will start growing, and
growing in an attempt to null the error signal again.

Now remove the offset and watch what happens. The controlled signal will eventually return to the
commanded value once again, but not right away. The integrator output is still very large, which causes
the controlled signal to wildly overshoot the commanded value while the integrator output is cleared.
During this time, the profile of the "controlled" signal is not controlled at all, and may even result in
damage to your system if not constrained. It is like winding up a spring tightly and then suddenly releasing
it. That is why this effect in PI controllers is called windup. There are many ways to mitigate the windup
effect, but most techniques involve some sort of limiting of the integrator's output. We will discuss this in
more detail later in this section.

Another popular form of the PI controller (and the one we will use for our analysis) is the "series" topology
which is shown in Figure 11-3.
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Figure 11-3. Series Topology

From this diagram, we can see that:

(27)

But in this structure, sets the gain for ALL frequencies, and directly defines the inflection
point (zero) of the controller in rad/sec. Both forms are pretty much equal in terms of software complexity.

However, many engineers prefer the series form over the parallel form since and directly

correlate to tangible system parameters. It's pretty easy to understand the effect that has on the
controller's performance, since it is simply a gain term in your open-loop transfer function. But what is the
system significance of the zero inflection point? This will be discussed next.

11.2 PI Design for Current Controllers
In the previous section, we briefly reviewed the history of the PI controller and presented two forms that
are commonly used today. Regardless of which form you use, the frequency responses look identical, as
shown in Figure 11-4. As can be seen from the graph, the gain of the PI controller has a pronounced
effect on system stability. But it turns out that the inflection point in the graph (the "zero" frequency) also
plays a significant but, perhaps, more subtle role in the performance of the system. To understand this, we
will need to dive into some math to derive the transfer function for the PI controller, and understand how
the controller's "zero" plays a role in the overall system response.

391SPRUHJ1F–January 2013–Revised July 2014 Tuning Regulators
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


( )
( ) ( )

1
I s

R

LV s 1 s
R

=

+

series

is K  rad / sec=

( )

series series
p iseries series series

p i iseries
p

s
K K 1

K K K
PI s K

s s

æ ö
´ +ç ÷ç ÷´ è ø= + =

PI Design for Current Controllers www.ti.com

Figure 11-4. Frequency Response

Using the series form of the PI controller, we can define its "s-domain" transfer function from the error
signal to the controller output as:

(28)

From this expression, we can clearly see the pole at s = 0, as well as the zero at . So,
why is the value of this zero so important? To answer this question, let's drop the PI controller into a
current controller which is regulating the current of a motor, as shown in Figure 11-5.

Figure 11-5. PI Controller in a Current Controller

We will use a first-order approximation of the motor winding to be a simple series circuit containing a
resistor, an inductor, and a back-EMF voltage source. Assuming that the back-EMF voltage is a constant
for now (since it usually changes slowly with respect to the current), we can define the small-signal
transfer function from motor voltage to motor current as:

(29)
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If we also assume that the bus voltage and PWM gain scaling are included in the term, we can now
define the "loop gain" as the product of the PI controller transfer function and the V-to-I transfer function of
the RL circuit:

(30)

To find the total system response (closed-loop gain), we must use the following expression which you
probably remember from your college control systems class:

(31)

Substituting Equation 30 into Equation 31 yields:

(32)

Notice that the expression is getting bigger and bigger, however with some algebra, we can reduce this
expression to the following:

(33)

The denominator is a second order expression in "s" which means there are two poles in the transfer

function. If we are not careful with how we select and , we can easily end up with complex
poles. Depending on how close those complex poles are to the jω axis, our system could have some

resonant peaks. So let's assume right away that we want to select and in such a way as to
avoid complex poles. In other words, we can factor the denominator into an expression as follows, where
C and D are real numbers:

(34)

If we multiply out the expression on the right side of the equation, and compare the results with the left
side of the equation, we see that in order to obtain real poles, the following conditions must be satisfied:

(35)

And:
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(36)

As a first attempt to solve Equation 35 and Equation 36, let's simply equate the terms on both sides of
Equation 36. In other words:

(37)

The reason we recommended these substitutions will now become clear. If we replace the denominator of
Equation 33 with its factored equivalent expression as shown in Equation 34, and then make the
substitutions recommended in Equation 37, we get the following:

(38)

Notice that the "D" substitution results in a pole which cancels out the zero in the closed-loop gain
expression. By choosing C and D correctly, we not only end up with real poles, but we can create a
closed-loop system response that has only one real pole and no zeros. No peaky frequency responses or
resonant conditions, just a simple single-pole low-pass response.

Additionally, by substituting the expressions for C and D recommended in Equation 37 back into
Equation 35, we get the following equality:

(39)

Keep in mind that is the frequency at which the controller zero occurs. So in order to get the
response described in Equation 38, all we have to do is to set (the controller zero frequency) to be
equal to the pole of the plant.

So, now we know how to set . But how do we set ? Let's rewrite the closed-loop system
response G(s), making all of the substitutions we have discussed up to now, and see what we get:

(40)

In summary, there are some simple rules you can use to help you design your PI controller for your
current loop:

sets the zero of the PI controller. When controlling a plant parameter with only one real pole in its
transfer function (e.g., the current in a motor), should be set to the value of this pole. Doing so will
result in pole/zero cancellation, and create a closed-loop response that also only has a single real pole. In
other words, very stable response with no resonant peaking.

sets the bandwidth of the closed-loop system response. As seen by Equation 40, the higher
is, the higher the current loop bandwidth will be. We will discuss how to select an appropriate bandwidth in

a later section. It happens that is equal to the inductive impedance for whatever bandwidth
frequency you select.

In the following section we will discuss how to design a cascaded PI speed loop which contains a PI
current controller as the inner loop.
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11.3 PI Design for Speed Controllers

In the last section we explained how to calculate the P and I coefficients (actually the and
coefficients in a series structure) for a current loop controller for a motor. We saw that could be
used to eliminate the zero in the closed-loop system response, resulting in a system having only one real

pole (i.e., well behaved and stable). sets the bandwidth of the closed-loop system response.

In this section let's back out and take a look at the speed control loop, which contains another PI
controller. Can designing the speed loop be just as simple? Do the coefficient values perform the same
system functions they did with the current controller?

It turns out that closing the speed loop is a little more complicated than closing the current loop. Also, to
properly design the speed loop, we need to know more system parameters than we did for the current
loop. This can be seen in Figure 11-6 which shows all of the components that comprise a cascaded speed
control loop. By "cascaded," we mean a control system that consists of an outer loop with one or more
inner loops. It bears mentioning again that we are only considering the case of a load with a single lumped
sum inertia which is tightly coupled to the motor shaft and no viscous damping.

Figure 11-6. Cascaded Speed Control Loop

Let's start with the current control loop since this is where we left off in our last section. Assuming we
design the current loop as discussed in my previous section, the closed-loop transfer function is:

(41)

Where is the error multiplier term in the current regulator's PI structure.

is not visible to the outside world since it is set to cause pole/zero cancellation within the current
controller's transfer function. To avoid confusing the coefficients of the speed controller with those of the

current controller, we will call the speed controller's coefficients and as shown in

Figure 11-6. In the series form of the PI controller, is the error multiplier term ( ), and
is the integrator multiplier term ( ). We can use the same equation we did in the last

section to define the transfer function of the speed PI controller:

(42)

The transfer function from motor current to motor torque will vary as a function of what type of motor you
are using. For a Permanent Magnet Synchronous Motor under Field Oriented Control, the transfer function
between q-axis current and motor torque is:
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(43)

Where:

P = the number of rotor poles

λr = the rotor flux (which is also equal to the back-EMF constant (Ke) in SI units)

For an AC Induction machine, the transfer function between q-axis current and motor torque would be:

(44)

Where:

P = the number of stator poles

Lm = the magnetizing inductance

Lr = the rotor inductance

Id = the component of current that is lined up with the rotor flux

For now, let's assume we are using a Permanent Magnet Synchronous Motor.

Finally, the load transfer function from motor torque to load speed is:

(45)

Where:

J = the inertia of the motor plus the load

Multiplying all these terms together results in the composite open-loop transfer function:

(46)

Let's combine all the motor and load parameters at the end of this equation into a single constant K:

(47)

Simplifying, we get:

(48)

From inspection of Equation 48, we can determine the following characteristics of the speed controller's
open-loop transfer function:
• Two poles at s = 0, resulting in an attenuation rate at low frequencies of 40 dB per decade of

frequency.

• An additional pole at (the current controller's pole)

• A zero at
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In order for stable operation, the pole at must be higher in frequency than the zero at

. Other than that, there is an infinite number of combinations of and
which could be used to yield different system responses, depending on whether you want higher
bandwidth or better stability. There is a procedure to define a single parameter which is proportional to

system stability and inversely proportional to bandwidth, which can be used to set both and
automatically to yield the maximum phase margin for the selected bandwidth. We will cover the

details of this procedure in the next section.

11.4 Calculating PI Gains Based On Stability and Bandwidth
At the end of last section, we discussed the possibility of using a single parameter that could help tune the
speed PI loop in a motor control system. To develop this parameter, let's review the open-loop transfer
function for the entire speed loop:

(49)

Where:
• K is the coefficient that contains several terms related to the motor and load

• and are the PI coefficients for the speed loop
• L is the motor inductance

• is one of the PI coefficients for the current loop
• s is the Laplace frequency variable

Assuming that the pole at occurs at a higher frequency than the zero at , and that
the unity gain frequency occurs somewhere in-between these two frequencies, we should end up with a
Bode plot that looks something like Figure 11-7.
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Figure 11-7. Bode Plot

The reason the shape of this curve is so important is because the phase shift at the 0 dB frequency
determines the stability of the system. In order to achieve maximum phase margin (phase shift: 180°) for a
given separation of the pole and zero frequencies, the 0 dB frequency should occur exactly half way in-
between these frequencies on a logarithmic scale. In other words,

(50)

and,

(51)

Combining Section 12.3.5.6 and Equation 51 we can establish that:

(52)

From Equation 49, we see that ωpole and ωzero are already defined in terms of the PI coefficients.
Therefore,

(53)

Where "δ" we will define as the damping factor. The larger δ is, the further apart the zero corner frequency
and the current loop pole will be. And the further apart they are, the phase margin is allowed to peak to a
higher value in-between these frequencies. This improves stability at the expense of speed loop
bandwidth. If δ = 1, then the zero corner frequency and the current loop pole are equal, which results in
pole/zero cancellation and the system will be unstable. Theoretically, any value of δ > 1 is stable since
phase margin > 0. However, values of δ close to 1 result in severely underdamped performance.

We will talk more about δ later, but for now, let's turn our attention towards finding the last remaining

coefficient: . From Section 12.3.5.6 we see that the open-loop transfer function of the speed
loop from Equation 49 will be unity gain (0 dB) at a frequency equal to the zero inflection point frequency
multiplied by δ. In other words,
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(54)

By performing the indicated substitution for "s" in Equation 54 and solving, we obtain:

(55)

Finally, we can solve for :

(56)

At this point, let's step back and try to see the forest for the trees. We have just designed a cascaded
speed controller for a motor which contains two separate PI controllers: one for the inner current loop and
one for the outer speed loop. In order to get pole/zero cancellation in the current loop, we chose as
follows:

(57)

sets the bandwidth of the current controller:

(58)

Once we have defined the parameters for the inner loop current controller, we select a value for the
damping factor (δ) which allows you to precisely quantify the tradeoff between speed loop stability and

bandwidth. Then it is a simple matter to calculate and :

(59)

(60)

The benefit of this approach is that instead of trying to empirically tune four PI coefficients which have
seemingly little correlation to system performance, you just need to define two meaningful system
parameters: the bandwidth of the current controller and the damping coefficient of the speed loop. Once
these are selected, the four PI coefficients are calculated automatically.

The current controller bandwidth is certainly a meaningful system parameter, but in speed controlled
systems, it is usually the bandwidth of the speed controller that we would like to specify first, and then set
the current controller bandwidth based on that. In the next section, let's take a closer look at the damping
factor, and we will come up with a way to set the current loop bandwidth based on the desired speed loop
bandwidth.

11.5 Calculating Speed and Current PI Gains Based on Damping Factor
So far in this series, we have discussed how to distill the design of a cascaded speed controller from four
PI coefficients down to two "system" parameters. One of those parameters is simply the bandwidth of the
current controller. The other is the damping factor (δ). The damping factor represents the tradeoff between
system stability and system bandwidth in a single number. Keep in mind that we are only considering
loads which contain only torque and inertial components (i.e., no torsional resonance or viscous damping).
Let's move forward by taking a closer look at the damping factor in both the time and frequency domains.
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Figure 11-8 illustrates the open-loop magnitude and phase response for a system where the current
controller bandwidth is arbitrarily set to 100 Hz. For our purposes, it really doesn't matter what the current
bandwidth is, as it only serves to provide a reference point on the frequency axis. However, the shape of
the curves won't change, regardless of what the current bandwidth is. The damping factor is swept from
1.5 to 70 in 8 discrete steps to show how it affects system response. A value of 1.0 corresponds to the
condition where the open-loop gain intercepts 0 dB right at the frequency of the current controller
bandwidth. This results in pole/zero cancellation at this frequency with a phase margin of zero. It goes
without saying that zero phase margin equals bad things for your system.

Figure 11-8. Speed Controller Open Loop Magnitude and Phase Response as a Function of δ

One of the goals with the damping factor equations is to achieve the maximum stability possible for a
given bandwidth. This is seen on the open-loop phase plots which indicate the phase margin peaks to its
maximum value right at the frequency where the open-loop gain plots cross 0 db. As the stability factor is
increased, you eventually reach a point of diminishing returns as the signal phase shift approaches -90
degrees. However, the gain margin continues to improve at the expense of a much slower system
response.

Figure 11-9 illustrates the closed loop magnitude response of the speed loop, again assuming a current
controller bandwidth of 100 Hz. Just like the open-loop response, the actual current controller bandwidth is
irrelevant in determining the shape of the curves and only serves to associate the curves with a specific
frequency reference point.
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Figure 11-9. Speed Controller Closed Loop Bandwidth as a Function of δ

The required frequency separation between the -3 dB cutoff point of the speed closed loop response and
the current controller pole is clearly seen along the bottom of the graph for various values of the damping
factor. As the damping factor approaches unity, the complex poles in the speed loop approach the
required frequency sepdamped ringing. This is perhaps better visualized in Figure 11-10, which shows the
normalized step response of the system for various values of the damping factor. Values below 2 are
usually unacceptable due to the large amount of overshoot. At the other end of the scale, values much
above 30 usually unacceptable due to the large amount of overshoot. At the other end of the scale, values
much above 30 usually don't work either because of the extremely long rise and settling times, as seen in
the step response curves. In-between these values is usually your design target window.
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Figure 11-10. Step Response of Speed Controller as a Function of δ

So what should you do if you picked the lowest value you can tolerate for the damping factor, but you still
aren't satisfied with the system response times? Your best recourse might be to increase the bandwidth of
your current loop. But the problem with this is that it appears to be an iterative approach since you need to
determine the current loop bandwidth first before you can determine what speed loop bandwidth is created
from a given damping factor. However, we can take advantage of the fact that the frequency curves
shown here can be normalized with respect to the current loop bandwidth irrespective of frequency. In
other words, if your motor control system has a form similar to the one discussed in this section,
irrespective of actual parameter values, you will get frequency curves (and transient step curves) that look
like this, with only the frequency scaling (and time scaling) being different. So let's exploit this fact to
develop a procedure which will minimize the iterative nature of the design process and allow us to set the
current loop bandwidth as a function of the speed loop bandwidth:
• Pick the frequency response (-3 dB cutoff frequency) you want for your speed loop (BWs).
• Using the shape of the curves in Figure 11-10, find the lowest value of damping factor that will produce

a satisfactory response for your speed loop. We have found that it is OK to pick a damping factor with
a little more overshoot than you prefer, since integrator clamping will remove most of it anyway. At this
point, the scaling of the frequency and time axes is irrelevant.

• Calculate the required current loop bandwidth to support the design requirements using the following
formula (obtained by curve fit analysis):

(61)

Where:
• BWc is the current controller bandwidth

• = one of the current loop PI coefficients
• L = the motor inductance
• BWs is the speed controller bandwidth
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www.ti.com Calculating Speed and Current PI Gains Based on Damping Factor

• δ is the damping factor.

Proceed with calculating the four PI coefficients as discussed previously in this section.

EXAMPLE
An Anaheim Automation 24V permanent magnet synchronous motor has the following characteristics:
• Rs = 0.4 ohms
• Ls = 0.6 mH
• Back-EMF = 0.0054 v-sec/radians (peak voltage phase to neutral, which also equals flux in Webers in

the SI system)
• Inertia = 2E-4 kg-m2

• Rotor poles = 8

The desired speed bandwidth = 800 rad/sec, and we would like a damping factor (δ) of 4. Find the
required current loop bandwidth to support the speed loop bandwidth, and then calculate the four PI
coefficients.

SOLUTION
The required current bandwidth can be found directly from Equation 61:

(62)

From Equation 62, we find

(63)

Recall that

(64)

Also recall that

(65)

Finally, recall that

(66)

and,

(67)

The simulated speed transient step response for this example is shown in Figure 11-11 where the time
axis is now scaled appropriately for this design example.
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Figure 11-11. Simulated Step Response of Speed Controller Design from the Above Example

Our analysis so far has assumed that the only poles in the speed loop are the two at s = 0, and the one
associated with the current controller. But what if other poles exist? For example, the speed feedback
signal in many systems is often processed by a low-pass filter. So how does this affect our tuning
procedure? This will be covered in the following section.

11.6 Considerations When Adding Poles to the Speed Loop
At the end of last section, we presented a problem that could potentially derail this whole discussion.
Throughout the PI tuning sections, we have been discussing a way to find the values for the PI
coefficients in a theoretical system where the speed loop contains two poles at "s" equals zero, and a third
pole from the current controller. Usually there are one or more additional poles in the transfer function. For
example, a very common deviation from this utopian situation is when the speed feedback signal requires
filtering, as shown in Figure 11-12.

Figure 11-12. Speed Controller with Filtered Speed Feedback
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www.ti.com Considerations When Adding Poles to the Speed Loop

Creating a good quality high-bandwidth speed signal without spending too much design time and without
adding too much system cost can be a real challenge. Techniques have been developed to glean
information from the encoder edge transitions, and also using observer technology. But still, the speed
signal is usually filtered. This alters the open-loop transfer function of the speed loop to the form shown in
Figure 12-9.

(68)

Where:
• K is a coefficient that contains several terms related to the motor and load

• and are the PI coefficients for the speed loop
• L is the motor inductance

• is one of the PI coefficients for the current loop
• Kspd_filter is the pole of the speed feedback filter
• s is the Laplace frequency variable.

So what does this do to the tuning procedure? There are several dimensions to this problem, as well as
possible solutions. The selected damping factor and the relative location of the poles all contribute to
these challenges. So let's target these challenges one at a time.

The procedure outlined in the last section assumes that a suitable speed bandwidth and damping factor
are chosen based on application requirements, and then using the equation presented in step 3, we can
calculate the required current controller bandwidth to satisfy these design requirements. But it turns out
that the pole calculated in step 3 defines the minimum frequency of any pole which occurs above the unity
gain frequency. Armed with this knowledge, we can define a more general expression for :

(69)

Where:

p = the lowest value pole above the 0 dB frequency in the speed open-loop frequency response.

The value of p could be set by the current controller, the speed filter, or something else. Since
is referenced to , then its value will also be potentially affected:

(70)

If you can't meet the required frequency separation between the desired closed-loop speed bandwidth and
p as dictated by your chosen value for δ, then something has got to give. It's like a water balloon—you
can squeeze one part of the balloon, but it will pop out somewhere else. In this case, you can have your
bandwidth at the expense of the damping factor, or vice versa.

The problem is exacerbated when the current controller pole and the speed filter pole are within a half
decade of each other and δ is less than 3. With both poles so close to the 0 dB frequency and fighting
together to bring down the phase margin, you will get a more underdamped response than you might
otherwise expect. For example, Figure 11-13 shows the step response of a system where we used a
damping factor of 2.5 to calculate the PI coefficients as described in the last section. The green curve
assumes there is no filtering of the speed signal. The red curve shows the addition of a speed feedback
filter where the value of the filter's pole equals the current controller's pole. The system is still stable, but
the damping is much less than expected for a δ value of 2.5. At this point, we have two options, either
increase the damping factor (and consequently lower the speed loop frequency response), or move one of
the poles to a higher frequency. The cyan curve shows the first option where we increase the damping
factor from 2.5 to 3.8 in order to bring the overshoot down to the original expected value. Unfortunately

405SPRUHJ1F–January 2013–Revised July 2014 Tuning Regulators
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


Speed PI Controller Considerations: Current Limits, Clamping and Inertia www.ti.com

this reduces the bandwidth as indicated by the increased transient time. The yellow curve shows the latter
option where we increase the value of one of the poles by a factor of 3 (about half a decade). In this case,
the transient time is relatively unaffected, but the damping is still not as good as the green waveform. You
can continue to increase the pole value, and at about one decade of separation you get a response that
looks pretty close to the green waveform again. But in many cases, moving one of the poles this
drastically has other negative effects on your system.

Figure 11-13. Step Response of a System with Variable Damping and Pole Placement

Up to now, we have only dealt with "small signal" conditions (i.e., linear operation with no saturation
effects). But in the real world, step transient responses almost always involve saturation of the system's
voltage or current levels, which tends to lengthen the response times. When this happens, you can
increase the PI gains all you want, but it won't speed up the response. In fact, it will usually just make the
overshoot worse, since the integrator is acting on a gained-up error signal, which it will just have to dump
eventually. So how do we deal with this problem? Are we doomed to simply using low integrator gains? It
turns out that there is another solution which doesn't involve changing your integrator gains, which we will
cover in the next section.

11.7 Speed PI Controller Considerations: Current Limits, Clamping and Inertia
Up to now, we have only discussed the tuning problem in the context of a linear system. This is because
under steady-state conditions when the system settles out, you will most likely find that you are operating
in the linear region, and the AC signal content will be very small. Therefore, performing a small-signal
(linear) analysis will tell you how stable your system will be when it is not operating in saturation. But in
most real-life scenarios, the system will saturate because of limits on your voltage and/or current,
especially under large transient conditions. This saturation effect can play an important role in the PI
controller; especially the integrator. Since the maximum torque the motor can produce is limited by your
current limit, the acceleration of the system is also limited. But the integrator doesn't know this, and it
thinks it can make the motor speed up faster by increasing its output. This increased integrator output
can't help the situation since the system is already saturated. All it does is create a very large output that
will cause the system to overshoot when it does come out of saturation. For this reason, most PI integrator
outputs are clamped to keep them from continuing to integrate needlessly when the system is saturated.
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A simple static clamping scheme is illustrated in Figure 11-14. The most common scenario is to set the
clamp values equal to the PI output limit values. For example, the output limit of a PI controller that
regulates speed is usually what sets your current limit value since the speed PI output is the reference
input signal for the current PI controller. However, there is nothing that says that the integrator limit must
equal the PI output limit, and many designs use different clamp values based on the specific application.

Figure 11-14. PI Controller with Static Integrator Clamping

Figure 11-15 shows a dynamic clamping scheme which provides superior performance over the static
scheme. The thinking behind the design of this scheme is based on the rationale that if the system is
already saturated by the P gain output, then why continue integrating? Only during conditions where
changes in the integrator output would result in changes in the PI controller output is the integrator allowed
to continue to integrate error unconstrained.

Figure 11-15. PI Controller with Dynamic Integrator Clamping

The effectiveness of integrator clamping can be seen by the simulated curves in Figure 11-16. Let's
stimulate the system we designed in Chapter 5 with a commanded speed step from zero to a target speed
of 1500 RPM. Shown are the effects of system overshoot under the conditions of no clamping, static
clamping where the integrator clamp values equal the output clamp values and finally, dynamic clamping.
As you can see, no integrator clamping at all is unacceptable as it results in extremely high overshoot
which triggers further system saturation and oscillation. Static integrator clamping dramatically improves
this situation. However, dynamic clamping improves performance even further, resulting in a 6 times
improvement in the overshoot peak value compared to static clamping in this example.
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Figure 11-16. Example Comparison of Integrator Clamping Techniques

At this point, let's double-back and talk about a very important part of this whole discussion. Everything we
have talked about in these seven sections is not very significant without knowing one critical piece of the
system which is the inertia. Without this knowledge, there is no definitive way of stabilizing the speed loop.
In many cases, you can calculate the inertia by knowing the form factor and mass distribution of your
rotating load. If a gearhead is present on the motor shaft with a big enough gear ratio, the load inertia can
often be ignored since transferred inertia is inversely proportional to the square of the turns ratio, and just
deal with the motor inertia which is listed on most motor data sheets. If neither of these options is valid,
there are several techniques used to measure inertia which usually involve some type of controlled
acceleration, deceleration, or both. However, it is not common to see techniques which also take into
consideration static torque loading on the motor shaft ("static," loads in this context mean loads which
don't change as a function of time, such as friction or an elevator load). The following is a proposed (but at
the time of this writing, untested) technique which should yield a better inertia estimate than the
techniques mentioned above:
1. Design the current controller using techniques discussed in the PI tuning sections.
2. Set the PI coefficients for the speed loop to conservative values that will just allow spinning the motor

up to speed (i.e., having sluggish dynamic response should not be a concern at this point).
3. Spin the motor up to a low speed and allow it to settle (so that inertia torque equals zero). Then take a

reading of the average motor torque (Figure 11-17).
4. Repeat step 3 at successively higher speeds, and generate a graph of average torque readings as a

function of speed (Graph 1). Record the average current required for the highest speed setting. Then
turn off the motor and allow it to stop.

5. Disable the speed loop and using current mode only, apply about 1.2x to 1.5x the current from step 4
to the motor. As the speed hits each speed for which a torque value was recorded in step 4, record the
torque again (Graph 2), and also take a time stamp.

6. Subtract graph 1 from graph 2 (this should be the acceleration torque only) (Graph 3).
7. For each point in graph 3, calculate the delta speed and delta time between the points before and after
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the target point. Divide delta speed by delta time to get the local acceleration value for that point.
8. For each torque value in graph 3, divide it by the local acceleration for that point from step 7, to create

a graph of inertia (J) as a function of speed.
9. Average the inertia values at different speeds to obtain a single estimate for system inertia.

This process can be done a priori on a bench dynamometer test, or, if there is a way to measure torque in
the control algorithm such as the torque output of InstaSPIN-FOC, this can be done as part of the
commissioning process of the motor in its target application.

Up to now, we have only discussed PI tuning in generic terms which are independent of the control
topology. In the next section, we will focus on some of the subtle points to consider when designing PI
controllers for use in a Field-Oriented Control (FOC) system.

Figure 11-17. Average Motor Torque Readings

11.8 Considerations When Designing PI Controllers for FOC Systems
Let's see how the different PI tuning topics we have discussed so far apply to Field-Oriented Control
(FOC) systems. Figure 11-18 shows a typical field oriented system which utilizes three PI controllers: two
for controlling the quadrature components of current, and one for controlling the speed.

Figure 11-18. Typical FOC Speed Control of a PMSM
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Considerations When Designing PI Controllers for FOC Systems www.ti.com

The design of the speed controller doesn't change much in a field oriented system compared to other
control algorithms. Just make sure to use the q-axis current controller values when calculating the
coefficients for the speed controller. But there a subtle differences which affect how the current controllers
should be designed, which are covered next.

11.8.1 FOC Differences Between Motor Types
The motor's equivalent RL circuit that is seen by the controller (which determines the PI coefficients) will
vary depending on the motor type. For BLDC and Permanent Magnet Synchronous Motors (PMSMs), R is
simply the stator resistance, and L is the stator inductance. But with AC Induction Motors (ACIMs), this is
not the case. The equivalent inductance value that is needed to use for both axes is not the stator
inductance value, but rather the "series" inductance (or sometimes called the "leakage" inductance) which
is defined as follows:

(71)

Where:
• L = the equivalent series inductance
• Ls = the stator inductance
• Lm = the magnetizing inductance
• Lr = the rotor inductance
• σ = the "leakage factor" of the induction motor

Also, the resistor value seen by the current controllers for an ACIM will be different between the d and q
axes. For the d-axis controller, the equivalent resistance is simply the stator resistance Rs. However, for
the q-axis, the equivalent resistance is the sum of the stator resistance plus the rotor resistance (Rs + Rr).

If these subtleties are not taken into consideration when calculating and , you could end up
with a PI controller that is incompatible with your motor, resulting in less than optimal control.

11.8.2 Coupling Between Q-Axis and D-Axis
It turns out that the control of the d-axis and q-axis currents are not independent from one another. Within
the motor, the q-axis current has an effect on the d-axis current and vice-versa. This is substantiated by
the differential equations below for a PMSM.

(72)

(73)

Where:
• R = the stator resistance
• Ls = the stator inductance
• D = the differential operator
• ω = the electrical frequency
• Ke = the Back EMF constant

From Equation 72 we see that the d-axis current is not only affected by the output voltage of the d-axis
current regulator (Vd), but also a voltage which is a function of iq. From Equation 73, Vq is also competing
with the voltage "ω(Ls id + Ke)" for control of the iq level. For both regulators, this cross-coupling effect
manifests itself as an unwanted disturbance which is most prominent during transient conditions at high
speeds. To correct for this situation, feed-forward decoupling should be applied to each axis which exactly
cancels these competing voltage terms. This correction results in each regulator acting on the equivalent
of a simple RL circuit, just like we have with a DC motor. The result is the regulator topology shown in
Figure 11-19. To judge the effectiveness of this technique, consider the simulation results of Figure 11-20
which show a step response in Q-axis current and how it affect the d-axis current, with and without
decoupling compensation.
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Figure 11-19. Decoupled PI Controllers for a PMSM

411SPRUHJ1F–January 2013–Revised July 2014 Tuning Regulators
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


series
pK series

iK

( ) m
q s s q s d rd

r

L
i R DL V L i

L
+ s = - w s - w l

( ) m
d s s d s q rd

r

L
i R DL V L i D

L
+ s = + w s - l

Considerations When Designing PI Controllers for FOC Systems www.ti.com

Figure 11-20. Simulated Effectiveness of Current Regulator Decoupling

For AC Induction Motors, the correction becomes a little more complicated. The differential equations
defining AC induction motor operation are shown below:

(74)

(75)

Where:
• Rs = the stator resistance
• Ls = the stator inductance
• σ = the leakage factor defined in Equation 71
• D is the differential operator
• ω = the electrical frequency
• Lm = the magnetizing inductance
• Lr = the rotor inductance
• λrd = the d-axis rotor flux

Similar to the situation with a PMSM machine, we see that there are other voltages besides Vd and Vq
competing for control of id and iq respectively. As a result, compensation voltages are added to Vd and Vq
which nullify these other voltage terms. This results in each axis acting on the equivalent of a simple RL
circuit, again just like we have with a DC motor. But with an ACIM, please remember that the inductance

value used for calculating and is the stator inductance multiplied by the leakage factor σ, as
indicated by Equation 71. The compensation block used to provide correction voltages to the outputs of
the Id and Iq regulators is shown in Figure 11-21.
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Figure 11-21. Compensation Block Used for Axis Decoupling with ACIMs

11.9 Sampling and Digital Systems Considerations
Throughout the PI tuning sections we have discussed a practical and efficient way to tune the PI
controllers in a cascaded speed loop by simply specifying the desired bandwidth of the speed loop, and a
factor which determines the desired damping of the system. From these two parameters, plus a
rudimentary knowledge of some of the motor and load parameters, the PI coefficients for the speed loop
and the inner current loop can be calculated. But nowhere have we discussed what limits are imposed
upon the system, especially when dealing with a digital system. Obviously, to get a stiffer response, we
would like higher gains, which also translate into higher bandwidth. But how high can we go?

To answer this question, take a look at Figure 11-22, which shows a high level view of a digital FOC
based Variable Frequency Drive (VFD). To simplify the discussion, we will assume that the entire control
loop is clocked by a common sampling signal, although this limitation is not imposed on real-world
applications. In many cases, the speed loop is clocked at a much lower frequency than the current loop,
since the frequencies associated with the speed loop are typically much lower.
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Figure 11-22. Digital Field-Oriented Control System for a PMSM

In an analog system, any change in the motor feedback signals immediately starts having an effect on the
output control voltages. But with the digital control system of Figure 11-22, the motor signals are sampled
via the ADC at the beginning of the PWM cycle, the control calculations are performed, and the resulting
control voltages are deposited into double-buffered PWM registers. These values sit unused in the PWM
module until they are clocked to the PWM output at the start of the next PWM cycle. From a system
modeling perspective, this looks like a sample-and-hold function with a sampling frequency equal to the
PWM update rate frequency. The fixed time delay from the sample-and-hold shows up as a lagging phase
angle which gets progressively worse at higher frequencies. Figure 11-23 shows a normalized frequency
plot for a sample-and-hold function, where the sampling frequency is assumed to be 1. The phase plot is
the most important graph, as it shows that the phase delay from the sample-and-hold can reach down into
frequencies much lower than the sampling frequency. For example, even at one tenth the sampling
frequency, the S&H is still affecting a phase shift of -18 degrees.
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Figure 11-23. Magnitude and Phase Plots for a Sample-and-Hold

Since the current controller processes higher bandwidth signals than the speed loop, it is usually the
current loop that suffers most by the S&H effect of the PWM module. Since the S&H is in series with the
signal path for the current loop, its magnitude and phase contributions add directly to the open-loop
response for the current controller. If we rewrite the equation for the open loop response of the current
controller (assuming we have already made the substitutions recommended in the PI tuning sections), we
end up with Equation 76.

