PRODUCTS	
	CAT.No.
Aluminum Electrolytic Capacitors	1001
Multilayer Ceramic Capacitors	1002
Film Capacitors	1003
Metal Oxide Varistors TNR™	1006
Nanocrystalline / Amorphous / Dust Choke Coils	1008
Electric Double Layer Capacitors	1009
Camera Modules	

Notes on Safety

- Always read "Notes on Use" before using the product in order to enable you to use the product correctly and prevent any faults and accidents from occurring.
- Request the Product Specification on the product of NIPPON CHEMI-CON CORPORATION to refer to it as well as this brochure prior to the order of the products. Some specific notes on use of the ordered product may be described in the specifications.
- The products listed in this catalog are designed and manufactured for general electronics equipment use and are not intended for use in applications that can adversely affect human life; where the malfunction of equipment may cause damage to life or property. In addition, our products are not intended to be used in specific applications that may cause a major social impact. Please consult with us in advance of usage of our products in the following listed applications. ① Aerospace equipment (2) Power generation equipment such as thermal power, nuclear power etc. (3) Medical equipment (4) Transport equipment (automobiles, trains, ships, etc.) (5) Transportation control equipment (6) Disaster prevention / crime prevention equipment (7) Highly publicized information processing equipment (8) Submarine equipment (9) Other applications that are not considered general-purpose applications.

Note

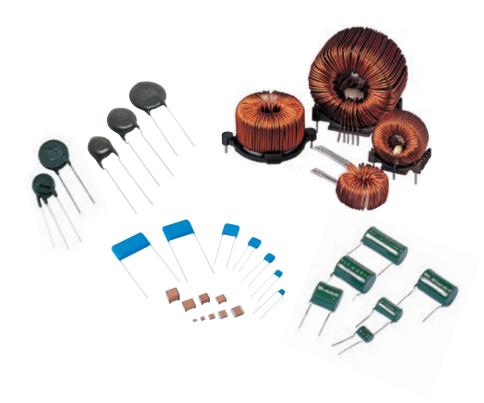
ELECTRONIC

COMPONENTS

DEVICES

- We strongly recommend our customers to purchase Nippon Chemi-Con products only through our official sales channels. We assume no responsibility for any defects or damages caused by using products purchased from outside our official sales channel or of counterfeit goods.
- In addition, we will ask the customer to pay the investigation cost for products purchased outside our official sales channel. We reserve the right to discontinue production and delivery of products. We do not guarantee that all the products included in this catalog will be available in the future.
- The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products We continually strive to improve the quality and reliability of our products, but in any case that our product does not meet our published specifications, please stop using it promptly and contact us immediately. As for compensation for non-conforming goods delivered by Chemi-Con, we will limit it only to goods found in non-compliance of our published specifications. This may be accomplished by a no cost replacement of non-conforming individual products, a credit of the piece price paid per each individual non-conforming product, or in other ways deemed necessary.
- In addition, we have an established system with enhanced traceability, therefore we will limit the applicable lot items for any potential compensation.
- The content of this catalog is as of April 2018

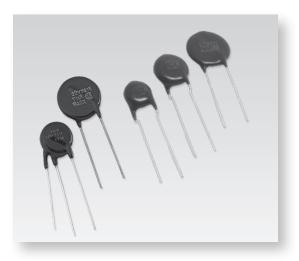
NIPPON CHEMI-CON CORPORATION http://www.chemi-con.co.jp/e/


Distributed or Represented by

2018 MLCC / Varistors / Film Capacitors Choke 0 S

NIPPON CHEMI-CON

CERAMIC CAPACITORS VARISTORS **FILM CAPACITORS CHOKE COILS**



Downloaded from Arrow.com

2018

CAT.NO.E1002X / E1006A / E1003U / E1008S

English

METAL OXIDE VARISTOR TNR™

Production Guide	P34-50
Series Table	P34
Precautions and Guidelines	P35
Group Chart / Part Numbering System	P36
Technical Terms on Varistors	P37
Safety Standards	P38
Lead Forming Specifications	P41
Taping Specifications (Disk Type)	P42
Packaging	P49
Minimum Packaging Quantity	P50
Product Specifications	P51-87
Disk Type TNR V Series	P52
Pulse Life Time Ratings	P68
TNR SV Series	P73
TNR H Series	P83
TNR GF Series	P87
Technical Note, Application Examples	P89-100
Technical Note	P90
Application Examples	P100

METAL OXIDE VARISTORS TNR[™]

Item	Series	Features	Page
	V Series	Very Large Surge Capability	52
	SV Series	Non flammable and Little Scatter Type Very Large Surge Capability	73
Disk Type	H Series	High Energy Low Voltage	83
	GF Series	Disk Type with Thermal Fuse	87

All the series mentioned above is RoHS2 compliant products.

METAL OXIDE VARISTORS TNR[™] PRECAUTIONS AND GUIDELINES

- 1 The performance of varistors may deteriorate, the inside elements may be damaged, and they cause the varistors to smoke or catch fire, if the following precautions are not observed.
- (1) Do not use varistors in places whose temperature exceeds their rated operating temperature due to direct sunlight or heating objects.
- (2) Do not use varistors in a humid place directly exposed to the weather or steam.
- (3) Do not use varistors in places filled with dust, salt-mist or corrosive gas.
- (4) The soldering method is flow soldering and iron soldering. The recommended conditions are as follows.
 - Flow soldering : Pre-heat 100±20°C, 60 to 90 sec., Soldering 260±5°C, 10±1sec.
 Iron soldering : 350±10°C, less than 4sec.
- (5) Do not use solvents such as thinner and acetone which dissolve or make the exterior covering of varistors deteriorate.
- Ultrasonic cleaning shall be so set that the vibration can not travel the assembly boards.
- (6) Do not expose varistors to intense vibration, shock (drop shock etc.) or pressure making the exterior covering or inside element crack.
- (7) Do not apply high voltage exceeding the rated maximum applying voltage to varistors.
- In the case of automotive jump starts, however, use the varistors within short-term allowable voltage limits prescribed in the catalog.
- If voltage wave form is not complete DC, a maximum value of peak voltages shall not exceed the rated maximum applying voltage.
- (8) Do not apply peak currents exceeding the rated maximum energy.
- (9) When peak currents are repeatedly applied to varistors, do not exceed the pulse life time ratings prescribed in the catalog.
- (10) When peak currents are intermittently applied to varistors at short intervals, do not exceed the rated wattage.
- (11) Using varistors in circuits whose frequency exceeds 1kHz may damage their elements by heat generation due to dielectric loss.
- (12) In the case of coating or molding varistors with resin, do not use the resin which makes the varistors deteriorate.
- (13) Do not install varistors in places near by flammable substances.
- 2 Varistors may blow up, if the following precautions are not observed.
- Do not use varistors in circuits applied peak currents exceeding the specified limits.
- (2) Do not exceed the rated maximum applying voltage.
- **3** Varistors do not function but damages devices, if the following precautions are not observed.
- (1) Hold the root of the varistor lead when bending or cutting the lead.
- (2) The lead close to insulation cover shall not be bent or applied to outer force.
- (3) When soldering the lead, do not damage a solder material and insulator fabricating the varistor.
- 4 The following preventive measures should be made for avoiding unexpected accident.
- (1) When using a varistor in between circuits, connect an earth leakage breaker (ground-fault circuit interrupter) or current fuse in series with the varistor.
- (2) When using a varistor in between a circuit and ground, connect an earth leakage breaker (ground-fault circuit interrupter) or both of a current fuse and thermal fuse in series with the varistor. Also, in case of excessive voltage due to ground short circuit accident, use the varistor with the rated voltage higher than the excessive voltage.
- 5 Store varistors at a temperature of -10 to + 40°C and a relative humidity of less than 75%. Avoid storing in environment of rapid changes in temperature, direct sunlight, corrosive gas or dust, and store with the varistors packaged and use within 1 year. Please confirm soldering of the lead wire with the product stored in a long time in more than 1 year.
- 6 Follow safety standards such as Electrical, UL, CSA and so forth, which specify the use of varistors.

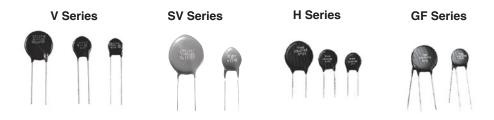
7 Catalogs

Downloaded from Arrow.com.

NIPPON CHEMI-CON

- Product specifications in this catalog are subject to change without notice. Please request and make sure our product specifications before purchase and/or use. Parformance test data in the catalogs show typical values, which are not assured in the catalogs.
- 8 Response to the Substances of Concern
 - (1) Nippon Chemi-Con aims for developing products that meet laws and regulations concerning substances of concern. (Some products may contain regulated substances for exempted application.) Please contact us for more information about law-compliance status.
 - (2) According to the content of REACH handbook (Guidance on requirements for substances in articles which is published on May 2008), our electronic components are "articles without any intended release". Therefore they are not applicable for "Registration" for EU REACH Regulation Article 7 (1).
 - Reference: Electrolytic Condenser Investigation Society
 - "Study of REACH Regulation in EU about Electrolytic Capacitor" (publicized on 13 March 2008)

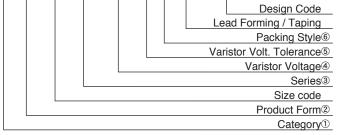
TNR is a "NEW" metal oxide varistor having steep non-linear V-I characteristics and high discharge current capability, as follows:

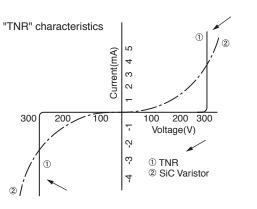

♦TNR Features

- 1. Excellent transient voltage suppression
- 2. High discharge current capability
- 3. Wide range of voltage ratings
- 4. Symmetrical V-I characteristics (Non Polarity)
- 5. Fast response
- 6. Steady operation for repeating surge
- 7. Low temperature coefficient
- 8. High reliability
- 9. UL recognized
- 10. CSA recognized

Applications

- 1. Electronics instrument protection
- 2. Telephone system protection
- 3. Relay contact point protection
- 4. Rectification diode protection
- 5. SCR protection
- 6. Reduction of abnormal voltage in high voltage current
- 7. Switching transistor protection
- 8. Reduction of switching surge in electromagnetic brake
- 9. Prevention of error in digital circuit
- 10. Reduction of noise from an abnormal voltage


♦Group Chart


Part Numbering System

The current parts numbering system is changed to new system for global coding. Your cooperation will be very much appreciated.

$\begin{array}{c} 1 \\ \hline \mathbf{N} \\ \hline$

①Category			(④Varistor Voltage			
Metal Oxide			The first two digits are signific				
Т	T Varistors		figures	and the third one denote	s		
TNR			the number of following zeros.				
②Product Form			5 Varis	stor Volt. Tolerance			
ND	Disk Type		K	±10%			
NL	Sleeve Type		6	Packing Style			
③Series			В	Bulk			
V-	V Series		Т	Taping			

Technical Term	Description				
Varistor Voltage	Voltage across the varistor measured at CmA DC. C = 0.1 or 1.0 as specified.				
Max. Allowable Voltage (ACrms)	Maximum continuous sinusoidal RMS voltage which may be applied.				
Max. Allowable Voltage (DC)	Maximum continuous DC voltage which may be applied.				
Maximum Clamping Voltage	Peak voltage across the varistor, measured under conditions of a specified peak impulse current and specified waveform (8/20µs) applied 1 time.				
Rated Wattage	Maximum power that can be applied within the specified ambient temperature.				
Maximum Peak Current	Maximum current within the $\pm 10\%$ varistor voltage change with standard impulse current (8/20 μs) applied 1 time.				
Current Wave Form for Clamping Voltage Test and Maximum Peak Current	Crest Value 100 90 50 10 20μs 10 10 10 10 10 10 10 10 10 10				
Energy	Maximum energy within the $\pm 10\%$ varistor voltage change when 1 impulse τ msec long is applied. τ = 2 or 20 ms as specified.				
Capacitance	Typical value measured at a 1kHz test frequency. (Sin wave. Reference purpose only)				

SAFETY STANDARDS for V Series

TNR V Series / Recognized safety standards

Standards	Category Name	Title	File No.	Varistor Voltage Ranges	Symbol
UL1449	VZCA2 (USA)	Surge Protective Devices	E323623	82~1800 V	0
011449	VZCA8 (Canada)	Surge Protective Devices	L323023	02 1000 0	
CSA C22.2 No.1 Class 2221 01		AUDIO AND VIDEO EQUIPMENT- Accessories and Parts for Electronic Equipment Varistor for Across-the-line use as transient protection on 120 V ac	LR-97864	200~1800 V	☆
VDE		Varistor DIN EN 61051-1:2009-04 IEC 61051-1:2007-04 61051-2:1991-01 61051-2(ed.1);am1:2009-05 61051-2-2:1991-01	118623	15~1800 V	
CQC		GB/T10193, GB/T10194 GB4943.1, GB8898	(1)	82~1800 V	\diamond

Note(1) File number of CQC varies according to a part number. Pleasee refer to us.

Recognized Part numbers

Rating	Varistor voltage		Part Number																				
пашту	(V)	TN	D05V-*	**K	TN	007V-*	**K	TN	D09V-*'	**K	TND	10V-***	ĸ	TND10V	-***KS	TND1	2V-***K	TN	014V	-***K	TNE)20V-	***K
820K	82	0			0			0			0		\diamond					0			0		
101K	100	0			0			0			0		\diamond					0	[0		
121K	120	\bigcirc			0			0			0		\diamond					0	E	$\exists \diamondsuit$	0		1 🔷
151K	150	0			0			0			0		\Diamond					0	[$\exists \diamondsuit$	0		1 🔷
181K	180	0			0			0			0		\diamond					0	E		0		
201K	200	0	☆		0	☆		0	☆		0 7	☆ □ ↔	\diamond					0	☆		0	☆ ■	
221K	220	0	☆		0	☆		0	☆		0 7	∑ □ <	\diamond					0	☆		0	☆ 🗖	1 🔿
241K	240	\bigcirc	☆		\bigcirc	☆		0	☆		0 7	☆ 🗆 ‹	\diamond					\bigcirc	☆		\circ	☆ ■	ı 🔷
271K	270	0	☆		0	☆		0	☆		0 7	∑ □ <	\diamond					0	☆		0	☆ ■	
331K	330	\bigcirc	☆		\bigcirc	☆		0	☆		0 7	∑ □ <	\diamond					0	☆		0	☆ ■	
361K	360	0	☆		0	☆		0	☆		0 7	☆ 🗆 ‹	\Diamond					\bigcirc	☆		0	☆ ■	ı 🔷
391K	390	0	$\stackrel{\wedge}{\simeq}$		0	☆		0	☆		0 7	☆ □ ‹	\Diamond					0	☆		0	☆ ■	i 🔷
431K	430	\bigcirc	$\stackrel{\wedge}{\simeq}$		0	☆		0	☆		0 7	☆ □ ‹	\diamond			O zh	7 🔳 🛇	0	☆ 🛛		0	☆ 🗖	ı 🔷
471K	470	0	☆		\bigcirc	☆		0	☆		0 7	∑ □ <	\diamond	0 🕸		O 7Å	. 🔳 🔶	0	☆		0	☆ 🗖	•
511K	510				0	☆		0	☆		0 7	☆ □ ↔	\diamond	\bigcirc		O 🖈	. 🔳 🔶	0	☆		0	☆ 🗖	•
561K	560										0 7	☆ □ ‹	\diamond	0 🕸		O 7Å	- I 🔶	\circ	☆		0	☆ 🗖	•
621K	620										0 7	∑ □ <	\diamond	\bigcirc		O 🖈	. 🔳 🔶	0	\overleftrightarrow		0	☆ 🗖	•
681K	680										0 7	<u>∕</u> ; □ (\diamond	0 🕸		∧	. 🔳 🔶	0	☆		0	☆ ■	•
751K	750										0 7	☆ □ ‹	\diamond	0 \$	•	ΟĶ	. 🔳 🔶	0	☆		\circ	☆ 🗖	•
821K	820										0 7	<u>∕</u> z □ «	\diamond	0 ☆		0 7	. 🔳 🔶	0	☆		0	☆ 🗖	
911K	910										0 7	☆ □ ‹		0 🕸		O 7	. 🔳 🔶	0	☆		0	☆ 🗖	•
102K	1000										0 7	∑ □ «	\diamond	\bigcirc		0 7	r 🔳 🔶	0	☆		0	☆ 🗖	•
112K	1100							L			0 7	<u>∕</u> ; □ (\bigcirc	0 🕸		0 7	. 🔳 🔶	0	☆		0	☆ 🗖	•
122K	1200										0 7	½ □ ·	⊘[0 🕁		O 7	r 🔳 🔶	0	☆		$ $ \bigcirc	☆ 🗖	
152K	1500										0 7	\z □ ·	<u> (</u>	0 🕸		Οr	. 🔳 🔶	0	☆		0	☆ 🗖	
182K	1800										0 7	∑ □ <	\diamond	0 \$		O 7	. 🔳 🔶	0	☆		0	☆ 🔳	•

"***K" or "***KS": Ratings

○: UL1449, ☆: CSA, □: VDE, ■: VDE and IEC 60950-1:2013,Annex Q
 ◇: CQC(GB/T10193, GB/T10194), ◆: CQC(GB/T10193, GB/T10194, GB4943.1, GB8898)

*Recognized marking

UL, CSA : on the products VDE, CQC: on the package label

*The safety standards may be changed without a notice. Please refer for the latest certificate to us. Please refer to each certification organization for the inquiry about the contents of the safety standards.

◆The AC Rated Voltage and Maximum Allowable Voltage

Rating	Maximum Allo	wable Voltage	AC Rated V	oltage (Vrms)
naung	ACrms (V)	DC (V)	UL1449	CSA
820K	50	65	45	N/A
101K	60	85	55	N/A
121K	75	100	68	N/A
151K	95	125	86	N/A
181K	110	145	100	N/A
201K	130	170	118	118
221K	140	180	127	127
241K	150	200	136	136
271K	175	225	159	159
331K	210	270	189	189
361K	230	300	209	209
391K	250	320	227	227
431K	275	350	250	250
471K	300	385	272	272
511K	320	410	286	286
561K	350	460	318	318
621K	385	505	350	350
681K	420	560	381	381
751K	460	615	418	418
821K	510	670	463	463
911K	550	745	500	500
102K	625	825	568	568
112K	680	895	600	600
122K	720	980	600	600
152K	860	1220	600	600
182K	1000	1465	600	600

Application Notes

NIPPON CHEMI-CON

1) CSA regulate "Maximum Rating Fuse" for using TNR to "Audio, Video and Similar Electronic Equipment" as below

Maximum Peak Current 8/20µs, 1 time(A)	Type of TNR	Maximum Rating of Fuse (A)
Up to 500		3
501~2000	TND05V, TND07V	5
2001~6000	TND09V, TND10V, TND12V, TND14V	10
Over 6000	TND20V	Not specified

2) "Rated Voltages" are specified for UL/CSA recognized components besides Maximum Allowable Voltage because of conforming to the Standby Current specified in safety standards.

In case of making an application to UL/CSA approval for equipment with TNR, the maximum AC operating voltage of equipment shall be lower than the TNR Rated Voltage.

SAFETY STANDARDS for SV Series

TNR SV Series / Recognized safety standards

Standards	Category Name	Title	File No.	Varistor Voltage Ranges	Symbol
UL1449	VZCA2 (USA)	Currae Protective Devices	F202602	SV : 220~680 V	0
0L1449	VZCA8 (Canada)	Surge Protective Devices	E323623	3V · 220 · 000 V	0
CSA C22.2 No.1 Class 2221 01		AUDIO AND VIDEO EQUIPMENT- Accessories and Parts for Electronic Equipment Varistor for Across-the-line use as transient protection on 120 V ac	LR-97864	SV : 220~680 V	☆
VDE		Varistor DIN EN 61051-1:2009-04 IEC 61051-1:2007-04 61051-2:1991-01 61051-2(ed.1);am1:2009-05 61051-2-2:1991-01	118623	SV : 220~680 V	
CQC		GB/T10193, GB/T10194 GB4943.1, GB8898	(1)	SV : 220~680 V	\diamond

Note(1) File number of CQC varies according to a part number. Pleasee refer to us.

Recognized Part numbers

Deting	Varistor voltage	Part number									
Rating	(V)	TND10SV***K	TND10SV***KS	TND12SV***K	TND14SV***K	TND20SV***K					
221K	220	$\bigcirc \Rightarrow \Box \diamondsuit$			○☆ ■ ◇	○ ☆ ■ ◇					
241K	240	$\bigcirc \Rightarrow \Box \diamondsuit$			○ ☆ ■ ◇	○ ☆ ■ ◇					
271K	270	$\bigcirc \Rightarrow \Box \diamondsuit$			○ ☆ ■ ◇	○ ☆ ■ ◇					
431K	430			$\bigcirc \Leftrightarrow \blacksquare \diamondsuit$	○ ☆ ■ ◇	○ ☆ ■ ◇					
471K	470		○☆∎◆	○☆■◆	○☆■◆	○☆∎◆					
511K	510	$\bigcirc \Rightarrow \Box \diamondsuit$	○☆∎◆	○☆■◆	○☆■◆	○☆∎♦					
561K	560	$\bigcirc \Rightarrow \Box \diamondsuit$	○☆■◆	○☆■◆	○☆■◆	○☆∎◆					
621K	620	$\bigcirc \Leftrightarrow \Box \diamondsuit$	○☆■◆	○☆■◆	○☆■◆	○☆∎◆					
681K	680	$\bigcirc \Rightarrow \Box \diamondsuit$	○☆■◆	○☆■◆	○☆∎ ♦	○☆∎♦					

"***K" or "***KS": Ratings

○: UL1449, ☆: CSA, □: VDE, ■: VDE and IEC 60950-1:2013, Annex Q
 ◇: CQC(GB/T10193, GB/T10194), ♦: CQC(GB/T10193, GB/T10194, GB4943.1, GB8898)

*Recognized marking

Downloaded from Arrow.com.

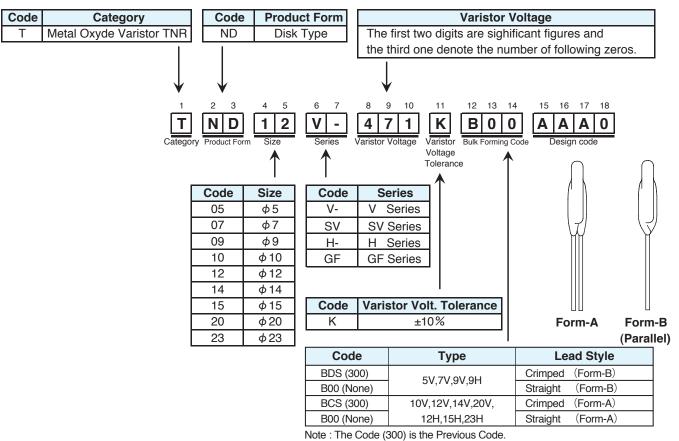
UL, CSA : on the products VDE, CQC: on the package label

*The safety standards may be changed without a notice. Please refer for the latest certificate to us. Please refer to each certification organization for the inquiry about the contents of the safety standards.

Unit : mm

•This Specifies the lead forming specifications for Disk Type (V, H series)

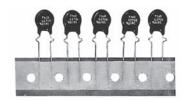
 Image: OBDS Type
 Image: OBDS Type


 Image: OBDS Type

♦DIMENSIONS

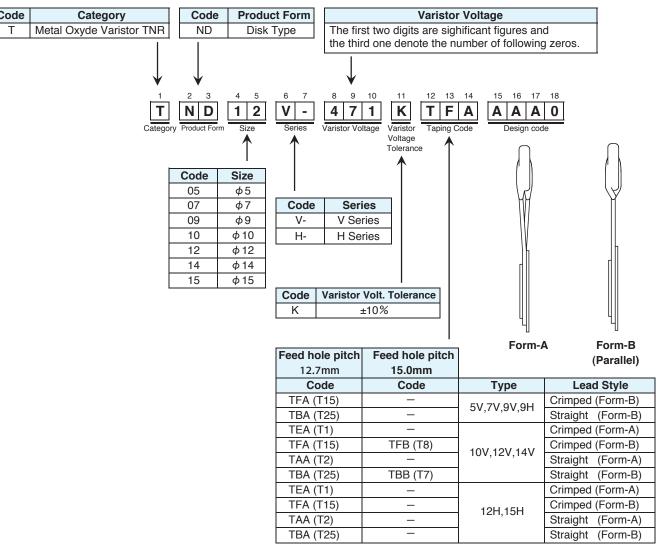
			01111 - 11111	
Туре	5V, 7V, 9V, 9H	10V, 12V, 14V, 12H, 15H	20V, 23H	
Lead style code	BDS	BCS	BCS	
D	refer to each spec.	refer to each spec.	refer to each spec.	
Т	refer to each spec.	refer to each spec.	refer to each spec.	
н	6.0 ^{+2.0} -1.0	6.0 ^{+2.0} -1.0	6.0 ^{+2.0} -1.0	
L	5.0±1.0	5.0±1.0	5.0±1.0	
W	5.0±1.0	7.5±1.0	10.0±1.0	
φd	0.6±0.05	0.8±0.05	0.8±0.05	
С	2.0±0.5	2.0±0.5	2.0±0.5	
E	—	refer to each spec.	refer to each spec.	

◆PART NUMBERING SYSTEM (BULK)


φq

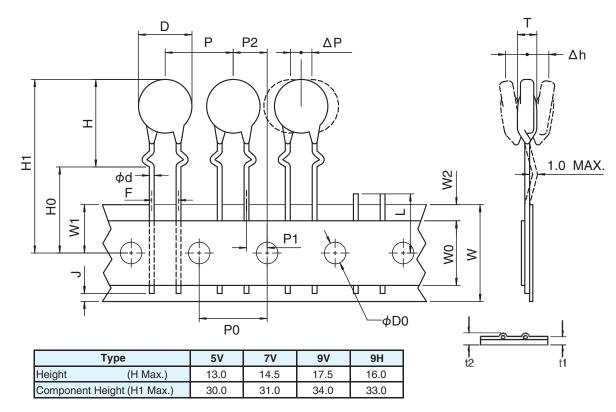
Product specifications in this catalog are subject to change without notice. Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications.

41


•This Specifies taping specifications for TNR varistors which have normal disk diameter of 5 to 15mm and nominal varistor voltage of 15 to 510V.