(76)

Where:

BWc is the chosen closed-loop bandwidth for the current controller.

The 0 dB frequency obviously occurs when s = BWc. The single pole at s = 0 implies that the 0 dB
frequency will have a 90 degree phase margin. While there is no magic ratio that exists, it is usually
preferred to use the rule of thumb that the sampling frequency should be at least 10 times the bandwidth
(BWc) of the current controller. This ensures that the impact of the S&H's phase delay will only subtract 18
degrees from the phase margin of the current controller, resulting in a very stable 72 degree margin. You
can obviously have a higher sampling frequency if desired, but this typically comes at the expense of a
more expensive processor with higher MIPS.

Finally, let's look at the other end of the frequency range. At low frequencies, viscous damping may affect
your speed loop response times by changing the phase margin at the 0 dB frequency. Recall from
Section 11.3, the following transfer function between motor torque and load speed was established:

(77)
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However, when viscous damping is present, it uses part of the motor's torque to do work to move fluid.
Since viscous torque is directly proportional to the speed of the load, we can rewrite Equation 77 to be:

(78)

Where:

kv is the viscous damping factor.

As you can see from Equation 78, adding the viscous damping term moves the pole that was at s = 0 to s
= kv/J. Figure 11-24 shows how the addition of viscous damping changes the load's Bode plot.

Figure 11-24. Effect of Viscous Damping (kv) on the Load Bode Plot

From Figure 11-24, we see that as viscous damping increases from zero, low frequency gain plateaus to a
value of 1/kv. The net effect on the phase plot is to add more phase margin at lower frequencies, since
the phase lag of a load with viscous damping will always be less than a load with inertia only. As a result,
stability should actually improve for non-zero values of kv. However, the response time may take a hit,
depending on where the speed open-loop 0 dB frequency is with respect to the pole frequencies shown in
Figure 11-24. So if your system response is sluggish and the motor doesn't seem to put out as much
torque as it is rated for, you could have excessive viscous damping in your system.

Before closing out this series of PI Tuning sections, there is one more topic to be discussed. In many
cases an engineer correctly calculates PI coefficients. After using those coefficients in their code, the
motor spins out of control, or sit there and does nothing. So what happened? It is most likely the fault of
one of the following situations:
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11.9.1 Sampling Period Considerations in the Integral Gain
It was forgotten to take into consideration the sampling frequency effect on the I gain term. Figure 11-25
shows how to implement a typical integrator for a PI controller. To scale the output to match what an
analog integrator would provide, we must multiply the signal by the sampling period "T". In order to avoid
two separate multiply operations, most code examples simply lump T together with the I gain term. If T is
not accounted for, the integrator gain will be much larger than you anticipated.

Figure 11-25. Typical Implementation of a Digital Integrator

11.9.2 Number Format Considerations
Up until now we have assumed there are no limitations on the number format itself. If a floating-point
processor is used, then there is no need to worry about the fractional component of the PI terms. But most
motor control applications are implemented on fixed-point machines for cost reasons. The good news is
that TI has developed a linkable library which is in ROM of most C2000 processors which solves this
problem. It is called the "IQ Math" library which stands for "Integer Quotient". This allows the user to
handle floating point values with ease on a fixed-point machine without suffering from the performance hit
you typically get with a full floating-point support device. IQ math creates a new variable type in the code
which is designated by an "IQ" followed by a number. For example, say you have a 32 bit variable which
is typed as an "IQ24" variable type. This means that any variable of this type is assumed to have a 24-bit
fractional component, and an 8-bit integer part. But what occasionally happens is that someone copies TI
code into their design without realizing that the coefficients are represented in IQ format. For example, if
the I-gain was calculated to be 10,000 (0x00002710 in IQ0 format), but it is not realized that the code
assumed the variable to be in IQ24 format, you will end up with an integrator gain of 0.596E-3 instead of
10,000. The two values are obviously very different. If the same mistake is made for all of the PI
coefficients, the motor will most likely just sit there and do nothing since all the gains are way too low. So,
it is advised to make sure that the numerical format your coefficients are in is well known.
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11.9.3 PI Coefficients Scaling Considerations
Finally, the scaling of the PI coefficients throughout this series of PI Tuning sections has been done
assuming we want to represent real system values throughout the signal chain. For example, the output of
the speed PI controller equals the actual input reference current in amperes for the current controller. The
output of the current controller equals the actual voltage applied to the motor windings. But in many
designs, the PI controller outputs are normalized to per unit scaling where a value of 1 represents the
maximum value possible, and a value of -1 represents the minimum value possible. For example, a
current regulator's output might be scaled in such a way that 1 corresponds to 100% PWM, and -1
corresponds to 0% PWM. In these cases, it is required to know the exact scale factor between the PI
output and the actual system parameter you are controlling so that you can adjust the PI coefficients
accordingly.
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InstaSPIN-MOTION Controllers

For most motion systems the speed and/or position of that system requires regulation. The industry
standard speed controller is a PI controller, as discussed in Chapter 11. There are a number of inherent
deficiencies with a PI controller.
• It has multiple parameters that need to be adjusted in order to tune the control for a specific speed and

load operating point. These multiple parameters produce a multidimensional solution set, and the gains
are usually determined experimentally, which makes tuning difficult.

• The range of speed and load that work for that specific tuning can be very small. If your system is
highly dynamic and has many different speed and load operating points, you might need to tune a PI
controller for each point.

The SpinTAC speed controller solves these challenges. SpinTAC provides advanced speed and position
control and features Active Disturbance Rejection Control (ADRC), which reduces all gains to a single
tuning parameter. ADRC accommodates for high degree of model uncertainties, which means that it is
robust against system variations.

Disturbance is defined as any undesired behavior in the system. Error resulting from unmodeled dynamics
and disturbances are estimated and compensated by a SpinTAC controller. The controller is unique in that
it treats any undesired behavior of the system as disturbance that can be estimated and rejected. This
allows SpinTAC controllers to control a wide range of positions, speeds and loads with a single tuning
parameter.

The single tuning parameter, called bandwidth, determines the stiffness of the system and dictates how
aggressively the system will reject disturbances. This single parameter makes it very easy to adjust the
tuning of the SpinTAC speed controller.

The major considerations in tuning a controller for dynamic systems are stability and performance.
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12.1 Stability
Stability of a control system is a safety issue in engineering systems. There are multiple definitions of
system stability: Lyapunov stability, bounded-input bounded-output stability, and input-to-state stability. For
simplicity, in this document, the criterion of stability is Lyapunov asymptotic stability, which means that the
system has the nature to converge to the equilibrium point asymptotically.

In speed control, the equilibrium point is the target speed of a step response, or the speed trajectory while
tracking a changing reference speed. In position control, the equilibrium point is either the end position of
a step response or the changing position reference during a transition.

One simple way to assess the stability of the system is to see if the step response eventually converges to
the setpoint. Typical step responses of stable and unstable systems are illustrated in Figure 12-1.

Figure 12-1. Typical Step Responses of Stable and Unstable Systems

The figures show the system responses when a unit step input is applied. Top left is the set point input
signal. Cases 1 and 2 are stable systems; Cases 3, 4, and 5 are unstable systems. Case 3 is defined as
marginally stable in some instances since the response is bounded oscillation.

12.1.1 Quantifying Stability
Classic control design models the system and derives the linear expressions close to the operating point,
and uses Bode analysis to assess the stability through the gain margin and phase margin. Gain margin is
the negative of the magnitude curve value at the frequency where the phase curve crosses -180°. Phase
margin is the phase curve value above -180° at the frequency where the magnitude curve crosses 0 dB.

In order to allow the system to tolerate some non-linearity and model mismatch, typically 6- to 12-dB gain
margin and 30- to 45-degree phase margin are needed.

12.1.1.1 SpinTAC Velocity Control Stability
Given a motor's speed loop dynamics without consideration of uncertainties such as resonant mode,
sample time, and output saturation, the open loop Bode of a speed loop controlled by SpinTAC is always
stable, which can be illustrated by the open loop Bode in Figure 12-2. The phase curve does not cross -
180°, which means there is no limit on the gain margin. The phase margin is always positive.
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Figure 12-2. Typical Open Loop Bode of SpinTAC Velocity Control

However, most mechanical systems have resonant mode, typically at high frequency, which will cause
180° change in the phase curve and spikes in the magnitude curve.

The output saturation and sample time will also limit the adjustable range of the controller gains in order to
keep system stable.

12.1.1.2 SpinTAC Position Control Stability
SpinTAC Position Control controls both the position loop and the speed loop.

Position control is more complex than speed control. There is a -180° cross-over in the phase curve,
where the gain margin is measured. SpinTAC Position Control gives a fairly good negative gain margin to
tolerate system changes. Typically, this negative gain margin represents the degree to which the
configured inertia value can be greater than the real system inertia if the inertia is measured incorrectly
(see Figure 12-3).
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Figure 12-3. Typical Open Loop Bode of SpinTAC Position Control

Like speed control, position control is also subject to high-frequency resonant mode and noise, which
limits the adjustable range of the controller gains in order to keep the system stable. These are general
control design considerations for any type of controller.

12.1.2 Performance
The performance of a controller is usually evaluated by two criteria: reference tracking performance and
disturbance rejection performance.

Reference tracking performance shows how closely the system can follow the desired trajectory. In cases
where the setpoint changes, it shows how fast the system can reach a new setpoint with reasonable
overshoot.

Disturbance rejection performance shows how little deviation the system can have when a disturbance is
applied to the system and how fast the system can compensate for it.

The performance of a controller can be evaluated in time domain and frequency domain.

12.1.2.1 Frequency Domain Analysis
If the approximate linear model of the system is achieved, the performance can be evaluated in frequency
domain. The purpose of this section is to visually illustrate the SpinTAC Velocity Control and SpinTAC
Position Control performance in engineering language (Bode analysis) not to ask users to do the analysis
of a given system.

The SpinTAC Velocity Control is designed to optimize disturbance rejection performance and trajectory
tracking performance together and tune the control with one single parameter: the bandwidth. The typical
reference tracking performance Bode and disturbance rejection performance Bode are illustrated in
Figure 12-4.
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Figure 12-4. Typical Performance Bode of SpinTAC Velocity Control

As shown in Figure 12-4, the magnitude of Error/Reference Bode and Input Disturbance Sensitivity Bode
are negative values with the unit dB. The more negative values on the magnitude curves, the better the
system performance.

The performance analysis of SpinTAC Position Control is similar to SpinTAC Velocity Control. The typical
performance Bodes are shown in Figure 12-5.

Figure 12-5. Typical Performance Bode of SpinTAC Position Control

12.1.2.2 Time Domain Analysis
The performance can be easily evaluated in the time domain. The time domain common criteria are listed
in Table 12-1.
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Table 12-1. Time Domain Common Criteria

Performance Criteria Description
Maximum value deviated from the setpoint after first crossingOvershoot of the setpoint
The time from start to finally entering a defined percentageSettling Time (typically 2% ~ 5%) range around the step setpoint,
Maximum absolute value of deviation from the setpoint,Maximum Absolute Error (MAE) indicate the worst case value
Integrated absolute value of deviation from the setpoint,Integral Absolute Error (IAE) indicates the deviation over time

12.1.3 Trade-Off Between Stability and Performance
Typically there is a trade-off between system stability and performance. Real systems always have noise
and uncertainties (high-order unknown dynamics such as resonant mode). Aggressively-tuned controllers
exhibit better performance. This is true until the controller reaches the level that the system approaches
unstable conditions or the noise allowed into the system is too high and degrades the performance.

12.1.4 Tuning the SpinTAC Controller
With single coefficient tuning, SpinTAC allows you to quickly test and tune your speed or position control
from soft to stiff response. This single gain (bandwidth) works across the entire variable speed and load
range of an application, reducing complexity and system tuning time. Multi-variable PID based systems
often require a dozen or more speed and load tuned coefficient sets to handle all possible dynamic
conditions.

12.1.4.1 Considerations
Noise, resonant mode, and sample time are considered in tuning the close-loop controllers. SpinTAC
simplifies the tuning process with one tuning parameter. By adjusting the bandwidth, it is straightforward to
find desired performance while keeping the stability margins. As the bandwidth is increased, there is less
deviation from the setpoint with the same amount of disturbance load applied. However as the bandwidth
increases, this increases the noise that the controller is using to determine the output. Finding the correct
tuning is often a balance between disturbance rejection and resultant noise that is generated.

The sample time is taken into account automatically by the SpinTAC controller. It uses the sample time of
your system as a limit on the available bandwidth. This limit prevents your system from going unstable by
preventing it from having a very high bandwidth and a very small sample time which can cause some
instability in your system.

12.1.4.2 Tuning the InstaSPIN-MOTION Controller
SpinTAC controllers are tuned via a single parameter. This parameter is called bandwidth. The bandwidth
of the SpinTAC controller is adjusted via the configuration parameter Bandwidth Scale. This value should
be used to adjust the value of the bandwidth in the controller to meet the control requirements of your
application. For position control applications, a single bandwidth is used to set the gain for both position
and speed.

Figure 12-6 shows the SpinTAC Velocity Control response to a torque disturbance as the bandwidth is
increased. As the bandwidth is increased, the response to the torque disturbance becomes faster and has
less overshoot. When the bandwidth is increased too much it begins to oscillate around the goal speed
when the torque disturbance is removed from the system. This indicates that the bandwidth has been set
too high. In this example the ideal bandwidth is 40 rad/s. This is due to the response having minimal
oscillation around the goal speed when the torque is removed.
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Figure 12-6. Comparison of Bandwidths for SpinTAC Velocity Control

Figure 12-7 shows SpinTAC Position Control response to a torque disturbance. As the bandwidth is
increased, the response to the torque disturbance becomes faster and has less overshoot. When the
bandwidth has been increased too much the motor begins to hum and oscillate. This indicates that the
output of SpinTAC Position Control has begun to oscillate. In this example the ideal bandwidth is 50 rad/s.
This is because it has a very good response to the disturbances while having a minimal output oscillation.
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Figure 12-7. Comparison of Bandwidths for SpinTAC Position Control

To tune a SpinTAC controller, the first step is to set the speed reference to zero. Once the motor is at zero
speed, manually rotate the motor shaft with your hand to feel how tightly the motor is holding zero, this is
an indication of how aggressively the motor is tuned. Increase the bandwidth scale
"gMotorVars.SpinTAC.VelCtlBwScale" or "gMotorVars.SpinTAC.PosCtlBwScale" in steps of 1, continuing
to feel how tightly the motor is holding zero speed. For motors where the shaft is not accessible, give the
motor a reference step. Change the reference and monitor how aggressively the controller tries to achieve
the new setpoint. Once the SpinTAC controller is tightly holding zero the bandwidth scale has been tuned
for zero hold. At this point it is important to run the motor in order to ensure that this bandwidth will work
across your appliction's operating range

12.2 Software Configuration for the SpinTAC Velocity Control
Configuring SpinTAC Velocity Control requires four steps. Lab 5d — InstaSPIN-MOTION Speed
Controller — is an example project that implements the steps required to use SpinTAC Velocity Control.
The header file spintac_velocity.h, included in MotorWare, allows you to quickly include the SpinTAC
components in your project.

12.2.1 Include the Header File
This should be done with the rest of the module header file includes. In the Lab 5d example project, this
file is included in the spintac_velocity.h header file. For your project, this step can be completed by
including spintac_velocity.h

#include "sw/modules/spintac/src/32b/spintac_vel_ctl.h"

426 InstaSPIN-MOTION Controllers SPRUHJ1F–January 2013–Revised July 2014
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


www.ti.com Software Configuration for the SpinTAC Velocity Control

12.2.2 Declare the Global Structure
This should be done with the global variable declarations in the main source file. In the Lab 5d project, this
structure is included in the ST_Obj structure that is declared as part of the spintac_velocity.h header file.

ST_Obj st_obj; // The SpinTAC Object
ST_Handle stHandle; // The SpinTAC Handle

This example is if you do not wish to use the ST_Obj structure that is declared in the spintac_velocity.h
header file.

ST_VelCtl_t stVelCtl; // The SpinTAC Speed Controller object
ST_VELCTL_Handle stVelCtlHandle; // The SpinTAC Speed Controller Handle

12.2.3 Initialize the Configuration Variables
This should be done in the main function of the project ahead of the forever loop. This will load all of the
default values into the SpinTAC Velocity Control. This step can be completed by running the functions
ST_init and ST_setupVelCtl that are declared in the spintac_velocity.h header file. If you do not wish to
use these two functions, the code example below can be used to configure SpinTAC Velocity Control
component. This configuration of SpinTAC Velocity Control represents the typical configuration that should
work for most motors.

// Initialize the SpinTAC Speed Controller Component
stVelCtlHandle = STVELCTL_init(&stVelCtl, sizeof(stVelCtl));

// Setup the maximum current in PU
_iq maxCurrent_PU = _IQ(USER_MOTOR_MAX_CURRENT / USER_IQ_FULL_SCALE_CURRENT_A);

// Instance of the velocity controller
STVELCTL_setAxis(stVelCtlHandle, ST_AXIS0);
// Sample time [s], (0, 1)
STVELCTL_setSampleTime_sec(stVelCtlHandle, _IQ(ST_SPEED_SAMPLE_TIME));
// System inertia upper (0, 127.9999] and lower (0, SgiMax] limits [PU/(pu/s^2)]
STVELCTL_setInertiaMaximums(stVelCtlHandle, _IQ(10.0), _IQ(0.001));
// System control signal high (0, OutMax] & low [OutMin, 0) limits [PU]
STVELCTL_setOutputMaximums(stVelCtlHandle, maxCurrent_PU, -maxCurrent_PU);
// System maximum (0, 1.0] and minimum [-1.0, 0) velocity [pu/s]
STVELCTL_setVelocityMaximums(stVelCtlHandle, _IQ(1.0), _IQ(-1.0));
// System upper (0, 0.2/(T*20)] and lower [0, BwScaleMax] limits for bandwidth scale
STVELCTL_setBandwidthScaleMaximums(stVelCtlHandle,

_IQ24((0.2) / (ST_SPEED_SAMPLE_TIME * 20.0)), _IQ24(0.01));
// System inertia [PU/(pu/s^2)], [SgiMin, SgiMax]
STVELCTL_setInertia(stVelCtlHandle, _IQ(USER_SYSTEM_INERTIA));
// Controller bandwidth scale [BwMin, BwMax]
STVELCTL_setBandwidthScale(stVelCtlHandle, _IQ24(USER_SYSTEM_BANDWIDTH_SCALE));
// Initially ST_VelCtl is not enabled
STVELCTL_setEnable(stVelCtlHandle, false);
// Initially ST_VelCtl is not in reset
STVELCTL_setReset(stVelCtlHandle, false);
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12.2.4 Call SpinTAC Velocity Control
This should be done in the main ISR. This function needs to be called at the proper decimation rate for
this component. The decimation rate is established by ISR_TICKS_PER_SPINTAC_TICK; for more
information, see Section 4.7.1.4. Before calling the SpinTAC Velocity Control function the speed
reference, acceleration reference and speed feedback must be updated. This example uses SpinTAC
Velocity Move to provide the references to SpinTAC Velocity Control. For more information on SpinTAC
Velocity Move, see Chapter 13.

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle; // Get pointer to CTRL object
// Get the mechanical speed in pu/s
_iq speedFeedback = EST_getFm_pu(obj->estHandle); // Get the mechanical speed in pu/s
// Update the Velocity Reference
STVELCTL_setVelocityReference(stVelCtlHandle,

STVELMOVE_getVelocityReference(stVelMoveHandle));
//Update the Acceleration Reference
STVELCTL_setAccelerationReference(stVelCtlHandle,

STVELMOVE_getAccelerationReference(stVelMoveHandle));
//Update the Velocity Feedback
STVELCTL_setVelocityFeedback(stVelCtlHandle, speedFeedback);
// Run the SpinTAC Speed Controller
STVELCTL_run(stVelCtlHandle);

// Get the Torque Reference from the SpinTAC Speed Controller
iqReference = STVELCTL_getTorqueReference(stVelCtlHandle);

// Set the Iq reference that came out of SpinTAC Velocity Control
CTRL_setIq_ref_pu(ctrlHandle, iqReference);

12.2.5 Troubleshooting SpinTAC Velocity Control

12.2.5.1 ERR_ID
ERR_ID provides an error code for users. A list of errors defined for SpinTAC Velocity Control and the
solutions for these errors are shown in Table 12-2.

Table 12-2. SpinTAC Velocity Control ERR_ID Code

ERR_ID Problem Solution
1 Invalid sample time value Set cfg.T_sec within (0, 1]
2 Invalid reference maximum value Set cfg.VelMax within (0, 1]
3 Invalid reference minimum value Set cfg.VelMin within (0, 1]
4 Invalid control signal maximum value Set cfg.OutMax within (0, 1]
5 Invalid control signal minimum value Set cfg.OutMin within [-1, 0)
16 Invalid inertia maximum value Set cfg.InertiaMax as a positive _iq24 value
17 Invalid inertia minimum value Set cfg.InertiaMin within (0, cfg.InertiaMax]
18 Invalid bandwidth maximum value Set cfg.BwMax within [0, min(2000, 0.2/cfg.T)]
19 Invalid bandwidth minimum value Set cfg.BwMin within [0, cfg.BwMax]
32 Invalid axis ID Set cfg.Axis within {ST_AXIS0, ST_AXIS1}

No action. Inertia will be saturated by the bound1012 Invalid inertia value [cfg.InertiaMin, cfg.InertiaMax]
No action. The actual bandwidth is saturated by the value of1014 Bandwidth × Inertia is greater than 2000 2000/Inertia
No action. The friction will be saturated by the adjusted1016 Friction is out of bounds friction bounds [0, 5]

4001 Invalid SpinTAC license Use a chip with a valid license
Use a chip with a valid ROM version or use the SpinTAC4003 Invalid ROM version library that is compatible with the current ROM version.

428 InstaSPIN-MOTION Controllers SPRUHJ1F–January 2013–Revised July 2014
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


www.ti.com Optimal Performance in Speed Control

12.3 Optimal Performance in Speed Control

12.3.1 Introduction
Getting the best possible performance out of your motion system is important. A poorly tuned regulator
can result in wasted energy, wasted material, or an unstable system. It is important that for any speed
controller the performance is evaluated at many different speed and load operating points in order to
determine how well it works in your application.

12.3.2 Comparing Speed Controllers
Speed controllers can be compared on a number of different factors. However, two metrics - disturbance
rejection and profile tracking - can be used to test performance and determine how well your controller is
tuned for your application.

12.3.3 Disturbance Rejection
Disturbance rejection tests a controller's resistance to external disturbances, which will impact the motor
speed. Disturbance rejection is measured using the maximum speed error and settling time. The
maximum speed error shows the deviation from the goal speed, and is an indication of how aggressively
your controller is tuned. Aggressive tuning will produce a low maximum error.

Settling time refers to the amount of time from the point when the disturbance happens until the speed
returns to a fixed band around the goal speed. This is also an indication of how aggressively your control
loop is tuned. If the controller is tuned too aggressively it will have a long settling time because it will
oscillate around the goal speed before settling.

Figure 12-8 and Figure 12-9 show the difference between poor tuning and optimal tuning of the same
controller. As you can see by tuning the speed controller, when torque is applied or removed from a motor
system the tuned controller greatly reduces the maximum error and settling time. This is an exaggerated
example, but it is used to highlight the importance of getting a good tuning for your system.
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Figure 12-8. Velocity Tuning Comparison for Applied Torque Disturbance
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Figure 12-9. Velocity Tuning Comparison for Removed Torque Disturbance

When doing disturbance rejection testing it is important to test at multiple speed and load combinations.
Speed controllers have different performance characteristics when placed into different situations. In order
to properly evaluate the effectiveness of your speed controller, tests should be done across the entire
application range. The test results will indicate whether the controller will meet the application
specifications, or whether the controller needs to be tuned multiple times for different operating points.

It is also important to be able to create repeatable disturbances. This can be accomplished using a
dynamometer or a disturbance motor. Creating repeatable disturbance is an important factor when
evaluating multiple controllers. If test conditions cannot be replicated, it is difficult to adequately compare
the responses of two controllers.

12.3.4 Profile Tracking
Profile tracking tests how well the controller follows a changing target speed. The two metrics to evaluate
in this testing are the maximum error and the absolute average error. The maximum speed error shows
how much the controller overshoots while changing speeds. This is an indication of how aggressively your
controller is tuned. If you controller is not tuned aggressively enough, the speed will overshoot the target,
and will take a long time to recover. If the controller is tuned too aggressively it will overshoot, and then
oscillate as it settles on the goal speed. If the controller is correctly tuned, it will overshoot and then
smoothly return to the goal speed.

Absolute average error is an average of the absolute value of the instantaneous speed error over the
entire profile. This measure shows the amount of deviation throughout the entire profile. It takes into
account all of the little errors as the motor is running. If the controller is tuned too aggressively it will result
in larger absolute average error because the controller will be oscillating throughout the profile. If the
controller is not tuned aggressively enough, it will result in a larger absolute average error because it is
continuously falling behind what the profile is commanding the motor to do.
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Figure 12-10 shows the difference between the default tuning and the optimal tuning of the same
controller. As you can see by tuning the speed controller, you are able to make your motion system much
more closely track the reference. By tuning the controller, it greatly reduces the maximum error, the
absolute average error, and the maximum overshoot.

Figure 12-10. Velocity Tuning Comparison for Profile Tracking

It is important to test multiple speeds and accelerations in your profile as well as multiple different loads.
Speed controllers have different performance characteristics when placed into different situations. In order
to properly evaluate the effectiveness of your speed controller, tests should be conducted across the
entire application range. This includes when you design the profile for testing. Care needs to be taken to
ensure that the application speeds and accelerations are built into the profile. The results of these tests
will inform you if your controller will meet the application specifications or if your controller needs to be
tuned multiple times for different operating points.

It is also important to be able to create repeatable profiles and loads. Creating a repeatable profile can be
done using SpinTAC Velocity Move and SpinTAC Velocity Plan; for more information, see Chapter 13.
Repeatable profiles are required so that all controllers will be tested using the same reference in the same
order and for the same length of time. This ensures that test conditions are as identical as possible. When
applying load during a profile tracking test it is important to create repeatable disturbances. This can be
accomplished using a dynamometer or a disturbance motor. Creating a repeatable disturbance is an
important factor when evaluating controllers. If test conditions cannot be replicated, it is difficult to
adequately compare the responses of two controllers.
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12.3.5 InstaSPIN-MOTION Velocity Control Advantage

12.3.5.1 Single Parameter Tuning
InstaSPIN-MOTION presents numerous advantages in achieving optimal performance for your application.
The SpinTAC Velocity Control helps you achieve optimal performance by offering single parameter tuning
over a wide operating range. Having a single tuning parameter allows you to quickly zero in on the right
tuning settings for your application. The Active Disturbance Rejection Control (ADRC) at the core of the
SpinTAC Velocity Control allows that single tuning parameter to work across a very wide operating range.
In most cases a single tuning setting can work across the entire operating range of an application.
Compare that with a PI controller that requires at least two tuning parameters and both of those tuning
parameters need to be tuned for multiple different operating points in an application. This results in a
much longer amount of time spent tuning your application than with the SpinTAC Velocity Control.

To compare the differences between the SpinTAC Velocity Control and a traditional PI speed controller,
we attached an Anaheim Automation BLY172S motor that comes with the DRV8312 Rev D evaluation kit
to a Magtrol HD-400 dynamometer. The PI tuning parameters were arrived at using the example in
Section 11.5. The following characteristics were used to calculate the Speed PI gains:
• Rs = 0.4 ohms
• Ls = 0.6mH
• Back-EMF = 0.0054 V-sec / radians
• Inertia = 335E-4 kg-m2 (To include the Inertia of the motor and the dynamometer)
• Rotor poles = 8
• Speed bandwidth = 800 rad / sec
• Damping factor = 4

This resulted in the following Speed PI gains:
• spdKpseries = 5.495
• spdKiseries = 132.88

The SpinTAC Velocity Control was tuned experimentally by the method outlined in Section 12.1.4. This
tuning resulted in the following gain:
• Bandwidth = 45 radians / sec

The above gains for the PI speed controller and the SpinTAC Velocity Control were using for the following
tests.

12.3.5.2 Disturbance Rejection Test
The ADRC technology in the SpinTAC Velocity Control has excellent disturbance rejection. It is actively
estimating disturbances in real-time and compensating for these disturbances (see Figure 12-11 and
Figure 12-12). When the SpinTAC Velocity Control detects a disturbance in the system, it applies a
correction to quickly and smoothly bring the speed of the motor back in line with the target speed.
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Figure 12-11. PI and SpinTAC Comparison for Applied Torque Disturbance Velocity Control
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Figure 12-12. PI and SpinTAC Comparison for Removed Torque Disturbance Velocity Control

The SpinTAC Velocity Control features a much faster recovery time and smaller maximum error than a
traditional PI controller. This results in your application experiencing fewer speed fluctuations. This
reduction in speed fluctuation results in your application running at a more consistent speed and can lead
to less power consumed in your application.

12.3.5.3 Feedforward
The SpinTAC Velocity Control also features feedforward. This allows for excellent profile tracking (see
Figure 12-13). Feedforward tells the SpinTAC Velocity Control how fast it should be accelerating or
decelerating. This allows the SpinTAC Velocity Control to react to profile changes much quicker than a PI
controller. It results in less maximum error and less absolute average error.
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Figure 12-13. PI and SpinTAC Comparison for Feedforward Impact on Velocity Profile Tracking

The SpinTAC Velocity Control features reduced maximum error and absolute average error. This results in
much improved tracking performance over a traditional PI controller. This results in less wasted motion
and wasted energy while the controller is attempting and overacting to try and track the changing
reference. This feature becomes even more important when combined with the disturbance rejection
capabilities discussed in Section 12.3.5.2. If your system encounters a disturbance while tracking a
changing speed reference, that could result in a large amount of overshoot and wasted energy or material.

12.3.5.4 No Integrator Windup
Integrator windup is an issue where the integrator component of a standard PI controller has built up a
large reserve of error. This happens when the controller goes into saturation and there is a steady state
error in the speed. This steady state error will continue to build up the value in the integrator and when the
condition causing the saturation is removed, this error will cause the speed to drastically overshoot the
speed reference. The SpinTAC Velocity Control does not have this issue. The ADRC technology is
estimating the system error in real-time and does not rely on an integrator that can cause integrator
windup issues.

Figure 12-14 shows a case where a traditional PI controller experiences integrator windup. In this case the
motor could not overcome the torque disturbance and it was forced to run at the speed slower than the
setpoint. This placed the controller into saturation where the PI controller's integrator term built up over
time. Once this torque disturbance was removed, the integrator term of the PI caused it to have a very
large overshoot and take a much longer time to settle back to the speed setpoint. The SpinTAC controller
did not see any of these ill effects since it does not contain an integrator term that can build up and cause
integrator windup issues. It is also interesting to compare Figure 12-14 with Figure 12-12. You should
notice that SpinTAC's response to removing the torque disturbance is very similar for the 50% rated
torque disturbance and the 80% rated torque disturbance.
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Figure 12-14. PI and SpinTAC Comparison for Integrator Windup During Disturbance Rejection Velocity
Control

12.3.5.5 Minimum Startup Overshoot
InstaSPIN-MOTION features a controller that produces minimum overshoot during startup. This results in
your application spending less energy when starting the motor and less time to recover and run at the
target speed. For compressors that cycle on and off this can be a critical point to save energy.

Figure 12-15 compares the step response of the SpinTAC Velocity Control with a traditional PI speed
controller. From the plot you can see that the traditional PI speed controller has a much greater overshoot
and settling time than the SpinTAC Velocity Control. The large overshoot by the PI speed controller results
in wasted power and wasted motion. It is not the ideal response for your system. The SpinTAC Velocity
Control has a much better response and results in less overshoot and a faster settling time.
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Figure 12-15. PI and SpinTAC Comparison for Step Response Velocity Control

12.3.5.6 Conclusions
The SpinTAC Velocity Control included in InstaSPIN-MOTION directly replaces the traditional PI speed
controller. It results in better performance across the entire range of your application. It is less complex to
tune than a PI controller, since it features a single tuning parameter. This results in less development
effort being spent tuning the speed controller, allowing you to focus on the rest of your application. It
results in less overshoot and faster settling time. It also features better profile tracking. All of these
features combine to reduce the energy consumed by your application due to wasted motion.

12.4 Software Configuration for SpinTAC Position Control
Configuring SpinTAC Position Control requires four steps. Lab 13a — Tuning the InstaSPIN-MOTION
Position Controller — is an example project that implements the steps required to use SpinTAC Position
Control. The header file spintac.h, included in MotorWare, allows you to quickly include the SpinTAC
components in your project.

12.4.1 Include the Header File
This should be done with the rest of the module header file includes. In the Lab 13a example project this
file is included in the spintac_position.h header file. For your project, this step can be completed by
including spintac_position.h.

#include "sw/modules/spintac/src/32b/spintac_pos_ctl.h"
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12.4.2 Declare the Global Structure
This should be done with the global variable declarations in the main source file. In the Lab 13a project
this structure is included in the ST_Obj structure that is declared as part of the spintac_position.h header
file.

ST_Obj st_obj; // The SpinTAC Object
ST_Handle stHandle; // The SpinTAC Handle

This example is if you do not wish to use the ST_Obj structure that is declared in the spintac_position.h
header file.

ST_PosCtl_t stPosCtl; // The SpinTAC Position Controller object
ST_POSCTL_Handle stPosCtlHandle; // The SpinTAC Position Controller Handle

12.4.3 Initialize the Configuration Variables
This should be done in the main function of the project ahead of the forever loop. This will load all of the
default values into SpinTAC Position Control. This step can be completed by running the functions ST_init
and ST_setupPosCtl that are declared in the spintac_position.h header file. If you do not wish to use these
two functions, the code example below can be used to configure SpinTAC Position Control component.
This configuration of SpinTAC Position Control represents the typical configuration that should work for
most motors.

// Initialize SpinTAC Position Control
stPosCtlHandle = STPOSCTL_init(&stPosCtl, sizeof(stPosCtl));

// Setup the maximum current in PU
_iq maxCurrent_PU = _IQ(USER_MOTOR_MAX_CURRENT / USER_IQ_FULL_SCALE_CURRENT_A);

// Instance of the position controller
STPOSCTL_setAxis(stPosCtlHandle, ST_AXIS0);
// Sample time [s], (0, 1)
STPOSCTL_setSampleTime_sec(stPosCtlHandle, _IQ(ST_SAMPLE_TIME));
// System inertia upper (0, 127.9999] and lower (0, InertiaMax] limits [PU/(pu/s^2)]
STPOSCTL_setInertiaMaximums(stPosCtlHandle, _IQ(10.0), _IQ(0.001));
// System velocity limit (0, 1.0] [pu/s]
STPOSCTL_setVelocityMaximum(obj->;posCtlHandle, _IQ24(1.0));
// System control signal high (0, 1] & low [-1, 0) limits [PU]
STPOSCTL_setOutputMaximums(stPosCtlHandle, maxCurrent_PU, -maxCurrent_PU);
// System maximum (0, 1.0] and minimum [-1.0, 0) velocity [pu/s]
STPOSCTL_setVelocityMaximums(stPosCtlHandle, _IQ(1.0), _IQ(-1.0));
// System maximum value for mechanical revolutions [MRev]
STPOSCTL_setPositionRolloverMaximum_mrev(stPosCtlHandle, _IQ24(ST_MREV_ROLLOVER));
// Sets the values used for converting between pu and MRev
STPOSCTL_setUnitConversion(stPosCtlHandle, USER_IQ_FULL_SCALE_FREQ_Hz,

USER_MOTOR_NUM_POLE_PAIRS);
// System maximum allowable error [MRev]
STPOSCTL_setPositionErrorMaximum_mrev(stPosCtlHandle,

_IQ24(ST_POS_ERROR_MAXIMUM_MREV));
// Disturbance type {true: Ramp; false: Square}
STPOSCTL_setRampDisturbanceFlag(stPosCtlHandle, false);
// System upper (0, 0.1/(cfg.T_sec*20)] and lower [0, BwScaleMax] limits for BWScale
STPOSCTL_setBandwidthScaleMaximums(stPosCtlHandle,

_IQ24((0.1) / (ST_SAMPLE_TIME * 20.0)), _IQ24(0.01));
// Enables the feedback filter
STPOSCTL_setFilterEnableFlag(stPosCtlHandle, true);
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// System inertia [PU/(pu/s^2)], [InertiaMin, InertiaMax]
STPOSCTL_setInertia(stPosCtlHandle, _IQ(USER_MOTOR_INERTIA));
// Controller bandwidth scale [BwScaleMin, BwScaleMax]
STPOSCTL_setBandwidthScale(stPosCtlHandle, _IQ24(USER_SYSTEM_BANDWIDTH_SCALE));
// Initially ST_PosCtl is not enabled
STPOSCTL_setEnable(stPosCtlHandle, false);
// Initially ST_PosCtl is not in reset
STPOSCTL_setReset(stPosCtlHandle, false);

12.4.4 Call SpinTAC Position Control
This should be done in the main ISR. This function needs to be called at the proper decimation rate for
this component. The decimation rate is established by ISR_TICKS_PER_SPINTAC_TICK; for more
information, see Section 4.7.1.4. Before calling SpinTAC Position Control function the position reference,
speed reference, acceleration reference, and position feedback must be updated. This example uses
SpinTAC Position Move to provide the references to the SpinTAC Position Control. For more information
on SpinTAC Position Move, see Chapter 13.

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle; // Get pointer to CTRL object
// Get the mechanical speed in pu/s
_iq speedFeedback = EST_getFm_pu(obj->estHandle);
STPOSCTL_setPositionReference_mrev(stPosCtlHandle,

STPOSMOVE_getPositionReference_mrev(stPosMoveHandle));
// Update the Velocity Reference
STPOSCTL_setVelocityReference(stPosCtlHandle,

STPOSMOVE_getVelocityReference(stPosMoveHandle));
// Update the Acceleration Reference
STPOSCTL_setAccelerationReference(stPosCtlHandle,

STPOSMOVE_getAccelerationReference(stPosMoveHandle));
// Update the Position Feedback
STPOSCTL_setPositionFeedback_mrev(stObj->posCtlHandle,

STPOSCONV_getPosition_mrev(stPosConvHandle));
// Run SpinTAC Position Control
STPOSCTL_run(stPosCtlHandle);

// Get the Torque Reference from SpinTAC Position Control
iqReference = STPOSCTL_getTorqueReference(stPosCtlHandle);

// Set the Iq reference that came out of SpinTAC Position Control
CTRL_setIq_ref_pu(ctrlHandle, iqReference);

12.4.5 Troubleshooting SpinTAC Position Control

12.4.5.1 ERR_ID
ERR_ID provides an error code for users. A list of errors defined for SpinTAC Position Control and the
solutions for these errors are shown in Table 12-3.

Table 12-3. SpinTAC Position Control ERR_ID Code

ERR_ID Problem Solution
1 Invalid sample time value Set cfg.T_sec within (0, 1]
2 Invalid velocity reference maximum value Set cfg.VelMax within (0, 1]
4 Invalid control signal maximum value Set cfg.OutMax within (0, 1]
5 Invalid control signal minimum value Set cfg.OutMin within [-1, 0)
13 Invalid position rollover bound value Set cfg.ROMax_mrev within [2, 100]
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Table 12-3. SpinTAC Position Control ERR_ID Code (continued)
ERR_ID Problem Solution

Invalid mechanical revolution [MRev] to [pu]14 Set cfg.mrev_TO_pu within [0.002, 1]ratio value
15 Invalid position error maximum value Set cfg.PosErrMax_mrev within [0, cfg.ROMax_mrev/2]
16 Invalid inertia maximum value Set cfg.InertiaMax as a positive _iq24 value
17 Invalid inertia minimum value Set cfg.InertiaMin within (0, cfg.InertiaMax]
18 Invalid bandwidth maximum value Set cfg.BwMax within [0, min(2000, 0.2/cfg.T)]
19 Invalid bandwidth minimum value Set cfg.BwMin within [0, cfg.BwMax]
20 Invalid value for disturbance specification Set cfg.RampDist within {false, true}
32 Invalid axis ID Set cfg.Axis within {ST_AXIS0, ST_AXIS1}
35 Invalid value for filter enable Set cfg.FiltEN within {false, true}

No action. Inertia will be saturated by the bound1012 Invalid inertia value [cfg.InertiaMin, cfg.InertiaMax]
No action. The actual bandwidth is saturated by the value of1014 Bandwidth × Inertia is greater than 2000 2000/Inertia
No action. The friction will be saturated by the adjusted1016 Friction is out of bounds friction bounds [0, 5]
Increase bandwidth to get less position error or make profile2002 Position error exceeds maximum velocity, acceleration, and jerk slower

4001 Invalid SpinTAC license Use a chip with a valid license
Use a chip with a valid ROM version or use the SpinTAC4003 Invalid ROM version library that is compatible with the current ROM version.

12.5 Optimal Performance in Position Control

12.5.1 Introduction
Getting the best possible performance out of your motion system is important. A poorly tuned regulator
can result in wasted energy, wasted material, or an unstable system. It is important that for any position
controller the performance is evaluated at many different operating points in order to determine how well it
works in your application.

12.5.2 Comparing Position Controllers
Position controllers can be compared on a number of different factors. However, two metrics - disturbance
rejection and profile tracking - can be used to test performance and determine how well your controller is
tuned for your application.

12.5.3 Disturbance Rejection
Disturbance rejection tests a controller's resistance to external disturbances, which will impact the motor
speed and position. Disturbance rejection is measured using the maximum error and settling time. The
maximum error shows the deviation from the goal position, and is an indication of how aggressively your
controller is tuned. Aggressive tuning will produce a low maximum error.

Settling time refers to the amount of time from the point when the disturbance happens until the position
returns to a fixed band around the goal position. This is also an indication of how aggressively your control
loop is tuned. If the controller is tuned too aggressively it will have a long settling time because it will
oscillate around the goal position before settling.

Figure 12-16 and Figure 12-17 show the difference between poor tuning and optimal tuning of the same
controller. As you can see by tuning the position controller, when torque is applied or removed from a
motor system the tuned controller greatly reduces the maximum error and settling time. This is an
exaggerated example, but it is used to highlight the importance of getting a good tuning for your system.
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Figure 12-16. Position Tuning Comparison for Applied Torque Disturbance
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Figure 12-17. Position Tuning Comparison for Removed Torque Disturbance

When doing disturbance rejection testing it is important to test at multiple speed and load combinations.
Position controllers have different performance characteristics when placed into different situations. In
order to properly evaluate the effectiveness of your position controller, tests should be done across the
entire application range. The test results will indicate whether the controller will meet the application
specifications, or whether the controller needs to be tuned multiple times for different operating points.

It is also important to be able to create repeatable disturbances. This can be accomplished using a
dynamometer or a disturbance motor. Creating repeatable disturbance is an important factor when
evaluating multiple controllers. If test conditions cannot be replicated, it is difficult to adequately compare
the responses of two controllers.

12.5.4 Profile Tracking
Profile tracking tests how well the controller follows a changing target position. The two metrics to evaluate
in this testing are the maximum error and the absolute average error. The maximum error shows how
much the controller overshoots while changing positions. This is an indication of how aggressively your
controller is tuned. If you controller is not tuned aggressively enough, the position will overshoot the target,
and will take a long time to recover. If the controller is tuned too aggressively it will overshoot, and then
oscillate as it settles on the goal position. If the controller is correctly tuned, it will overshoot and then
smoothly return to the goal position.

Absolute average error is an average of the absolute value of the instantaneous error over the entire
profile. This measure shows the amount of deviation throughout the entire profile. It takes into account all
of the little errors as the motor is running. If the controller is tuned too aggressively it will result in larger
absolute average error because the controller will be oscillating throughout the profile. If the controller is
not tuned aggressively enough, it will result in a larger absolute average error because it is continuously
falling behind what the profile is commanding the motor to do.
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Figure 12-18 shows the difference between the default tuning and the optimal tuning of the same
controller. As you can see by tuning the position controller, you are able to make your motion system
much more closely track the reference. By tuning the controller, it greatly reduces the maximum error, the
absolute average error, and the maximum overshoot.

Figure 12-18. Position Tuning Comparison for Profile Tracking

It is important to test multiple speeds and accelerations in your profile as well as multiple different loads.
Position controllers have different performance characteristics when placed into different situations. In
order to properly evaluate the effectiveness of your position controller, tests should be conducted across
the entire application range. This includes when you design the profile for testing. Care needs to be taken
to ensure that the application speeds and accelerations are built into the profile. The results of these tests
will inform you if your controller will meet the application specifications or if your controller needs to be
tuned multiple times for different operating points.

It is also important to be able to create repeatable profiles and loads. Creating a repeatable profile can be
done using SpinTAC Position Move and SpinTAC Position Plan; for more information, see Chapter 13.
Repeatable profiles are required so that all controllers will be tested using the same reference in the same
order and for the same length of time. This ensures that test conditions are as identical as possible. When
applying load during a profile tracking test it is important to create repeatable disturbances. This can be
accomplished using a dynamometer or a disturbance motor. Creating a repeatable disturbance is an
important factor when evaluating controllers. If test conditions cannot be replicated, it is difficult to
adequately compare the responses of two controllers.
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12.5.5 InstaSPIN-MOTION Position Control Advantage

12.5.5.1 Single Parameter Tuning
InstaSPIN-MOTION presents numerous advantages in achieving optimal performance for your application.
Traditional PI position control requires three cascaded control loops — one for current, one for speed, and
one for position — while SpinTAC Position Control requires two loops — one for current and one
combined position-velocity loop (see Table 12-4). Because of these cascaded control loops, the PI
controllers for velocity and position require at least four tuning parameters, all of which need to be tuned
for each operating point in the application.

Table 12-4. InstaSPIN-MOTION Position Control Advantage

Control Loop Traditional PI Control SpinTAC Position Control
Current Automatically identified during parameter Automatically identified during parameter

identification identification
Velocity Suggested starting values are provided, Tuned via a single parameter and is

but require adjustments and testing to effective across the operating range.
validate. Single parameter tunes position and
Calculations are provided in speed, and is effective across the
Section 11.5. operating range.

Position No suggested starting values.
No calculations provided.

SpinTAC Position Control helps you achieve optimal performance by offering single parameter tuning for
both position and velocity. Having a single tuning parameter allows you to quickly zero in on the right
tuning settings for your application. The Active Disturbance Rejection Control (ADRC) at the core of
SpinTAC Position Control allows that single tuning parameter to work across a very wide operating range.
SpinTAC Position Control reduces the time and complexity required to optimize your application.

To compare the differences between SpinTAC Position Control and a traditional PI control system, the
Teknic M2310PLN04K motor (available in the TI eStore) was coupled with a Magtrol HD-400
dynamometer. The PI tuning parameters determined from the example tuning in Section 11.5 were used
as a starting point. In order to tune the position PI regulator, the velocity PI regulator had to be re-tuned.
This was an iterative process. Each time the velocity gains were modified, the impact on the position gains
was evaluated.

SpinTAC Position Control was tuned experimentally by the method outlined in Section 12.4. Prior to tuning
SpinTAC Position Control, the system inertia was identified by the procedure outlined in Lab 05c.

12.5.5.2 Disturbance Rejection
The ADRC technology in SpinTAC Position Control has excellent disturbance rejection. It actively
estimates and compensates for disturbances in real-time (see Figure 12-19 and Figure 12-20). When
SpinTAC Position Control detects a disturbance in the system; it applies a correction to quickly and
smoothly bring the motor position back to the target.
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Figure 12-19. PI and SpinTAC Position Control Comparison for Applied Torque Disturbance
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Figure 12-20. PI and SpinTAC Position Control Comparison for Removed Torque Disturbance

SpinTAC Position Control features a much faster recovery time and smaller maximum error than a
traditional PI controller. This results in fewer position fluctuations, more consistent performance, and
reduced power consumption.

12.5.5.3 Feedforward
SpinTAC Position Control also features feedforward. This allows for excellent profile tracking (see
Figure 12-21). Feedforward tells SpinTAC Position Control how fast it should be accelerating or
decelerating toward the position target. This allows SpinTAC Position Control to react to profile changes
much quicker than a PI controller. It results in less maximum error and less absolute average error.
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Figure 12-21. PI and SpinTAC Comparison for Feedforward Impact on Position Profile Tracking

SpinTAC Position Control features reduced maximum error and absolute average error. This results in
much improved tracking performance over a traditional PI controller. This results in less wasted motion
and wasted energy during a reference change.

12.5.5.4 Low-Speed Operation and Smooth Startup
Some applications, such as high-end security and conference room cameras operate at very low speeds
(for example, 0.1 rpm) and require accurate and smooth position control to pan, tilt, and zoom. The motors
that drive these cameras are difficult to tune for low speed and they usually require a minimum of 4 tuning
sets to control both position and speed.

It can be difficult to overcome the system inertia at low speeds, which results in choppy movement at
startup, and a shaky or unfocused picture. Figure 12-22 is an example of a very small position movement
at a very low speed. SpinTAC is able to more accurately track the reference position resulting in smoother
motion than the PI controller. SpinTAC Position Control is equally effective at overcoming system inertia at
low speeds and high speeds, and results in very smooth low speed movements.
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Figure 12-22. PI and SpinTAC Comparison for Low Speed Position Profile Tracking

12.5.5.5 Minimum Step Response Settling Time
SpinTAC Position Control features less settling time for step responses. This results in the system being
more responsive to control changes. The system will spend more time at the goal position, which results in
less delay. Both controllers have been tuned with zero overshoot, but in situations with changing
dynamics, SpinTAC will respond better and will continue to have minimal overshoot when compared with
a PI controller.

Figure 12-23 compares the step response of SpinTAC Position Control with a traditional PI position control
system. From the plot you can see that the traditional PI position control system has a much longer
settling time than SpinTAC Position Control. Longer setting time means that it will take longer for the
application to reach the goal position.
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Figure 12-23. PI and SpinTAC Position Control Comparison for Step Response

12.5.5.6 Conclusions
SpinTAC Position Control included with InstaSPIN-MOTION replaces the traditional PI controller for speed
and position. It results in better performance across the entire range of your application. It is less complex
to tune than a PI controller, since it features a single tuning parameter. This reduces development effort
spent tuning the position controller, allowing you to focus on the rest of your application. It results in less
overshoot and faster settling time. It also features better profile tracking. All of these features combine to
reduce the energy consumed by your application due to wasted motion.
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Chapter 13
SPRUHJ1F–January 2013–Revised July 2014

Trajectory Planning

Controlling the speed or position of a motor is the first step to establishing a motion system. The next step
is to establish a method to transition between different speeds and positions, then to sequence the motion
of the motor to accomplish the application tasks. InstaSPIN-MOTION allows you to quickly build complex
motion sequences with logic-based state transitions.
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13.1 InstaSPIN-MOTION Profile Generation
SpinTAC Move is a constraint-based, time-optimal profile generator. This profile generator calculates the
motion profile during run-time without using FLASH lookup tables. This results in a small memory footprint.
The user provides constraints (velocity limit [Position Only], acceleration/deceleration limit, and jerk limit)
and SpinTAC Move calculates the optimal profile between the current setpoint and the target setpoint.
This allows you greater flexibility in designing your application motion profiles.

In addition to the industry standard trapezoidal and s-curve profiles, SpinTAC Move provided the
Linestream proprietary st-curve. This curve provides smoother motion changes than either trapezoidal or
s-curve profiles. The main feature of the st-curve is the continuous jerk.

Figure 13-1 compares the different curve types available in SpinTAC Position Move. The most notable
difference between s-curve and st-curve is the bottom plot, the jerk plot, which shows how the st-curve
continuously adjusts the jerk in order to provide even smoother motion than the s-curve. For speed
transitions, only the lower three graphs in Figure 13-1 need to be considered

Figure 13-1. Comparison of Curves Provided by SpinTAC Position Move

SpinTAC Move uses sample time based profile generation. This aligns the motion profile with the speed
sample time and guarantees that the time to complete a profile will always be a multiple of the sample
time. This determinism ensures that for a given set of constraints, SpinTAC Move will always generate an
identical profile.

13.1.1 Jerk Impact on System Performance
Jerk represents the rate of change of acceleration. So a larger jerk will allow the acceleration to increase
at a faster rate. Jerk is an important factor to consider in applications where fragile objects can only
tolerate a limited amount of acceleration changes. Jerk is also critical in applications where rapid changes
in acceleration of a cutting tool can lead to premature tool wear or result in uneven cuts. For applications
where the system jerk needs to be considered, using SpinTAC Move with the st-curve is essential. Jerk
will also have an impact on the amount of current the motor consumes when changing speeds. Lower jerk
will cause the motor to consume less current when changing speeds. This is due to the smaller jerk
reducing the rate of acceleration increase. For applications where the jerk does not directly need to be
considered, it can still have an impact on system performance.
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Figure 13-2 compares three trajectory curves. They have the same start and end velocity and the same
acceleration. The jerk for each of these curves has been modified. As the jerk increases the curve reaches
the goal speed faster. A consequence of this faster movement is that the motor consumed more current
while it was executing the trajectory curve. The maximum current is displayed on the graph. This test was
done without any load in the system. If there were a load attached to the system, the increased jerk would
have an even more dramatic impact on the maximum current.

Figure 13-2. Impact of Jerk on Iq Reference

13.2 Software Configuration for SpinTAC Velocity Move
Configuring SpinTAC Velocity Move requires four steps. Lab 6a — Smooth system movement with
SpinTAC Move — is an example project that implements the steps required to use SpinTAC Velocity
Move to generate trajectory changes. The header file spintac.h, included in MotorWare, allows you to
quickly include the SpinTAC components in your project.

13.2.1 Include the Header File
This should be done with the rest of the module header file includes. In the Lab 6a example project, this
file is included in the spintac_velocity.h header file. For your project, this step can be completed by
including spintac_velocity.h.

#include "sw/modules/spintac/src/32b/spintac_vel_move.h"

453SPRUHJ1F–January 2013–Revised July 2014 Trajectory Planning
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


Software Configuration for SpinTAC Velocity Move www.ti.com

13.2.2 Declare the Global Structure
This should be done with the global variable declarations in the main source file. In the Lab 8a project, this
structure is included in the ST_Obj structure that is declared as part of the spintac_velocity.h header file.

ST_Obj st_obj; // The SpinTAC Object
ST_Handle stHandle; // The SpinTAC Handle

This example is if you do not wish to use the ST_Obj structure that is declared in the spintac_velocity.h
header file.

ST_VelMove_t stVelMove; // The SpinTAC Velocity Move object
ST_VELMOVE_Handle stVelMoveHandle; // The SpinTAC Velocity Move Handle

13.2.3 Initialize the Configuration Variables
This should be done in the main function of the project ahead of the forever loop. This will load all of the
default values into SpinTAC Velocity Move. This step can be completed by running the functions ST_init
and ST_setupVelMove that are declared in the spintac_velocity.h header file. If you do not wish to use
these two functions, the code example below can be used to configure the SpinTAC Velocity Move
component. This configuration of SpinTAC Velocity Move represents the typical configuration that should
work for most motors.

// Initialize the SpinTAC Velocity Move Component
stVelMoveHandle = STVELMOVE_init(&stVelMove, sizeof(ST_VelMove_t));

// Instance of SpinTAC Velocity Move
STVELMOVE_setAxis(stVelMoveHandle, ST_AXIS0);
// Sample time [s], (0, 1]
STVELMOVE_setSampleTime_sec(stVelMoveHandle, _IQ24(ST_SAMPLE_TIME));
// System maximum limit for:
// speed [pu/s] [IQ24(0.001), _IQ24(1)],
// acceleration [pu/s^2] [IQ24(0.002), _IQ24(120)],
// jerk references [pu/s^3] [_IQ20(0.0005), IQ20(2000)]
STVELMOVE_setProfileMaximums(stVelMoveHandle, _IQ24(1.0), _IQ24(10.0), _IQ20(62.5));
// Acceleration limit for the profile [pu/s^2] [IQ24(0.001), _IQ24(120)]
STVELMOVE_setAccelerationLimit(stVelMoveHandle, _IQ24(0.4));
// Jerk limit for the profile [pu/s^3] [_IQ20(0.0005), _IQ20(2000)]
STVELMOVE_setJerkLimit(stVelMoveHandle, _IQ20(1.0));
// Set profile curve type { ST_MOVE_CUR_TRAP, ST_MOVE_CUR_SCRV, ST_MOVE_CUR_STCRV }
STVELMOVE_setCurveType(stVelMoveHandle, ST_MOVE_CUR_STCRV);
// ST_VelMove is not in test mode
STVELMOVE_setTest(stVelMoveHandle, FALSE);
// Initially ST_VelMove is not enabled
STVELMOVE_setEnable(stVelMoveHandle, FALSE);
// Initially ST_VelMove is not in reset
STVELMOVE_setReset(stVelMoveHandle, FALSE);

13.2.4 Call SpinTAC Velocity Move
This should be done in the main ISR. This function needs to be called at the proper decimation rate for
this component. The decimation rate is established by ST_ISR_TICKS_PER_SPINTAC_TICK; for more
information, see Section 4.7.1.4. Before calling SpinTAC Velocity Move function the speed target,
acceleration limit, jerk limit, and curve type need to be updated.

// If we are not in reset, and the SpeedRef_krpm has been modified
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if((STVELMOVE_getReset(stVelMoveHandle) == FALSE)
&& (_IQmpy(gMotorVars.SpeedRef_krpm, _IQ24(ST_SPEED_PU_PER_KRPM))

!= STVELMOVE_getVelocityEnd(stVelMoveHandle)))
{

// Get the configuration for SpinTAC Velocity Move
STVELMOVE_setCurveType(stVelMoveHandle, gMotorVars.SpinTAC.VelMoveCurveType);
STVELMOVE_setVelocityEnd(stVelMoveHandle,

_IQmpy(gMotorVars.SpeedRef_krpm, _IQ24(ST_SPEED_PU_PER_KRPM)));
STVELMOVE_setAccelerationLimit(stVelMoveHandle,

_IQmpy(gMotorVars.MaxAccel_krpmps, _IQ24(ST_SPEED_PU_PER_KRPM)));
STVELMOVE_setJerkLimit(stVelMoveHandle,

_IQ20mpy(gMotorVars.MaxJrk_krpmps2, _IQ20(ST_SPEED_PU_PER_KRPM)));
// Enable SpinTAC Move
STVELMOVE_setEnable(stVelMoveHandle, TRUE);
//If starting from zero speed, enable ForceAngle, otherwise disable ForceAngle
if(_IQabs(STVELMOVE_getVelocityStart(stVelMoveHandle)) < _IQ24(ST_MIN_ID_SPEED_PU))
{

EST_setFlag_enableForceAngle(ctrlObj->estHandle, TRUE);
gMotorVars.Flag_enableForceAngle = TRUE;

}
else
{

EST_setFlag_enableForceAngle(ctrlObj->estHandle, FALSE);
gMotorVars.Flag_enableForceAngle = FALSE;

}
}

// Run SpinTAC Move
STVELMOVE_run(stVelMoveHandle);

13.2.5 Troubleshooting SpinTAC Velocity Move

13.2.5.1 ERR_ID
ERR_ID provides an error code for users. A list of errors defined in SpinTAc Velocity Move and the
solutions for these errors are shown in Table 13-1.

Table 13-1. SpinTAC Velocity Move ERR_ID Code

ERR_ID Problem Solution
1 Invalid sample time value Set cfg.T_sec within (0, 0.01]
2 Invalid system maximum velocity value Set cfg.VelMax within (0, 1]
10 Invalid system maximum acceleration value Set cfg.AccMax within [0.001, 120]
12 Invalid system maximum jerk value Set cfg.JrkMax within [0.0005, 1000]
32 Invalid axis ID Set cfg.Axis within {ST_AXIS0, ST_AXIS1}

1002 Invalid acceleration limit value Set AccLim within [0.002, cfg.AccMax]
1004 Invalid jerk limit value Set JrkLim within [0.001, cfg.JrkMax]

Set cfg.CUR_MOD within {ST_PRO_TRAP, ST_PRO_SCRV,1005 Invalid curve type ST_PRO_STCRV}
1006 Invalid velocity start value Set cfg.VelStart within [-cfg.VelMax, cfg.VelMax]
1007 Invalid velocity end value Set VelEnd within [-cfg.VelMax, cfg.VelMax]
4001 Invalid SpinTAC license Use the chip with valid license

Use a chip with a valid ROM version or use the SpinTAC4003 Invalid ROM Version library that is compatible with the current ROM version.
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13.3 Software Configuration for SpinTAC Position Move
Configuring SpinTAC Position Move requires four steps. Lab 13b — Position Transitions with SpinTAC
Move — is an example project that implements the steps required to use SpinTAC Position Move to
generate trajectory changes. The header file spintac_position.h, included in MotorWare, allows you to
quickly include the SpinTAC components in your project.

13.3.1 Include the Header File
This should be done with the rest of the module header file includes. In the Lab 6a example project, this
file is included in the spintac_position.h header file. For your project, this step can be completed by
including spintac_position.h.

#include "sw/modules/spintac/src/32b/spintac_pos_move.h"

13.3.2 Declare the Global Structure
This should be done with the global variable declarations in the main source file. In the Lab 13b project
this structure is included in the ST_Obj structure that is declared as part of the spintac_position.h header
file.

ST_Obj st_obj; // The SpinTAC Object
ST_Handle stHandle; // The SpinTAC Handle

This example is if you do not wish to use the ST_Obj structure that is declared in the spintac_position.h
header file.

ST_PosMove_t stPosMove; // The SpinTAC Position Move object
ST_POSMOVE_Handle stPosMoveHandle; // The SpinTAC Position Move Handle

13.3.3 Initialize the Configuration Variables
This should be done in the main function of the project ahead of the forever loop. This will load all of the
default values into SpinTAC Position Move. This step can be completed by running the functions ST_init
and ST_setupPosMove that are declared in the spintac_position.h header file. If you do not wish to use
these two functions, the code example below can be used to configure the SpinTAC Position Move
component. This configuration of SpinTAC Position Move represents the typical configuration that should
work for most motors.

// Initialize the SpinTAC Speed Controller Component
stPosMoveHandle = STPOSMOVE_init(&stPosMove, sizeof(stPosMove));

// Instance of SpinTAC Move
STPOSMOVE_setAxis(stPosMoveHandle, ST_AXIS0);
// Sample time [s], (0, 1]
STPOSMOVE_setSampleTime_sec(stPosMoveHandle, _IQ24(ST_SAMPLE_TIME));
// Set the type of profile to generate {ST_POS_MOVE_VEL_TYPE , ST_POS_MOVE_POS_TYPE}
STPOSMOVE_setProfileType(stPosMoveHandle, ST_POS_MOVE_POS_TYPE);
// Set the maximum value for mechanical revolutions before rollover [MRev]
STPOSMOVE_setMRevMaximum_mrev(stPosMoveHandle, _IQ24(10.0));
// Set the unit conversion values, this will convert between Mrev and pu
STPOSMOVE_setUnitConversion(stPosMoveHandle, USER_IQ_FULL_SCALE_FREQ_Hz,

USER_MOTOR_NUM_POLE_PAIRS);
// System maximum limit for:
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// speed [pu/s] [IQ24(0.002), _IQ24(1)]
// acceleration [pu/s^2] [IQ24(0.001), _IQ24(120)]
// deceleration [pu/s^2] [IQ24(0.001), _IQ24(120)]
// jerk references [pu/s^3] [_IQ20(0.0005), _IQ20(2000)]
STPOSMOVE_setProfileMaximums(obj->posMoveHandle,

_IQ24(USER_MOTOR_MAX_SPEED_KRPM * ST_SPEED_PU_PER_KRPM),
_IQ24(10), _IQ24(10), _IQ20(62.5));

// Velocity limit for the profile [pu/s] [IQ24(0.002), _IQ24(1)]
STPOSMOVE_setVelocityLimit(obj->posMoveHandle,

_IQ24(USER_MOTOR_MAX_SPEED_KRPM * ST_SPEED_PU_PER_KRPM));
// Acceleration limit for the profile [pu/s^2] [IQ24(0.001), _IQ24(120)]
STPOSMOVE_setAccelerationLimit(stPosMoveHandle, _IQ24(0.4));
// Deceleration limit for the profile [pu/s^2] [IQ24(0.001), _IQ24(120)]
STPOSMOVE_setDecelerationLimit(obj->posMoveHandle, _IQ24(0.4));
// Jerk limit for the profile [pu/s^3] [_IQ20(0.0005), _IQ20(2000)]
STPOSMOVE_setJerkLimit(stPosMoveHandle, _IQ20(1.0));
// Set profile curve type { ST_MOVE_CUR_TRAP, ST_MOVE_CUR_SCRV, ST_MOVE_CUR_STCRV }
STPOSMOVE_setCurveType(stPosMoveHandle, ST_MOVE_CUR_STCRV);
// ST_PosMove is not in test mode
STPOSMOVE_setTest(stPosMoveHandle, false);
// Initially ST_PosMove is not enabled
STPOSMOVE_setEnable(stPosMoveHandle, false);
// Initially ST_PosMove is not in reset
STPOSMOVE_setReset(stPosMoveHandle, false);

13.3.4 Call SpinTAC Position Move
This should be done in the main ISR. This function needs to be called at the proper decimation rate for
this component. The decimation rate is established by ST_ISR_TICKS_PER_SPINTAC_TICK; for more
information, see Section 4.7.1.4. Before calling SpinTAC Position Move function the speed target,
acceleration limit, jerk limit, and curve type need to be updated.

// If we are not running a profile, and the PosStep_MRev has been modified
if((STPOSMOVE_getStatus(stObj->posMoveHandle) == ST_MOVE_IDLE)
&& (gMotorVars.PosStepInt_MRev != 0 || gMotorVars.PosStepFrac_MRev != 0)) {

// Get the configuration for SpinTAC Position Move
STPOSMOVE_setCurveType(stObj->posMoveHandle, gMotorVars.SpinTAC.PosMoveCurveType);
STPOSMOVE_setPositionStep_mrev(stObj->posMoveHandle, gMotorVars.PosStepInt_MRev,

gMotorVars.PosStepFrac_MRev);
STPOSMOVE_setVelocityLimit(stObj->posMoveHandle,

_IQmpy(gMotorVars.MaxVel_krpm, _IQ24(ST_SPEED_PU_PER_KRPM)));
STPOSMOVE_setAccelerationLimit(stObj->posMoveHandle,

_IQmpy(gMotorVars.MaxAccel_krpmps, _IQ24(ST_SPEED_PU_PER_KRPM)));
STPOSMOVE_setDecelerationLimit(stObj->posMoveHandle,

_IQmpy(gMotorVars.MaxDecel_krpmps, _IQ24(ST_SPEED_PU_PER_KRPM)));
STPOSMOVE_setJerkLimit(stObj->posMoveHandle,

_IQ20mpy(gMotorVars.MaxJrk_krpmps2, _IQ20(ST_SPEED_PU_PER_KRPM)));
// Enable the SpinTAC Position Profile Generator
STPOSMOVE_setEnable(stObj->posMoveHandle, true);
// clear the position step command
gMotorVars.PosStepInt_MRev = 0;
gMotorVars.PosStepFrac_MRev = 0;

}

STPOSMOVE_run(stObj->posMoveHandle);
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13.3.5 Troubleshooting SpinTAC Position Move

13.3.5.1 Position Profile Limits
There are some combinations of limits that will not produce a valid profile. This will only happen when very
small limits are provided to SpinTAC Position Move.
• If the velocity limit is set below 0.001 pu/s, the profile is not guaranteed.