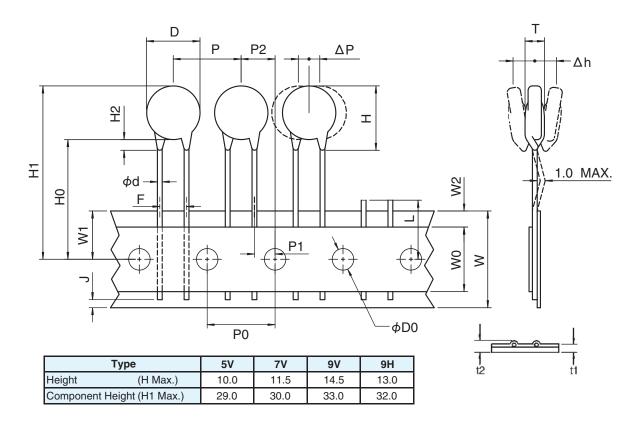
♦PART NUMBERING SYSTEM

NIPPON CHEMI-CON


Code

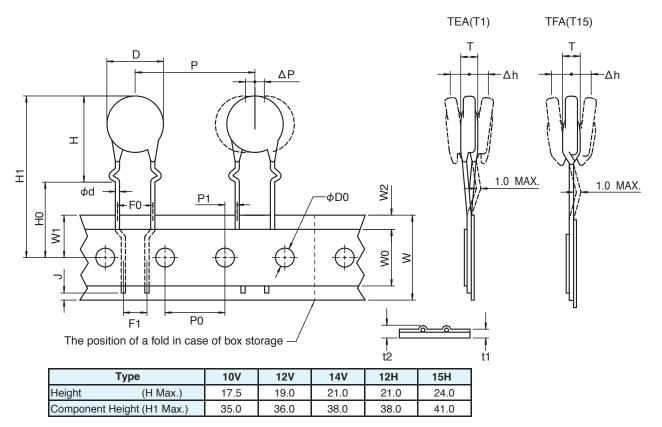
42

Note : The Code (T1,T15,T2,T25,T8,T7) are the old taping code.


◆5V, 7V, 9V, 9H : TYPE TFA(T15) (Crimped Lead)

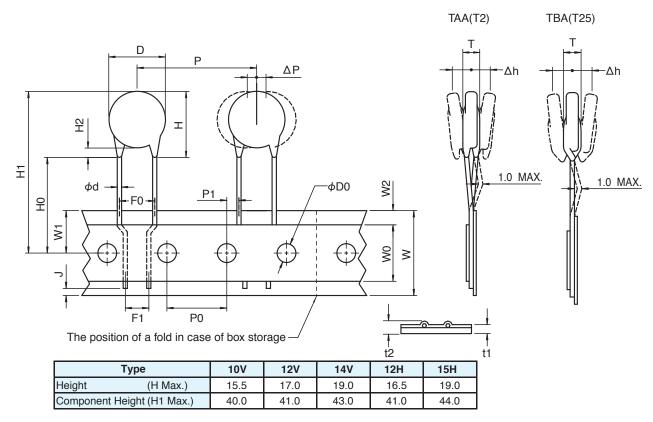
◆TYPE TFA(T15)

Parameter	Code	Dimensions (mm)	Note
Diameter of component	D	-	Refer to the applicable detail spec
Thickness of component	Т	_	Refer to the applicable detail spec
Lead diameter	φd	0.6±0.05	
Pitch of component	Р	12.7±1.0	
Feed hole pitch	P0	12.7±0.3	Cumulative pitch error : ±1 mm/20 pitches
Feed hole diameter	φD0	4.0±0.2	
Feed hole center to lead	P1	3.85±0.7	Measured at the upper end of tape
Feed hole center to component center	P2	6.35±1.3	
Feed hole position	W1	9.0±0.5	
Lead spacing	F	5.0±0.8	
Deviation across tape	Δh	0±2.0	
Deviation along tape	ΔP	0±1.0	
Carrier tape width	W	$18.0\pm^{1.0}_{0.5}$	
Hold down tape width	WO	5.0 Min.	
Tape thickness	t1	0.6±0.3	
Total tape thickness	t2	1.5 Max.	
Hold down tape position	W2	3.0 Max.	
Seating plane height	H0	16.0±0.5	
Component height	H1	_	Please refer to the above list
Lead position	J	6.0 Max.	
Defective article cut position	L	11.0 Max.	


◆ 5V, 7V, 9V, 9H : TYPE TBA(T25) (Straight Lead)

♦TYPE TBA(T25)

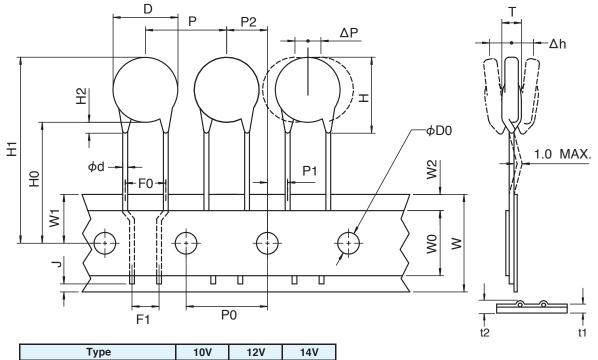
Parameter	Code	Dimensions (mm)	Note
Diameter of component	D	_	Refer to the applicable detail spec
Thickness of component	Т	—	Refer to the applicable detail spec
Lead diameter	φd	0.6±0.05	
Pitch of component	Р	12.7±1.0	
Feed hole pitch	P0	12.7±0.3	Cumulative pitch error : ±1 mm/20 pitches
Feed hole diameter	φD0	4.0±0.2	
Feed hole center to lead	P1	3.85±0.7	Measured at the upper end of tape
Feed hole center to component center	P2	6.35±1.3	
Feed hole position	W1	9.0±0.5	
Lead spacing	F	5.0±0.8	
Deviation across tape	Δh	0±2.0	9V : 34.0 Max.
Deviation along tape	ΔΡ	0±1.0	
Carrier tape width	W	$18.0\pm 0.5^{1.0}$	
Hold down tape width	W0	5.0 Min.	
Tape thickness	t1	0.6±0.3	
Total tape thickness	t2	1.5 Max.	
Hold down tape position	W2	3.0 Max.	
Height from tape center to component base	H0	$20.0\pm \frac{1.5}{1.0}$	
Component height	H1	_	Please refer to the above list
Component height	H2	3.0 Max.	
Lead position	J	6.0 Max.	
Defective article cut position	L	11.0 Max.	


◆10V, 12V, 14V, 12H, 15H : TYPE TEA(T1), TFA(T15) (Crimped Lead)

◆TYPE TEA(T1), TFA(T15)

Parameter	Code	Dimensions (mm)	Note
Diameter of component	D	-	Refer to the applicable detail spec
Thickness of component	Т	-	Refer to the applicable detail spec
Lead diameter	φd	0.8±0.05	
Pitch of component	Р	25.4±1.0	
Feed hole pitch	P0	12.7±0.3	Cumulative pitch error : ±1 mm/20 pitches
Feed hole diameter	φD0	4.0±0.2	
Feed hole center to lead	P1	2.6±0.5	Measured at the upper end of tape
Feed hole position	W1	9.0±0.5	
Lead spacing	F0	7.5±0.8	
Lead spacing	F1	5.0 Nom.	
Deviation across tape	Δh	0±2.0	
Deviation along tape	ΔΡ	0±1.0	
Carrier tape width	W	18.0 +1.0	
Hold down tape width	W0	5.0 Min.	
Tape thickness	t1	0.6±0.3	
Total tape thickness	t2	1.5 Max.	
Hold down tape position	W2	3.0 Max.	
Seating plane height	H0	16.0±1.0	
Component height	H1	-	Please refer to the above list
Lead position	J	6.0 Max.	

◆10V, 12V, 14V, 12H, 15H : TYPE TAA(T2), TBA(T25) (Straight Lead)

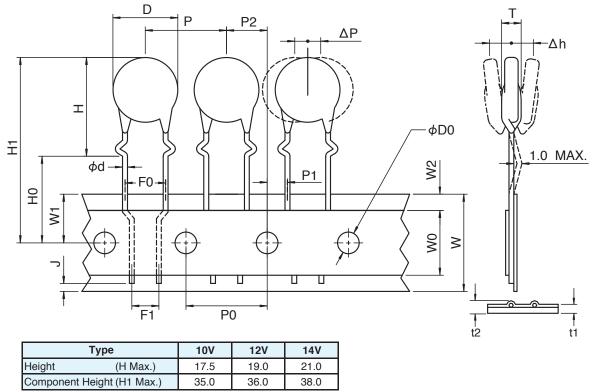


◆TYPE TAA(T2), TBA(T25)

Parameter	Code	Dimensions (mm)	Note
Diameter of component	D	—	Refer to the applicable detail spec
Thickness of component	Т	_	Refer to the applicable detail spec
Lead diameter	φd	0.8±0.05	
Pitch of component	Р	25.4±1.0	
Feed hole pitch	P0	12.7±0.3	Cumulative pitch error : ±1 mm/20 pitches
Feed hole diameter	φD0	4.0±0.2	
Feed hole center to lead	P1	2.6±0.5	Measured at the upper end of tape
Feed hole position	W1	9.0±0.5	
Lead spacing	F0	7.5±0.8	
	F1	5.0 Nom.	
Deviation across tape	Δh	0±2.0	
Deviation along tape	ΔΡ	0±1.0	
Carrier tape width	W	18.0 +1.0 -0.5	
Hold down tape width	W0	5.0 Min.	
Tape thickness	t1	0.6±0.3	
Total tape thickness	t2	1.5 Max.	
Hold down tape position	W2	3.0 Max.	
Height from tape center to component base	H0	20.0 Min.	SE : 19.0 Min.
Component beight	H1	_	Please refer to the above list
Component height	H2	3.0 Max.	
Lead position	J	6.0 Max.	

46

♦10V, 12V, 14V : TYPE TBB(T7) (Straight Lead, 15mm Pitch)



Туре		10V	12V	14V
Height (H Max.)	15.5	17.0	19.0
Component Height (H1 Max.)	37.0	39.0	41.0

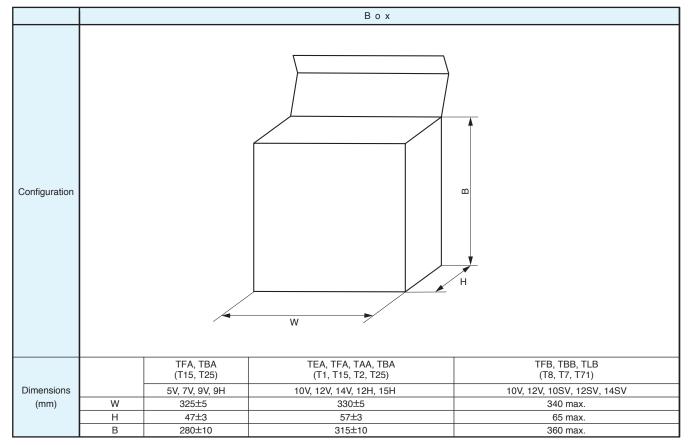
♦TYPE TBB(T7)

Parameter	Code	Dimensions (mm)	Note
Diameter of component	D	-	Refer to the applicable detail spec (14V : 15.0 Max.)
Thickness of component	Т	-	Refer to the applicable detail spec
Lead diameter	φd	0.8±0.05	
Pitch of component	Р	15.0±1.0	14SE : 30.0 ±1.0 mm
Feed hole pitch	P0	15.0±0.3	Cumulative pitch error : ±1 mm/20 pitches
Feed hole diameter	φD0	4.0±0.2	
Feed hole center to lead	P1	3.75±0.5	Measured at the upper end of tape
Feed hole center to component center	P2	7.5±1.3	
Feed hole position	W1	9.0±0.5	
Lead spacing	F0	7.5±0.8	
	F1	5.0 Nom.	
Deviation across tape	Δh	0±2.0	
Deviation along tape	ΔΡ	0±1.3	
Carrier tape width	W	18.0± ^{1.0} _{0.5}	
Hold down tape width	W0	5.0 Min.	
Tape thickness	t1	0.6±0.3	
Total tape thickness	t2	1.5 Max.	
Hold down tape position	W2	3.0 Max.	
Height from tape center to component base	H0	$20.0\pm \frac{1.5}{1.0}$	
Component height	H1	_	Please refer to above list
Component height	H2	3.0 Max.	
Lead position	J	6.0 Max.	

♦10V, 12V, 14V : TYPE TFB(T8) (Crimped Lead, 15mm Pitch)

-	•			
Height	(H Max.)	17.5	19.0	2
Component Hei	ght (H1 Max.)	35.0	36.0	3

♦TYPE TFB(T8)


Parameter	Code	Dimensions (mm)	Note
Diameter of component	D	-	Refer to the applicable detail spec (14V : 15.0 Max.)
Thickness of component	Т	-	Refer to the applicable detail spec
Lead diameter	φd	0.8±0.05	
Pitch of component	Р	15.0±1.0	14SE : 30.0±1.0 mm
Feed hole pitch	P0	15.0±0.3	Cumulative pitch error : ±1 mm/20 pitches
Feed hole diameter	φD0	4.0±0.2	
Feed hole center to lead	P1	3.75±0.5	Measured at the upper end of tape
Feed hole center to component center	P2	7.5±1.3	
Feed hole position	W1	9.0±0.5	
Lood appains	F0	7.5±0.8	
Lead spacing	F1	5.0 Nom.	
Deviation across tape	Δh	0±2.0	
Deviation along tape	ΔΡ	0±1.3	
Carrier tape width	W	$18.0\pm \frac{1.0}{0.5}$	
Hold down tape width	W0	5.0 Min.	
Tape thickness	t1	0.6±0.3	
Total tape thickness	t2	1.5 Max.	
Hold down tape position	W2	3.0 Max.	
Ocation plane beinkt	Н	_	10V ; 17.5 Max. 14V ; 21.0 Max.
Seating plane height	H0	16.0±1.0	
Component height	H1	_	Please refer to above list
Lead position	J	6.0 Max.	