This can result in the motor not moving due to a minimal velocity limit or an error condition. This can
also result in the motor moving in the opposite direction of intended motion; this is due to mathematical
overflow. There are cases where setting a velocity limit less than 0.001 pu/s will generate a valid profile
and any profile with a velocity limit greater than or equal to 0.001 pu/s will be valid.

13.3.5.2 ERR_ID
ERR_ID provides an error code for users. A list of errors defined in SpinTAC Position Move and the
solutions for these errors are shown in Table 13-2.

Table 13-2. SpinTAC Position Move ERR_ID Code

ERR_ID Problem Solution
1 Invalid sample time value Set cfg.T_sec within (0, 0.01)
2 Invalid system maximum velocity value Set cfg.VelMax within [0.002, 1]
10 Invalid system maximum acceleration value Set cfg.AccMax within [0.002, 120]

Set cfg.DecMax within [0.002, 120] and cfg.DecMax /11 Invalid system maximum deceleration value cfg.AccMax within [1, 10]
12 Invalid system maximum jerk value Set cfg.JrkMax within [0.001, 2000]
13 Invalid position rollover bound value Set cfg.ROMax_mrev within [2, 100]

Invalid mechanical revolution [MRev] to [pu]14 Set cfg.mrev_TO_pu within [0.008, 1]ratio value
32 Invalid axis ID Set cfg.Axis within {ST_AXIS0, ST_AXIS1}

1001 Invalid velocity limit value Set VelLim within (0, cfg.VelMax]
1002 Invalid acceleration limit value Set AccLim within [0.001, cfg.AccMax]

Set DecLim within [0.001, cfg.DecMax], and DecLim / AccLim1003 Invalid deceleration limit value within [1, 10]
1004 Invalid jerk limit value Set JrkLim within [0.0005, cfg.JrkMax]

Set cfg.CurveType within {ST_MOVE_CUR_TRAP,1005 Invalid curve type ST_MOVE_CUR_SCRV, ST_MOVE_CUR_STCRV}
1006 Invalid velocity start value Set cfg.VelStart within [-cfg.VelMax, cfg.VelMax]
1007 Invalid velocity end value Set VelEnd within [-cfg.VelMax, cfg.VelMax]
1008 Invalid position start value Set cfg.PosStart_mrev within [-cfg.ROMax, cfg.ROMax]

Set PosStepInt_mrev within [-2147483647, 2147483647] and1009 Invalid position step value PosStepFrac_mrev within (-1, 1)
1101 Calculation overflow, VelLim out of the range

This error occurs when the fixed-point calculation overflows.1102 Calculation overflow, AccLim out of the range
Typical cases are: VelLim or PosStep is too small. The action

1103 Calculation overflow, DecLim out of the range is to increase the values.
1104 Calculation overflow, JrkLim out of the range

Set cfg.ProfileType within {ST_POS_MOVE_VEL_TYPE,1105 Invalid profile mode value ST_POS_MOVE_POS_TYPE}
Invalid mode switching from Set the profile to reach zero speed, and then switch to

2001 ST_POS_MOVE_VEL_TYPE to position-controlled profile by setting cfg.ProfileType =
ST_POS_MOVE_POS_TYPE ST_POS_MOVE_POS_TYPE

4001 Invalid SpinTAC license Use the chip with valid license for SpinTAC
Use a chip with a valid ROM version or use the SpinTAC4003 Invalid ROM Version library that is compatible with the current ROM version.
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13.4 InstaSPIN-MOTION Sequence Planning
SpinTAC Velocity Plan is a motion sequence planner. This allows you to build the motion sequence of
your application without constructing a finite state machine. SpinTAC Velocity Plan contains many
advanced features to enable complex finite state machines. It features conditional transitions allowing your
motor to transition to one of many possible states. It also features variables that can be used to interface
with external components (like sensors or actuators) or used as internal counters (to track the number of
events within a particular state). SpinTAC Velocity Plan can be configured at run-time and can switching
between multiple state machines.

SpinTAC Plan can work in either a position solution or a velocity solution. The features and functionality of
SpinTAC Plan is the same. The only difference is during configuration for SpinTAC Position Plan there are
some additional fields that need to be configured.

13.4.1 SpinTAC Velocity Plan Elements
SpinTAC Velocity Plan features elements that work together to generate a motion sequence. The different
elements are: States, Transitions, Conditions, Variables, and Actions. Each of these elements is
configured through separate API calls. The API details can be found in Section 3.5

13.4.1.1 States
States describe the steady operation of the profile. The user specifies the end speed (SpinTAC Velocity
Plan) or position step (SpinTAC Position Plan) and the minimum time that SpinTAC Velocity Plan should
remain in a state before transitioning to another state. In the example of a washing machine the states are
defined as: Idle, Fill, Agitate CW, Agitate CCW, Drain, and Spin.

13.4.1.2 Transitions
Transitions define the allowable moves between states. They establish the connections between the
states. Transitions allow the move between states to occur if a condition has been fulfilled. The user
specifies the initial and target states, the profile limits, and the conditions to be evaluated prior to the
transition.

13.4.1.3 Conditions
Conditions provide logical checks within transitions or action. A transition or action may have a maximum
of two conditions. The condition(s) must be satisfied before the motor can transition from one state to the
next or for the action to occur. To determine whether a condition is satisfied, a variable is compared
against a specific value or value range. This returns a true or false value based on the criteria.

13.4.1.4 Variables
Variables allow SpinTAC Velocity Plan to interact with the rest of the project. There are three types of
variables in SpinTAC Velocity Plan: input, output, and input-output. Input variables are used to receive
values from outside SpinTAC Velocity Plan, and to evaluate conditions. Output variables are used to
interact with the rest of the system. Output variables can be modified by SpinTAC Velocity Plan, but will
not be used by SpinTAC Velocity Plan to check conditions. Note: The user must write the code that
performs the event associated with the output variable (e.g., open a valve). Input-output variables are
typically used as counters or timers and are used by actions or conditions.

13.4.1.5 Actions
Actions change the value of variables. Actions set a variable equal to a value, or add a value to a variable.
Actions may take place within a specified state, or when SpinTAC VelocityPlan enters or exits that state.
Actions may have associated conditions. This allows an action to occur only when the condition is
satisfied. If an action is configured as an ENTER action, SpinTAC Plan will start evaluating the conditions
of that action upon entering the state. The action will take place once, only after the conditions are
satisfied. Similarly, if an action is configured as an EXIT action, SpinTAC Plan will start evaluating the
conditions of that action when leaving the state. When the conditions are satisfied, the actions take place
once.
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13.4.2 SpinTAC Velocity Plan Element Limits
SpinTAC Velocity Plan does not have a maximum number of elements that can be configured. The limit is
based on the amount of memory that you would like to commit to the configuration of SpinTAC Velocity
Plan. This is done in order to be both efficient as to how SpinTAC Velocity Plan is using the system
memory and be flexible to allow for custom configurations of the element. Each element of SpinTAC
Velocity Plan has a different memory foot print. These are collected in Table 13-3.

Table 13-3. Memory Requirements for SpinTAC Velocity Plan Elements

SpinTAC Velocity Plan (double SpinTAC Position Plan (double
Plan Element words) words)

Actions 5 5
Conditions 3 3
Variables 2 2

Transitions 5 7
States 4 7

This additional flexibility requires you to declare a configuration array whose address needs to be passed
into SpinTAC Velocity Plan. This configuration array needs to be sized according to how many elements
are in your Plan. Table 13-3 provides the memory requirements for each element. It is a best practice to
declare enumerations for the Plan elements that you wish to use. This makes it simple to calculate the
amount of memory that is required for the configuration array.

13.4.2.1 Example of Sizing SpinTAC Velocity Plan Configuration Array
Our example state machine features the following elements:
• 4 Actions
• 3 Conditions
• 3 Variables
• 6 Transitions
• 3 States

This will require 83 double words of configuration space. This value is calculated from the above number
of elements and the memory usage contained in Table 13-3.

4 Actions * 5 Double Words = 20 Double Words
3 Conditions * 3 Double Words = 9 Double Words
3 Variables * 2 Double Words = 6 Double Words
6 Transitions * 5 Double Words = 30 Double Words
3 States * 4 Double Words = 12 Double Words

Adding this together
20 + 9 + 6 + 30 + 12 = 83 Double Words

The declaration of the SpinTAC Velocity Plan configuration array should be as follows
uint32_t stVelPlanCfgArray[83];

An additional example can be found in the project Lab 6c, Motion Sequence Real World Example:
Washing Machine. This also provides an excellent example of how to use enumerations in order to
simplify the sizing of the SpinTAC Velocity Plan configuration array.

To size the configuration array for SpinTAC Position Plan you would need to follow the same procedure as
outlined above, but use the memory usage for SpinTAC Position Plan.
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13.4.3 SpinTAC Velocity Plan Example: Washing Machine Agitation
Another example to introduce the basic elements of SpinTAC Velocity Plan is the agitation stage of a
washing machine. The agitation cycle is a basic motion profile. In this example SpinTAC Velocity Plan
does not interface to any external sensors or valves and has no conditional transitions. This motion
sequence can easily be implemented in SpinTAC Velocity Plan. Figure 13-3 shows the state transition
map for the washing machine agitation.

Figure 13-3. State Transition Map of Example Washing Machine Agitation

The washing machine agitation has two stages: Idle and Wash. The washing machine will stay in the idle
state until the start button is pushed. Once the start button is pushed the machine will go into the wash
stage where it will agitate between a positive and a negative speed until the washing machine agitation
state machine is told to stop.

Figure 13-6 describes the motor velocity during the entire washing machine motion sequence, but it can
also be used to describe the motor velocity during the washing machine agitation motion sequence. Refer
to the wash stage section of Figure 13-6 and you should see the motor velocity run in the positive
direction followed by the negative direction. This represents the washing machine agitation stage.

13.4.4 SpinTAC Velocity Plan Example: Garage Door
An example to introduce the basic elements of SpinTAC Plan is a garage door system. The garage door is
a basic motion profile that includes conditional transitions, variables, and actions. This introduces all of the
different components of SpinTAC Velocity Plan. This motion sequence can be easily implemented in
SpinTAC Velocity Plan. Figure 13-4 shows the state transiton map of the example garage door.
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Figure 13-4. State Transition Map of Example Garage Door

The garage door has three stages: Idle, Up, and Down. The garage door will stay in the idle state until the
Button is pressed. Once the Button is pressed, the garage door will transition either Up or Down
depending on the current position. If the Button is pressed while the garage door is transitioning up or
down, it will change direction.

13.4.5 SpinTAC Velocity Plan Example: Washing Machine
A great example of the use for SpinTAC Velocity Plan is in a washing machine. A washing machine has a
complex motion sequence. In this example, SpinTAC Velocity Plan interfaces to sensors and valves, and
has conditional state transitions. This entire motion sequence can be easily implemented in SpinTAC
Velocity Plan. Figure 13-5 shows the state transition map for the washing machine.
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Figure 13-5. State Transition Map of Example Washing Machine

The washing machine has five stages: Idle, Fill, Wash, Drain, and Dry.

The washing machine stays in idle state until the start button is pushed. Once the start button is pressed,
it will enter the fill stage and the agitation counter is set to the configured value, representing the number
of agitation cycles to be performed.

Upon entering the fill stage, the water fill valve is open. A water level sensor is used to indicate when the
tub is full of water. When the water is filled, the water fill valve is closed and the application goes into the
wash stage.

In the wash stage, the motor agitates between a positive speed and a negative speed until the agitation
counter reaches 0. Then it goes into drain stage.

When entering the drain stage, the drain valve is opened. A drain sensor is used to indicate when the
water is drained. When the water is finished draining, the drain valve is turned closed, and it enters the dry
stage.

In dry stage, the motor spins at a certain speed for a configured time. Once the time elapses, it will enter
idle stage. At this point the operation is finished.

Figure 13-6 describes the motor velocity profile during the washing machine motion sequence. The motor
will wait at 0 RPM until the fill stage is complete. At this point it will go through 20 agitation cycles
oscillating between 250 RPM and -250 RPM. After the 20 agitations, the motor will return to 0 RPM until
the water has finished draining from the washing machine. Upon exiting the drain stage, the motor will
spin up to 2000 RPM in order to dry the clothes. At the conclusion of the dry stage, the motor will return to
0 RPM and the idle state.
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Figure 13-6. Velocity Profile During Example Washing Machine

13.4.6 SpinTAC Position Plan Example: Vending Machine
An example for the use of SpinTAC Position Plan is a vending machine. In this example the vending
machine rotates in a circle and will only vend one item at a time. The state transition map for this example
is in Figure 13-7.
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Figure 13-7. State Transition Map of Example Vending Machine

In this example the vending machine will display one item until the user presses the Forward Button
(FwdButton). Once that button is detected the vending machine will advance one item and display the next
item that is can vend.

When the user removes an item from the vending machine, the application will update that item’s
inventory. When the inventory is reduced to zero, the vending machine will skip that state. If all item’s
inventories are reduced to zero, the vending machine will return to the Init state and SpinTAC Position
Plan will stop. This indicates that the vending machine needs to be refilled.

This example of SpinTAC Position Plan is implemented in Lab 13d, Motion Sequence Real World
Example: Vending Machine.

13.5 Software Configuration for SpinTAC Velocity Plan
Configuring SpinTAC Velocity Plan requires seven steps. Lab 6c — Motion Sequence Real World
Example: Washing Machine — is an example project that implements the steps required to use SpinTAC
Velocity Plan. The header file spintac_velocity.h, included in MotorWare, allows you to quickly include the
SpinTAC components in your project.
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13.5.1 Include the Header File
This should be done with the rest of the module header file includes. In Lab 6c example project this file is
included in the spintac_velocity.h header file. For your project, this step can be completed by including
spintac_velocity.h.

#include "sw/modules/spintac/src/32b/spintac_vel_plan.h"

13.5.2 Define the Size of the Configuration Array
This should be done with the rest of the MACRO defines. In the Lab 6c example project, this is done at
the top of the main source file. Typically it is a best practice to use enumerations to define and label the
states in your Plan. This allows you to easily size the configuration array to meet your application
requirements. In the Lab 6c example project this step is done for you. Sizing the configuration array for
your motion sequence is covered in Section 13.4.2.

#define ST_VELPLAN_CFG_ARRAY_DWORDS ((ST_VEL_PLAN_ACT_DWORDS * 6) + \
(ST_VEL_PLAN_COND_DWORDS * 4) + \
(ST_VEL_PLAN_VAR_DWORDS * 5) + \
(ST_VEL_PLAN_TRAN_DWORDS * 7) + \
(ST_VEL_PLAN_STATE_DWORDS * 6))

13.5.3 Declare the Global Structure
This should be done with the global variable declarations in the main source file. In the Lab 6c project, this
structure is included in the ST_Obj structure that is declared as part of the spintac_velocity.h header file.

ST_Obj st_obj; // The SpinTAC Object
ST_Handle stHandle; // The SpinTAC Handle
unsigned long gWaterLevel = 0; // Stores the water level in the washer
_iq gVelPanVar[ST_PLAN_MAX_VAR_NUM]; // Stores the values of SpinTAC Plan variables
// Configuration array for SpinTAC Plan
uint32_t stVelPlanCfgArray[ST_VELPLAN_CFG_ARRAY_DWORDS];

This example is if you do not wish to use the ST_Obj structure that is declared in the spintac_velocity.h
header file.

ST_VelPlan_t stVelPlan; //The SpinTAC Plan Object
ST_VELPLAN_Handle stVelPlanHandle; // The SpinTAC Plan Handle
uint32_t gWaterLevel = 0; // Stores the water level in the washer
_iq gVelPanVar[ST_PLAN_MAX_VAR_NUM]; // Stores the values of SpinTAC Plan variables
// Configuration array for SpinTAC Plan
uint32_t stVelPlanCfgArray[ST_VELPLAN_CFG_ARRAY_DWORDS];

13.5.4 Initialize the Configuration Variables
This should be done in the main function of the project ahead of the forever loop. This will load all of the
default values into SpinTAC Velocity Plan. This step can be completed by running the function ST_init that
is declared in the spintac_velocity.h header file and the function ST_setupVelPlan that is declared in the
main.c. If you do not wish to use these two functions, the code example below can be used to configure
the SpinTAC Velocity Plan component. This example loads the washing machine profile that is discussed
in Section 13.4.5. For more information about the SpinTAC Plan API, see Section 3.5.3.1.

// init the ST VelPlan object
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stVelPlanHandle = STVELPLAN_init(&stVelPlan, sizeof(ST_VelPlan_t));

// Pass the configuration array pointer into SpinTAC Velocity Plan
// Parameters: handle, pointer to array, size of array, number of actions, number of
conditions, number of variables, number of transitions, number of states
STVELPLAN_setCfgArray(stVelPlanHandle, &stVelPlanCfgArray[0], sizeof(stVelPlanCfgArray), 6, 4,
5, 7, 6);

// Establish the Velocity, Acceleration, and Jerk Maximums
_iq velMax = STVELMOVE_getVelocityMaximum(stVelMoveHandle);
_iq accMax = STVELMOVE_getAccelerationMaximum(stVelMoveHandle);
_iq jrkMax = STVELMOVE_getJerkMaximum(stVelMoveHandle);

// Configure SpinTAC Velocity Plan: Sample Time, VelMax, AccMax, DecMax, JrkMax, LoopENB
STVELPLAN_setCfg(stVelPlanHandle, _IQ24(ST_SPEED_SAMPLE_TIME),

velMax, accMax, jrkMax, FALSE);
// Configure halt state: VelEnd, AccMax, JrkMax, Timer
STVELPLAN_setCfgHaltState(stVelPlanHandle, 0, accMax, jrkMax, 1000L);

//Example: STVELPLAN_addCfgState(handle, VelSetpoint[pups], StateTimer[ticks]);
//StateIdx0: Idle
STVELPLAN_addCfgState(stVelPlanHandle, 0, 2000L);
// StateIdx1: Fill
STVELPLAN_addCfgState(stVelPlanHandle, 0, 2000L);
// StateIdx2: AgiCW
STVELPLAN_addCfgState(stVelPlanHandle, _IQ24(0.25 * ST_SPEED_PU_PER_KRPM), 200L);
// StateIdx3: AgiCCW
STVELPLAN_addCfgState(stVelPlanHandle, _IQ24(-0.25 * ST_SPEED_PU_PER_KRPM), 200L);
// StateIdx4: Drain
STVELPLAN_addCfgState(stVelPlanHandle, 0, 2000L);
// StateIdx5: Dry
STVELPLAN_addCfgState(stVelPlanHandle, _IQ24(2 * ST_SPEED_PU_PER_KRPM), 2000L);

//Example: STVELPLAN_addCfgVar(handle, VarType, InitialValue);
// VarIdx0: FillSensor {0: not filled; 1: filled}
STVELPLAN_addCfgVar(stVelPlanHandle, ST_VAR_IN, 0);
// VarIdx1: DrainSensor {0: not drained; 1: drained}
STVELPLAN_addCfgVar(stVelPlanHandle, ST_VAR_IN, 0);
// VarIdx2: CycleCounter
STVELPLAN_addCfgVar(stVelPlanHandle, ST_VAR_INOUT, 0);
// VarIdx3: FillValve {0: valve closed; 1: valve open}
STVELPLAN_addCfgVar(stVelPlanHandle, ST_VAR_OUT, 0);
// VarIdx4: DrainValve {0: valve closed; 1: valve open}
STVELPLAN_addCfgVar(stVelPlanHandle, ST_VAR_OUT, 0);

//Example: STVELPLAN_addCfgCond(handle, VarIdx, Comparison, Value1, Value2)
// CondIdx0: WaterFull Water is filled
STVELPLAN_addCfgCond(stVelPlanHandle, 0, ST_COMP_EQ, 1, 0);
// CondIdx0: AgiNotDone SgitCycleCounter is greater than 0 (not done)
STVELPLAN_addCfgCond(stVelPlanHandle, 2, ST_COMP_GT, 0, 0);
// CondIdx1: AgiDone SgitCycleCounter is equal or less than 0 (done)
STVELPLAN_addCfgCond(stVelPlanHandle, 2, ST_COMP_ELW, 0, 0);
// CondIdx0: WaterEmpty Water is drained
STVELPLAN_addCfgCond(stVelPlanHandle, 1, ST_COMP_EQ, 1, 0);
// Note: Set Value2 to 0 if Comparison is for only one value.

//Example: STVELPLAN_addCfgTran(handle, FromState, ToState, CondOption, CondIdx1,
CondiIdx2, AccLim[pups2], JrkLim[pups3]);
// From IdleState to FillState
STVELPLAN_addCfgTran(stVelPlanHandle, 0, 1, ST_COND_NC, 0, 0, _IQ24(0.1), _IQ20(1));
// From FillState to AgiState1
STVELPLAN_addCfgTran(stVelPlanHandle, 1, 2, ST_COND_FC, 0, 0, _IQ24(0.1), _IQ20(1));
// From AgiState1 to AgiState2
STVELPLAN_addCfgTran(stVelPlanHandle, 2, 3, ST_COND_NC, 0, 0, _IQ24(1), _IQ20(1));
// From AgiState2 to AgiState1
STVELPLAN_addCfgTran(stVelPlanHandle, 3, 2, ST_COND_FC, 1, 0, _IQ24(1), _IQ20(1));
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// From AgiState2 to DrainState
STVELPLAN_addCfgTran(stVelPlanHandle, 3, 4, ST_COND_FC, 2, 0, _IQ24(0.1), _IQ20(1));
// From DrainState to DryState
STVELPLAN_addCfgTran(stVelPlanHandle, 4, 5, ST_COND_FC, 3, 0, _IQ24(0.2), _IQ20(1));
// From DryState to IdleState
STVELPLAN_addCfgTran(stVelPlanHandle, 5, 0, ST_COND_NC, 0, 0, _IQ24(0.1), _IQ20(1));
// Note: set CondIdx1 to 0 if CondOption is ST_COND_NC; set CondIdx2 to 0 if CondOption is
ST_COND_NC or ST_COND_FC

//Example: STVELPLAN_addCfgAct(handle, StateIdx, VarIdx, Operation, Value, ActionTriger);
// In IdleState, preset AgiCycleCounter to 20
STVELPLAN_addCfgAct(stVelPlanHandle, 0, ST_COND_NC, 0, 0, 2, ST_ACT_EQ, 20, ST_ACT_EXIT);
// Decrease AgiCycleCounter by 1 every time enters AgiState1
STVELPLAN_addCfgAct(stVelPlanHandle, 2, ST_COND_NC, 0, 0, 2, ST_ACT_ADD, -1, ST_ACT_ENTR);
// In FillState, set VarIdx3 to 1 to open FillValve
STVELPLAN_addCfgAct(stVelPlanHandle, 1, ST_COND_NC, 0, 0, 3, ST_ACT_EQ, 1, ST_ACT_ENTR);
// In FillState, set VarIdx3 to 0 to close FillValve when FillSensor = 1
STVELPLAN_addCfgAct(stVelPlanHandle, 1, ST_COND_NC, 0, 0, 3, ST_ACT_EQ, 0, ST_ACT_EXIT);
// In DrainState, set VarIdx4 to 1 to open DrainValve
STVELPLAN_addCfgAct(stVelPlanHandle, 4, ST_COND_NC, 0, 0, 4, ST_ACT_EQ, 1, ST_ACT_ENTR);
// In DrainState, set VarIdx4 to 0 to close DrainValve when DrainSensor = 1
STVELPLAN_addCfgAct(stVelPlanHandle, 4, ST_COND_NC, 0, 0, 4, ST_ACT_EQ, 0, ST_ACT_EXIT);

// If there was an error during the configuration, force Plan into the Halt State
if(STVELPLAN_getErrorID(stVelPlanHandle) != FALSE) {

// Configure FSM: Ts, VelMax, AccMax, DecMax, JrkMax, LoopENB
STVELPLAN_setCfg(stVelPlanHandle, _IQ24(ST_SPEED_SAMPLE_TIME),

velMax, accMax, jrkMax, FALSE);
// Configure halt state: VelEnd, AccMax, JrkMax, Timer
STVELPLAN_setCfgHaltState(stVelPlanHandle, 0, accMax, jrkMax, 1000L);}

13.5.5 Call SpinTAC Velocity Plan
This can be done in the main loop. This code example includes the code required to interface with the fill
and drain valves and sensors. It will also update the water level as part of the washing machine
simulation.

if(gMotorVars.VelPlanRun == TRUE) {
STVELPLAN_setEnable(stVelPlanHandle, TRUE);

}
// Run SpinTAC Velocity Plan
STVELPLAN_run(stVelPlanHandle);

// Update sensor values for SpinTAC Plan
// Get values for washer valve components
STVELPLAN _getVar(stVelPlanHandle, 3, &gVelPanVar[3]); // Get value of FillVale
STVELPLAN _getVar(stVelPlanHandle, 3, &gVelPanVar[4]); // Get value of DrainValve
if(gVelPanVar[3] == TRUE) {

// if FillValve is open, increase water level
gWaterLevel += 1;

}
else if(gVelPanVar[4] == TRUE) {

// if DrainValve is open, decrease water level
gWaterLevel -= 1;

}
if(gWaterLevel >= WASHER_MAX_WATER_LEVEL) {

// if water level is greater than maximum, set fill sensor to true
gWaterLevel = WASHER_MAX_WATER_LEVEL;
gVelPanVar[0] = TRUE;

}
else {

// if water level is less than maximum, set FillSensor to false
gVelPanVar[0] = FALSE;

}
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if(gWaterLevel <= WASHER_MIN_WATER_LEVEL) {
// if water level is at the minimum & set DrainSensor to true
gWaterLevel = WASHER_MIN_WATER_LEVEL;
gVelPanVar[1] = TRUE;

}
else {

// if water level is greater than minimum, set DrainSensor to false
gVelPanVar[1] = FALSE;

}
// Set values for washer sensor components
STVELPLAN _getVar(stVelPlanHandle, 0, gVelPanVar[0]); // Set value for FillSensor
STVELPLAN _getVar(stVelPlanHandle, 1, gVelPanVar[1]); // Set value for DrainSensor

if(STVELPLAN_getStatus(stVelPlanHandle) != ST_PLAN_IDLE) {
// Send the profile configuration to SpinTAC Move
gMotorVars.SpeedRef_krpm = _IQmpy(STVELPLAN_getVelocitySetpoint(stVelPlanHandle),

_IQ24(ST_SPEED_KRPM_PER_PU));
gMotorVars.MaxAccel_krpmps = _IQmpy(STVELPLAN_getAccelerationLimit(stVelPlanHandle),

_IQ24(ST_SPEED_KRPM_PER_PU));
gMotorVars.MaxJrk_krpmps2 = _IQ20mpy(STVELPLAN_getJerkLimit(stVelPlanHandle),

_IQ20(ST_SPEED_KRPM_PER_PU));
}
else {

STVELPLAN_setEnable(stVelPlanHandle, FALSE);
}

13.5.6 Call SpinTAC Velocity Plan Tick
This should be done in the main ISR. This function needs to be called at the proper decimation rate for
this component. The decimation rate is established by ST_ISR_TICKS_PER_SPINTAC_TICK; for more
information, see Section 4.7.1.4.

// Run SpinTAC Velocity Plan Tick
STVELPLAN_runTick(stVelPlanHandle);

13.5.7 Update SpinTAC Velocity Plan with SpinTAC Velocity Move Status
This should be done in the main ISR. This function needs to be called when SpinTAC Velocity Move has
completed a profile. This is to alert SpinTAC Velocity Plan that we have reached the goal speed that it
provided to SpinTAC Velocity Move. This should be placed after the function call for SpinTAC Velocity
Move.

// Update Plan when the profile is completed
if(STVELMOVE_getDone(stVelMoveHandle) != FALSE) {
STVELPLAN_setUnitProfDone(stVelPlanHandle, TRUE);
}
else {

STVELPLAN_setUnitProfDone(stVelPlanHandle, FALSE);
}

13.6 Troubleshooting SpinTAC Velocity Plan

13.6.1 ERR_ID
ERR_ID provides an error code for users to identify the specific SpinTAC Velocity Plan function that
caused the error. A list of ERR_IDs defined in SpinTAC Velocity Plan is shown in Table 13-4.

469SPRUHJ1F–January 2013–Revised July 2014 Trajectory Planning
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


Troubleshooting SpinTAC Velocity Plan www.ti.com

Table 13-4. SpinTAC Velocity Plan ERR_ID

ERR_ID Plan Function
3000 STVELPLAN_addCfgCond
3001 STVELPLAN_delCfgCond
3002 STVELPLAN_setCfgCond
3003 STVELPLAN_getCfgCond
3004 STVELPLAN_addCfgTran
3005 STVELPLAN_delCfgTran
3006 STVELPLAN_setCfgTran
3007 STVELPLAN_getCfgTran
3008 STVELPLAN_addCfgAct
3009 STVELPLAN_delCfgAct
3010 STVELPLAN_setCfgAct
3011 STVELPLAN_getCfgAct
3012 STVELPLAN_addCfgVar
3013 STVELPLAN_delCfgVar
3014 STVELPLAN_setCfgVar
3015 STVELPLAN_getCfgVar
3016 STVELPLAN_addCfgState
3017 STVELPLAN_delCfgState
3018 STVELPLAN_setCfgState
3019 STVELPLAN_setVar
3020 STVELPLAN_getVar
3021 STVELPLAN_setCfg
3022 STVELPLAN_setCfgHaltState
3023 STVELPLAN_setCfgArray
3024 STVELPLAN_addCfgVarCond
3025 STVELPLAN_delCfgVarCond
3026 STVELPLAN_setCfgVarCond
3027 STVELPLAN_getCfgVarCond

STVELPLAN_run (Invalid SpinTAC license. Use the chip with valid license for4001 SpinTAC.)
STVELPLAN_run (Invalid ROM version. Use a chip with a valid ROM version4003 or use the SpinTAC library that is compatible with the current ROM version.)

13.6.2 Configuration Errors
The configuration errors are reported via the CfgError structure included in the main SpinTAC Velocity
Plan structure. This structure contains elements that store additional information about the error. The
elements are described below:
• CfgError.ERR_idx: Identifies the instance of configured element at which the error occurred.
• CfgError.ERR_code: Identifies the specific error condition that caused the error.

The ERR_code for a specific condition remains the same for all Plan functions. A list of ERR_codes and
conditions defined in SpinTAC Velocity Plan is shown in Table 13-5.

Table 13-5. SpinTAC Velocity Plan ERR_code

ERR_code Description Solution
Place SpinTAC Plan into the idle status prior to running the1 SpinTAC Plan is running configuration.

2 Maximum State number exceeded The maximum number of States has been configured.
3 Maximum Condition number exceeded The maximum number of Conditions has been configured.
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Table 13-5. SpinTAC Velocity Plan ERR_code (continued)
ERR_code Description Solution

4 Maximum Transition number exceeded The maximum number of Transitions has been configured.
5 Maximum Action number exceeded The maximum number of Actions has been configured.
6 Maximum Variable number exceeded The maximum number of Variables has been configured.
7 Invalid sample time value Set sample time, cfg.T_sec, within (0, 0.01].
8 Invalid VelMax value Choose VelMax within (0, 1].
9 Invalid AccMax value Choose AccMax within [0.001, 120].
10 Invalid JrkMax value Choose JrkMax within [0.0005, 2000].
11 Invalid LoopENB value Choose LoopENB within { false, true }.
12 Invalid VelEnd value Choose VelEnd within [(0, VelMax].
13 Invalid AccLim value Choose AccLim within [0.001, AccMax].
14 Invalid JrkLim value Choose JrkLim within [0.0005, JrkMax].
15 Invalid Timer_tick value Choose a positive integer value.
16 Invalid State index The index should be for a configured State index.
17 Invalid Condition index The index should be for a configured Condition index.
18 Invalid Transition index The index should be for a configured Transition index.
19 Invalid Action index The index should be for a configured Action index.
20 Invalid Variable index The index should be for a configured Variable index.
21 Invalid Variable type Choose variable type from the values in ST_PlanVar_e.
22 Invalid value of Comparison Choose comparison from the values in ST_PlanComp_e.
23 Invalid Operation Choose operation from the values in ST_PlanActOptn_e.
24 Invalid AndOr value Choose AndOr from the values in ST_PlanCond_e.

ST_VAR_OUT Variables cannot have a value set to them .
25 Improper Variable type ST_VAR_OUT Variables cannot be used in Conditions .

ST_VAR_IN Variables cannot be used in Actions.
26 Improper values in Comparison Value1 should be less than or equal to Value2.

In Transitions FromState cannot be equal to ToState, and27 Improper State index these States must be equal to a configured State.
In Transitions: CondIdx1 cannot be equal to CondIdx2, and28 Improper Condition index in Transition these Conditions must be equal to a configured Condition

29 Improper EnterExit value Choose EnterExit from the values in ST_PlanActTrgr_e
The AndOr value conflicts with the value of VarIdx. When

30 Improper AndOr during Variable deletion deleting a Variable, it causes a configuration error in a
Transition.

Cannot delete Variable as an Action depends Remove Variable from Action configuration before deleting31 on it the Variable.
Plan Configuration array declared is too small Remove an Element from the configuration or declare a larger37 for plan elements configuration array.
Cannot delete a State as a Transition Remove State from Transition configuration before deleting38 depends on it the State.
Cannot delete a State as an Action depends Remove State from Action configuration before deleting the39 on it State.