48

METAL OXIDE VARISTORS TNR[™]

Packaging

Others

- 1) On the box or the reel, the following are noted.
- 1. Part number
- 2. Lot number
- 3. Quantity

Downloaded from Arrow.com.

- 4. Country of origin
- 2) Minimum order quantity shall be the packaging quantity per one box one reel.

Minimum Packaging Quantity

Please order by units of minimum packaging quantity.

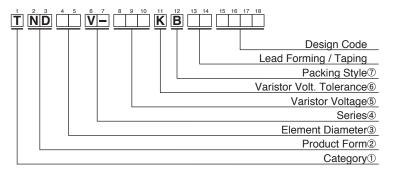
Disk Type

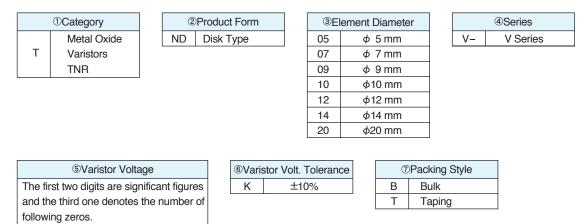
		Voria	tor Ve	oltage	Taping	Туре	Bul	Bulk Type		
Series	Туре		ange (-	Feed hole pitch (mm)	(pcs)	Straight Lead (pcs/bag)	Formed/Cut Lead (pcs/bag)		
	5V, 7V	15	to	270	12.7	1,500	3,000	5,000		
	5V, 7V	330	to	620	12.7	1,000	3,000	5,000		
	9V	15	to	270	12.7	1,500	2,000	5,000		
	90	330	to	620	12.7	1,000	2,000	5,000		
		18	to	270	12.7 15.0	800 1,000	1,500	2,500		
					12.7	500				
		330	to	390	15.0	1,000	1,500	2,500		
	10V				12.7	500				
	100	430	to	620	15.0	1,000	1,000	2,500		
		680	to	750	-	-	1,000	2,500		
		820	to	1000	-	-	1,000	2,000		
		1100	to	1800	-	-	500	1,000		
					12.7	500		0.500		
	12V	430	to	620	15.0	1,000	1,000	2,500		
		680	to	750	-	-	1,000	2,500		
V		820	to	1000	-	-	1,000	2,000		
		1100	to	1800	_	_	500	500		
					12.7	800				
	18	to	270	15.0	1,000	1,500	2,000			
14V				12.7	500					
		330	to	390	15.0	1,000	1,500	2,000		
					12.7	500				
	430	to	620	15.0	1,000	1,000	2,000			
		680	to	750	-	_	1,000	2,000		
		820	to	1000	_	_	1,000	1,500		
		1100	to	1200	_	_	500	500		
		1500	to	1800	_	_	500	500		
		18	to	430	_	_	700	1,000		
		470	to	620	_	_	500	1,000		
	20V	680	to	1100	-	_	500	500		
	201	000	1200	1100	_	_	500	500		
		1500	to	1800		_	200	500		
	10SV	220	to	680	15.0	500	-			
	12SV	430	to	680	15.0	500	_			
SV	14SV	220	to	680	15.0	300				
01		220	to	390	-		700	700		
	20SV	430	to	680			500	500		
	5SV	22	to	68	12.7	1,500				
	7SV	22	to	68	12.7	1,500	-	-		
SV	10SV	22	to	68	12.7	800		-		
(22 to 68V)	103V	22		68	12.7	800				
	20SV	22	to	68	-		700	700		
	205 V 9H	22	to	47	12.7	1,500	3,000	5,000		
			to							
Н	12H	22	to	47	12.7	800	1,500	2,500		
	15H	22	to	47	12.7	800	1,500	2,000		
	23H	22	to	47	-	-	700	1,000		
05	15GF		ltage ra		-	_	800	-		
GF	23GF	270	to	470	-	-	500	-		
			820		-	-	400	-		

Metal Oxide Varistors TNR[™] Disk Type

METAL OXIDE VARISTORS TNR[™]

V Series

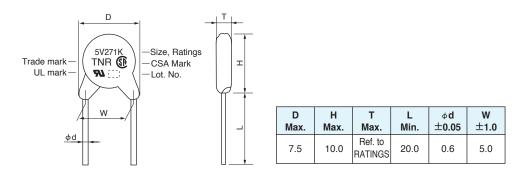

♦FEATURES


- •Large surge capability (the surge current ratings of TNR V series, by 8/20 µs, are about two times larger than TNR G series).
- •Large energy capability (1.5 time larger than TNR G series).
- •One rank smaller TNR V has same peak current as TNR G.
- •Excellent voltage non-linear coefficient. Low clamping voltage.
- •Symmetrical V-I characteristics (No polarity).
- Fast response.
- •Stable characteristics against repeated surges.
- •Superior temperature characteristics.
- •High reliability
- •UL, CSA and VDE recognized components
- UL 1449 3rd File : E323623
- File : LR97864 CSA
- VDE File : 118623
- ●Coating resin : UL94V-0

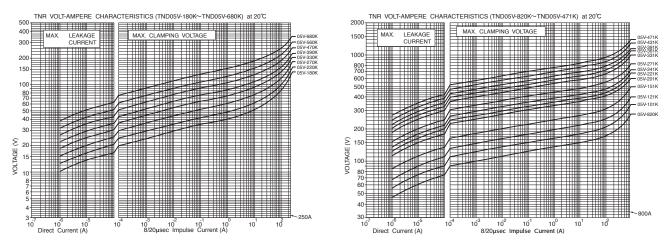
APPLICATIONS

- •Protection for semiconductors from over voltage.
- •Protection for electronic instruments from lightning surges.
- •Absorption of on-off surges from motors and relays.
- Operating Temperature Range: -40 to +85℃ Storage Temperature Range: -50 to +125℃

♦PART NUMBERING SYSTEM



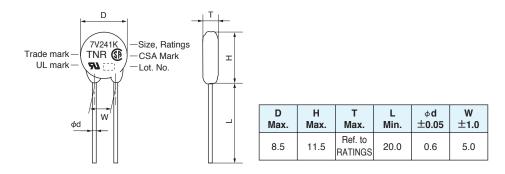
♦STANDARD RATINGS (Type 5V)


				Maximum Rat	ings		Ма	ax.	Capacitance		_
Part Number	Previous Part Number (Just for your reference)	Max. Allo Volta		Max. Peak Current	Max. Energy	Rated Wattage		iping age	Typical @1kHz	Varistor Voltage V0.1mA	T Max.
	(busition your reference)	AC (Vrms)	DC (V)	8/20µs(A)	2ms(J)	(W)	(A)	(V)	(pF)	(V)	(mm)
TND05V-180KB00AAA0	TNR5V180K	11	14		0.4			40	2540	18 (16~ 20)	
TND05V-220KB00AAA0	TNR5V220K	14	18		0.5			48	2090	22 (20~ 24)	
TND05V-270KB00AAA0	TNR5V270K	17	22	250A/1 time	0.7			60	1790	27 (24~30)	
TND05V-330KB00AAA0	TNR5V330K	20	26	2307/1 11116	0.8	0.01	1	73	1480	33 (30~ 36)	4.5
TND05V-390KB00AAA0	TNR5V390K	25	30	125A/2 times	0.9	0.01	1	86	1310	39 (35~ 43)	4.5
TND05V-470KB00AAA0	TNR5V470K	30	37	125702 111165	1.1			104	1140	47 (42~52)	
TND05V-560KB00AAA0	TNR5V560K	35	44		1.3			123	1000	56 (50~ 62)	
TND05V-680KB00AAA0	TNR5V680K	40	55		1.6			150	870	68 (61~ 75)	
TND05V-820KB00AAA0	TNR5V820K	50	65		2.5			145	400	82 (74~90)	4.1
TND05V-101KB00AAA0	TNR5V101K	60	85		3			175	350	100 (90~110)	4.3
TND05V-121KB00AAA0	TNR5V121K	75	100		3.5			210	310	120 (108~132)	4.5
TND05V-151KB00AAA0	TNR5V151K	95	125		4.5			260	270	150 (135~165)	4.8
TND05V-181KB00AAA0	TNR5V181K	110	145		5			325	190	180 (162~198)	4.3
TND05V-201KB00AAA0	TNR5V201K	130	170	800A/1 time	6			355	110	200 (185~225)	4.4
TND05V-221KB00AAA0	TNR5V221K	140	180	SOUA/ I LIITIE	6.5	0.1	5	380	110	220 (198~242)	4.5
TND05V-241KB00AAA0	TNR5V241K	150	200	600A/2 times	7.5	0.1	5	415	100	240 (216~264)	4.6
TND05V-271KB00AAA0	TNR5V271K	175	225	000A/2 times	8			475	90	270 (247~303)	4.8
TND05V-331KB00AAA0	TNR5V331K	210	270		9.5			570	80	330 (297~363)	5.1
TND05V-361KB00AAA0	TNR5V361K	230	300		11			620	80	360 (324~396)	5.3
TND05V-391KB00AAA0	TNR5V391K	250	320		12			675	70	390 (351~429)	5.4
TND05V-431KB00AAA0	TNR5V431K	275	350		13.5			745	70	430 (387~473)	5.6
TND05V-471KB00AAA0	TNR5V471K	300	385		15			810	60	470 (423~517)	5.8

◆DIMENSIONS [mm]

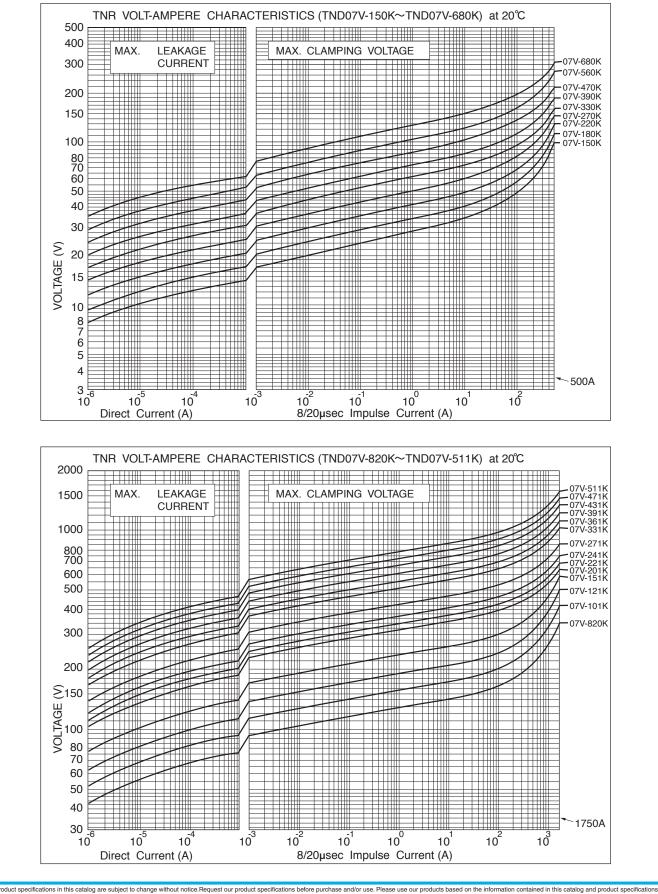
♦V-I CURVE

Downloaded from Arrow.com.



♦STANDARD RATINGS (Type 7V)

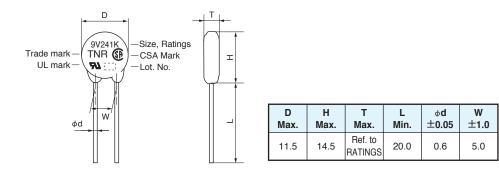
				Maximum Rat	ings		Ма	ax.	Capacitance		_
Part Number	Previous Part Number (Just for your reference)	Max. All Volta		Max. Peak Current	Max. Energy	Rated Wattage	Clarr Volt	iping age	Typical @1kHz	Varistor Voltage V1mA	T Max.
	(ouder for your fororonido)	AC (Vrms)	DC (V)	8/20µs(A)	2ms(J)	(W)	(A)	(V)	(pF)	(V)	(mm)
TND07V-150KB00AAA0	TNR7V150K	8	12		0.7			30	4600	15 (13~ 17)	4.5
TND07V-180KB00AAA0	TNR7V180K	11	14		0.9			36	3800	18 (16~ 20)	4.5
TND07V-220KB00AAA0	TNR7V220K	14	18		1.1			43	3200	22 (20~ 24)	4.6
TND07V-270KB00AAA0	TNR7V270K	17	22	500A/1 time	1.3			53	2800	27 (24~30)	4.7
TND07V-330KB00AAA0	TNR7V330K	20	26		1.6	0.02	2.5	65	2300	33 (30~ 36)	4.9
TND07V-390KB00AAA0	TNR7V390K	25	30	250A/2 times	1.9			77	2100	39 (35~ 43)	4.8
TND07V-470KB00AAA0	TNR7V470K	30	37		2.3			93	1900	47 (42~52)	4.9
TND07V-560KB00AAA0	TNR7V560K	35	44		2.7			110	1700	56 (50~ 62)	5.0
TND07V-680KB00AAA0	TNR7V680K	40	55		3.3			135	1500	68 (61~ 75)	5.2
TND07V-820KB00AAA0	TNR7V820K	50	65		5			135	800	82 (74~90)	4.1
TND07V-101KB00AAA0	TNR7V101K	60	85		6			165	700	100 (90~110)	4.3
TND07V-121KB00AAA0	TNR7V121K	75	100		7			200	650	120 (108~132)	4.5
TND07V-151KB00AAA0	TNR7V151K	95	125		9			250	600	150 (135~165)	4.8
TND07V-181KB00AAA0	TNR7V181K	110	145		11			300	430	180 (162~198)	4.3
TND07V-201KB00AAA0	TNR7V201K	130	170		12.5			340	250	200 (185~225)	4.4
TND07V-221KB00AAA0	TNR7V221K	140	180	1750A/1 time	13.5			360	230	220 (198~242)	4.5
TND07V-241KB00AAA0	TNR7V241K	150	200		15	0.25	10	395	210	240 (216~264)	4.6
TND07V-271KB00AAA0	TNR7V271K	175	225	1250A/2 times	17			455	190	270 (247~303)	4.8
TND07V-331KB00AAA0	TNR7V331K	210	270		20			545	160	330 (297~363)	5.1
TND07V-361KB00AAA0	TNR7V361K	230	300		23			595	150	360 (324~396)	5.3
TND07V-391KB00AAA0	TNR7V391K	250	320		25			650	140	390 (351~429)	5.4
TND07V-431KB00AAA0	TNR7V431K	275	350		27.5			710	130	430 (387~473)	5.6
TND07V-471KB00AAA0	TNR7V471K	300	385		30			775	120	470 (423~517)	5.8
TND07V-511KB00AAA0	TNR7V511K	320	410		32			845	110	510 (459~561)	6.0


54

◆DIMENSIONS [mm]

♦V-I CURVE (Type 7V)

55


CAT. No. E1006A

ATINGS (Type 9V)

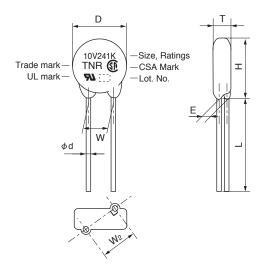
				Maximum Rat	ings		Ма	ax.	Capacitance		-
Part Number	Previous Part Number (Just for your reference)	Max. Allo Volta		Max. Peak Current	Max. Energy	Rated Wattage		iping age	Typical @1kHz	Varistor Voltage V1mA	T Max.
	(ouorioi yourioioioio)	AC (Vrms)	DC (V)	8/20µs(A)	2ms(J)	(W)	(A)	(V)	(pF)	(V)	(mm)
TND09V-150KB00AAA0	TNR9V150K	8	12		2.0			30	9600	15(13~17)	3.8
TND09V-180KB00AAA0	TNR9V180K	11	14		2.2			36	8000	18 (16~ 20)	3.8
TND09V-220KB00AAA0	TNR9V220K	14	18		2.6			43	7000	22 (20~ 24)	4.0
TND09V-270KB00AAA0	TNR9V270K	17	22	800A/1 time	3.2			53	6000	27 (24~30)	4.2
TND09V-330KB00AAA0	TNR9V330K	20	26		4.0	0.02	5	65	5000	33 (30~ 36)	4.5
TND09V-390KB00AAA0	TNR9V390K	25	30	400A/2 times	4.7			77	4500	39 (35~ 43)	4.0
TND09V-470KB00AAA0	TNR9V470K	30	37		5.6			93	4000	47 (42~52)	4.2
TND09V-560KB00AAA0	TNR9V560K	35	44		6.7			110	3500	56 (50~ 62)	4.4
TND09V-680KB00AAA0	TNR9V680K	40	55		8.2			135	3200	68 (61~ 75)	4.5
TND09V-820KB00AAA0	TNR9V820K	50	65		10			135	1700	82(74~90)	3.8
TND09V-101KB00AAA0	TNR9V101K	60	85		12			165	1600	100 (90~110)	3.9
TND09V-121KB00AAA0	TNR9V121K	75	100		14.5			200	1400	120 (108~132)	4.1
TND09V-151KB00AAA0	TNR9V151K	95	125		18			250	1300	150 (135~165)	4.4
TND09V-181KB00AAA0	TNR9V181K	110	145		22			300	900	180 (162~198)	4.0
TND09V-201KB00AAA0	TNR9V201K	130	170		25			340	500	200 (185~225)	4.1
TND09V-221KB00AAA0	TNR9V221K	140	180	3000A/1 time	27.5			360	450	220 (198~242)	4.2
TND09V-241KB00AAA0	TNR9V241K	150	200		30	0.25	25	395	400	240 (216~264)	4.3
TND09V-271KB00AAA0	TNR9V271K	175	225	2000A/2 times	35			455	350	270 (247~303)	4.5
TND09V-331KB00AAA0	TNR9V331K	210	270		42			545	300	330 (297~363)	4.8
TND09V-361KB00AAA0	TNR9V361K	230	300		45			595	280	360 (324~396)	5.0
TND09V-391KB00AAA0	TNR9V391K	250	320		50			650	260	390 (351~429)	5.1
TND09V-431KB00AAA0	TNR9V431K	275	350		55			710	240	430 (387~473)	5.3
TND09V-471KB00AAA0	TNR9V471K	300	385		60			775	220	470 (423~517)	5.6
TND09V-511KB00AAA0	TNR9V511K	320	410		67			845	210	510 (459~561)	5.8

◆DIMENSIONS [mm]

♦V-I CURVE (Type 9V)

57

CAT. No. E1006A



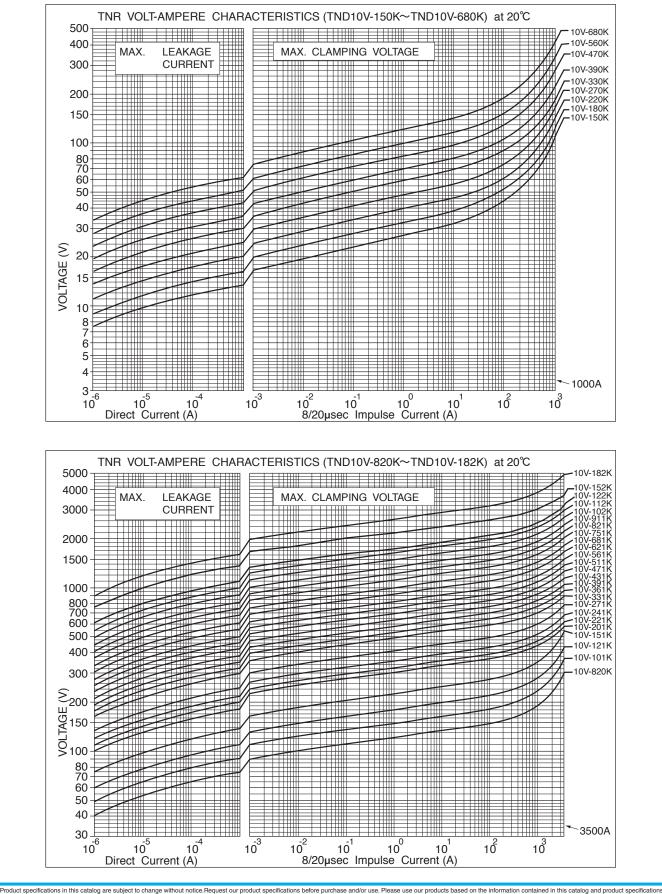
♦RATINGS (Type 10V)

				Maximum Rat	ings		I	Max.	Capacitance		-	_	
Part Number	Previous Part Number	Max. Allo Volta		Max. Peak	Max.	Rated		mping oltage	Typical @1kHz	Varistor Voltage V1mA	T Max.	Е ±1.0	W2 reference
	(Just for your reference)	AC (Vrms)	DC (V)	Current 8/20µs(A)	Energy 2ms(J)	Wattage (W)	(A)		(pF)	(V)	(mm)	(mm)	(mm)
TND10V-150KB00AAA0	TNR10V150K	8	12	0/2000(14)	2.0	()	(~)	30	9600	15 (13~ 17)	4.5	1.0	7.6
TND10V-180KB00AAA0		11	14		2.2			36	8000	18 (16~ 20)	4.6	1.1	7.6
TND10V-220KB00AAA0		14	18		2.6			43	7000	22 (20~ 24)	4.7	1.2	7.6
TND10V-270KB00AAA0	TNR10V270K	17	22	1000A/1 time	3.2			53	6000	$27(24 \sim 30)$	4.8	1.3	7.6
TND10V-330KB00AAA0		20	26		4.0	0.05	5	65	5000	33 (30~ 36)	5.0	1.5	7.6
TND10V-390KB00AAA0	TNR10V390K	25	30	500A/2 times	4.7			77	4500	39 (35~ 43)	4.9	1.3	7.6
TND10V-470KB00AAA0	TNR10V470K	30	37		5.6			93	4000	47 (42~ 52)	5.0	1.4	7.6
TND10V-560KB00AAA0	TNR10V560K	35	44		6.7			110	3500	56 (50~ 62)	5.1	1.6	7.7
TND10V-680KB00AAA0	TNR10V680K	40	55		8.2			135	3200	68 (61~ 75)	5.3	1.8	7.7
TND10V-820KB00AAA0		50	65		10			135	1700	82 (74~ 90)	4.5	1.1	7.6
TND10V-101KB00AAA0	TNR10V101K	60	85		12			165	1600	100 (90~ 110)	4.7	1.3	7.6
TND10V-121KB00AAA0	TNR10V121K	75	100		14.5			200	1400	120 (108~ 132)	4.9	1.4	7.6
TND10V-151KB00AAA0	TNR10V151K	95	125		18			250	1300	150 (135~ 165)	5.2	1.7	7.7
TND10V-181KB00AAA0	TNR10V181K	110	145		22			300	900	180 (162~ 198)	4.7	1.1	7.6
TND10V-201KB00AAA0	TNR10V201K	130	170		25			340	500	200 (185~ 225)	4.8	1.2	7.6
TND10V-221KB00AAA0	TNR10V221K	140	180		27.5			360	450	220 (198~ 242)	4.9	1.3	7.6
TND10V-241KB00AAA0	TNR10V241K	150	200		30			395	400	240 (216~264)	5.0	1.3	7.6
TND10V-271KB00AAA0	TNR10V271K	175	225		35			455	350	270 (247~303)	5.2	1.4	7.6
TND10V-331KB00AAA0	TNR10V331K	210	270		42			545	300	330 (297~363)	5.5	1.6	7.7
TND10V-361KB00AAA0	TNR10V361K	230	300		45			595	280	360 (324~ 396)	5.7	1.8	7.7
TND10V-391KB00AAA0	TNR10V391K	250	320	3500A/1 time	50			650	260	390 (351~ 429)	5.8	1.9	7.7
TND10V-431KB00AAA0	TNR10V431K	275	350		55	0.4	25	710	240	430 (387~ 473)	6.0	2.0	7.8
TND10V-471KB00A \Diamond A0	TNR10V471K	300	385	2500A/2 times	60			775	220	470 (423~517)	6.2	2.1	7.8
TND10V-511KB00A \Diamond A0	TNR10V511K	320	410		67			845	210	510(459~561)	6.4	2.3	7.8
TND10V-561KB00A \Diamond A0	TNR10V561K	350	460		67			922	195	560 (504~ 616)	6.7	2.5	7.9
TND10V-621KB00A \Diamond A0	TNR10V621K	385	505		67			1025	180	620 (558~682)	7.1	2.7	8.0
TND10V-681KB00A \Diamond A0		420	560		67			1120	165	680 (612~ 748)	7.4	2.9	8.0
TND10V-751KB00A \Diamond A0		460	615		70			1240	150	750 (675~825)	7.8	3.1	8.1
TND10V-821KB00A		510	670		80			1355	140	820 (738~902)	8.1	3.4	8.2
TND10V-911KB00A◇A0		550	745		90			1500	125	910 (819~1001)	8.6	3.7	8.4
TND10V-102KB00A◇A0		625	825		100			1650	115	1000 (900~1100)	9.1	4.0	8.5
TND10V-112KB00A◇A0	-	680	895		110			1815	105	1100 (990~1210)	9.7	4.4	8.7
TND10V-122KB00A◇A0	-	720	980		120			1950	95	1200 (1080~1320)	10.5	4.7*	8.9**
TND10V-152KB00A◇A0		860	1220		150			2440	85	1500 (1350~1650)	12.4	5.8*	9.5**
TND10V-182KB00A	TNR10V182K	1000	1465		183			2970	70	1800 (1700~1980)	14.4	6.9* *=±0 *	10.2**

*E±2 **W2±2

♦DIMENSIONS [mm]

	\diamond	
Standard	A	N/A
ϕ 10 IEC 60950-1: 2013, Annex Q conforming product	S	S


Part Number	D Max.	H Max.	T Max.	L Min.	¢d ±0.05	W ±1.0
TND10V-150K to TND10V-511K	11.5	14.5	Ref. to			7.5
TND10V-561K to TND10V-112K	12.5	15.5	RATINGS	20.0	0.8	7.5
TND10V-122K to TND10V-182K	13.5	16.5	TIATING O			

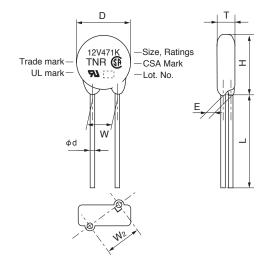
Common to standard product and IEC 60950-1: 2013, Annex Q conforming product

•The product with less than 620V of varistor voltage, taping is possible. Please refer to taping and forming specifications. The lead type parallel to a straight prepares, too.