Variable comparison conditions cannot have comparison40 Improper values for variable comparison enum greater than ST_COMP_ELW.
Ensure that the variable indexes passed to the function are41 Cannot compare a variable to itself different and valid.

Cannot get a variable based Condition from Pass an index that is known to contain a variable based42 the index of a value based type of Condition Condition.
Cannot delete a Condition as a Transition Remove Condition from Transition configuration before43 depends on it deleting the Condition.
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13.7 Software Configuration for SpinTAC Position Plan
Configuring SpinTAC Position Plan requires seven steps. Lab 13d – Motion Sequence Real World
Example: Vending Machine is an example project that implements the steps required to use SpinTAC
Position Plan. The header file spintac_position.h, included in MotorWare, allows you to quickly include the
SpinTAC components in your project.

13.7.1 Include the Header File
This should be done with the rest of the module header file includes. In the Lab 13d example project this
file is included in the spintac_position.h header file. For your project, this step can be completed by
including spintac_position.h.

#include "sw/modules/spintac/src/32b/spintac_pos_plan.h"

13.7.2 Define the Size of the Configuration Array
This should be done with the rest of the MACRO defines. In the Lab 13d example project this is done at
the top of the main source file. Typically it is a best practice to use enumerations to define and label the
states in your Plan. This allows you to easily size the configuration array to meet your application
requirements. In the Lab 13d example project this step is done for you. Sizing the configuration array for
your motion sequence is covered in Section 13.4.2.

#define ST_POSPLAN_CFG_ARRAY_DWORDS ((ST_POS_PLAN_ACT_DWORDS * 4) + \
(ST_POS_PLAN_COND_DWORDS * 6) + \
(ST_POS_PLAN_VAR_DWORDS * 6) + \
(ST_POS_PLAN_TRAN_DWORDS * 6) + \
(ST_POS_PLAN_STATE_DWORDS * 5))

13.7.3 Declare the Global Structure
This should be done with the global variable declarations in the main source file. In the Lab 13d project
this structure is included in the ST_Obj structure that is declared as part of the spintac_position.h header
file.

ST_Obj st_obj; // The SpinTAC Object
ST_Handle stHandle; // The SpinTAC Handle
_iq gVendFwdButton = 0; // Button to advance the displayed item
_iq gVendSelectButton = 0; // Button to vend the displayed item
uint16_t gVendInventory[4] = {VEND_INITIAL_INVENTORY, VEND_INITIAL_INVENTORY,

VEND_INITIAL_INVENTORY, VEND_INITIAL_INVENTORY};
VEND_State_e gVendAvailableItem = VEND_ITEM0; // Current item available to vend
// Configuration array for SpinTAC Position Plan
uint32_t stPosPlanCfgArray[ST_POSPLAN_CFG_ARRAY_DWORDS];

This example is if you do not wish to use the ST_Obj structure that is declared in the spintac_position.h
header file.
ST_PosPlan_t stPosPlan; //The SpinTAC Position Plan Object
ST_POSPLAN_Handle stPosPlanHandle; //The SpinTAC Position Plan Handle
_iq gVendFwdButton = 0; // Button to advance the displayed item
_iq gVendSelectButton = 0; // Button to vend the displayed item
uint16_t gVendInventory[4] = {VEND_INITIAL_INVENTORY, VEND_INITIAL_INVENTORY,

VEND_INITIAL_INVENTORY, VEND_INITIAL_INVENTORY};
VEND_State_e gVendAvailableItem = VEND_ITEM0; // Current item available to vend
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// Configuration array for SpinTAC Position Plan
uint32_t stPosPlanCfgArray[ST_POSPLAN_CFG_ARRAY_DWORDS];

13.7.4 Initialize the Configuration Variables
This should be done in the main function of the project ahead of the forever loop. This will load all of the
default values into SpinTAC Position Plan. This step can be completed by running the function ST_init that
is declared in the spintac_position.h header file and by running the function ST_setupPosPlan that is
declared in the main.c. If you do not wish to use this function, the code example below can be used to
configure the SpinTAC Position Plan component. This example loads the vending machine profile that is
discussed in Section 13.4.6. For more information about the SpinTAC Plan API, see Figure 3-19.

// Pass the configuration array pointer into SpinTAC Velocity Plan
STPOSPLAN_setCfgArray(stPosPlanHandle, &stPosPlanCfgArray[0],

sizeof(stPosPlanCfgArray), 4, 6, 6, 6, 5);

// Establish the Velocity, Acceleration, Deceleration, and Jerk Maximums
velMax = STPOSMOVE_getVelocityMaximum(stPosMoveHandle);
accMax = STPOSMOVE_getAccelerationMaximum(stPosMoveHandle);
decMax = STPOSMOVE_getDecelerationMaximum(stPosMoveHandle);
jrkMax = STPOSMOVE_getJerkMaximum(stPosMoveHandle);

// Establish the Velocity, Acceleration, Deceleration, and Jerk Limits
velLim = _IQ24(0.1 * ST_SPEED_PU_PER_KRPM);
accLim = _IQ24(0.5 * ST_SPEED_PU_PER_KRPM);
decLim = _IQ24(0.5 * ST_SPEED_PU_PER_KRPM);
jrkLim = _IQ24(1.0 * ST_SPEED_PU_PER_KRPM);

// Configure SpinTAC Velocity Plan: Sample Time, VelMax, AccMax, DecMax, JrkMax, LoopENB
STPOSPLAN_setCfg(stPosPlanHandle, _IQ24(ST_SAMPLE_TIME), velMax, accMax, decMax, jrkMax, false);
// Configure halt state: PosStepInt, PosStepFrac, VelMax, AccMax, JrkMax, Timer
STPOSPLAN_setCfgHaltState(stPosPlanHandle, 0, 0, velMax, accMax, jrkMax, 1000L);

//Example: STPOSPLAN_addCfgState(handle, PosStepInt[MRev], PosStepFrac[MRev],
StateTimer[ticks]);
STPOSPLAN_addCfgState(stPosPlanHandle, 0, 0, 200L); // StateIdx0: Init
STPOSPLAN_addCfgState(stPosPlanHandle, 0, _IQ24(0.25), 200L); // StateIdx1: Item0
STPOSPLAN_addCfgState(stPosPlanHandle, 0, _IQ24(0.25), 200L); // StateIdx2: Item1
STPOSPLAN_addCfgState(stPosPlanHandle, 0, _IQ24(0.25), 200L); // StateIdx2: Item2
STPOSPLAN_addCfgState(stPosPlanHandle, 0, _IQ24(0.25), 200L); // StateIdx2: Item3

//Example: STPOSPLAN_addCfgVar(handle, VarType, InitialValue);
STPOSPLAN_addCfgVar(stPosPlanHandle, ST_VAR_INOUT, 0); // VarIdx0: FwdButton
STPOSPLAN_addCfgVar(stPosPlanHandle, ST_VAR_IN, 10); // VarIdx1: Item0Inv
STPOSPLAN_addCfgVar(stPosPlanHandle, ST_VAR_IN, 10); // VarIdx2: Item1Inv
STPOSPLAN_addCfgVar(stPosPlanHandle, ST_VAR_IN, 10); // VarIdx3: Item2Inv
STPOSPLAN_addCfgVar(stPosPlanHandle, ST_VAR_IN, 10); // VarIdx4: Item3Inv
STPOSPLAN_addCfgVar(stPosPlanHandle, ST_VAR_IN, 40); // VarIdx5: TotalInv

//Example: STPOSPLAN_addCfgCond(handle, VarIdx, Comparison, Value1, Value2)
// CondIdx0: Fwd Button Pressed
STPOSPLAN_addCfgCond(stPosPlanHandle, 0, ST_COMP_EQ, 1, 0);
// CondIdx1: Item0 Empty
STPOSPLAN_addCfgCond(stPosPlanHandle, 1, ST_COMP_ELW, 0, 0);
// CondIdx2: Item1 Empty
STPOSPLAN_addCfgCond(stPosPlanHandle, 2, ST_COMP_ELW, 0, 0);
// CondIdx3: Item2 Empty
STPOSPLAN_addCfgCond(stPosPlanHandle, 3, ST_COMP_ELW, 0, 0);
// CondIdx4: Item3 Empty
STPOSPLAN_addCfgCond(stPosPlanHandle, 4, ST_COMP_ELW, 0, 0);
// CondIdx5: TotalInv Empty
STPOSPLAN_addCfgCond(stPosPlanHandle, 5, ST_COMP_ELW, 0, 0);

//Example: STPOSPLAN_addCfgTran(handle, FromState, ToState, CondOption, CondIdx1, CondIdx2,
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VelLim[pups], AccLim[pups2], DecLim[pups2], JrkLim[pups3]);
// NOTE: The deceleration limit must be set between the following bounds [acceleration limit,
10*acceleration limit]
// From Init to Item1
STPOSPLAN_addCfgTran(stPosPlanHandle, 0, 2, ST_COND_OR, 0, 2, velLim, accLim, decLim, jrkLim);
// From Item3 to Init
STPOSPLAN_addCfgTran(stPosPlanHandle, 1, 0, ST_COND_FC, 5, 0, velLim, accLim, decLim,
jrkLim);
// From Item0 to Item1
STPOSPLAN_addCfgTran(stPosPlanHandle, 1, 2, ST_COND_OR, 0, 1, velLim, accLim, decLim,
jrkLim);
// From Item1 to Item2
STPOSPLAN_addCfgTran(stPosPlanHandle, 2, 3, ST_COND_OR, 0, 2, velLim, accLim, decLim,
jrkLim);
// From Item2 to Item3
STPOSPLAN_addCfgTran(stPosPlanHandle, 3, 4, ST_COND_OR, 0, 3, velLim, accLim, decLim,
jrkLim);
// From Item3 to Item0
STPOSPLAN_addCfgTran(stPosPlanHandle, 4, 1, ST_COND_OR, 0, 4, velLim, accLim, decLim,
jrkLim);

//Example: STPOSPLAN_addCfgAct(handle, StateIdx, VarIdx, Operation, Value, ActionTriger);
// In Item1, clear Fwd Button
STPOSPLAN_addCfgAct(stPosPlanHandle, 1, ST_COND_NC, 0, 0, 0, ST_ACT_ENTR);
// In Item2, clear Fwd Button
STPOSPLAN_addCfgAct(stPosPlanHandle, 2, ST_COND_NC, 0, 0, 0, ST_ACT_ENTR);
// In Item3, clear Fwd Button
STPOSPLAN_addCfgAct(stPosPlanHandle, 3, ST_COND_NC, 0, 0, 0, ST_ACT_ENTR);
// In Item4, clear Fwd Button
STPOSPLAN_addCfgAct(stPosPlanHandle, 4, ST_COND_NC, 0, 0, 0, ST_ACT_ENTR);

if(STPOSPLAN_getErrorID(stPosPlanHandle) != false) {
// Configure FSM: Ts, VelMax, AccMax, DecMax, JrkMax, LoopENB
STPOSPLAN_setCfg(stPosPlanHandle, _IQ24(ST_SAMPLE_TIME), velMax, accMax, decMax, jrkMax,

false);
// Configure halt state: PosStepInt[MRev], PosStepFrac[MRev], VelMax, AccMax, JrkMax, Timer
STPOSPLAN_setCfgHaltState(stPosPlanHandle, 0, 0, velMax, accMax, jrkMax, 1000L);

}

13.7.5 Call SpinTAC Position Plan
This can be done in the main loop. This code example includes the code required to interface with the fill
and drain valves and sensors. It will also update the item inventory as part of the vending machine
simulation.

// SpinTAC Position Plan
if(gPosPlanRunFlag == ST_PLAN_STOP

&& gMotorVars.SpinTAC.PosPlanRun == ST_PLAN_START) {
if(STPOSMOVE_getDone(stPosMoveHandle) == true) {

if(STPOSPLAN_getErrorID(stPosPlanHandle) != false) {
STPOSPLAN_setEnable(stPosPlanHandle, false);
STPOSPLAN_setReset(stPosPlanHandle, true);
gMotorVars.SpinTAC.PosPlanRun = gPosPlanRunFlag;

}
else {

STPOSPLAN_setEnable(stPosPlanHandle, true);
STPOSPLAN_setReset(stPosPlanHandle, false);
gPosPlanRunFlag = gMotorVars.SpinTAC.PosPlanRun;

}
}

}
if(gMotorVars.SpinTAC.PosPlanRun == ST_PLAN_STOP) {

STPOSPLAN_setReset(stPosPlanHandle, true);
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gPosPlanRunFlag = gMotorVars.SpinTAC.PosPlanRun;
}
if(gPosPlanRunFlag == ST_PLAN_START

&& gMotorVars.SpinTAC.PosPlanRun == ST_PLAN_PAUSE) {
STPOSPLAN_setEnable(stPosPlanHandle, false);
gPosPlanRunFlag = gMotorVars.SpinTAC.PosPlanRun;

}
if(gPosPlanRunFlag == ST_PLAN_PAUSE

&& gMotorVars.SpinTAC.PosPlanRun == ST_PLAN_START) {
STPOSPLAN_setEnable(stPosPlanHandle, true);
gPosPlanRunFlag = gMotorVars.SpinTAC.PosPlanRun;

}

// if we have selected an item from the machine
if(gVendSelectButton == 1) {

if(STPOSPLAN_getStatus(stPosPlanHandle) != ST_PLAN_IDLE) {
// decrease our inventory
gVendInventory[gVendAvailableItem - 1]--;

}
// toggle the select button off
gVendSelectButton = 0;

}

// Update variables passed into Plan
STPOSPLAN_setVar(stPosPlanHandle, VEND_Fwd, gVendFwdButton);
STPOSPLAN_setVar(stPosPlanHandle, VEND_Item0Inv, gVendInventory[VEND_ITEM0 - 1]);
STPOSPLAN_setVar(stPosPlanHandle, VEND_Item1Inv, gVendInventory[VEND_ITEM1 - 1]);
STPOSPLAN_setVar(stPosPlanHandle, VEND_Item2Inv, gVendInventory[VEND_ITEM2 - 1]);
STPOSPLAN_setVar(stPosPlanHandle, VEND_Item3Inv, gVendInventory[VEND_ITEM3 - 1]);
STPOSPLAN_setVar(stPosPlanHandle, VEND_TotalInv,

gVendInventory[0] + gVendInventory[1] + gVendInventory[2] + gVendInventory[3]);

// Run SpinTAC Position Plan
STPOSPLAN_run(stPosPlanHandle);

// display the selected item
if(STPOSPLAN_getCurrentState(stPosPlanHandle) > 0) {

gVendAvailableItem = (VEND_State_e)STPOSPLAN_getCurrentState(stPosPlanHandle);
}
else {

gVendAvailableItem = VEND_ITEM0;
}

// Update variables passed out of Plan
if(STPOSPLAN_getFsmState(stPosPlanHandle) == ST_FSM_STATE_STAY) {

STPOSPLAN_getVar(stPosPlanHandle, VEND_Fwd, &gVendFwdButton);
}

if(STPOSPLAN_getStatus(stPosPlanHandle) != ST_PLAN_IDLE) {
// Send the profile configuration to SpinTAC Position Profile Generator
STPOSPLAN_getPositionStep_mrev(stPosPlanHandle,

(_iq24 *)&gMotorVars.PosStepInt_MRev, (_iq24 *)&gMotorVars.PosStepFrac_MRev);
gMotorVars.MaxVel_krpm = _IQmpy(STPOSPLAN_getVelocityLimit(stPosPlanHandle),

_IQ24(ST_SPEED_KRPM_PER_PU));
gMotorVars.MaxAccel_krpmps =_IQmpy(STPOSPLAN_getAccelerationLimit(stPosPlanHandle),

_IQ24(ST_SPEED_KRPM_PER_PU));
gMotorVars.MaxDecel_krpmps =_IQmpy(STPOSPLAN_getDecelerationLimit(stPosPlanHandle),

_IQ24(ST_SPEED_KRPM_PER_PU));
gMotorVars.MaxJrk_krpmps2 = _IQ20mpy(STPOSPLAN_getJerkLimit(stPosPlanHandle),

_IQ20(ST_SPEED_KRPM_PER_PU));
}
else {

if(gPosPlanRunFlag == ST_PLAN_START
&& gMotorVars.SpinTAC.PosPlanRun == ST_PLAN_START)

{
gMotorVars.SpinTAC.PosPlanRun = ST_PLAN_STOP;
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gPosPlanRunFlag = gMotorVars.SpinTAC.PosPlanRun;
}

}

13.7.6 Call SpinTAC Position Plan Tick
This should be done in the main ISR. This function needs to be called at the proper decimation rate for
this component. The decimation rate is established by ISR_TICKS_PER_SPINTAC_TICK; for more
information, see Section 4.7.1.4.

// Run SpinTAC Position Plan Tick
STPOSPLAN_runTick(stPosPlanHandle);

13.7.7 Update SpinTAC Position Plan with SpinTAC Position Move Status
This should be done in the main ISR. This function needs to be called when SpinTAC Position Move has
completed a profile. This is to alert SpinTAC Position Plan that we have reached the goal position that it
provided to SpinTAC Position Plan. This should be placed after the function call for SpinTAC Position
Move.

// Update SpinTAC Position Plan when the profile is completed
if(STPOSMOVE_getDone(stPosMoveHandle) != false) {

STPOSPLAN_setUnitProfDone(stPosPlanHandle, true);
}
else {

STPOSPLAN_setUnitProfDone(stPosPlanHandle, false);
}

13.8 Troubleshooting SpinTAC Position Plan

13.8.1 ERR_ID
ERR_ID provides an error code for users to identify the specific SpinTAC Position Plan function that
caused the error. A list of ERR_IDs defined in SpinTAC Position Plan is shown in Table 13-6.

Table 13-6. SpinTAC Position Plan ERR_ID

ERR_code Plan Function
3000 Configuration error in STPOSPLAN_addCfgCond
3001 Configuration error in STPOSPLAN_delCfgCond
3002 Configuration error in STPOSPLAN_setCfgCond
3003 Configuration error in STPOSPLAN_getCfgCond
3004 Configuration error in STPOSPLAN_addCfgTran
3005 Configuration error in STPOSPLAN_delCfgTran
3006 Configuration error in STPOSPLAN_setCfgTran
3007 Configuration error in STPOSPLAN_getCfgTran
3008 Configuration error in STPOSPLAN_addCfgAct
3009 Configuration error in STPOSPLAN_delCfgAct
3010 Configuration error in STPOSPLAN_setCfgAct
3011 Configuration error in STPOSPLAN_getCfgAct
3012 Configuration error in STPOSPLAN_addCfgVar
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Table 13-6. SpinTAC Position Plan ERR_ID (continued)
ERR_code Plan Function

3013 Configuration error in STPOSPLAN_delCfgVar
3014 Configuration error in STPOSPLAN_setCfgVar
3015 Configuration error in STPOSPLAN_getCfgVar
3016 Configuration error in STPOSPLAN_addCfgState
3017 Configuration error in STPOSPLAN_delCfgState
3018 Configuration error in STPOSPLAN_setCfgState
3019 Configuration error in STPOSPLAN_setVar
3020 Configuration error in STPOSPLAN_getVar
3021 Configuration error in STPOSPLAN_setCfg
3022 Configuration error in STPOSPLAN_setCfgHaltState
3023 Configuration error in STPOSPLAN_setCfgArray
3024 Configuration error in STPOSPLAN_addCfgVarCond
3025 Configuration error in STPOSPLAN_delCfgVarCond
3026 Configuration error in STPOSPLAN_setCfgVarCond
3027 Configuration error in STPOSPLAN_getCfgVarCond

STPOSPLAN_run (Invalid SpinTAC license. Use the chip with valid license for4001 SpinTAC.)
STPOSPLAN_run (Invalid ROM version. Use a chip with a valid ROM version or use4003 the SpinTAC library that is compatible with the current ROM version.)

13.8.2 Configuration Errors
The configuration errors are reported via the CfgError structure included in the main SpinTAC Position
Plan structure. This structure contains elements that store additional information about the error. The
elements are described below:
• CfgError.ERR_idx: Identifies the instance of configured element at which the error occurred.
• CfgError.ERR_code: Identifies the specific error condition that caused the error.

The ERR_code for a specific condition remains the same for all Plan functions. A list of ERR_codes and
conditions defined in SpinTAC Position Plan is shown in Table 13-7.

Table 13-7. SpinTAC Position Plan ERR_code

ERR_code Description Solution
Place SpinTAC Plan into the idle status prior to running the1 SpinTAC Plan is running configuration.

2 Maximum State number exceeded The maximum number of States has been configured.
3 Maximum Condition number exceeded The maximum number of Conditions has been configured.
4 Maximum Transition number exceeded The maximum number of Transitions has been configured.
5 Maximum Action number exceeded The maximum number of Actions has been configured.
6 Maximum Variable number exceeded The maximum number of Variables has been configured.
7 Invalid sample time value Set sample time, cfg.T_sec, within (0, 0.01].
8 Invalid VelMax value Choose VelMax within (0, 1].
9 Invalid AccMax value Choose AccMax within [0.001, 120].
10 Invalid JrkMax value Choose JrkMax within [0.0005, 2000].
11 Invalid LoopENB value Choose LoopENB within { false, true }.
12 Invalid VelEnd value Choose VelEnd within (0, VelMax].
13 Invalid AccLim value Choose AccLim within [0.001, AccMax].
14 Invalid JrkLim value Choose JrkLim within [0.0005, JrkMax].
15 Invalid Timer_tick value Choose a positive integer value.
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Table 13-7. SpinTAC Position Plan ERR_code (continued)
ERR_code Description Solution

16 Invalid State index The index should be for a configured State index.
17 Invalid Condition index The index should be for a configured Condition index.
18 Invalid Transition index The index should be for a configured Transition index.
19 Invalid Action index The index should be for a configured Action index.
20 Invalid Variable index The index should be for a configured Variable index.
21 Invalid Variable type Choose variable type from the values in ST_PlanVar_e.
22 Invalid value of Comparison Choose comparison from the values in ST_PlanComp_e.
23 Invalid Operation Choose operation from the values in ST_PlanActOptn_e.
24 Invalid AndOr value Choose AndOr from the values in ST_PlanCond_e.

ST_VAR_OUT Variables cannot have a value set to them.
25 Improper Variable type ST_VAR_OUT Variables cannot be used in Conditions.

ST_VAR_IN Variables cannot be used in Actions.
26 Improper values in Comparison Value1 should be less than or equal to Value2.

In Transitions FromState cannot be equal to ToState, and27 Improper State index these States must be equal to a configured State.
In Transitions: CondIdx1 cannot be equal to CondIdx2, and28 Improper Condition index in Transition these Conditions must be equal to a configured Condition.

29 Improper EnterExit value Choose EnterExit from the values in ST_PlanActTrgr_e.
The AndOr value conflicts with the value of VarIdx. When

30 Improper AndOr during Variable deletion deleting a Variable, it causes a configuration error in a
Transition.

Cannot delete Variable as an Action depends Remove Variable from Action configuration before deleting31 on it the Variable.
32 Invalid VelLim value Choose VelLim within (0, VelMax).

Choose DecLim within [0.001, DecMax] and keep the ratio33 Invalid DecLim value DecLim/AccLim within [0.1, 10].
Choose DecLim within [0.001, 120] and keep the ratio34 Invalid DecMax value DecLim/AccLim within [0.1, 10].

Invalid PosStepInt_mrev or Choose PosStepInt_mrev within [-2, 2] and35 PosStepFrac_mrev for HaltState PosStepFrac_mrev within (-1, 1).
Invalid PosStepInt_mrev or Choose PosStepInt_mrev within [-2147483647, 2147483647]36 PosStepFrac_mrev for State and PosStepFrac_mrev within (-1, 1).
Plan Configuration array declared is too small Remove an Element from the configuration or declare a larger37 for plan elements configuration array.
Cannot delete a State as a Transition Remove State from Transition configuration before deleting38 depends on it the State.
Cannot delete a State as an Action depends Remove State from Action configuration before deleting the39 on it State.

Variable comparison conditions cannot have comparison40 Improper values for variable comparison enum greater than ST_COMP_ELW.
Ensure that the variable indexes passed to the function are41 Cannot compare a variable to itself different and valid.

Cannot get a variable based Condition from Pass an index that is known to contain a variable based42 the index of a value based type of Condition Condition.
Cannot delete a Condition as a Transition Remove Condition from Transition configuration before43 depends on it deleting the Condition.
The first State must have a PosStep of 0 Configure the first State to have PosStepInt and PosStepFrac44 [MRev] both equal to 0.
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13.9 Conclusion
InstaSPIN-MOTION provides an easy way to design trajectory changes and motion sequences. This
allows you to quickly implement your application. It allows you to get your motion sequence designed and
tested very quickly. SpinTAC Velocity Move generates constraint-based, time-optimal, repeatable
trajectory profiles. These profiles are triggered by SpinTAC Velocity Plan which implements the application
motion sequence.
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Chapter 14
SPRUHJ1F–January 2013–Revised July 2014

Managing Full Load at Startup, Low-Speed and Speed
Reversal

The FAST algorithm included in InstaSPIN-FOC has certain aspects that need to be considered while
operating at low speeds with mechanical load attached to the motor shaft. This document describes
several aspects of typical motor control problems while operating sensorless control during low speed
operation. Comprehensive lab results for the performance of FAST are documented in the
TMS320F2806xF InstaSPIN-FOC Technical Reference Manual (SPRUHI9), the TMS320F2805xF
InstaSPIN-FOC Technical Reference Manual (SPRUHW0), and the TMS320F2802xF InstaSPIN-FOC
Technical Reference Manual (SPRUHP4).

The motor control scenarios to be covered in this section are:
1. Low-speed operation with full load
2. Speed reversal with full load
3. Motor startup with full load
4. Rapid acceleration from standstill with full load
5. Overloading and motor overheating.

The system used in these experiments includes the following components:
• Texas Instruments C2000 Processor: TMS320F28069F with InstaSPIN-FOC Version 1.6
• Texas Instruments Inverter Model: TMDSHVMTRPFCKIT Version 1.1
• IPM Motor with the following characteristics:

– Rated Voltage = 300 V
– Rated Current = 4 A
– Motor Maximum Current = 6 A
– Stator Resistance (Rs) = 2.6 Ω
– Stator Quadrature Inductance (Ls_q) = 13.5 mH
– Stator Direct Inductance (Ls_d) = 11.5 mH
– Rotor Flux (ψ) = 0.5 V/Hz = 0.08 Wb
– Rated Torque = 1.9 N.m

• Magtrol Dynamometer Model: HD-715-8N
• Magtrol Dynamometer Controller Model: DSP6001

The motor under test is coupled to a Dynamometer as shown in Figure 14-1.
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Figure 14-1. Photograph of Test Fixture
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14.1 Low-Speed Operation with Full Load
In order to operate at low speeds, first let us discuss the low speed operation with no mechanical load.
The lowest speed we can control with no load can be seen visually in the motor rotation as well as in the
current waveform. For example, running the motor under test down to 30 RPM, or 2 Hz, is possible with a
speed variation of 30 ±3 RPM. However, in order to get to a speed fairly constant we must have the speed
controller responsive enough to compensate against speed variations.

14.1.1 Low Speed with Full Load Considerations
In summary the following considerations are needed when operating at low speeds:
• Enable offsets recalibration; described in Section 14.1.1.1.
• Enable stator Rs recalibration; described in Section 14.1.1.2.
• Disable forced angle; described in Section 14.1.1.3.
• Tune speed controller to avoid motor stall; described in Section 14.1.1.4.
• Tune voltage feedback circuit; described in Section 14.1.1.5.

14.1.1.1 Enable Offsets Recalibration
For low speed and full load performance to be as expected, the offsets for the currents and voltages need
to be well calibrated. In order to do this, the offset recalibration in the controller object should be enabled
prior to running the motor in closed loop. The following code example enables the offsets recalibration.

// enable automatic calculation of bias values
CTRL_setFlag_enableOffset(ctrlHandle, TRUE);

Keep in mind that the enable-function of the offsets recalibration must be called prior to enabling the
controller, which is done by calling the CTRL_setFlag_enableCtrl(ctrlHandle, TRUE) function.

Offsets recalibration is critical for low speed performance.
Offsets recalibration is critical for low speed performance, especially the voltage offsets, since in the low
speed range, the voltage feedback from the motor tend to be very small values, so having well calibrated
offsets is a must.

14.1.1.2 Enable Stator Rs Recalibration
Another important factor to consider when operating in low speeds is the motor model represented in
software. The stator resistance plays a significant role in the accuracy of the estimated parameters. Hence
Rs recalibration should be enabled prior to enabling the controller. The following code example enabled
Rs recalibration.

// enable Rs recalibration
EST_setFlag_enableRsRecalc(obj->estHandle,TRUE);

14.1.1.3 Disable Forced Angle
When running in low speeds, forced-angle must be turned off in order to allow the estimator to converge
to the estimated values with no intervention of an external angle being forced. In order to disable forced-
angle the following code example can be used:

Forced-angle must be turned off to allow estimator to converge.

// disable the forced angle
EST_setFlag_enableForceAngle(obj->estHandle,FALSE);
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14.1.1.4 Tune Speed Controller to Avoid Motor Stall
In order to continue driving the motor at low speeds, without stalling the motor, user must tune the speed
controller so that the reaction of the speed controller is fast enough to prevent the motor from completely
stopping during torque transients. The following functions can be used to update the speed controller
inside of InstaSPIN:

_iq New_Kp_spd;
_iq New_Ki_spd;

// set the kp and ki speed controller gains
CTRL_setKp(handle,CTRL_Type_PID_spd, New_Kp_spd);
CTRL_setKi(handle,CTRL_Type_PID_spd, New_Ki_spd);

14.1.1.5 Tune Voltage Feedback Circuit
Low speed operation assumes that the back EMF voltage coming back from the motor will be very small.
Since the FAST algorithm requires the phase voltages as inputs to the algorithm, it is encouraged to have
the maximum number of ADC bits per volt. For example, if the maximum input voltage to the system is
400 V, then it is highly recommended to have a voltage feedback that only goes up to that voltage, so
when low voltage is present in the motor's back EMF (i.e. during low speed operation) the maximum
number of bits are present in the ADC converter output so that the estimation has more information to
support the motor model.

In order to illustrate the importance of having the maximum number of bits per volt, consider the
TMDSHVMTRPFCKIT Version 1.1 for the voltage feedback as shown in Figure 14-2.

Figure 14-2. Voltage Feedback Circuit of High-Voltage Kit (TMDSHVMTRPFCKIT)

483SPRUHJ1F–January 2013–Revised July 2014 Managing Full Load at Startup, Low-Speed and Speed Reversal
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


Parallel

1
USER _ VOLTAGE _FILTER _POLE _Hz 383.8 Hz

2 R C
= =

´ p ´ ´

2 1
Parallel

2 1

R R
R 8.823 k

R R

C 47 nF

´
= = W

+

=

max 1 2

2

ADC _IN R R
USER _ ADC _FULL _ SCALE _ VOLTAGE _ V 112.2 V

R

´ +

= =

Parallel

1
USER _ VOLTAGE _FILTER _POLE _Hz 375.5 Hz

2 R C
= =

´ p ´ ´

2 1
Parallel

2 1

R R
R 9.017 k

R R

C 47 nF

´
= = W

+

=

max 1 2

2

ADC _IN R R
USER _ ADC _FULL _ SCALE _ VOLTAGE _ V 409.9 V

R

´ +

= =

Low-Speed Operation with Full Load www.ti.com

This circuit with jumpers J1, J2, J3 and J4 open (see section M5 of the PCB), would give us a maximum
Vfb-Bus of 3.3 V when DC-BUS is at 409.9 V. This means that this setup provides the best ADC
resolution for motors with input of 409.9 V. However if the motor's operating voltage is only 100 V, then
the ADC resolution to represent the motor's internal voltage will be very small, in fact, around ¼ of what it
could be. If the motor's operating voltage is known to be 100 V, then the above circuit should be changed
so that a maximum Vfb-Bus of 3.3 V is present in the ADC pin when DC-BUS is 100 V.

Scale voltage feedback circuit to maximize ADC 3.3V input range.
Changing the voltage feedback value affects two parameters configured in user.h. For example in the
above schematic, with J1, J2, J3 and J4 open, the following parameters in user.h are defined:

#define USER_ADC_FULL_SCALE_VOLTAGE_V (409.9)
#define USER_VOLTAGE_FILTER_POLE_Hz (375.5)

This can be derived as follows (J1, J2, J3 and J4 open):
ADC_INmax = 3.3 V
R1 = 300 kΩ + 820 kΩ = 1120 kΩ
R2 = 9.09 kΩ

With J1, J2, J3 and J4 shorted, the following parameters in user.h are redefined:

#define USER_ADC_FULL_SCALE_VOLTAGE_V (112.2)
#define USER_VOLTAGE_FILTER_POLE_Hz (383.8)

This can be derived as follows:
ADC_INmax = 3.3 V
R1 = 300 kΩ
R2 = 9.09 kΩ

(79)

14.1.2 Low Speed With Full Load Transient Examples
After considering the above requirements, let us look at a few examples of low speed response with the
motor under test using a dynamometer.
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14.1.2.1 4-Hz, No-Load to Full-Load Transient
Figure 14-3 shows the current waveform under these conditions:
• Dynamometer = 1.9 N·m (full load)
• Speed Controller = 4Hz (60 RPM ± 1 RPM)

Figure 14-3. 4-Hz, No-Load to Full-Load Transient Plot

A torque transient of the motor's rated torque of 1.9 N·m is applied to the motor shaft, resulting in a
current of 4 A. The electrical frequency as seen in the oscilloscope plot is 4 Hz. For a 4-pole pair motor,
this frequency results in a speed of 60 ± 1 RPM once it has stabilized. Notice that the time where the load
is applied might be different compared with the time of the capture variables. However the conditions of
applied torque shown in the scope plot compared to captured variables is identical. The difference in time
is due to the fact that the capture current was captured in a different test although having the same
parameters.