♦V-I CURVE (Type 10V)

59

CAT. No. E1006A



ATINGS (Type 12V)

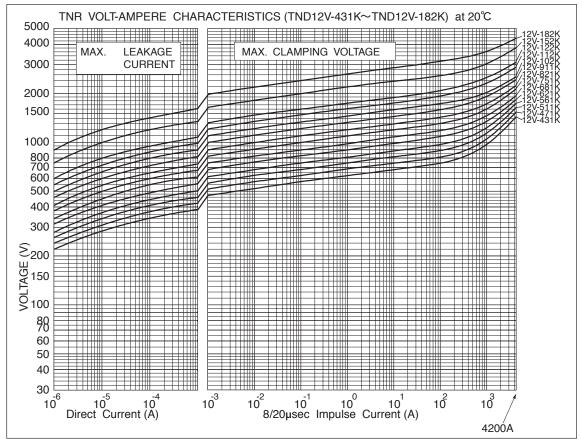
				Maximum Rat	ings		I	Max.	Capacitance		-	-	
Part Number	Previous Part Number (Just for your reference)	Max. All Volta		Max. Peak Current	Max. Energy	Rated Wattage		mping oltage	Typical @1kHz	Varistor Voltage V1mA	Max.	Е ±1.0	W2 reference
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	AC (Vrms)	DC (V)	8/20µs(A)	2ms(J)	(W)	(A)	(V)	(pF)	(V)	(mm)	(mm)	(mm)
TND12V-431KB00AAA0	TNR12V431K	275	350		55			710	375	430 (387~ 473)	6.0	2.0	7.8
TND12V-471KB00AAA0	TNR12V471K	300	385		60			775	345	470 (423 \sim 517)	6.2	2.1	7.8
TND12V-511KB00AAA0	TNR12V511K	320	410		67			845	330	510 (459 \sim 561)	6.4	2.3	7.8
TND12V-561KB00AAA0	TNR12V561K	350	460		67			922	305	560 (504 \sim 616)	6.7	2.5	7.9
TND12V-621KB00AAA0	TNR12V621K	385	505		67			1025	280	620 (558 \sim 682)	7.1	2.7	8.0
TND12V-681KB00AAA0	TNR12V681K	420	560	4,200A/1 time	67			1120	260	680 ($612 \sim 748$)	7.4	2.9	8.0
TND12V-751KB00AAA0	TNR12V751K	460	615		70	0.4	25	1240	235	750 ($675 \sim 825$)	7.8	3.1	8.1
TND12V-821KB00AAA0	TNR12V821K	510	670	3,000A/2 times	80			1355	220	820 (738 \sim 902)	8.1	3.4	8.2
TND12V-911KB00AAA0	TNR12V911K	550	745		90			1500	195	910 ($819 \sim 1001$)	8.6	3.7	8.4
TND12V-102KB00AAA0	TNR12V102K	625	825		100			1650	180	1000 (900 \sim 1100)	9.1	4.0	8.5
TND12V-112KB00AAA0	TNR12V112K	680	895		110			1815	165	1100 (990 \sim 1210)	9.7	4.4	8.7
TND12V-122KB00AAA0	TNR12V122K	720	980		120			1950	150	1200 (1080~1320)	10.5	4.7*	8.9**
TND12V-152KB00AAA0	TNR12V152K	860	1220		150			2440	135	1500 (1350~1650)	12.4	5.8*	9.5**
TND12V-182KB00AAA0	TNR12V182K	1000	1465		183			2970	110	1800 (1700~1980)	14.4	6.9*	10.2**

*E±2 **W2±2

◆DIMENSIONS [mm]

Part Number	D Max.	H Max.	T Max.	L Min.	¢d ±0.05	W ±1.0
TND12V-431K to TND12V-102K	14.0	17.0				7.5
TND12V-112K	15.0	10.0	Ref. to RATINGS		0.8	7.5
TND12V-122K	15.0	18.0		20		\square
TND12V-152K to TND12V-182K	16.0	19.0]			

•The product with less than 620V of varistor voltage, taping is possible. Please refer to taping and forming specifications. The lead type parallel to a straight prepares, too.

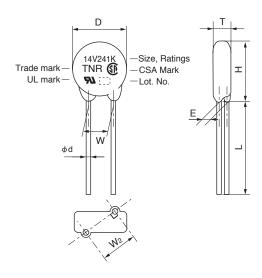


Downloaded from Arrow.com.

METAL OXIDE VARISTORS TNR[™]

V Series

♦V-I CURVE (Type 12V)



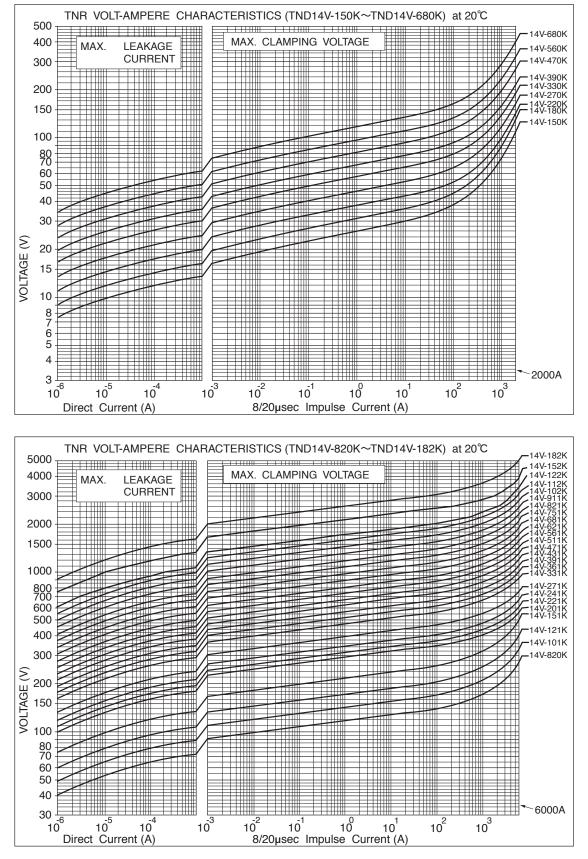
ATINGS (Type 14V)

				Maximum Rat	ings		N	lax.	Capacitance				т	-	
Part Number	Previous Part Number	Max. All		Max. Peak	Max.	Rated		mping	Typical		or Volta V1mA	ige	Max.	Е ±1.0	W2 Reference
	(Just for your reference)	Volta	•	Current	Energy	Wattage		ltage	@1kHz						
		AC (Vrms)	DC (V)	8/20µs(A)	2ms(J)	(W)	(A)	(V)	(pF)	. = .	(V)		(mm)	(mm)	(mm)
TND14V-150KB00AAA0	TNR14V150K	8	12		3.6			30	19500	15 (13~	17)	4.5	1.0	7.6
TND14V-180KB00AAA0	TNR14V180K	11	14		4.3			36	16500	18 (16~	20)	4.6	1.1	7.6
TND14V-220KB00AAA0	TNR14V220K	14	18		5.3			43	13500	22 (20~	24)	4.7	1.2	7.6
TND14V-270KB00AAA0	TNR14V270K	17	22	2000A/1 time	6.5			53	12000	27 (24~	30)	4.8	1.4	7.6
TND14V-330KB00AAA0	TNR14V330K	20	26		7.9	0.1	10	65	10000	33 (30~	36)	5.0	1.6	7.7
TND14V-390KB00AAA0	TNR14V390K	25	30	1000A/2 times	9.4			77	9000	39 (35~	43)	4.9	1.3	7.6
TND14V-470KB00AAA0	TNR14V470K	30	37		11			93	8000	47 (42~	52)	5.0	1.5	7.6
TND14V-560KB00AAA0	TNR14V560K	35	44		13			110	7500	56 (50~	62)	5.1	1.7	7.7
TND14V-680KB00AAA0	TNR14V680K	40	55		16			135	6500	68 (61~	75)	5.3	2.0	7.8
TND14V-820KB00AAA0	TNR14V820K	50	65		20			135	3000	82 (74~	90)	4.5	1.1	7.6
TND14V-101KB00AAA0	TNR14V101K	60	85		25			165	2700	100 (90~	110)	4.7	1.3	7.6
TND14V-121KB00AAA0	TNR14V121K	75	100		30			200	2500	120 (108~	132)	4.9	1.4	7.6
TND14V-151KB00AAA0	TNR14V151K	95	125		37			250	2300	150 (135~	165)	5.2	1.7	7.7
TND14V-181KB00AAA0	TNR14V181K	110	145		45			300	1650	180 (198)	4.7	1.1	7.6
TND14V-201KB00AAA0	TNR14V201K	130	170		50			340	950	(185~	225)	4.8	1.2	7.6
TND14V-221KB00AAA0	TNR14V221K	140	180	6000A/1 time	55			360	850	,	198~	242)	4.9	1.3	7.6
TND14V-241KB00AAA0	TNR14V241K	150	200		60			395	800	`	216~	264)	5.0	1.4	7.6
TND14V-271KB00AAA0		175	225	5000A/2 times	70			455	700	270 (247~	303)	5.2	1.5	7.6
TND14V-331KB00AAA0	TNR14V331K	210	270		80			545	600	330 (363)	5.5	1.7	7.7
TND14V-361KB00AAA0	TNR14V361K	230	300		90			595	550	360 (324~	396)	5.7	1.8	7.7
TND14V-391KB00AAA0	TNR14V391K	250	320		100			650	500	390 (351~	429)	5.8	1.9	7.7
TND14V-431KB00AAA0	TNR14V431K	275	350		110	0.6	50	710	460	430 (387~	473)	6.0	2.1	7.8
TND14V-471KB00AAA0	TNR14V471K	300	385		125			775	420	`	423~	517)	6.2	2.2	7.8
TND14V-511KB00AAA0	TNR14V511K	320	410		136			845	390	510 (459~	561)	6.4	2.4	7.9
TND14V-561KB00AAA0	TNR14V561K	350	460		136			922	360	560 (504~	616)	6.7	2.6	7.9
TND14V-621KB00AAA0	TNR14V621K	385	505		136			1025	330	620 (558~	682)	7.1	2.8	8.0
TND14V-681KB00AAA0	TNR14V681K	420	560		136			1120	310	`		748)	7.4	3.0	8.1
TND14V-751KB00AAA0	TNR14V751K	460	615	5000 4 // /	150			1240	280	750 (675~	825)	7.8	3.3	8.2
TND14V-821KB00AAA0	TNR14V821K	510	670	5000A/1 time	165			1355	250	820 (,	8.1	3.5	8.3
TND14V-911KB00AAA0	TNR14V911K	550	745	1500 1/0 //	180			1500	230	`	819~1	,	8.6	3.9	8.5
TND14V-102KB00AAA0	TNR14V102K	625	825	4500A/2 times	200			1650	210		900~1	/	9.1	4.2	8.6
TND14V-112KB00AAA0	TNR14V112K	680	895		220			1815	190	`	990~1	,	9.7	4.6	8.8
TND14V-122KB00AAA0	TNR14V122K	720	980		240			1950	170		(1080~1	,	10.5	4.9*	9.0**
TND14V-152KB00AAA0	TNR14V152K	860	1220		300			2440	150		(1350~1		12.4	6.0*	9.6**
TND14V-182KB00AAA0	TNR14V182K	1000	1465		360			2970	120	1800	(1700~1	1980)	14.4	7.1*	10.3**

*E±2 **W2±2

♦DIMENSIONS [mm]

Part Number	D Max.	H Max.	T Max.	L Min.	φd ±0.05	W ±1.0
TND14V-150K to TND14V-511K	15.5	18.5	Ref. to			7.5
TND14V-561K to TND14V-112K	16.0	19.0	RATINGS	20	0.8	7.5
TND14V-122K to TND14V-182K	17.0	20.5				


•The product with less than 620V of varistor voltage, taping is possible. Please refer to taping and forming specifications. The lead type parallel to a straight prepares, too.

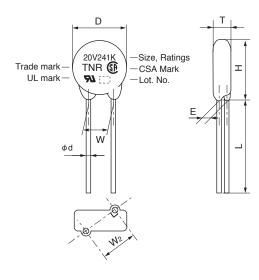
Product specifications in this catalog are subject to change without notice. Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications.

Downloaded from Arrow.com.

♦V-I CURVE (Type 14V)

Product specifications in this catalog are subject to change without notice. Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications.

Downloaded from Arrow.com.

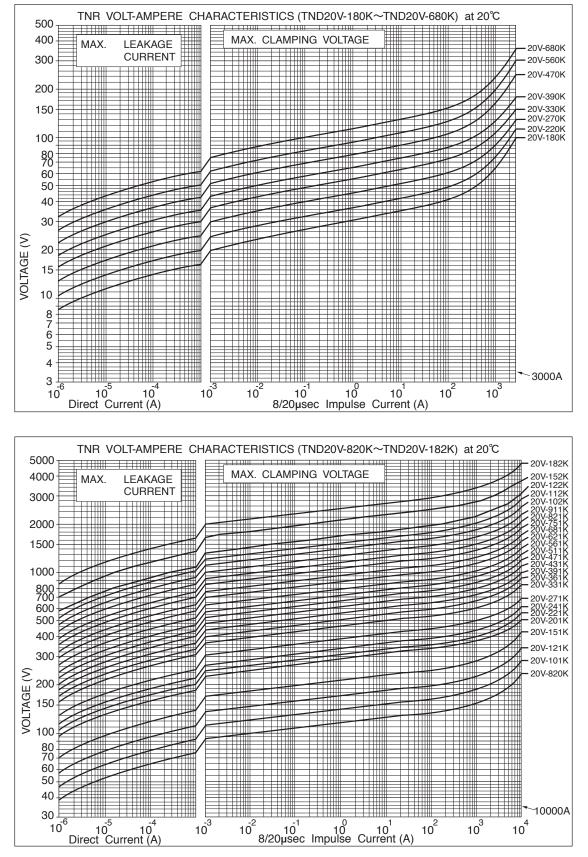


ATINGS (Type 20V)

				Maximum Rat	ings		Ν	lax.	Capacitance		т	Е	
Part Number	Previous Part Number	Max. Allo Volta		Max. Peak Current	Max. Energy	Rated Wattage		mping Itage	Typical @1kHz	Varistor Voltage V1mA	Max.		W2 Reference
	(Just for your reference)	AC (Vrms)	J.	8/20µs(A)	2ms(J)	(W)	(A)		(pF)	(V)	(mm)	(mm)	(mm)
TND20V-180KB00AAA0	TNR20V180K	11	14		12			36	39000	18 (16~ 20)	5.1	1.1	10.1
TND20V-220KB00AAA0	TNR20V220K	14	18		14			43	33000	22 (20~ 24)	5.2	1.2	10.1
TND20V-270KB00AAA0	TNR20V270K	17	22	3000A/1 time	17			53	28000	27 (24~ 30)	5.3	1.4	10.1
TND20V-330KB00AAA0	TNR20V330K	20	26		21	0.2	20	65	24000	33 (30~ 36)	5.5	1.6	10.1
TND20V-390KB00AAA0	TNR20V390K	25	30	2000A/2 times	25			77	21000	39 (35~ 43)	5.5	1.3	10.1
TND20V-470KB00AAA0	TNR20V470K	30	37		30			93	19000	47 (42~ 52)	5.6	1.5	10.1
TND20V-560KB00AAA0	TNR20V560K	35	44		36			110	17000	56 (50~ 62)	5.7	1.7	10.1
TND20V-680KB00AAA0	TNR20V680K	40	55		44			135	15000	68 (61~ 75)	5.8	2.0	10.2
TND20V-820KB00AAA0	TNR20V820K	50	65		40			135	6700	82 (74~ 90)	4.9	1.2	10.1
TND20V-101KB00AAA0	TNR20V101K	60	85		50			165	6100	100 (90~ 110)	5.1	1.4	10.1
TND20V-121KB00AAA0	TNR20V121K	75	100		60			200	5600	120 (108~ 132)	5.3	1.5	10.1
TND20V-151KB00AAA0	TNR20V151K	95	125		75			250	5100	150 (135~ 165)	5.6	1.8	10.2
TND20V-181KB00AAA0	TNR20V181K	110	145		85			300	3900	180 (162~ 198)	5.1	1.2	10.1
TND20V-201KB00AAA0	TNR20V201K	130	170		100			340	2700	200 (185~225)	5.2	1.2	10.1
TND20V-221KB00AAA0	TNR20V221K	140	180	10000A/1 time	110			360	2500	220 (198~242)	5.3	1.3	10.1
TND20V-241KB00AAA0	TNR20V241K	150	200		120			395	2300	240 (216~264)	5.4	1.4	10.1
TND20V-271KB00AAA0	TNR20V271K	175	225	7000A/2 times	135			455	2000	270 (247~ 303)	5.6	1.5	10.1
TND20V-331KB00AAA0	TNR20V331K	210	270		160			545	1700	330 (297~363)	5.9	1.7	10.1
TND20V-361KB00AAA0	TNR20V361K	230	300		180			595	1500	360 (324~396)	6.1	1.9	10.2
TND20V-391KB00AAA0	TNR20V391K	250	320		195			650	1400	390 (351~429)	6.2	2.0	10.2
TND20V-431KB00AAA0	TNR20V431K	275	350		215	1.0	100	710	1300	430 (387~473)	6.4	2.1	10.2
TND20V-471KB00AAA0	TNR20V471K	300	385		250	1.0	100	775	1200	470 (423~517)	6.6	2.3	10.3
TND20V-511KB00AAA0	TNR20V511K	320	410		273			845	1100	510 (459~561)	6.8	2.4	10.3
TND20V-561KB00AAA0	TNR20V561K	350	460		273			922	1000	560 (504~616)	7.1	2.6	10.3
TND20V-621KB00AAA0	TNR20V621K	385	505		273			1025	900	620 (558~682)	7.5	2.9	10.4
TND20V-681KB00AAA0	TNR20V681K	420	560		273			1120	830	680 (612~748)	7.8	3.1	10.5
TND20V-751KB00AAA0	TNR20V751K	460	615		300			1240	750	750 (675~ 825)	8.2	3.4	10.6
TND20V-821KB00AAA0	TNR20V821K	510	670	7500A/1 time	325			1355	700	820 (738~ 902)	8.5	3.6	10.6
TND20V-911KB00AAA0	TNR20V911K	550	745		360			1500	620	910 (819~1001)	9.0	4.0	10.8
TND20V-102KB00AAA0	TNR20V102K	625	825	6500A/2 times	400			1650	560	1000 (900~1100)	9.5	4.3	10.9
TND20V-112KB00AAA0	TNR20V112K	680	895		440			1815	510	1100 (990~1210)	10.1	4.7	11.0
TND20V-122KB00AAA0	TNR20V122K	720	980		480			1950	450	1200 (1080~1320)	10.8	5.1*	11.2**
TND20V-152KB00AAA0	TNR20V152K	860	1220		600			2440	390	1500 (1350~1650)	12.8	6.2*	11.8**
TND20V-182KB00AAA0	TNR20V182K	1000	1465		720			2970	340	1800 (1700~1980)	14.8	7.4*	12.4**

*E±2 **W2±2

◆DIMENSIONS [mm]


Part Number	D Max.	H Max.	T Max.	L Min.	¢d ±0.05	W ±1.0
TND20V-180K to TND20V-511K	21.5	24.5	Ref. to			10.0
TND20V-561K to TND20V-112K	22.5	25.5	Ratings	20	0.8	10.0
TND20V-122K to TND20V-182K	23.5	28.0	naungs			

METAL OXIDE VARISTORS TNR[™]

V Series

♦V-I CURVE (Type 20V)

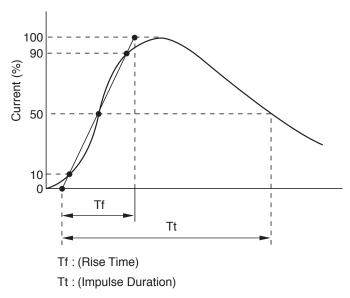
♦GENERAL SPECIFICATIONS

Item		Test Con	ditions	Specifications
Standard Test	20±15℃, 85%RH Max.			
Condition				
Varistor Voltage	Voltage across varistor at	specified current.		Satisfy the specification
	Туре	Current CmA		
	5V	0.1		
	7V, 9V, 10V, 12V, 14V, 20V	1.0		
Maximum Allowable	Maximum continuous AC	voltage (50 to 60Hz AC) and maximum DC voltage which can be	Satisfy the specification
Voltage	applied.			
Maximum Peak	Maximum surge current (8	8/20µs pulse wave to be	applied once, or twice, 2 minutes apart) for	Satisfy the specification
Surge Current	varistor voltage change wit			
Energy Rating	Maximum energy (2 ms. s	square wave to be appli	ed once) for varistor voltage change within	Satisfy the specification
	$\pm 10\%$ of the initial value.			
Rated Wattage	Maximum power (50 to 60	Hz AC power to be app	blied for 1000 hours at $85\pm2^{\circ}C$) for varistor	Satisfy the specification
	voltage change within ± 1	0% of the initial value.		
Maximum Clamping	Maximum voltage across v	raristor when 8/20µs rate	d current surge is applied.	Satisfy the specification
Voltage				
Capacitance	Varistor's capacitance at 1	kHz, standard test condit	ion.	For reference only.
Voltage Temperature	VcmA at 85℃–Vcm	$\frac{\text{A at } 25^{\circ}\text{C}}{\text{C}} \times \frac{1}{60} \times 100$		Within ±0.05%/°C
Coefficient	VcmA at 25°	C 60 100	(/0/0)	
			VcmA : Actual varistor voltage	
Insulation	Short circuit the two lead	ds of varistor, and put	the varistor body into metal balls (1.6mm	The varistor shall withstand
	diameter) leaving 2mm ep	boxy coating outside. The	en, apply 2.5kVrms between the leads and	with no abnormality.
	the metal balls for 60±5 se	eC		

♦ENVIRONMENTAL CHARACTERISTICS

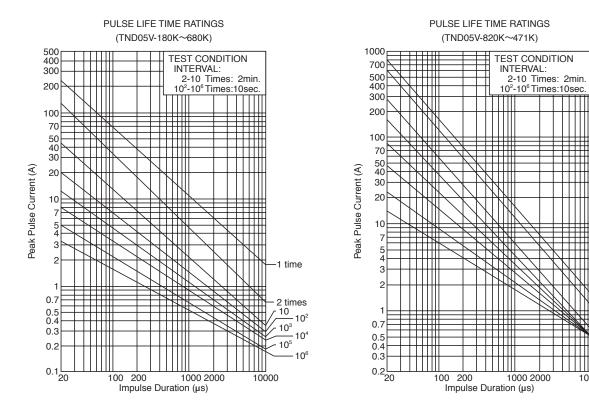
Item	Test Conditions	Specifications
High Temperature	The specimen shall be subjected 125±2°C for 1000±12 hours without load.	∆VcmA/VcmA≦±5%
Storage (Dry heat)		However, on varistors have
		nominal varistor voltages
		from 15V to 68V, the varistor
		voltage change shall be
		∆VcmA/VcmA≦±10%
Low Temperature	The specimen shall be subjected -40±2°C for 1000±12 hours without load.	∆VcmA/VcmA≦±5%
Storage		
Damp heat (Humidity)	The specimen shall be subjected to 40±2°C, 90 to 95%RH for 1000±12 hours without load.	ΔVcmA/VcmA≦±5%
Temperature Cycle	The temperature cycle shown below shall be repeated 5 cycles.	ΔVcmA/VcmA≦±5%
	-40±3°C, 30 minutes ⇔ +85±2°C, 30 minutes	No remarkable damage
High Temperature	The specimen shall be subjected to $85\pm2^\circ$ C with the maximum allowable voltage for 1000±12	ΔVcmA/VcmA≦±10%
Operating	hours.	
Damp heat Operating	The specimen shall be subjected to $40\pm2^{\circ}$ C, 90 to 95%RH with the maximum allowable voltage	ΔVcmA/VcmA≦±10%
	for 1000±12 hours.	

Varistor voltage change of forward direction shall be measured in the test of unipolar surge life and DC load life. Varistor voltage change is measured after stored at Standard Test Conditions for 1 to 2 hours. Note : For 42V battery line, please contact our sales office.


♦MECHANICAL CHARACTERISTICS

Item			Test C	onditio	າຣ		Specifications				
Resistance to	Each lead shall be	dipped into a solder	bath ha	ving a te	emperature of	of 350±10℃ to a point 2.0	Δ VcmA /VcmA $\leq \pm 5\%$				
Soldering Heat	to 2.5 mm from th	e body of the unit, b	e held	there for	r 3 ⁺¹ ₋₀ sec an	d then be stored at room	No remarkable damage				
	temperature for 1 t	to 2 hours. The Δ Vcm	A and r	nechani	cal damage	shall be examined.					
	or										
	Each lead shall be	dipped into a solder	bath ha	ving a te	emperature of	of 260±10℃ to a point 2.0					
	to 2.5 mm from the	e body of the unit, be	held th	ere for	10±1 sec ar	nd then be stored at room					
	temperature for 1 t	to 2 hours. The Δ Vcm	A and r	nechani	cal damage	shall be examined.					
Solderability	Each lead shall be	Each lead shall be dipped into a methanol solution (about 25%) of rosin for 5 to 10 sec.									
		all be dipped into a so				-	shall be covered with				
	Solder	Pb free (Sn-3.0Ag-0	.5Cu)		ctic (Sn/Pb)	_	solder uniformly.				
	Solder Temp.	245±5℃			35±5℃						
	Dipping Time		±0.5se	-		_					
	Dipping Depth	1.5 to 2.0n									
Lead Pull Strength		and suspend specified	No abnormality such as								
	Туре	Lead Diameter		ight			disconnection.				
	5V, 7V, 9V	0.6mm		DN							
	10V, 12V, 14V, 20V			DN .			ΔVcmA/VcmA≦±5%				
Lead Bend Strength					•	t the varistor body by 90°,	The leads shall not				
		a 1	arry ou	t the op	eration in ti	he opposite direction and	disconnect, slacken and				
		the original position.	14/-	· . I. I	1		peel off.				
	Type	Lead Diameter 0.6mm		ight N							
	5V, 7V, 9V 10V, 12V, 14V, 20V	0.8mm	-	N							
Vibration		ly on vibrator, and cor	-		a vibration t	aat	No remarkable appearance				
VIDIATION	Peak-to-Peak an	· ·			y vibration t	651.	abnormality.				
		ncy range : 10Hz to 5	5Hz				abriormanty.				
	Sweeping time:	icy range . Toriz to o		Δ VcmA /VcmA $\leq \pm 5\%$							
		one minute for 10Hz									
	1 11 1	ration of vibration :									
		is of X, Y and Z. Two									
	Six hours total										

PULSE LIFE TIME RATINGS


When the following factors are different from the specified conditions,

- the peak pulse current should be revised based on the PULSE LIFE TIME RATINGS.
 - Impulse duration time
 - Number of impulse

•V series

Product specifications in this catalog are subject to change without notice. Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications. 68

10000

time 2 times

-<u>10</u>_____10²

 $\sqrt{\frac{10^{3}}{10^{4}}}$

<<u>10⁵</u>10⁶

TEST CONDITION

2-10 Times: 2min. 10²-10⁶ Times:10sec.