FAST stands for Flux, Angle, Speed and Torque. Figure 14-4, Figure 14-5, Figure 14-6, and Figure 14-7
show the behavior of the FAST algorithm and how the torque step command affects the FAST output
variables.

FAST variables are consistent even with a 100% step- load.
Figure 14-4 is the estimated flux of the motor. It is actually the flux linkage provided by FAST, and it is
shown to be fairly constant. The variation of this flux is a result of different aspects such as motor
parameter accuracy as well as how well the magnetic circuit of the motor is designed for a particular load.
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Figure 14-4. Flux Plot

Figure 14-5, Figure 14-6, and Figure 14-7 show the flux angle provided by FAST. As can be seen, the
angle is tracked through the increase of motor load, and also the decrease of motor load.

Figure 14-5. Angle Plot

If the angle is zoomed in where the motor is loaded, it can be seen how the rate of change of the angle
changes to a very low rate of change, and once the speed controller corrects for this, the rate of change is
picked back up to the commanded speed.
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Figure 14-6. Zoom-in on Angle Plot - Motor Loaded

The same behavior can be seen when the load is removed from the motor shaft. The speed is increased
due to the torque command provided by the speed controller, and after some time, the speed controller
regulates the speed down to the 4 Hz (60 RPM) command.

Figure 14-7. Zoom-in on Angle Plot - Load Removed

It is worth mentioning that the purpose of showing the speed variation is not to show the performance of
the speed controller. In fact, the speed controller has nothing to do with the FAST estimator. Figure 14-8
shows how the estimator tracks the speed of the motor even when the torque demand stalls the motor for
a small period of time.
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Figure 14-8. Speed Plot

Figure 14-9 shows the torque signal produced by FAST. This torque signal is useful to know the
instantaneous torque on the motor shaft, and calculate motor loading without a torque sensor. This high
bandwidth signal shows tracking of the torque even when steps are commanded.

Figure 14-9. Torque Plot

Also, we plot the Iq current waveform to show the field oriented control performance that FAST allows
when torque steps are commanded. As can be seen in the current plot for Iq (Figure 14-10), the response
to the current demand can follow a step as in the example, where a step load is applied to the shaft. The
angle tracking capability of the estimator allows this step response in the Iq controller. You might also
notice that the torque curve is not as flat as the current curve. This is due to the variation of the flux
linkage seen in the previous flux plot, possibly due to a mismatch on the motor model compared to what
the reality of the model is.
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Figure 14-10. Iq Current Plot

In the previous example it can be seen that when the load changes so drastically, the speed of the motor
can fall all the way to zero. This response can be improved with the speed controller loop itself, but the
point of the test is to show how the variables provided by FAST are consistent and valid even with a 100%
step on the load command.

14.1.2.2 2-Hz, No-Load to Full-Load Transient
Figure 14-11 shows the current waveform under these conditions:
• Dynamometer = 1.9 N·m (full load)
• Speed Controller = 2 Hz (30 RPM ± 3 RPM)

Figure 14-11. 2-Hz, No-Load to Full-Load Transient Plot

A torque transient of the motor's rated torque of 1.9 N·m is applied to the motor shaft, resulting in a
current of 4 A. The electrical frequency as seen in the oscilloscope plot is 2.2 Hz, which is about 3 RPM
higher than commanded by the speed reference. For a 4-pole pair motor, this frequency results in a speed
of 30 ± 3 RPM once it has stabilized.
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The challenge we run into when using hysteresis dynamometers is that the torque production and the
detent torque present in the dynamometer shaft produce an instantaneous torque higher than the
commanded torque, causing the motor to be stalled from time to time. This is the main reason why we
increased the torque command of the dynamometer at a lower rate compared to the previous example, to
avoid the dynamometer to produce more torque than commanded when the motor is stalled temporarily.

Figure 14-12, Figure 14-13, Figure 14-14, and Figure 14-15 show the behavior of the FAST algorithm.
FAST stands for Flux, Angle, Speed and Torque, and this is how the torque step command affects those
variables. The first variable is the flux linkage of the motor.

Figure 14-12. Flux Plot

Figure 14-13, Figure 14-14, and Figure 14-15 show the flux angle provided by FAST. As was seen with
the previous test, the angle is tracked through the increase of motor load, and also the decrease of motor
load.

Figure 14-13. Angle Plot

Zooming in the angle plot, we can see transients when the motor is being loaded, and when the load is
removed. As we get lower in speed, the quality of the signals, combined with the torque pulsations of the
hysteresis dynamometer, makes the angle not look like a perfect saw tooth. Even then, the angle
information provides good enough information to run a full FOC control at 2 Hz and a full load transient.
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Figure 14-14. Zoom-in on Angle Plot - Increased Motor Load

Zooming in when the load is removed from the shaft, we can see an instantaneous angle tracking.

Figure 14-15. Zoom-in on Angle Plot - Decreased Motor Load

The speed plot is shown in Figure 14-16. The target speed is 30 RPM, and we can see higher ripple on
the estimated speed compared to 60 RPM. This is due to the pulsating torque present in the hysteresis
dynamometer and also, the estimated speed output is instantaneous as opposed to every electrical cycle.
So any distortion on the angle ramp will be reflected in a speed oscillation.

FAST variables consistently enable FOC system to apply full torque even with a 100% step-load at
low speeds.
Also, when the load is completely removed, which is done by turning off the dynamometer controller, the
speed estimation follows the real speed even when there is rapid acceleration, as shown in Figure 14-11.
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Figure 14-16. Speed Plot

The torque signal is shown in Figure 14-17. Oscillations are due to the low frequency of the estimator, as
well as the torque pulsations present in the hysteresis dynamometer at low speeds.

Figure 14-17. Torque Plot

The current controller follows the curve of the commanded torque as can be seen in Figure 14-18, taking
the current to the rated 4 A in Iq.
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Figure 14-18. Iq Current Plot

14.2 Speed Reversal with Full Load
In order to do a speed reversal, either from high or low positive speed to high or low negative speed, at
any acceleration rate, it is important to consider the same points we considered for the torque transient
response example.

14.2.1 Low Speed with Full Load Speed Reversal Considerations
These considerations are required for this mode of operation:
• Enable offsets recalibration; described in Section 14.1.1.1.
• Enable stator Rs recalibration; described in Section 14.1.1.2.
• Disable forced angle; described in Section 14.1.1.3.
• Tune speed controller to avoid motor stall; described in Section 14.1.1.4.
• Tune voltage feedback circuit; described in Section 14.1.1.5.

14.2.2 Low Speed with Full Load Speed Reversal Examples
Once the above items are covered, let us look at a few examples of speed reversal response with the
motor under test using the dynamometer.

14.2.2.1 From -4 to +4 Hz with Full Load
Figure 14-19 shows the current waveform under these conditions. Notice how the current changes phase
indicating a change in direction.
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Figure 14-19. -4 to +4 Hz with Full Load Plot

The flux estimation can be seen to have a transient when it changes direction, although it stabilizes after a
few seconds. A constantly growing flux can be noticed from the plot shown in Figure 14-20. This can
indicate a slight mismatch between the motor model represented in software compared to the real system.
The error in flux might be due to inaccuracies of the modeled motor compared to the actual motor,
possibly due to overheating or current and voltage sensing tolerances. In cases where the flux is
constantly growing, this might indicate that the stator resistance is converging into a new value due to the
motor load causing the motor to warm up. It is recommended to try the Rs Online feature of InstaSPIN in
such a case. For an example on how to run Rs Online feature, see Chapter 15.

Figure 14-20. Flux Plot

In Figure 14-21, we can see the flux angle changing phases when it is going through zero speed.
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Figure 14-21. Angle Plot

If we zoom-in when the motor is changing direction (Figure 14-22), we can see more clearly how this
transition is done. We can actually see that it changes direction twice. This is because at near zero, the
algorithm tries to find the direction in which the angle is rotating.

Figure 14-22. Zoom-in on Angle Plot

The estimated speed of the motor also shows how the speed when it crosses zero can have some error in
sign (Figure 14-23). This is when it is within ±10 RPM, which translates to ±0.66 Hz.
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Figure 14-23. Speed Plot

The torque signal coming from FAST can be seen continuously growing from -1.9 Nm to +1.9 Nm
(Figure 14-24), with a small overshoot on the positive side. That overshoot might have been the
accumulation of current in the hysteresis dynamometer while going through zero speed, which is an
expected behavior of these types of dynamometers.

Figure 14-24. Torque Plot

The quadrature current, Iq, is displayed in Figure 14-25. It can be seen how this follows a very similar
waveform compared to the estimated torque waveform. Not too much noticeable in this plot, but we can
see that the current is flatter than the torque. This is due to a flux estimation converging to a new value
after some time driving full load.
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Figure 14-25. Iq Current Plot

14.2.2.2 From -2 to +2 Hz with Full Load
Figure 14-26 shows the current waveform under these conditions. Notice how the current changes phase
indicating a change in direction.

Figure 14-26. -2 to +2 Hz with Full Load Plot

In this example the actual speed is about 2.5 Hz (37 RPM), so we have a total error of about 7 RPM in
this example. This error in the speed calculation is due to the error in flux. The error in flux might be due to
inaccuracies of the modeled motor compared to the actual motor, possibly due to overheating or current
and voltage sensing tolerances.

For best speed-reversal performance: enable Offsets and Rs Recal, disable forced angle, tune
speed controller to avoid stalls, tune voltage feedback circuit.
The flux is higher in this test, as shown in Figure 14-27. This again might be a difference in motor model
inaccuracies due to motor overheating after many tests under load.
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Figure 14-27. Flux Plot

The angle can be seen as it changes direction in Figure 14-28.

Figure 14-28. Angle Plot

If we zoom-in on the angle (Figure 14-29), when it changes direction, we can see how FAST provides a
stable angle even when doing speed reversals with full load.
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Figure 14-29. Zoom-in on Angle Plot

The speed has a double change in sign here as well (Figure 14-30), and again this is because at near
zero speed, especially with full load, the speed estimator chases the sign of the speed and in a transient,
we can see how it changes signs from ±10 RPM, or ±0.66 Hz.

Figure 14-30. Speed Plot

The torque estimator provides a clean zero crossing, and final values (Figure 14-31). However, as the
estimation of the torque depends on the estimation of the flux, there is a small offset as the flux changed
as per Figure 14-26 in this example.
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Figure 14-31. Torque Plot

The current, Iq, is also shown in Figure 14-32.

Figure 14-32. Iq Current Plot

14.3 Motor Startup with Full Load
In this section we will discuss a set of considerations to have in order to allow a full load startup with
InstaSPIN and the FAST algorithm. After looking at the consideration we will look at a few practical
examples.

14.3.1 Motor Startup with Full Load Considerations
The considerations discussed in the previous sections also apply to this mode of operation:
• Enable offsets recalibration; described in Section 14.1.1.1.
• Enable stator Rs recalibration; described in Section 14.1.1.2.
• Enable forced angle; described in Section 14.3.1.1.
• Tune speed controller to avoid motor stall; described in Section 14.1.1.4.
• Tune voltage feedback circuit; described in Section 14.1.1.5.
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14.3.1.1 Enable Forced Angle
In order to start up the motor with full load from stand still, the estimator needs an initial rotating angle to
allow some back EMF to be present in the motor, as shown in Figure 14-33. Typically, less than 1
electrical cycle is required for FAST to lock on the real angle. In order to enable a rotating angle, user
must enable the forced angle feature of InstaSPIN. Once the motor has gone through a startup, it is
recommended to disable forced angle so that the motor can go through a speed reversal. However, if the
motor is stalled for a few seconds during any of the low speeds or speed reversal tests, it is recommended
to re-enable the forced angle mode to get out of a stalled motor condition.

Figure 14-33. Enable Forced Angle

• The forced angle is applied to force the estimator's d-axis angle at low rotor speeds. The forced angle
is active from zero to the Fe_min frequency with the default setting of 1 Hz

• Closed loop vector control starts after time T1 by using the angle information from the FAST estimator
output.

• The FAST algorithm converges on the rotor angle within one-cycle of electrical frequency. The FAST
algorithm is stable at all speeds, even at zero speed.

• For smooth transitions when changing speed direction, turn the forced angle off

The following code example enables forced angle prior to enabling the controller.

// enable the forced angle
EST_setFlag_enableForceAngle(obj->estHandle,TRUE);

FAST configuration different for best start-up performance: enable forced angle.

14.3.2 Motor Startup with Full Load Examples
Once the above items are covered, let us look at a few examples of motor startup with full load using the
dynamometer.
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14.3.2.1 From Standstill to 4 Hz with Full Load
Figure 14-34 shows the current waveform under these conditions. Notice how the current grows from 0 A
all the way to 6 A, which is set as the maximum output of the speed controller, or maximum Iq current
controller reference (see max current in Chapter 5). It can also be seen that within one cycle of forced
angle, the motor current goes back to 4 A, which is the rated current to produce full torque. Keep in mind
that in this case the maximum current of the motor is 6 A, while the rated current to produce rated torque
is 4 A.

Figure 14-34. Standstill to 4 Hz with Full Load Plot

Figure 14-35. Speed Controller Cycle

Figure 14-36 is the flux plot, where we can see how it has a transient, and then it stabilizes.
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Figure 14-36. Flux Plot

As far as the angle goes, it can be seen that at the beginning, a forced angle is done for less than one
cycle (Figure 14-37).

Figure 14-37. Angle Plot

In fact if we zoom-in we are able to tell how many cycles, or actually what percentage of one cycle, the
angle was forced. In this example only half of one electrical cycle was used for forced angle.

Typically, less than 1 electrical cycle required to lock on angle.
This can be calculated from Figure 14-38, where a slope of 1 electrical cycle per second is generated,
since the angle increased from 0 to 0.5 in 0.5 seconds.
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Figure 14-38. Zoom-in on Angle Plot

If other frequencies of forced angle are required, user can change the frequency by modifying the
following value in user.h file:

//! \brief Defines the forced angle frequency, Hz
#define USER_FORCE_ANGLE_FREQ_Hz (1.0)

This frequency might need to be changed due to startup time requirements, by providing a faster forced
angle. However, having a faster forced angle requires a faster speed in open loop, which might not be
slow enough to rotate the load in open loop.

The estimated speed tells a lot in this example (Figure 14-39). First, it can be seen that there was no initial
alignment of the motor compared to the forced angle, that's why the speed goes negative for a period of
time. Also, it can be seen that by the time the motor is aligned, there is more current than needed to
speed up the motor to the commanded speed. That is why the speed overshoots so much. Typically, a
maximum of one electrical cycle is needed for the estimator to catch up with the rotor's flux angle. So a
typical maximum of one electrical cycle would be driven in the reverse direction.
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Figure 14-39. Speed Plot

The estimated torque overshoots due to the transient present in the estimated flux, as shown in Figure 14-
40. Although as soon as the estimated angle aligns with the motor angle, this transient is reduced and the
estimated torque stabilizes and matches what the dynamometer controller displays.

Figure 14-40. Torque Plot

The last plot we will show in this example is the current in Iq (Figure 14-41). Recall we have a limitation of
the Iq reference of 6 A, which is the maximum safe current for this motor. It can be seen how this
maximum is reached when starting up, then when there is angle alignment the current goes back to the
rated current of 4 A.
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Figure 14-41. Iq Current Plot

14.3.2.2 From Standstill to 2 Hz with Full Load
Again in Figure 14-42 the current reached the maximum safe current of this motor of 6 A, but this time for
a longer period of time. However, the time in which forced angle is applied is still under one electrical
cycle. It can also be seen that we are approaching the limits of the estimator, as the measured frequency
shows 2.38 Hz, where the commanded speed is 2 Hz, effectively a difference of about 6 RPM.

Figure 14-42. Standstill to 2 Hz with Full Load Plot

The estimated flux shows some error and a transient (Figure 14-43), although is still comparable to what
we got in other tests running at 2 Hz. The difference in flux compared to a rated flux of 0.5 v/Hz is the
reason of the difference of actual electrical frequency compared to estimated electrical frequency.
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Figure 14-43. Flux Plot

The angle estimation shows a forced angle of just under one electrical cycle (Figure 14-44).

Figure 14-44. Angle Plot

Zooming in the angle, it can be seen how the first cycle is less than one second before it changes
frequency (Figure 14-45). Once the motor angle and estimated angle are aligned, the torque production is
much higher, causing a motor acceleration beyond the target speed of 30 RPM. This is why the cycle right
after the forced angle cycle has a much higher frequency than the following cycle.
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Figure 14-45. Zoom-in on Angle Plot

The speed overshoot can be seen in Figure 14-46. It can also be seen that the motor spins backwards for
a small period of time before accelerating to the commanded direction.

Figure 14-46. Speed Plot

The estimated torque in Figure 14-47 shows the same behavior as the previous example: a transient at
the beginning due to the error in the estimated flux, and a steady state error possibly due to
measurements inaccuracies and motor heating up.
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Figure 14-47. Torque Plot

The last plot in this example (Figure 14-48) shows the current Iq, which actually shows a torque
production of over 4 A, generating a higher torque than the previous example.

Figure 14-48. Iq Current Plot

14.4 Rapid Acceleration from Standstill With Full Load
In this section we will discuss a set of considerations to allow a full-load startup with the FAST algorithm
achieving the quickest ramp from standstill to commanded speed. Reduced start-up time is also discussed
in Figure 14-4. The challenges of a full-load fast-ramp at start-up are discussed in this section.

Regardless of the speed controller used, and speed controller gains, there are a few considerations, or
configurations, that need to be taken into account in order to get the motor in closed loop as fast as
possible from the moment the user enables the system. After looking at the considerations we will look at
a few practical examples.

14.4.1 Fastest Motor Startup with Full Load without Motor Alignment Considerations
The considerations discussed in the previous sections also apply to this mode of operation:
• Load valid offsets and disable offset recalibration; described in Section 14.4.1.1.
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• Load valid Rs and disable Rs recalibration; described in Section 14.4.1.2
• Enable forced angle; Section 14.3.1.1.
• Tune speed controller to avoid motor stall; described in Section 14.1.1.4.
• Tune voltage feedback circuit; described in Section 14.1.1.5.

14.4.1.1 Load Valid Offsets and Disable Offset Recalibration
This configuration allows the system to avoid time spent doing the offsets recalibration after the user has
commanded a motor startup. However, since low speed and motor startup requires the offsets to be
correct, the user must load these pre-calibrated offsets prior to the CTRL_setFlag_enableCtrl(ctrlHandle,
TRUE) function. The following code example loads known pre-calculated offsets into the HAL object.

// disable automatic calculation of bias values
CTRL_setFlag_enableOffset(ctrlHandle,FALSE);

// set the current bias
HAL_setBias(halHandle,HAL_SensorType_Current,0,_IQ(I_A_offset));
HAL_setBias(halHandle,HAL_SensorType_Current,1,_IQ(I_B_offset));
HAL_setBias(halHandle,HAL_SensorType_Current,2,_IQ(I_C_offset));

// set the voltage bias
HAL_setBias(halHandle,HAL_SensorType_Voltage,0,_IQ(V_A_offset));
HAL_setBias(halHandle,HAL_SensorType_Voltage,1,_IQ(V_B_offset));
HAL_setBias(halHandle,HAL_SensorType_Voltage,2,_IQ(V_C_offset));

Notice that I_A_offset, I_B_offset, I_C_offset, V_A_offset, V_B_offset and V_C_offset are the pre-
calculated offsets on previous runs of the system. The following example can be used to get these offsets
from the HAL object when they are updated after offsets recalibrations are enabled.

// enable automatic calculation of bias values
CTRL_setFlag_enableOffset(ctrlHandle,TRUE);

// Return the bias value for currents
I_A_offset = HAL_getBias(halHandle,HAL_SensorType_Current,0);
I_B_offset = HAL_getBias(halHandle,HAL_SensorType_Current,1);
I_C_offset = HAL_getBias(halHandle,HAL_SensorType_Current,2);

// Return the bias value for voltages
V_A_offset = HAL_getBias(halHandle,HAL_SensorType_Voltage,0);
V_B_offset = HAL_getBias(halHandle,HAL_SensorType_Voltage,1);
V_C_offset = HAL_getBias(halHandle,HAL_SensorType_Voltage,2);

14.4.1.2 Load Valid Rs and Disable Rs Recalibration
In order to avoid spending time recalibrating the resistance, it is also important to make sure that the
resistance value provided in user.h is accurate, and that the resistance recalibration feature is disabled.
The resistance provided in user.h is shown here:

#define USER_MOTOR_Rs (2.6)
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And the following code example disables Rs recalibration:

EST_setFlag_enableRsRecalc(obj->estHandle,FALSE);

14.4.1.3 Fastest Motor Startup with Full Load without Motor Alignment Example
Figure 14-49 represents one of the phase currents when doing a fast acceleration with no alignment. As
can be seen, the current goes up to the maximum limit for less than one cycle, then it speeds up to the
commanded speed reference of 200 RPM.

Figure 14-49. Fast Acceleration Without Alignment Plot

The flux also has a transient which happens while the estimated angle is not aligned with the actual motor
angle (Figure 14-50), and then after the transient, it stabilizes to a fairly constant value.

Figure 14-50. Flux Plot

The angle can be seen to be forced for the first cycle (Figure 14-51), and then the frequency is rapidly
changed since it is already in closed loop using the estimated angle instead of the forced angle.
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Figure 14-51. Angle Plot

Zooming in to the angle (Figure 14-52) it can be seen that the forced angle lasts less than once electrical
cycle to ramp up to the commanded speed of 200 RPM.

Figure 14-52. Zoom-in on Angle Plot

Due to the initial misalignment, it can be seen that the speed goes negative for a short period of time
(Figure 14-53), and once the estimated angle is aligned with the motor angle, the speed accelerates very
rapidly up to the commanded speed of 200 RPM. In fact, there is an overshoot due to the excess of
current accumulated on the integral portion of the speed controller while the angle was forced.
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Figure 14-53. Speed Plot

We can see the effect of the flux angle error in the torque signal (Figure 14-54), as well as the excess in
current due to the forced angle. After this transient in the flux, the torque signal is accurate and can be
seen constant once the speed has stabilized.

Figure 14-54. Torque Plot

The current Iq has an overshoot of about 0.5 A due to the step command on the speed, as shown in
Figure 14-55. That overshoot can be seen as a small impulse at the beginning, and then it goes down to
the limit of 6 A that we configured in user.h as the motor maximum current. The current goes down to the
rated current value of 4 A to produced full torque after the motor has sped up to the commanded speed
and the estimated flux has stabilized.
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Figure 14-55. Iq Current Plot

As a conclusion of this example we can say that the fastest acceleration we can achieve will depend on
the initial difference between the initial estimated angle and the real value of the motor. This is because
the forced angle feature will be enabled while those angles are aligned, taking a maximum of one
electrical cycle. The electrical cycle of the forced angle provided in user.h has a default frequency of 1 Hz,
so worst case it takes 1 second to speed up from standstill. However, depending on the type of load
present in the motor shaft, this frequency of the forced angle can be changed to a higher frequency,
providing a fastest acceleration from standstill.

14.4.2 Fastest Motor Startup with Full Load with Motor Alignment Considerations
To overcome the initial motor misalignment problem, we will talk about using the Rs recalibration as a tool
to allow a motor alignment prior to running the motor in closed loop. In this example, the Rs recalibration
current is used to rotate the motor shaft to an initial alignment position. The considerations discussed in
the following sections also apply to this mode of operation:
• Load valid offsets and disable offset recalibration; described in Section 14.4.1.1.
• Enable Rs stator recalibration; described in Section 14.1.1.2.
• Maximize current slope; described in Section 14.4.2.1.
• Enable forced angle; Section 14.3.1.1.
• Tune speed controller to avoid motor stall; described in Section 14.1.1.4.
• Tune voltage feedback circuit; described in Section 14.1.1.5.

14.4.2.1 Maximize Current Slope
This consideration is required in this mode of operation since a negative DC current is applied to the
motor in order to recalibrate Rs. This DC current must be removed as fast as possible before running the
motor in closed loop. In order to do this, the following code example should be used to change the
maximum current slope value to a maximum.

// set max current slope value to a maximum
EST_setMaxCurrentSlope_pu(obj->estHandle,_IQ(127.99));

The input parameter of the maximum slope function expects a value in IQ24, which has a maximum value
of 127.99. This would cause a step increase in the current when it starts injecting current to recalibrate the
resistance, as well as a step to remove such current, which is what we want to accomplish.

514 Managing Full Load at Startup, Low-Speed and Speed Reversal SPRUHJ1F–January 2013–Revised July 2014
Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHJ1F


www.ti.com Rapid Acceleration from Standstill With Full Load

14.4.2.2 Fastest Motor Startup with Full Load with Motor Alignment Example
In this example the application must allow an initial alignment time before running in closed loop. That
alignment time is configured in user.c as the Rs recalibration time, loaded in the following two array
members:

pUserParams->RsWaitTime[EST_Rs_State_RampUp] = (uint_least32_t)(1.0*USER_EST_FREQ_Hz);
pUserParams->RsWaitTime[EST_Rs_State_Fine] = (uint_least32_t)(5.0*USER_EST_FREQ_Hz);

In this example, a total of 6 seconds will be used to align the motor. Alignment in this example should be
done with enough time and enough current to allow a visual motor reposition and alignment before
running in closed loop. In future revisions of InstaSPIN, initial position detection (IPD) will be added to
avoid motor alignment altogether. Keep in mind that the internal resistance Rs is only updated during the
EST_Rs_State_Fine state. Figure 14-56 shows one of the current waveforms when this is run in. It can be
seen how clean the current accelerates in a step from a DC value of -1 A to 0 A (which is the removal of
the current used for the motor alignment) and then from 0 A to 4 A sinusoidal (8 A peak to peak). This is
because the motor was initially aligned, and no reverse operation was caused by any misalignment.
Again, the alignment should be verified visually by the user.

Figure 14-56. Fastest Motor Startup with Full Load with Motor Alignment Plot

If we zoom-in the first portion of the current (Figure 14-57), we can see how the -1 A of current is removed
instantaneously with a step, due to our very high current slope configuration, and then it is followed by the
speed response. At this point, the speed controller can be tuned as aggressive as desired to achieve the
desired acceleration response.
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Figure 14-57. Zoom-in on the Current Plot

We can see how the flux instead of a transient like it had before, now it only stabilizes to a constant value
when it's running in closed loop (Figure 14-58).
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Figure 14-58. Flux Plot

The angle waveform goes from zero to a high frequency (Figure 14-59), suggesting that the forced angle
was not even active during ramp up due to the initial alignment.

Figure 14-59. Angle Plot

Zooming in to the angle (Figure 14-60), again it can be seen that it ramped up with no interaction of the
forced angle feature, taking the motor into a closed loop right from standstill.
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Figure 14-60. Zoom-in on Angle Plot

Looking at the estimated speed (Figure 14-61), it can be seen that there is no negative rotation. Instead,
the speed response is the speed controller speed response, with no forced angle initial misalignments.

Figure 14-61. Speed Plot

The estimated torque also grows from zero to a target of almost 2 Nm (Figure 14-62), stabilizing at around
1.9 which is the target we set it to in the dynamometer.
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Figure 14-62. Torque Plot

We can see how the current overshoots at the very beginning due to the high acceleration command
provided by the speed controller (Figure 14-63), and right after the overshoot we can see it stable at
around 4 A producing full torque.

Figure 14-63. Iq Current Plot

14.5 Overloading and Motor Overheating
In this section we will discuss a set of considerations to have in order to allow an overloading condition,
and still be able to run for long periods of time. In order to achieve this, we will make use of the Rs Online
feature of InstaSPIN which allows us to identify and recalibrate the stator resistance (Rs) while the motor
is running.

14.5.1 Overloading and Motor Overheating Considerations
The considerations discussed in the following sections also apply to this mode of operation:
• Enable offsets recalibration; described in Section 14.1.1.1.
• Enable stator Rs recalibration; described in Section 14.1.1.2.
• Enable Rs online feature; described in Chapter 15.
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• Enable forced angle; Section 14.3.1.1.
• Tune speed controller to avoid motor stall; described in Section 14.1.1.4.
• Tune voltage feedback circuit; described in Section 14.1.1.5.

14.5.2 Overloading and Motor Overheating Example
In this example the load is increased 30% above the rated torque of the motor (Figure 14-64). The
dynamometer is set to a torque command of 2.5 N·m. Keep in mind that the rated torque capability of this
motor is about 1.9 N·m, so in fact we are putting about 130% load to the motor shaft. This will cause the
motor to overheat, hence the need for the Rs Online feature to keep an accurate resistance while the
motor is running.

In Figure 14-64, where a slow rotating angle, which is due to the Rs Online feature can be seen
superimposed on the 5 A amplitude current. To learn more about the Rs Online feature, see Chapter 15.

Figure 14-64. Overloading and Motor Overheating Plot

Zooming into the current (Figure 14-65), we can clearly see the frequency to be 13.33 Hz, which is exactly
what we command for the speed reference, which in this case is 200 RPM. The conversion is well known,
which depends on the number of pole pairs. Speed (RPM) = Speed (Hz) * 60 / Pole Pairs = 13.33 Hz * 60
/ 4 = 200 RPM.

Figure 14-65. Zoom-in on Overloading and Motor Overheating Plot

The stator resistance is captured for a period of 5 minutes (300 seconds) and it is shown in Figure 14-66.
It can be seen that the value we start with is 2.8 Ohms, and during a period of about 200 seconds it
reaches about 3.45 Ohms, stabilizing at this value.
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Figure 14-66. Stator Resistance Plot

With this increase, we have a difference in resistance of (3.45-2.8)/2.8 * 100% = 23% increase. Applying
the equations we use in Chapter 15, this difference in resistance represents a motor temperature of:

The following estimated values were taken after 10 minutes of working, where the resistance measures
about 3.5 Ohms. The estimated flux (Figure 14-67) measures a value very close to the rated flux of 0.5
V/Hz.

Figure 14-67. Flux Plot

We plot the angle (Figure 14-68) when the motor is 30% overloaded.
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Figure 14-68. Angle Plot

Zooming into the angle (Figure 14-69), expanding one second of information, we see a clean and
continuous ramp. Keep in mind that the data here was taken every 200 samples, so there is a
discontinuity at the end of every cycle.

Figure 14-69. Zoom-in on Angle Plot

The estimated speed is around 200 RPM, as shown in Figure 14-70.
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Figure 14-70. Speed Plot

The estimated torque is around 2.5 Nm. Estimated torque, when overloading the motor, is also accurate
and fairly constant as can be seen in Figure 14-71.

Figure 14-71. Torque Plot

The current in this example is about 5.2 A or so (Figure 14-72), due to the 30% of overloading for a long
period of time, the current must be higher for higher stator resistance value in order to produce the
commanded torque.
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Figure 14-72. Iq Current Plot

14.6 InstaSPIN-MOTION and Low-Speed Considerations
One of the considerations when operating at low speeds is that the speed controller must be tuned to
avoid the motor stalling. The SpinTAC speed controller provided in InstaSPIN-MOTION is an advanced
speed controller that provides a single parameter tuner and a wide operating range. These combine to
make it easy to tune the SpinTAC speed controller to avoid motor stall when operating at low speed. The
one important note when tuning the SpinTAC speed controller for low speed operations is that the
Bandwidth might need to be set higher than for rated speed operations. This needs to be done so that the
SpinTAC speed controller will act more aggressivly to cancel disturbances and regulate low speeds. More
information about the SpinTAC speed controller provided in InstaSPIN-MOTION can be found in
Chapter 12.
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Chapter 15
SPRUHJ1F–January 2013–Revised July 2014

Rs Online Recalibration

Rs online recalibration is a feature of InstaSPIN-FOC that is used to recalibrate the stator resistance, Rs,
while the motor is running in closed loop. The term online in this case is used to describe a system that is
running a motor in closed-loop field-oriented control (FOC). This feature is implemented internally within
the FAST estimator, and source code is not available, however, all the parameters within this feature can
be modified according to applications requirements, as it will be explained in this document. Figure 15-1
shows the FAST estimator, highlighting the interface areas related to Rs Online.

Figure 15-1. FAST Estimator - Rs Online Highlighted
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15.1 Overview
The stator resistance of the motor’s coils, also noted as Rs, can vary drastically depending on the
operating temperature of the coils (also known as motor windings). This temperature might increase due
to several factors. The following examples list a few of those conditions where the stator coils temperature
might be affected:
• Excessive currents through the coils.
• Motor's enclosure does not allow self cooling.
• Harsh operation environment leading to temperature increase
• Other heating elements in motor's proximity.

As a result of the temperature increase, there is a resistance increase on the motor's windings. This
resistance to temperature relationship is well defined depending on the materials used for the windings
themselves.

15.2 Resistance vs. Temperature
A common material for the windings is copper. The following equation represents a linear approximation of
the resistance and temperature relationship:

R = R0[1 + α(T − T0)] (80)

Where:
• R: Resistance in Ohms at temperature T, in Ohms (Ω)
• R0: Resistance in Ohms at temperature T0, in Ohms (Ω)
• α: Temperature coefficient of the material, in inverse Celsius (ºC-1)
• T: Final temperature of the material, in Celsius (ºC)
• T0: Reference temperature of the material, in Celsius (ºC)

For example, consider a stator resistance, Rs, to be 10 Ω at 20ºC, and the windings are made out of
copper, with temperature coefficient of 0.00393ºC-1. If the motor heats up to 150ºC, the new stator
resistance will be:

R = R0[1 + α(T − T0)] (81)
R = 10 Ω[1 + 0.00393ºC−1(150ºC − 20ºC)] (82)
R = 15.109 Ω (83)

As can be seen, there is a significant resistance change depending on the temperature, in the example,
almost 52% percent increase.

15.3 Accurate Rs Knowledge Needed at Low Speeds Including Startup
The motor model used for FAST is affected by this resistance change, especially at low speeds. This is
because at low speeds the majority of the voltage drop inside of the motor model is governed by the stator
resistance and the DC component of the current:

Rsis (84)

On the other hand, stator resistance changes outside of the low speed range do not affect the
performance of the motor model significantly since at medium to high speeds the internal voltage drop of
the model is governed by the back EMF and the inductance times the derivative of the current, or:

(85)

It is then required for low speed performance to have an accurate knowledge of the stator resistance,
especially when operating at full loads, including starting up the motor from stand still at full load. The
following section will introduce the use of Rs Online recalibration in the context of InstaSPIN-FOC.
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15.4 Introduction to Rs Online Recalibration
Rs Online recalibration is added to InstaSPIN-FOC to provide an accurate stator resistance while the
motor is operating in closed loop. The updates of the resistance are done in real time, and the motor's
model is updated according to the new resistance, providing the best performance results when the motor
is running in the entire operating range, from no load, up to full load capability of the motor.

Taking a closer look to the InstaSPIN-FOC block diagram, Rs Online is enabled by setting a flag. Stator
resistance is measured while the motor is running through a current injection on the direct component of
the current, also known as D-axis current. Figure 15-2 highlights the areas used for Rs Online
recalibration.

Figure 15-2. Rs Online Recalibration

As can be seen from the block diagram, the online resistance recalibration is done by adding an additional
component to Irated. This addition is performed within the FAST estimator, and Irated that comes out of FAST
already contains the current needed for Rs Online recalibration. This Irated can be zero for permanent
magnet motors, or the magnetizing current for induction motors. In the case of field weakening or field
boosting, another current can be added as User_IdRef and this additional current does not interfere with Rs
Online recalibration.
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An important point to notice is that the Rs Online recalibration is calculated from the alternating value of
the additional Id injected by the FAST module. These currents are alternating between positive and
negative to allow the internal algorithm to function. In addition to that, the user can still command a user's
Id reference on top of the value coming from FAST. A typical scenario would be for example to have a
negative Id reference to operate in field weakening, and at the same time, have FAST provide a new Irated
to compute the online resistance recalibration. This is expected to be a typical use case and it would work
giving expected results from both field weakening and online resistance recalibration.

Due to the current injection done, the phase current waveform going to the motor loses it sinusoidal shape
depending on the ratio between the injected current and the mechanical load present on the shaft. For
light loads, the sinusoidal shape is greatly affected, and for partial to full load the current shape change is
barely perceivable. A few plots are shown below, with a motor running at 500 RPM and Rs Online enabled
and disabled at various mechanical loads. It can be seen that in some cases the shape of the phase
currents lose their sinusoidal shape.

Figure 15-3 shows that currents are sinusoidal at light loads when Rs Online is disabled.

Figure 15-3. Phase Currents at Light Loads - Rs Online Disabled

Under the same mechanical loading conditions, when Rs Online is enabled it can be seen in Figure 15-4
how the currents shape is a distorted sinusoidal waveform.

Figure 15-4. Phase Currents at Light Loads - Rs Online Enabled

On the other hand, a motor mechanically loaded, with and without Rs Online, the shape change is difficult
to perceive. Figure 15-5 shows when Rs Online is disabled and there is a mechanical load present.
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Figure 15-5. Phase Currents with Mechanical Load - Rs Online Disabled

And these are the currents under mechanical load and Rs Online enabled, as shown in Figure 15-6.

Figure 15-6. Phase Currents with Mechanical Load - Rs Online Enabled

As can be seen on the last plot, even though Rs Online is enabled, at medium to high loads the distortion
is much less, and as the load increases, the distortion is no longer perceivable. In the following sections of
this document, it will be shown how low the additional current is to allow Rs Online recalibration.

Rs Online vs. Rs Offline
InstaSPIN-FOC includes another resistance recalibration, which is done before the motor is spun, known
as Rs Offline. Rs Offline requires the motor to be at standstill, injecting a DC current into Id. On the other
hand, Rs Online requires the motor to be spinning in order to recalibrate the resistance, injecting an AC
current into Id.

Both Rs Offline and Rs Online are critical portions of InstaSPIN-FOC to provide the best low speed
performance. In a typical application, Figure 15-7 shows the use of both Rs offline and Rs online.
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Figure 15-7. Rs Online and Rs Offline Flowchart
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Enabling Rs Online Recalibration
In order to enable Rs Online, a couple of parameters need to be setup. One of the most important
parameters is how much current will be injected into the D-axis current (Id) in order to perform Rs Online
recalibration. Usually, what is recommended is to have a minimum of 5% of the rated current in order to
have measurable current to get a good recalibration of the resistance while the motor is running.

_iq RsOnLineCurrent_A = _IQ(USER_MOTOR_MAX_CURRENT * 0.05);

Note that the multiplication is done by the pre-compiler, using a floating point for the
USER_MOTOR_MAX_CURRENT define, times 0.05, representing the 5%, and then converting the
floating point results into a global IQ value. For more information about the IQmath library, see the C28x
IQMath Library – A Virtual Floating Point Engine – Module User's Guide (SPRC990)

Also, before enabling Rs Online, user must set:
• Initial Q format value of the resistance representation. This is done by using the function:

EST_setRsOnLine_qFmt (). The initial value must be taken from the value measured by the Rs Offline,
while the motor is at stand still. This value can be read by calling the following function:
EST_getRs_qFmt ().

• Id magnitude used for Rs Online set to zero. Done by using function: EST_setRsOnLineId_mag_pu ()
• Id in per-units value set to zero. Done by using function: EST_setRsOnLineId_pu ()
• Both enable Flag and update flag to FALSE, done by calling these two functions:

EST_setFlag_enableRsOnLine () and EST_setFlag_updateRs ().

Both Id_mag_pu and Id_pu values need to be set to zero in order to prevent the estimator to keep any
residual current references when it is disabled. In future releases of InstaSPIN, this will not be needed,
and only the Id_mag_pu will be required to be reset to zero, but for the 2806xF devices, both require a
value of zero to be written before Rs Online is enabled, or right before Rs Online is disabled.

The two flags perform different tasks inside the estimator. The enableRsOnLine flag allows the entire Rs
Online feature to run, updating an internal variable holding the most recent resistance value, and injecting
current into Id. The second flag, updateRs, allows the resistance value to be used by the motor model. If
the updateRs flag is never set, but the enableRsOnLine flag is set, the resistance can still be used to
monitor how the resistance changes, but the internal motor model will not use this varying resistance. If
the motor temperature increases drastically, and the resistance is not updated in the motor model (by
setting the updateRs flag to TRUE), the performance of InstaSPIN will be affected, and the low speed
performance will not be as desired. Also, the motor might not startup under full load.

The following code example shows how to set the initial values as well as how to check the condition to
make sure the initial values are set when the state machine is in the proper state. This is done prior to
enabling Rs Online recalibration:

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;

// get the controller state
gMotorVars.CtrlState = CTRL_getState(ctrlHandle);

// get the estimator state
gMotorVars.EstState = EST_getState(obj->estHandle);

if((gMotorVars.CtrlState <= CTRL_State_OffLine) ||
((gMotorVars.CtrlState == CTRL_State_OnLine) &&

(gMotorVars.EstState == EST_State_Rs)))
{

EST_setRsOnLine_qFmt(obj->estHandle,EST_getRs_qFmt(obj->estHandle));
EST_setRsOnLineId_mag_pu(obj->estHandle,_IQ(0.0));
EST_setRsOnLineId_pu(obj->estHandle,_IQ(0.0));
EST_setFlag_enableRsOnLine(obj->estHandle,FALSE);
EST_setFlag_updateRs(obj->estHandle,FALSE);
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}

This code example can be executed outside of the interrupt, in the main forever loop, since it only involves
global variables and no time critical code execution. Keep in mind that the code inside the "if" condition is
executed before the Rs Online is enabled.

One of the conditions to reset all the parameters of Rs Online as shown in the previous code example is
when CtrlState is less than or equal to CTRL_State_OffLine. This condition means that the Rs Online
should be disable and reset when the state machine is either Idle (motor not being energized), or when
doing the offsets recalibration. The other state where these initial values have to be done is when the
control state is Online (CTRL_State_OnLine), and the estimator state is EST_State_Rs, in other words,
when the Rs Offline recalibration is being done. All these conditions represent a motor at stand still. In
order to relate these states to the entire state machine within InstaSPIN, see Chapter 6. The
CTRL_State_OffLine state is shown as Offline in the CTRL state machine diagram, the
CTRL_State_OnLine state is shown as Online in the CTRL state machine diagram and the
EST_State_Rs state is shown as Rs in the EST state machine diagram

When the motor is running, we need to make sure that the resistance given by the Rs Online recalibration
feature is close enough to the initial resistance, given by the Rs Offline feature. This is done to ensure a
smooth transition between both resistance values causing no disturbances to the closed loop system. This
can be done with the following code example, which includes the "else" condition from the previous code
example. The following condition will be executed whenever the motor is not at standstill, in other words,
when the motor is spinning. This condition will be used to enable Rs Online as shown below.

else
{

// Scale factor to convert Amps to per units.
// USER_IQ_FULL_SCALE_CURRENT_A is defined in user.h
_iq sf = _IQ(1.0/USER_IQ_FULL_SCALE_CURRENT_A);

Rs_pu = EST_getRs_pu(obj->estHandle);
RsOnLine_pu = EST_getRsOnLine_pu(obj->estHandle);
Rs_error_pu = RsOnLine_pu - Rs_pu;

EST_setFlag_enableRsOnLine(obj->estHandle,TRUE);
EST_setRsOnLineId_mag_pu(obj->estHandle,_IQmpy(RsOnLineCurrent_A,sf));

// Enable updates when Rs Online is only 5% different from Rs Offline
if(_IQabs(Rs_error_pu) < _IQmpy(Rs_pu,_IQ(0.05)))

{
EST_setFlag_updateRs(obj->estHandle,TRUE);

}
}

Notice that in this example we are enabling the Rs Online recalibration by calling:

EST_setFlag_enableRsOnLine(obj->estHandle,TRUE)
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However, the Rs Online value will not be updated until the update flag is set to TRUE. The update flag is
set to TRUE when the Rs Online value is within a desired proximity to the initial value provided by Rs
Offline, in this case 5% of that value. For applications that require full torque at start up, it is recommended
to have a smaller percentage of difference between Rs Online and Rs Offline, i.e. 3% or so instead of 5%.
As soon as the Rs Online value and Rs Offline value are within 5% difference, the Rs Online update flag
is set by calling:

EST_setFlag_updateRs(obj->estHandle,TRUE)

Once both flags are enabled, Rs Online recalculates the resistance in real time, and the estimator will
update its internal motor model according to that new resistance.

Also, as noted in the code example, the magnitude of the current to be injected in order to estimate the
resistance Online is set by calling the following function:

EST_setRsOnLineId_mag_pu(obj->estHandle,_IQmpy(RsOnLineCurrent_A,sf));

Disabling Rs Online Recalibration
In order to disable Rs Online recalibration the user can refer to the first code example, listed here also,
where the initial values are written and flags are disabled. This code example, as discussed previously,
also checks for the right state of the state machine in order to disable Rs Online appropriately:

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;

// get the controller state
gMotorVars.CtrlState = CTRL_getState(ctrlHandle);

// get the estimator state
gMotorVars.EstState = EST_getState(obj->estHandle);

if((gMotorVars.CtrlState <= CTRL_State_OffLine) ||
((gMotorVars.CtrlState == CTRL_State_OnLine) &&

(gMotorVars.EstState == EST_State_Rs)))
{

EST_setRsOnLine_qFmt(obj->estHandle,EST_getRs_qFmt(obj->estHandle));
EST_setRsOnLineId_mag_pu(obj->estHandle,_IQ(0.0));
EST_setRsOnLineId_pu(obj->estHandle,_IQ(0.0));
EST_setFlag_enableRsOnLine(obj->estHandle,FALSE);
EST_setFlag_updateRs(obj->estHandle,FALSE);

}

Modifying Rs Online Parameters
Several parameters can be tuned and modified within the Rs Online feature of InstaSPIN-FOC. The
following list of parameters will be discussed in further detail in this section:
• Injected Current Magnitude
• Slow Rotating Angle
• Delta Increments and Decrements of the Rs Online Value
• Filter Parameters

Adjusting Injected Current Magnitude
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The first parameter described in this section is the current injected in the D-axis (Id) to allow an Rs Online
recalibration. This current is generated by the estimator module itself when the Rs Online is enabled, and
its magnitude is user configurable. As discussed earlier, the recommended value for the injected current is
around 5% of the motor's rated current to allow a measurable current back from the motor and hence
allow an accurate Rs Online recalibration. For example, consider a motor with a rated current of 5 A. The
injected current in this scenario is 0.25 A. The following code example sets the injected current for Rs
Online to be 0.25 A:

// Scale factor to convert Amps to per units.
// USER_IQ_FULL_SCALE_CURRENT_A is defined in user.h
_iq sf = _IQ(1.0/USER_IQ_FULL_SCALE_CURRENT_A);

// Value corresponding to 0.25 Amps
_iq RsOnLineCurrent_A = _IQ(0.25);

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;

// Scale value from Amps to per units and set through the use of an API
EST_setRsOnLineId_mag_pu(obj->estHandle,_IQmpy(RsOnLineCurrent_A,sf));

When Rs Online is running, Figure 15-8 shows how the amplitude in the current waveform can be seen,
and measured to be approximately 0.25 A when no mechanical load is applied to the motor. As can be
seen, the no load current in this case is 0.1 A, and when adding a 0.25 A for Rs Online, the peak current

is

Figure 15-8. Result of Adding 0.25 A for Rs Online

As the load of the motor increases, the additional current required for Rs Online becomes proportionally
smaller as can be seen in Figure 15-9. In this case we have a load current of 0.35 A, and we are keeping
an Rs Online injection current of 0.25 A. Using the same equation as in previous example, the maximum

current is:
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Figure 15-9. Result of Increasing Load for Rs Online

Another example is if a motor is 10 A, and the injected current for Rs Online is 0.5 A. The same code
example with a different current value is used:

// Scale factor to convert Amps to per units.
// USER_IQ_FULL_SCALE_CURRENT_A is defined in user.h
_iq sf = _IQ(1.0/USER_IQ_FULL_SCALE_CURRENT_A);

// Value corresponding to 0.5 Amps
_iq RsOnLineCurrent_A = _IQ(0.5);

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;

// Scale value from Amps to per units and set through the use of an API
EST_setRsOnLineId_mag_pu(obj->estHandle,_IQmpy(RsOnLineCurrent_A,sf));

Similar to the previous examples, the maximum current can be calculated by using the same equation:

(86)

And the corresponding oscilloscope plot in this example is shown in Figure 15-10.
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Figure 15-10. Maximum Current With Rs Online Enabled

In general, if we consider a case where the motor is fully loaded, in the case of a 10 A motor, and adding
5% of that current for Rs Online recalibration, the total maximum current will be:

(87)

In other words, the additional current supplied to the motor will only be 0.0125 A, representing only
0.125 % of the rated current. This current is usually not even perceived by the motor in terms of additional
heating.

For example, the following scenario is for a 2.2 A motor, with an Rs Online current of 5% of the rated
current, equal to 2.2*0.05 = 0.11 A. The additional current is only 0.125% compared to the rated current,
which equals to 2.2*0.00125 = 0.0028 A. When we plot before and after Rs Online has been enabled, the
additional current is not even noticeable on the oscilloscope (Figure 15-11). It is also important for the
reader to notice that the vertical zoom of the oscilloscope changed from 500mA/ to 2.00A/ since now the
amplitudes of the current are much higher than before due to the mechanical loading of the motor.

Figure 15-11. 2.2-A Motor With an Rs Online Current of 5%
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Adjusting Slow Rotating Angle
The implementation of the Rs Online feature requires a certain internal vector to be rotated slowly as the
motor spins. This slowly rotating vector is set by default to a value of 0.00001, in per unit value, so it will
generate a vector at a frequency of 0.00001 * Estimator Frequency in Hz. So if the estimator frequency is
10 kHz, then the rotating vector will be at a frequency of 0.1 Hz, or with a period of 10 seconds. This
rotating vector is needed so that the Rs Online converges to an average resistance measured at different
points of that vector.

Although the details are not disclosed on how Rs Online estimates a varying resistance, it is important to
know that this rotating angle is used to estimate a resistance at various current vectors. Over time, the
online resistance is the average resistance produced by the measurements at all the vectors as they are
rotated slowly. In order for the user to know what the rotating vector is set to, besides looking at the
currents in the oscilloscope, users can use the following code example.

// These defines are in user.h
#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)
#define USER_NUM_CTRL_TICKS_PER_EST_TICK (1)
#define USER_PWM_FREQ_kHz (10.0)
#define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
#define USER_CTRL_FREQ_Hz (uint_least32_t)(USER_ISR_FREQ_Hz \

/USER_NUM_ISR_TICKS_PER_CTRL_TICK)
#define USER_EST_FREQ_Hz (uint_least32_t)(USER_CTRL_FREQ_Hz \

/USER_NUM_CTRL_TICKS_PER_EST_TICK)

// Initialize obj to the controller handle
CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;

_iq delta_pu_to_kHz_sf = _IQ((float_t)USER_EST_FREQ_Hz/1000.0);
_iq RsOnLine_Angle_Delta_pu = EST_getRsOnLineAngleDelta_pu(obj->estHandle);

// By default, the returned value in the following line will be close to:
// _IQ(0.00001), representing 0.0001 kHz, or 0.1 Hz
_iq RsOnLine_Angle_Freq_kHz = _IQmpy(RsOnLine_Angle_Delta_pu, \

delta_pu_to_kHz_sf);

For more information about the software execution clock trees used in InstaSPIN, as well as the
decimation factors, also known as tick rates, see Chapter 9.

If the angle delta is never changed, a default value of 0.00001, in per unit value, is set by the library,
which results in a slow rotating angle frequency of 0.00001 times the estimation frequency. If the
estimation frequency is the same as the PWM frequency, and it is set to 10 kHz, then the slow rotating
angle will have a frequency of 0.00001 * 10000 = 0.1 Hz (period of 10 seconds). The slow rotating angle
can be seen from the current waveform, as the angle changes how the current is injected into Id.
Figure 15-12 shows how the current changes its shape at a frequency equal to the slow rotating angle
frequency.
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Figure 15-12. Current Shape Changes When Frequency Equals Slow Rotating Angle Frequency

An example of an application that might need a change in this rotating angle is when the motor's
temperature increases at a much higher rate, so this rotating angle needs to be faster. The rotating vector
does not need to be changed as the temperature increases. It only needs to be set once depending on the
expected worst case temperature dynamics of the system, and there is no need to fine tune this value as
temperature varies. For example, if the temperature dynamics of a system requires a rotating angle to be
changed to 0.2 Hz (period of 5 seconds), the following code example is used to change the slowly rotating
angle to the new value of 0.2 Hz:

// This new define represents the desired RsOnLine rotating angle frequency
#define RSONLINE_ANGLE_FREQ_Hz (0.2)

// Initialize obj to the controller handle
CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;

// The scale factor (sf) calculation is done by the pre-compiler
_iq delta_hz_to_pu_sf = _IQ(1.0/(float_t)USER_EST_FREQ_Hz);
_iq RsOnLine_Angle_Freq_Hz = _IQ(RSONLINE_ANGLE_FREQ_Hz);
_iq RsOnLine_Angle_Delta_pu = _IQmpy(RsOnLine_Angle_Freq_Hz, \

delta_hz_to_pu_sf);

EST_setRsOnLineAngleDelta_pu(obj->estHandle,
RsOnLine_Angle_Delta_pu);

As can be noticed in this code example, the function now sets a value for angle delta, so it expects a
parameter to be written, which in this case is variable RsOnLine_Angle_Delta_pu.

The resulting oscilloscope plot related to the configuration done in the previous code example is shown in
Figure 15-13.
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Figure 15-13. Result of RsOnLine_Angle_Delta_pu

Adjusting Delta Increments and Decrements of the Rs Online Value
Inside of the estimator, and in particular, the part of the estimator that runs the Rs Online feature, the
actual value of the resistance is updated by adding and/or subtracting fixed delta values, depending on the
direction where the resistance is going. In general this parameter does not need to be changed, unless the
change in resistance is too fast, for example, due to rapid motor heating. By default both the delta
increment and delta decrement are set to a value of 0.00001, represented in IQ30 format, which can be
verified with the following code example:

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;
_iq30 delta_dec = EST_getRsOnLine_delta_dec_pu(obj->estHandle);
_iq30 delta_inc = EST_getRsOnLine_delta_inc_pu(obj->estHandle);

In order to change those deltas, use the following code example, to for example, twice the default value,
or 0.00002, in IQ30:

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;
EST_setRsOnLine_delta_dec_pu(obj->estHandle, _IQ30(0.00002));
EST_setRsOnLine_delta_inc_pu (obj->estHandle, _IQ30(0.00002));

Notice that these two functions set the deltas, as opposed to get the deltas, so they expect a parameter
besides the handle.

Figure 15-14 shows how the resistance will respond to an initial value difference according to the delta
values. For example, right at the beginning when Rs Online is first enabled, there is an initial resistance
value which is different than the steady state value. Having a value of 0.00001 will lead to the following
plot, which shows a slope = (0.77-0.4)/3.1 = 0.12 Ω/s.
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Figure 15-14. Resistance Response to Initial Value Difference

When the delta values are changed to double the default value, a much faster settling time is shown in
Figure 15-15, with twice the slope = (0.71 - 0.4) / 1.3 = 0.24 Ω/s.

Figure 15-15. Delta Values Changed to Double Default Value

It is recommended that the rate of change selected for this delta is slow enough to provide smooth
variations of the resistance, and fast enough to track the temperature changes of the system. Generally
the initial value of 0.00001 will work, but keep the deltas in mind when fine tuning a particular application,
especially when drastic temperature changes are expected.

Adjusting Filter Parameters
There are two first order cascaded filters inside of the Rs Online estimator which are run in order to get an
accurate and steady value of the stator resistance. A total of four filters are run, one set of two cascaded
ones for the currents, and one set of two for the voltages. Each set of two filters use the same coefficients
by default. However, depending on the response required by the application, the coefficients of both filters
can be read and written individually. The default cutoff frequency of these filters is set to 0.2 Hz. This
cutoff frequency can be verified by the user with the following code example:

EST_getRsOnLineFilterParams(obj->estHandle, EST_RsOnLineFilterType_Current,
&pfilter_i0->b0, &pfilter_i0->a1, &pfilter_i0->y1,
&pfilter_i1->b0, &pfilter_i1->a1, &pfilter_i1->y1);

EST_getRsOnLineFilterParams(obj->estHandle, EST_RsOnLineFilterType_Voltage,
&pfilter_v0->b0, &pfilter_v0->a1, &pfilter_v0->y1,
&pfilter_v1->b0, &pfilter_v1->a1, &pfilter_v1->y1);
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_iq pu_to_kHz_sf = _IQ((float_t)USER_EST_FREQ_Hz/1000.0);

cutoff_freq_kHz_i0 = _IQmpy(pfilter_i0->b0, pu_to_kHz_sf);
cutoff_freq_kHz_i1 = _IQmpy(pfilter_i1->b0, pu_to_kHz_sf);
cutoff_freq_kHz_v0 = _IQmpy(pfilter_v0->b0, pu_to_kHz_sf);
cutoff_freq_kHz_v1 = _IQmpy(pfilter_v1->b0, pu_to_kHz_sf);

By default, the cutoff frequency variables will return a value of 0.0002, representing 0.0002 kHz, or 0.2 Hz.
Generally, this cutoff frequency should be tuned so that the resistance value can grow depending on the
expected temperature dynamics of the application. Figure 15-16 is an example of how the Rs Online
varies depending on this cut-off frequency. We plot 0.1 Hz, 0.2 Hz and 0.5 Hz. Using a slow rotating angle
of 0.1 Hz, if the cutoff frequency of the filters is faster than the rotating angle, the resistance will tend to
follow the rotating angle, so it is recommended to have this filter setting to at least the same frequency of
the slow rotating angle to get a better filtered resistance.

Figure 15-16. Rs Online Varies Depending on Cut-Off Frequency

As can be seen, having a lower cutoff frequency leads to a less varying resistance. However, if the
temperature dynamics of the system allow the temperature to rise too rapid, having a low cutoff frequency
might be a problem.

There can be a scenario where the temperature increases very rapidly, requiring a change in the cutoff
frequency to a higher value. If the application requires a change in the cutoff frequency, the following code
example shows how to do this. In the example we are changing the cutoff frequency on the fly, so we
have to read it first, then modify the coefficients, and then write back with the same output, so we avoid
affecting the filters' outputs.

EST_getRsOnLineFilterParams(obj->estHandle, EST_RsOnLineFilterType_Current,
&pfilter_i0->b0, &pfilter_i0->a1, &pfilter_i0->y1,
&pfilter_i1->b0, &pfilter_i1->a1, &pfilter_i1->y1);

EST_getRsOnLineFilterParams(obj->estHandle, EST_RsOnLineFilterType_Voltage,
&pfilter_v0->b0, &pfilter_v0->a1, &pfilter_v0->y1,
&pfilter_v1->b0, &pfilter_v1->a1, &pfilter_v1->y1);

// Use global variable desired_frequency_kHz to set the desired cutoff
// frequency of the filters. Use the same cutoff frequency for all filters
cutoff_freq_kHz_i0 = desired_frequency_kHz;
cutoff_freq_kHz_i1 = cutoff_freq_kHz_i0;
cutoff_freq_kHz_v0 = cutoff_freq_kHz_i0;
cutoff_freq_kHz_v1 = cutoff_freq_kHz_i0;

// Use the following scale factor to convert kHz to per unit value
_iq kHz_to_pu_sf = _IQ(1000.0/(float_t)USER_EST_FREQ_Hz);

// Calculate the per unit value for all filters
cutoff_freq_pu_i0 = _IQmpy(cutoff_freq_kHz_i0, kHz_to_pu_sf);
cutoff_freq_pu_i1 = _IQmpy(cutoff_freq_kHz_i1, kHz_to_pu_sf);
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cutoff_freq_pu_v0 = _IQmpy(cutoff_freq_kHz_v0, kHz_to_pu_sf);
cutoff_freq_pu_v1 = _IQmpy(cutoff_freq_kHz_v1, kHz_to_pu_sf);

// Calculate coefficients for all filters
pfilter_i0->b0 = cutoff_freq_pu_i0;
pfilter_i0->a1 = cutoff_freq_pu_i0 - _IQ(1.0);
pfilter_i1->b0 = cutoff_freq_pu_i1;
pfilter_i1->a1 = cutoff_freq_pu_i1 - _IQ(1.0);
pfilter_v0->b0 = cutoff_freq_pu_v0;
pfilter_v0->a1 = cutoff_freq_pu_v0 - _IQ(1.0);
pfilter_v1->b0 = cutoff_freq_pu_v1;
pfilter_v1->a1 = cutoff_freq_pu_v1 - _IQ(1.0);

// Configure Rs Online to use the new filter coefficients
EST_setRsOnLineFilterParams(obj->estHandle, EST_RsOnLineFilterType_Current,

pfilter_i0->b0, pfilter_i0->a1, pfilter_i0->y1,
pfilter_i1->b0, pfilter_i1->a1, pfilter_i1->y1);

EST_setRsOnLineFilterParams(obj->estHandle, EST_RsOnLineFilterType_Voltage,
pfilter_v0->b0, pfilter_v0->a1, pfilter_v0->y1,
pfilter_v1->b0, pfilter_v1->a1, pfilter_v1->y1);

Monitoring Rs Online Resistance Value
There are two ways of checking the Rs Online resistance in a watch window or in a global variable. This
might be done as per user's requirements, so set thresholds on temperature, or simply to make sure there
is a correct connection of the motor to the system.

Rs Online Floating Point Value
The first method is to simply call a function that returns a value in floating point. This would represent the
resistance value in ohms (Ω), and this is a use example:

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;
float_t RsOnLine_Ohm = EST_getRsOnLine_Ohm(obj->estHandle);

This method is convenient for general monitoring. However it performs a few floating point instructions
which won't be the most efficient way to do it in terms of execution time.

Rs Online Fixed Point Value
The second method to monitor Rs Online value is using a more detailed approach, but only using fixed
point math, and bit shifting. The following code example shows how an Rs Online value in Ohms but in
fixed point can be calculated from the functions available in InstaSPIN-FOC. This can be calculated even
inside an interrupt, since execution time is optimized by avoiding floating point math.

#define VarShift(var,nshift) (((nshift) < 0) ? ((var)>>(-(nshift))) \
: ((var)<<(nshift)))

#define USER_IQ_FULL_SCALE_VOLTAGE_V (48.0)
#define USER_IQ_FULL_SCALE_CURRENT_A (40.0)

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;
uint_least8_t RsOnLine_qFmt = EST_getRsOnLine_qFmt(obj->estHandle);
_iq fullScaleResistance = _IQ(USER_IQ_FULL_SCALE_VOLTAGE_V \

/USER_IQ_FULL_SCALE_CURRENT_A);
_iq RsOnLine_pu = _IQ30toIQ(EST_getRsOnLine_pu(obj->estHandle));
_iq pu_to_ohms_sf = VarShift(fullScaleResistance, 30 - RsOnLine_qFmt);
_iq RsOnLine_Ohms = _IQmpy(RsOnLine_pu, pu_to_ohms_sf);
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Using the Rs Online Feature as a Temperature Sensor
This unique feature to monitor the resistance of the motor while spinning, allows the user to monitor the
temperature of the coils based on the resistance increment. To show an example of a temperature sensor
implementation, consider the values from Table 15-1.

Table 15-1. Temperature Sensor Implementation Values

Parameter Value Description
R 12.0 Ω Resistance at temperature T. Value found with Rs Online.
R0 10.0 Ω Resistance at temperature T0. Value found with Rs Offline.
α 0.00393ºC-1 Temperature coefficient of the material, in this case copper.
T0 20ºC Reference temperature of the material.
T ? Final temperature of the material. To be calculated based on Rs Online.

Once the Rs Online feature is enabled, consider a resistance increase from 10.0 Ω to 12.0 Ω. The
temperature of the motor windings can be calculated based on the following equation, derived from the
equation listed in the previous section:

(88)

The following code example shows how to implement the temperature monitor:

#define COPPER_TEMP_COEF_INV_C (0.00393)
#define RS_AT_ROOM_TEMP_OHMS (10.0)
#define ROOM_TEMP_C (20.0)

// Derived defines, pre-calculated by the compiler, not the CPU

#define INV_COPPER_TEMP_COEF_C (1.0/COPPER_TEMP_COEF_INV_C)
#define INV_RS_AT_ROOM_TEMP_INV_OHMS (1.0/RS_AT_ROOM_TEMP_OHMS)

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;
float_t RsOnLine_Ohm = EST_getRsOnLine_Ohm(obj->estHandle);
float_t Temperature_C = \

(ROOM_TEMP_C) + \
(RsOnLine_Ohm * (INV_RS_AT_ROOM_TEMP_INV_OHMS) - 1.0) * \
(INV_COPPER_TEMP_COEF_C);

This code example can be executed in the background outside of the interrupts. The execution time is not
critical at all, since temperature changes are much slower compared to the CPU timing.

So by using Rs Online, users can set a same temperature limit to their motor to avoid damage and
malfunction of the system. For easier computation of the temperature, a look up table is recommended, to
avoid the execution penalty of this equation in real time.

Rs Online Related State Diagrams (CTRL and EST)
There are several references to the controller (CTRL) and estimator (EST) state diagrams throughout the
document. In this section, both state machines are shown for reference. For more details about the motor
identification process, see Chapter 6.
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Chapter 16
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PowerWarp™

The PowerWarp algorithm of FAST adaptively reduces current consumption in order to minimize the
combined (rotor and stator) copper losses to the lowest, without compromising the output power level of
the AC Induction Motor.
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16.1 Overview
For applications that require minimum power consumption using AC Induction Motors (ACIM) PowerWarp
presents a solution. By simply setting an enable flag in InstaSPIN-FOC, the FAST estimator will
recalculate the magnetizing current, so that the minimum current is used to produce the torque needed for
a given load and speed.
• PowerWarp algorithm is a capability of InstaSPIN-FOC designed to improve induction motor efficiency

under partially loaded conditions
• Note that output power is maintained with PowerWarp algorithm enabled

PowerWarp has the greatest effect on motor efficiency at partial loads. However, as a result of de-fluxing
the motor, the ability of the control system to respond to sudden transient conditions is diminished.
However, flux angle tracking is not affected by this phenomenon

As shown in Figure 16-1, PowerWarp, when enabled, acts on the magnetizing current provided by the
FAST estimator as highlighted. This magnetizing current is referred as Irated in the diagram.

Figure 16-1. FAST Estimator with PowerWarp
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16.2 Enabling PowerWarp
In the code, all the functions related to PowerWarp are referred as POWERWARP. The following code
example shows how this flag is enabled. As can be seen, POWERWARP is mentioned in the name of the
function, which relates to PowerWarp.

CTRL_setFlag_enablePOWERWARP(ctrlHandle,TRUE);

The use of this flag does not take any effect unless the controller and estimator are running OnLine, in
other words, not identifying the motor but running it in closed loop. Another condition is that the motor type
has to be an AC Induction Motor. Nothing happens if the motor is a PM Motor. So, to summarize the
conditions under PowerWarp enable will have an effect, these conditions must be met:
• The controller is running and motor is in closed loop.
• The estimator is running, and motor has been identified.
• Motor type must be induction motor.

In Figure 16-2, the highlighted state of the InstaSPIN controller is where the motor is running in closed
loop. This state is also known as the Online State, and it is the state where PowerWarp algorithm can be
executed (for complete details on the CTRL and EST states, see Chapter 6).

Figure 16-2. InstaSPIN Controller Flowchart - PowerWarp Executed in Closed Loop
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Similarly, the estimator's state machine where PowerWarp algorithm can be executed is highlighted from
the following state machine. The state machine shown in Figure 16-3 represents the state where the
motor is running in closed loop, from the estimator's perspective.

Figure 16-3. FAST Estimator State Machine Flowchart - PowerWarp Executed in Closed Loop

This code example shows how to check the state of state machines: Controller (CTRL) and Estimator
(EST) estate machines, as well as the motor type:

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;
ctrlState = CTRL_getState(ctrlHandle);
estState = EST_getState(obj->estHandle);
motorType = CTRL_getMotorType(ctrlHandle);

if( (ctrlState == CTRL_State_OnLine) &&
(estState == EST_State_OnLine) &&
(motorType == MOTOR_Type_Induction) )

{
CTRL_setFlag_enablePOWERWARP(ctrlHandle,TRUE);

}

16.3 PowerWarp Current Slopes
In order to keep a smooth transition between rated magnetizing current and a reduced current provided by
PowerWarp algorithm, a linear transition is generated when this mode is enabled and disabled. When
PowerWarp is enabled, the rate at which the current is changed is set by the following defined in user.h:

#define USER_MAX_CURRENT_SLOPE_POWERWARP
(0.3 * USER_MOTOR_RES_EST_CURRENT
/USER_IQ_FULL_SCALE_CURRENT_A
/USER_TRAJ_FREQ_Hz)

The rate of change for the current after PowerWarp is enabled is equal to the current used for resistance
estimation times 0.3 Hz. For example, if 1 Ampere is used for resistance estimation, the rate at which
PowerWarp will change the rated current of the ACIM motor would be: 0.3 Amperes per second. So if
PowerWarp reduced the rated current from 3 A to 1.5 A, it would take (3-1.5)/0.3 = 5 seconds to reach the
new rated current.
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A second current slope is also defined, which is used whenever the Irated is changed in the software, or
when PowerWarp is disabled.

#define USER_MAX_CURRENT_SLOPE
(USER_MOTOR_RES_EST_CURRENT
/USER_IQ_FULL_SCALE_CURRENT_A
/USER_TRAJ_FREQ_Hz)

By default, this current slope is set to the current used for resistance measurement, per second. For
example, if 1 A is used for resistance measurement, PowerWarp current is 1 A, and Irated current is 3 A,
then it will take (3 – 1)/1 = 2 seconds for the current to grow back to Irated.

16.4 Practical Example
The following plot shows a practical example of PowerWarp, and the power savings related to this mode.
The motor under test has the following parameters:

AC Induction Asynchronous Machine (GE 5K33GN2A)
• Rated power: ¼ Hp
• Rated torque: 9.22 Lb.in
• Rated voltage: 208~230 (v)
• Rated full load current: 1.3~1.4 (A)
• Rated full load speed: 1725 rpm
• Pole Pairs: 2
• Frequency: 60 Hz

Notice that the motor efficiency with PowerWarp is dramatically improved from 27% to 68% at 1 lb.in of
load. Since PowerWarp reduces the ability of the ACIM motor to produce torque, at higher torque
demands, energy savings with PowerWarp are also reduced. For the same reason, at rated torque,
efficiency curves are identical when PowerWarp is enabled or disabled.

Even though PowerWarp reduces the ability to produce torque, the mechanical power delivered to the
shaft is maintained with PowerWarp algorithm enabled, not affecting the mechanical system performance.
In other words, from a purely mechanical standpoint, the output mechanical torque and speed are not
changed when PowerWarp is enabled. What changes is the electrical power delivered to the motor to
produce a certain mechanical output.

As shown in Figure 16-4, motor efficiency is boosted dramatically at lower loads, with a trade-off in
dynamic torque and speed response, though the control system remains stable.
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Figure 16-4. PowerWarp Improves Motor Efficiency

The default current slopes are used for this practical example.

#define USER_MAX_CURRENT_SLOPE_POWERWARP (0.3 * USER_MOTOR_RES_EST_CURRENT \
/ USER_IQ_FULL_SCALE_CURRENT_A \
/ USER_TRAJ_FREQ_Hz)

Figure 16-5 shows the time it takes for the FAST estimator to reduce the rated current when PowerWarp
is enabled.

Figure 16-5. Current Reduced When PowerWarp Enabled
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It can be seen than the time it takes to reach the lowest current is:
(Irated – IPowerWarp)/0.3 = (1.3125 – 0.3625)/0.3 = 3.167 seconds (89)

Also, the default has been used for current slopes when PowerWarp is disabled

#define USER_MAX_CURRENT_SLOPE
(USER_MOTOR_RES_EST_CURRENT
/USER_IQ_FULL_SCALE_CURRENT_A
/USER_TRAJ_FREQ_Hz)

Figure 16-6 shows this slope. The time it takes is: (1.3125 – 0.3625)/1 = 1.0 seconds.

Figure 16-6. Current Slopes When PowerWarp Disabled

16.5 Case Study
Two pairs of motors were placed running the same load, which in this case were fans. One pair ran for 15
months side to side comparing energy consumption performance between InstaSPIN-FOC with
PowerWarp algorithm enabled versus a TRIAC control of an Induction Motor. The energy savings over
time are significant, average savings of about 81% of the energy when using InstaSPIN with PowerWarp
enabled. In other words, with PowerWarp algorithm enabled, each motor only consumes about 19% of the
power compared to a TRIAC controller. This percentage is calculated as follows:

Total Energy consumed by the TRIAC controller = 2096.6 kWh (90)

Figure 16-7 shows the energy consumption per month and an accumulative energy savings in kWh.
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Figure 16-7. PowerWarp Algorithm Enabled vs. TRIAC Control of Induction Motor

The second pair of system was running InstaSPIN with PowerWarp enabled, but now versus a Volts-per-
Hertz Control, also known as Frequency Control. The energy savings are also significant in this scenario,
since PowerWarp optimizes the current consumption to minimize copper losses of the motor. In this case,
the average energy savings were 48%, and it was calculated as follows:
Total Energy consumed by the Frequency controller = 916.5 kWh
Total Energy consumed by InstaSPIN with PowerWarp = 478.9 kWh
Average Energy Savings = 100% * (1 – 478.9/916.5) = 47.75%

Figure 16-8 shows these results.
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Figure 16-8. InstaSPIN-FOC with PowerWarp Enabled vs. InstaSPIN-FOC with PowerWarp Disabled
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Chapter 17
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Shunt Current Measurements

One-, two-, and three-shunt current measurement techniques are studied. We will show why the three
shunt technique does not add significantly more cost to the current measurement circuit. And why it is
much better to use the three shunt technique for motor control applications.
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17.1 Introduction
InstaSPIN can be used with many different types of current measurement techniques. The techniques
include 3-shunt and 2-shunt resistor and LEM sensor measurements. For lower power drives, shunt
resistors are the most widely used approach to measuring phase currents in a motor controller. Currently
the InstaSPIN software suite does not provide a single shunt resistor solution. The reason for not
providing single shunt current measurements and why a 3-shunt measurement is the ideal method for
measuring currents will be provided below.

17.2 Signals
Before talking about the different types of resistor shunt current measurements, we will study the switching
signals involved and where the measurement has to be taken to measure current. Most field oriented
control (FOC) drives use the space vector modulation (SVM) technique to send the duty cycle commands
to the inverter switches to power the motor. A typical SVM voltage waveform looks like the blue signal as
shown in Figure 17-1. The SVM waveform is next sampled by a triangular waveform which is the red
signal in Figure 17-1. Whenever the triangle is greater than the SVM, the lower switch of an h-bridge
phase is turned on. The resulting PWM waveform that is used to control an h-bridge phase is also shown
below.

Figure 17-1. Typical SVM Waveform Sampled by Counter

To measure current that is flowing through a phase, the normal approach is to have a resistor located at
the base of the phase. So no matter what resistor configuration there is, 1-shunt, 2-shunt or 3-shunt,
current can only be measured when a lower switch is on. In the PWM waveform the lower switch is on
when the square wave signal is low. To sample the current, it has to be clean. A clean current signal or
representation of the current signal must have no ringing or noise. With that being said, let us start looking
at the different resistor shunt current measurement techniques that are used in the field.

17.3 1-Shunt
The single shunt current measurement technique measures the power supply current and with knowledge
of the switching states recreates each of the three phase currents of the motor. Figure 17-2 illustrates
where the single shunt is located in the inverter circuit.
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Figure 17-2. Single-Shunt Current Measurement Circuit with Inverter

There are eight different switch options in SVM. Table 17-1 explains each one and shows the direction of
the voltage space vector and what current can be measured in that state. With the switches in states 0
and 7 only circulating current is present and there is no possibility to measure current with the single shunt
technique. To properly measure current with the single shunt technique, the current measurement and
switching state have to both be considered.

Table 17-1. The Eight SVM Switching States

Switch State AH BH CH Vector Measure
0 0 0 0 ● offsets
1 1 0 0 → Ia
2 1 1 0 ↗ -lc
3 0 1 0 ↖ Ib
4 0 1 1 ← -la
5 0 0 1 ↙ Ic
6 1 0 1 ↘ -lb
7 1 1 1 ● offsets

Figure 17-3 shows a SVMPWM waveform and the current measurement signal that result. In this case the
current conduction times for IC and IA are on long enough so that the slew rate of the op-amp and settling
time of the whole measurement system have enough time to go to steady state so that the ADC can have
enough time to sample the current. As we will see shortly, when using the single shunt technique, it is
mandatory to be able to measure current in the smallest time possible.

Figure 17-3. Single-Shunt Current Measurement When Sampling Times are Long Enough
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In Figure 17-4, imagine the voltage space vector traversing counter clockwise around the circle. As the
space vector points toward the corners of the hexagon, the time window for sampling current completely
disappears. There are zones located at 0, 60, 120, 180, 240, and 300 degrees where only one current can
be measured and the other two currents must be found in another fashion.

Figure 17-4. SVM and Regions Where Current Measurement is Not Allowed

In Figure 17-5, the space vector is pointing too close to π/3 and is causing the current measurement
window to shrink for IA. Because of slew rate of the op-amp and a long settling time, IA will be missed and
will cause an error in the FOC controller. One way of fixing this problem is to force a measurement
window opening that lasts long enough to accommodate slew rate and settling time. An illustration of this
technique is shown in Figure 17-6. The maximum duty cycle waveform is shifted to the right and the
minimum duty cycle waveform is shifted to the left. The advantage of phase shifting the PWMs like this is
that there is no distortion in the voltage waveform result per phase. Software still has to be written to
compensate for the resulting current waveform and even though a current measurement window can be
made as large as needed, it is best to keep the window as small as possible. As the space vector reaches
the voltage limit set by the DC bus, there will be less room to shift the signals. So to get the best utilization
of the DC bus and still have the ability to measure current requires that the chosen op-amp have very high
slew rate and low settling time.

Figure 17-5. Example of When Current Sampling Window Disappears
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Figure 17-6. Phase Shifting the PWMs to Allow for a Large Enough Current Measurement Window

Current ripple is another problem that arises when using the single shunt technique. The motor is an
inductive and resistive circuit element and therefore has an R/L time constant. On the current waveform
that is shown in Figure 17-3, the motor's electrical time constant is large thus causing the current to be
very level and the measured currents IC and IA can be considered the average current going to the motor.
If the motor's R/L time constant is smaller, then the current will look more like a saw tooth wave. Now the
current has to be sampled as close to the center of the total conduction time as possible to obtain the
average motor current. This will cause an even stricter performance requirement for the chosen op-amp.

Let's run through a quick calculation to see what types of op-amp parameters are needed. First, a normal
PWM frequency is around 20 kHz which is a period of 50 µs. At 20 kHz when causing a deadtime or any
non-symmetric adjustment of the PWM that is 0.5 µs or greater, current distortion will occur. The C2000
F2805xF and F2806xF family of processors has the capability of 90 MHz clock speeds which translates to
a 45 MHz ADC clock. The minimum sampling window is 7 ADC clock cycles or 156 ηs. The worst case
time delay when considering slew rate delay is during the maximum voltage transition in this case 3.3 V.
Ignoring settling time, the slew rate that will keep the signal measurement below 0.5 µs is 3.3/344 ηs or
9.6 V/µs. Settling time will take up about half of the time, so to be safe the op-amp slew rate should be
chosen at 20 V/µs.

17.4 2-Shunt
The two shunt current measurement technique uses the principle of Kirchhoff's Current Law (KCL) that the
sum of the currents into a single node equals zero. By measuring only two phase currents, the third is
calculated with KCL. A circuit for the two shunt current measurement technique is shown in Figure 17-7.

Figure 17-7. Two-Shunt Measurement Circuit with Inverter
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The two shunt measurement circuit has an advantage over the single shunt circuit in that it can see
circulating currents. Now all currents are measured only during switching state zero. Figure 17-8 shows an
example of a switching waveform and where the ADC samples the current. The PWM for IA is almost
100% duty cycle and in this example causes the IA current to rise. The PWM for IB is about 50% duty cycle
and its current stays at about zero amps for this period. Phase current can only be measured when that
phase's lower switch is conducting. In the example, IA is measureable for a very short time while IB has a
long time to view. When the measured phase is operating at PWMs near 100%, this is the inherent
problem when using the two shunt technique. For the example when IA is sampled, the measured current
signal has not yet stabilized giving an incorrect representation of the current signal. Another pointer to
note about using the two shunt technique during motoring is that the current being measured is now
bipolar. So zero amps is now represented as half of the ADC full scale.

Figure 17-8. Sampling Current When Using Two-Shunt Measurement Technique

As the duty cycle increases the time to measure voltage across the shunt resistor for the phase needs to
be quicker. For example if a duty cycle of 95% were commanded with a 20 kHz PWM waveform there will
be 2.5 µs of on-time for the measured phase. Ideally the slew rate of the op-amp should be 1/10 of the on-
time or 0.25 µs. A full scale output voltage transition of the op-amp is 1.65 V. The minimum slew rate is
calculated to be 6.6 V/µs. As the duty cycle increases even more, the slew rate must be increased to
capture the signal properly. Although the two shunt current measurement technique lessens the op-amp's
speed requirement as compared to the single shunt measurement, there is a duty cycle where the slew
rate has to be very large. For the single and two shunt measurement techniques there is no way of getting
around the need for a fast and expensive op-amp.
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17.5 3-Shunt
An example of the three shunt current measurement circuit is shown in Figure 17-9. The three shunt
current measurement technique is very robust and surprisingly can be cost effective even when compared
to using a single or two shunt measurement technique. First, with the single and two shunt circuits over-
modulation is difficult to achieve. Second, higher priced fast slew rate op-amps must be selected for the
one and two shunt techniques. The three shunt technique can bounce sampling between current signals,
selecting two out of three phases each period, which allows for long times for the current signals to settle.
If large current measurement windows are possible, then much slower and cheaper op-amps can be used.
For example, Figure 17-10 shows three PWM switching signals and what shunt resistor will be sampled.
As can be seen, there is plenty of time for the current signal to stabilize.

Figure 17-9. Three-Shunt Measurement Circuit with Inverter

Figure 17-10. Using Three-Shunt Current Sampling Technique

With three shunts the op-amp slew rate can be well under 1 V/µs. There are many advantages to having
slower amplifier circuits for current measurement. First cost will be less. Second a slower amplifier will
have a lower bandwidth to pick up noise. Third in many of the current amplifier circuits there is crosstalk
between the phase measurements. What will happen is a spike from the C phase switching will show up
in the A phase measurement. A slow amplifier circuit will attenuate the crosstalk signal.

17.6 Development Kits
TI provides the hardware in three kits that allow for single, two and three shunt current measurement.
Table 17-2 lists the current and voltage rating for each kit.
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Table 17-2. Current and Voltage Ratings for TI
Development Kits

Kit Current Rating (A) Voltage Rating (V)
DRV8312 6.5 50
DRV8301 82.5 50
HVKIT 10 350

Below we will show pertinent schematics for the kits and how they can be used for the three different
current measurement techniques.

17.6.1 DRV8312
The DRV8312 kit is the lowest power kit of all TI kits. It uses a TI DRV8312 power module which contains
six power MOSFETs and their corresponding gate drivers. The kit accepts any C2000, 100 pin DIMM
cards (Control Cards). A unique feature of the DRV8312 is that it can sustain switching frequencies up to
500 kHz with very high efficiency.

For the following discussion, refer to the schematic in the Stellaris® DK-LM3S-DRV8312 Development Kit
User's Manual (SPMU276). OA3, OA4, and OA2 are op-amps that make up the Kelvin current
connections for phases A, B, and C respectively. The differential gain of this circuit is 19.08 V/V. R52,
R53, and R50 are shunt resistors for each phase and are 10 mM each. The amount of current that causes
a 3.3 V output to the ADC is 3.3/.010/19.08 = 17.30 A/V. This current gain is used in the user.h file of
InstaSPIN for the parameter USER_ADC_FULL_SCALE_CURRENT_A.

To select between the 2 current shunt method or the 3 current shunt method, set the user.h parameter
USER_NUM_CURRENT_SENSORS to either 2 or 3 depending on the number of current shunts that are
used.

17.6.2 DRV8301
The DRV8301 kit is a low voltage high current kit. It uses discrete MOSFETs that are switched by the
DRV8301 gate driver.

17.7 Conclusion
Resistor shunt current measurement is a very reasonable technique for measuring current in a motor
control inverter. There are three widely used examples, the 1-Shunt, 2-Shunt, and 3-Shunt resistor
measurements. While at first the 1-Shunt and 2-Shunt techniques seem to be saving money, they require
much faster and more expensive amplifier circuits (see Table 17-3). 1 and 2 Shunt current measurements
also limit the capability of the current feedback which will limit the ability of the drive to use the full voltage
that is provided to the inverter. The 3-Shunt technique is superior and not much different in cost due to the
advantage of using cheap, slow, current amplifier circuits.

Table 17-3. Recommended Op-Amp Slew Rates for
Corresponding Number of Sense Resistors

No. of Shunts Op-Amp Slew Rate
1 >20 V/µs
2 >6 V/µs
3 >1 V/µs
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Sensored Systems

Sensored systems can also benefit from InstaSPIN-MOTION. Position control solutions rely upon an
accurate electrical angle in order to control the angle of the motor. While sensorless estimators work well
for velocity control applications, sensorless estimators do not provide an accurate enough motor angle for
position control. Examples are provided to demonstrate how to use a quadrature encoder to provide an
electrical angle feedback to InstaSPIN-MOTION for position control.

The FAST Software Encoder can still be used in position control applications to provide a backup encoder
to detect that the primary electrical angle source is having a failure.

Topic ........................................................................................................................... Page

18.1 Hardware Configuration for Quadrature Encoder.................................................. 562
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18.1 Hardware Configuration for Quadrature Encoder
Quadrature encoders need to use the Enhanced Quadrature Encoder Pulse (QEP) peripheral found on
the F2806xM and F2805xM devices. Your board design needs to feed the quadrature encoder signals into
the microcontroller. If you are using a TI evaluation kit, the boards are setup to work correctly with a
quadrature encoder. To attach the quadrature encoder, see the hardware manual for your specific
evaluation kit.

18.1.1 Pin Usage
The QEP peripheral accepts A, B, and I inputs from the quadrature encoder. Table 18-1 lists the required
pins for 1 QEP peripheral. These should be wired to the appropriate pins on your encoder.

Table 18-1. Pins Required to Connect Quadrature
Encoder to eQEP Module

Pin Type Pin Name Pin Usage Per Motor
EQEPxA

Digital EQEPxB 3
EQEPxI

18.2 Software Configuration for Quadrature Encoder
This software configuration will focus on using the MotorWare infrastructure to get your quadrature
encoder working correctly. These steps need to be done for projects that use a quadrature encoder. Lab
12b — Using InstaSPIN-MOTION with Sensored Systems — is an example project that implements the
steps required to use a quadrature encoder for feedback.

18.2.1 Configure Motor for EQEP Operation
An additional parameter needs to be defined in the user.h file. This parameter is
USER_MOTOR_ENCODER_LINES. This value should be set to the number of lines (or pulses) that are
on the motor's encoder. In the Lab 12b example project, this macro definition is included in user.h.

#elif (USER_MOTOR == Teknic_M2310PLN04K)
#define USER_MOTOR_TYPE MOTOR_Type_Pm
#define USER_MOTOR_NUM_POLE_PAIRS (4)
#define USER_MOTOR_Rr (NULL)
#define USER_MOTOR_Rs (0.4076258)
#define USER_MOTOR_Ls_d (0.0001972132)
#define USER_MOTOR_Ls_q (0.0001972132)
#define USER_MOTOR_RATED_FLUX (0.03975862)
#define USER_MOTOR_MAGNETIZING_CURRENT (NULL)
#define USER_MOTOR_RES_EST_CURRENT (1.0)
#define USER_MOTOR_IND_EST_CURRENT (-0.5)
#define USER_MOTOR_MAX_CURRENT (7.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz (20.0)
// Number of lines on the motor's quadrature encoder
#define USER_MOTOR_ENCODER_LINES (1000.0)

18.2.2 Initialize EQEP Handle
The HAL_init function, located in hal.c, initializes the handle for the QEP driver. This will provide the QEP
handle with the location of the registers that it will modify. In the Lab 12b example project, this step is
accomplished in the hal.c file.

// initialize EQEP handle
obj->qepHandle[0] = QEP_init((void*)QEP1_BASE_ADDR,sizeof(QEP_Obj));
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18.2.3 Set Digital IO to connect to QEP Peripheral
By default, the pins used by QEP driver are set to be general purpose digital IO. These need to be set in
the HAL_setupGpios function, located in hal.c, to connect to the QEP driver. In the Lab 12b example
project, this step is accomplished in the hal.c file.

// EQEPA
GPIO_setMode(obj->gpioHandle,GPIO_Number_20,GPIO_20_Mode_EQEP1A);

// EQEPB
GPIO_setMode(obj->gpioHandle,GPIO_Number_21,GPIO_21_Mode_EQEP1B);

// EQEP1I
GPIO_setMode(obj->gpioHandle,GPIO_Number_23,GPIO_23_Mode_EQEP1I);

18.2.4 Enable Clock to eQEP
In the function HAL_setupPeripheralClks, located in hal.c, the clock needs to be enabled for the QEP
driver you will be using. This will allow the QEP driver to work correctly. In the Lab 12b example project,
this step is accomplished in the hal.c file.

CLK_enableEqep1Clock(obj->clkHandle); // Enable clock to eQEP Module

18.2.5 Initialize ENC Module
The ENC module is used to convert the raw counts produced by the QEP driver into electrical angle that
will be used by the FOC system. An ENC module object and handle need to be declared in the main
source file of the project. In the Lab 12b example this is done in proj_lab12b.c.

ENC_Handle encHandle;
ENC_Obj enc;

Once the ENC module object and handle have been declared they need to be initialized. This will assign
the handle to point to the specific memory used by the ENC module. This should be done prior to the
main loop in the main source file.

// initialize the ENC module
encHandle = ENC_init(&enc, sizeof(enc));

18.2.6 Set Up ENC Module
Prior to the main loop in the main source file the ENC module needs to be setup. This will pass important
values to the ENC module to allow it to interpret the raw quadrature counts from the QEP driver into
electrical angle useable by the FOC.

// setup the ENC module
ENC_setup(encHandle, hal_obj->qepHandle[0], 1, USER_MOTOR_NUM_POLE_PAIRS,
USER_MOTOR_ENCODER_LINES, 0, USER_IQ_FULL_SCALE_FREQ_Hz, USER_ISR_FREQ_Hz, 8000.0);
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18.2.7 Call eQEP Function
In the main ISR we need to call the function to calculate the rotor angle from the EQEP driver. This
function is called ENC_calcElecAngle. This needs to happen during every instance of the ISR.

// compute the electrical angle
ENC_calcElecAngle(encHandle);

18.2.8 Provide eQEP Angle to FOC
In the ctrl.h file the function CTRL_runOnline_User, we need to modify the source for the angle provided
to FOC. As a default, FOC is set up to get the angle from the FAST estimator, but for sensored control,
the FOC will receive the angle from the ENC module. In the Lab 12b example project, this step is
accomplished in the ctrlQEP.h file.

// generate the motor electrical angle
angle_pu = EST_getAngle_pu(obj->estHandle);

// Update electrical angle from ENC module
angle_pu = ENC_getElecAngle(encHandle);

18.3 InstaSPIN-MOTION Position Convert
SpinTAC™ Position Convert is used to convert the electrical angle output from the ENC module into
mechanical angle and speed feedback that is used in the rest of the system. The ENC module produces
the rotor electrical angle used in the FOC. SpinTAC Position Convert will also estimate the slip velocity in
AC induction motors. This is required to use AC induction motors with a physical sensor.

18.3.1 Software Configuration for SpinTAC Position Convert
Configuring SpinTAC Position Convert requires four steps. Lab 12b — Using InstaSPIN-MOTION with
Sensored Systems — is an example project that implements the steps required to use the SpinTAC
Position Convert. The header file spintac_velocity.h, included in MotorWare, allows you to quickly include
the SpinTAC components in your project.

18.3.1.1 Include the Header File
This should be done with the rest of the module header file includes. In the Lab 12b example project, this
file is included in the spintac_velocity.h header file. For your project, this step can be completed by
including spintac_velocity.h.

#include "sw/modules/spintac/src/32b/spintac_pos_conv.h"

18.3.1.2 Declare the Global Structure
This should be done with the global variable declarations in the main source file. In the Lab 12b project,
this structure is included in the ST_Obj structure that is declared as part of the spintac_velocity.h header
file.

ST_Obj st_obj; // The SpinTAC Object
ST_HandlestHandle; // The SpinTAC Handle
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This example is if you do not wish to use the ST_Obj structure that is declared in the spintac_velocity.h
header file.

ST_PosConv_t stPosConv; // The SpinTAC Position Converter Object
ST_POSCONV_Handle stPosConvHandle; // The SpinTAC Position Converter Handle

18.3.1.3 Initialize the Configuration Variables
This should be done in the main function of the project ahead of the forever loop. This will load all of the
default values into SpinTAC Position Convert. This step can be completed by running the functions ST_init
and ST_setupPosConv that are declared in the spintac_velocity.h header file. If you do not wish to use
these two functions, the code example below can be used to configure the SpinTAC Position Converter.
This configuration of SpinTAC Position Converter represents the typical configuration that should work for
most motors.

// init the ST PosConv object
stPosConvHandle = STPOSCONV_init(&stPosConv, sizeof(stPosConv));

// Setup the SpinTAC Position Converter
// Sample time [s], (0, 1]
STPOSCONV_setSampleTime_sec(stPosConvHandle, _IQ(ST_SPEED_SAMPLE_TIME));
// The upper [0, 16] and lower [-16, 0] bounds of the input position signal [ERev]
STPOSCONV_setERevMaximums_erev(stPosConvHandle, _IQ(1.0), 0);
// Sets the unit conversions used in the SpinTAC Position Converter
STPOSCONV_setUnitConversion(stPosConvHandle, USER_IQ_FULL_SCALE_FREQ_Hz,

ST_SAMPLE_TIME, USER_MOTOR_NUM_POLE_PAIRS);
// The Rollover bound of the output position signal [MRev]
STPOSCONV_setMRevMaximum_mrev(stPosConvHandle, _IQ(10.0));
// Low-pass time constant [tick]
STPOSCONV_setLowPassFilterTime_tick(stPosConvHandle, 3);
// ST_PosConv should start enabled
STPOSCONV_setEnable(stPosConvHandle, true);
// ST_PosConv should not be in reset
STPOSCONV_setReset(stPosConvHandle, false);

18.3.1.4 Call SpinTAC Position Convert
This should be done in the main ISR. This function needs to be called at the proper decimation rate for
this component. The decimation rate is established by ST_ISR_TICKS_PER_SPINTAC_TICK declared in
the spintac_velocity.h header file; for more information, see Section 4.7.1.4. Before calling SpinTAC
Position Converter function the electrical angle computed by the ENC module needs to be passed into the
SpinTAC Position Converter.

// update the electrical angle
STPOSCONV_setElecAngle_erev(stPosConvHandle, ENC_getElecAngle(encHandle));
// run the SpinTAC Position Converter
STPOSCONV_run(stPosConvHandle);

18.3.2 Troubleshooting SpinTAC Position Convert

18.3.2.1 ERR_ID
ERR_ID provides an error code for users. A list of errors defined in SpinTAC Position Convert and the
solutions for these errors are shown in Table 18-2.
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Table 18-2. SpinTAC Position Convert ERR_ID Code

ERR_ID Problem Solution
1 Invalid sample time value Set cfg.T_sec within (0, 0.01]
13 Invalid position rollover bound value Set cfg.ROMax_mrev within [2, 100]
21 Invalid value for the scaling factor from Set cfg.PolePairs within [1, 32]

[MRev] to [ERev]
25 Invalid value for the scaling factor from Set cfg.erev_TO_pu_ps as a positive IQ24 value

position in [MRev] to velocity in [pu/s]
26 Invalid input sawtooth position upper bound Set cfg.ROMax_erev within [0, 16]

value
27 Invalid input sawtooth position lower bound Set cfg.ROMin_erev within [-16, 0]

value
37 Invalid input cfg.OneOverFreqTimeConst Set cfg.OneOverFreqTimeConst to a positive value
38 Invalid input cfg.SampleTimeOverTimeConst Set cfg.SampleTimeOverTimeConst to a positive value

1010 Invalid velocity feedback low pass filter time Set cfg.LpfTime_tick within [1, 100]
constant

4003 Invalid ROM Version Use a chip with a valid ROM version or use the SpinTAC
library that is compatible with the current ROM version.
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Difficult Motors

Details on issues with motors that are difficult for motor identification and for running. Suggested
techniques will be presented to adjust InstaSPIN-FOC and InstaSPIN-MOTION for these corner cases.
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Adding System Functions

Details on how to integrate system software to a MotorWare project such as InstaSPIN-FOC.
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Building Your InstaSPIN-FOC and InstaSPIN-MOTION
Board

Details are presented to design a PCB that implements InstaSPIN-FOC or InstaSPIN-MOTION to meet
your application requirements.
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Definition of Terms and Acronyms

ACIM — Alternating current induction motor.

ADRC — Active Disturbance Rejection Control. Estimates and compensates for system disturbance, in
real-time.

CCStudio — Code Composer Studio.

FAST — Unified observer structure which exploits the similarities between all motors that use magnetic
flux for energy transduction, automatically identifying required motor parameters and providing the
following motor feedback signals:
• High-quality Flux signal for stable flux monitoring and field weakening.
• Superior rotor flux Angle estimation accuracy over wider speed range compared to traditional

observer techniques independent of all rotor parameters for ACIM.
• Real-time low-noise motor shaft Speed signal.
• Accurate high bandwidth Torque signal for load monitoring and imbalance detection.

FOC — Field-oriented control.

Forced-Angle — Used for 100% torque at start-up until the FAST rotor flux angle tracker converges
within first electrical cycle.

InstaSPIN-FOC — Complete sensorless FOC solution provided by TI on-chip in ROM on select devices
(FAST observer, FOC, speed and current loops), efficiently controlling your motor without the use of
any mechanical rotor sensors.

InstaSPIN-MOTION — A comprehensive motor-, motion- and speed-control software solution that
delivers robust system performance at the highest efficiency for motor applications that operate in
various motion state transitions. InstaSPIN-MOTION builds on and includes InstaSPIN-FOC,
combined with SpinTAC™ Motion Control Suite from LineStream Technologies.

IPM — Interior permanent magnet motor.

LineStream Technologies — Pioneers in the world of embedded controls software. Boasting a team of
motor control experts from six different countries cumulatively speaking fifteen languages and
possessing over eighty years of industry experience, LineStream is fast becoming the world's
preeminent stronghold of embedded motor control knowledge.

Motor Parameters ID or Motor Identification — A feature added to InstaSPIN-FOC, providing a tool to
the user so that there is no barrier between running a motor to its highest performance even though
the motor parameters are unknown.

PI — Proportional-integral regulator.

PMSM — Permanent magnet synchronous motor.

PowerWarp™ — A mode of operation for AC induction motors (ACIM) that minimizes motor losses under
lightly loaded conditions.

Rs-Offline Recalibration — InstaSPIN-FOC feature that is used to recalibrate the stator resistance, Rs,
when the motor is not running.

Rs-Online Recalibration — InstaSPIN-FOC feature that is used to recalibrate the stator resistance, Rs,
while the motor is running in closed loop.
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SpinTAC™ Motion Control Suite — Includes and advanced speed controller, a motion engine, and a
motion sequence planner. The SpinTAC disturbance-rejecting speed controller proactively
estimates and compensates for system disturbances in real-time, improving overall product
performance. The SpinTAC motion engine calculates the ideal reference signal (with feed forward)
based on user-defined parameters. SpinTAC supports standard industry curves, and LineStream’s
proprietary "smooth trajectory" curve. The SpinTAC motion sequence planner operates user-
defined state transition maps, making it easy to design complex motion sequences.

SVM — Space-vector modulation.
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