10000

-1 time

__2 times

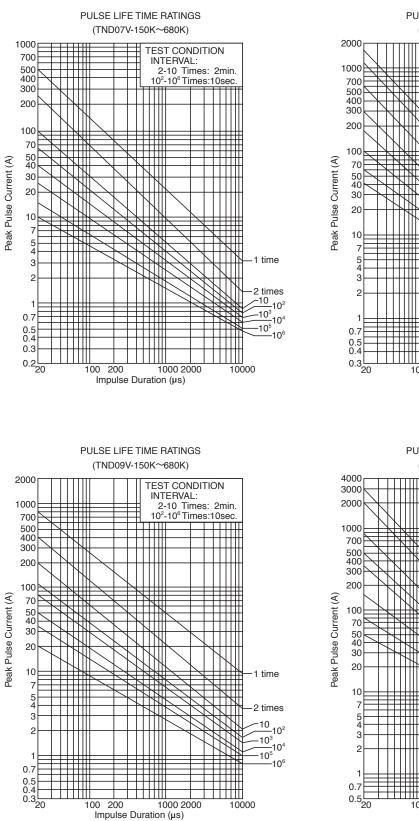
/_<u>10</u>10² <u>_10³</u>10⁴

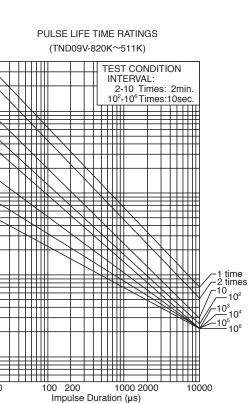
 $-\frac{10^{5}}{10^{6}}$

INTERVAL:

PULSE LIFE TIME RATINGS

(TND07V-820K~511K)

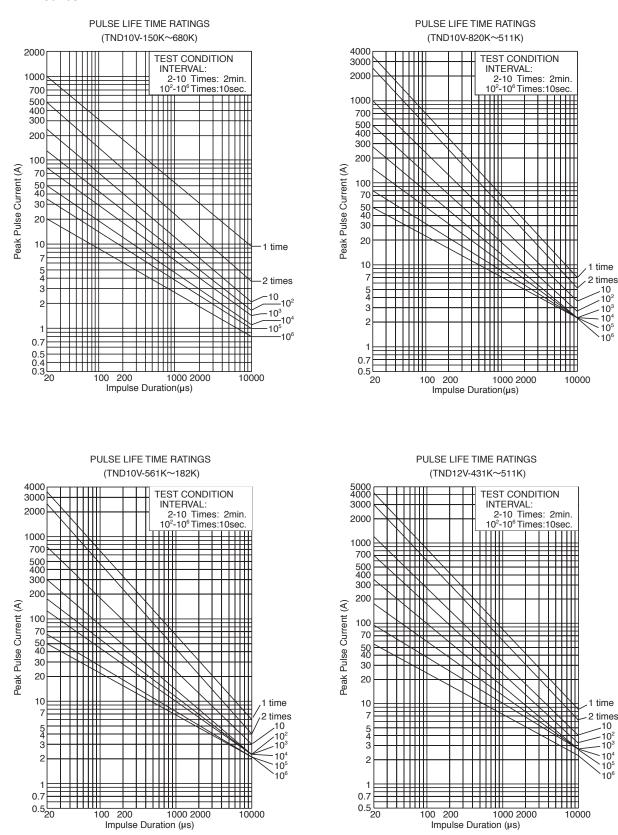

Impulse Duration (µs)


1000 2000

100 200

•V series

NIPPON CHEMI-CON



Product specifications in this catalog are subject to change without notice. Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications 69

CAT. No. E1006A

V series

NIPPON CHEMI-CON

TEST CONDITION

2-10 Times: 2min. 10²-10⁶ Times:10sec.

10000

1000 2000

TEST CONDITION

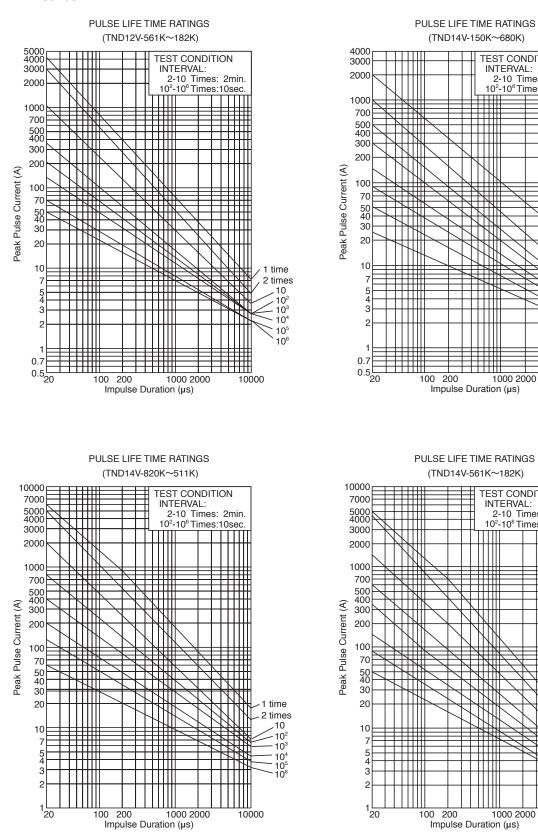
2-10 Times: 2min 10²-10⁶ Times:10sec

INTERVAL:

1000 2000

l time

2 times


<u>-10</u> 10²

-<u>10³</u> 510⁴

 $\frac{-10^{5}}{-10^{6}}$ 10⁶

INTERVAL:

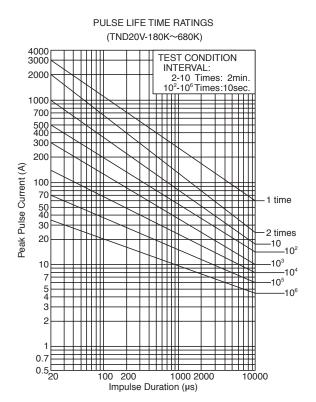
•V series

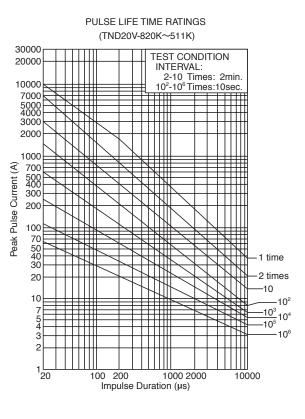
10000

1 time

, -10²

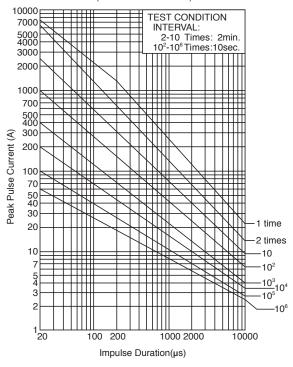
, -10' -10⁵10⁶


∽ 2 times


-10

-10³

•V series

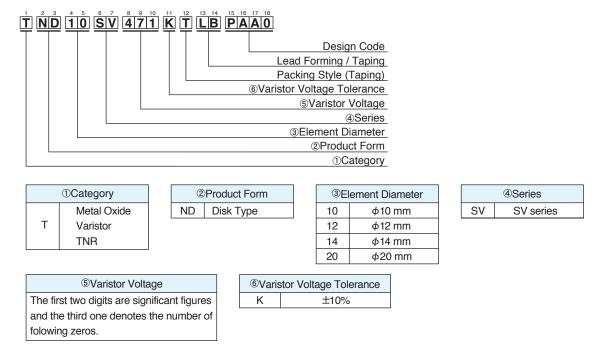

NIPPON CHEMI-CON

•V series

PULSE LIFE TIME RATINGS (TND20V-561K~182K)

Our newly developed TNR SV series is to prevent from being caught fire even very high surge energy is applied.

Thus electric appliance using TNR SV series can be much safer like TNR SE series.


♦FEATURES

- •Little scatter at the destruction under over voltage.
- Environmental characteristics (Upgrade) High temperature operating : 125°C,1000hours
- Damp heat operating : 85°C,85%RH, 1000hours
- Temperature cycle : $-40^{\circ}C \Leftrightarrow +125^{\circ}C$, 1000cycles
- •Coating resin doesn't burn under the flammability test of UL.
- •Material of Coating resin:UL94V-0 and Halogen free
- •UL, CSA and VDE recognized components
- UL1449 3rd File : E323623
- CSA File : LR97864
- VDE File: 118623
- CQC File number varies according to a part number. Pleasee refer to us.
- •Accepted temperature varies according to Safety standards.
- Please refer to us for the details.

APPLICATIONS

- •Protection for semiconductors from over voltage.
- •Protection for electronic instruments from lightning surge.
- •Absorption of on-off surge from motors and relays.
- Operating Temperature Range : $-40 \sim +125^{\circ}C$ Storage Temperature Range : $-50 \sim +150^{\circ}$ C

♦PART NUMBERING SYSTEM

CAUTIONS and WARNINGS

Varistors may be short-circuit or be destroyed, in case of absorbing over rating voltage or over rating surge. Please connect a current fuse or a circuit breaker in series with varistors.

♦RATINGANDCHARACTERISTICS

				MaximumRati	ings		Max.		Capacitance	Varistor	
PartNumber	Previous		ax.	Max.Peak	Max.	Rated		mping	Typical	Voltage	Thickness T
	PartNumber	Allov		Current	Energy	Wattage		Itage	@1kHz	V1mĀ	MAX.
		AC(Vrms)	DC(V)	8/20µs(A)	2ms(J)	(W)	(A)	(V)	(pF)	(V)	
TND10SV221KTLBPAA0	TNR10SV221K417-T71	140	180		27.5			360	450	220 (198~242)	5.4
TND10SV241KTLBPAA0	TNR10SV241K417-T71	150	200		30			395	400	240 (216~264)	5.5
TND10SV271KTLBPAA0	TNR10SV271K417-T71	175	225		35			455	350	270 (247~303)	5.7
TND10SV431KTLBPAA0	TNR10SV431K417-T71	275	350		55			710	240	430 (387~473)	6.5
TND10SV471KTLBP \bigcirc A0		300	385		60			775	220	470 (423~517)	6.7
TND10SV511KTLBP	TNR10SV511K -T71	320	410		67			845	210	510 (459~561)	6.9
TND10SV561KTLBP	TNR10SV561K -T71	350	460	3,500A/1time	67	0.4	25	922	195	560 (504~616)	7.2
TND10SV621KTLBP	TNR10SV621K -T71	385	505	2,500A/2times	67	0.4	25	1025	180	620 (558~682)	7.5
TND10SV681KTLBP	TNR10SV681K -T71	420	560		67			1120	165	680 (612~748)	7.9
TND12SV431KTLBPAA0	TNR12SV431K417-T71	275	350		55			710	240	430 (387~473)	6.5
TND12SV471KTLBPAA0	TNR12SV471K417-T71	300	385		60			775	220	470 (423~517)	6.7
TND12SV511KTLBPAA0	TNR12SV511K417-T71	320	410	4,200A/1time	67	0.4	25	845	210	510 (459~561)	6.9
TND12SV561KTLBPAA0	TNR12SV561K417-T71	350	460	3,000A/2times	67			922	305	560 (504~616)	7.2
TND12SV621KTLBPAA0	TNR12SV621K417-T71	385	505		67			1025	180	620 (558~682)	7.5
TND12SV681KTLBPAA0	TNR12SV681K417-T71	420	560		67			1120	260	680 (612~748)	7.9
TND14SV221KTLBPAA0	TNR14SV221K417-T71	140	180		55			360	850	220 (198~242)	5.4
TND14SV241KTLBPAA0	TNR14SV241K417-T71	150	200		60			395	800	240 (216~264)	5.5
TND14SV271KTLBPAA0	TNR14SV271K417-T71	175	225	6,000A/1time	70			455	700	270 (247~303)	5.7
TND14SV431KTLBPAA0	TNR14SV431K417-T71	275	350	5,000A/2times	110			710	460	430 (387~473)	6.5
TND14SV471KTLBPAA0	TNR14SV471K417-T71	300	385		125	0.6	50	775	420	470 (423~517)	6.7
TND14SV511KTLBPAA0	TNR14SV511K417-T71	320	410		136			845	390	510 (459~561)	6.9
TND14SV561KTLBPAA0	TNR14SV561K417-T71	350	460	5,000A/1time	136			922	360	560 (504~616)	7.2
TND14SV621KTLBPAA0	TNR14SV621K417-T71	385	505	4,500A/2times	136			1025	330	620 (558~682)	7.5
TND14SV681KTLBPAA0	TNR14SV681K417-T71	420	560		136			1120	310	680 (612~748)	7.9
TND20SV221KB00AAA0	TNR20SV221K	140	180		110			360	2500	220 (198~242)	5.4
TND20SV241KB00AAA0	TNR20SV241K	150	200		120			395	2300	240 (216~264)	5.5
TND20SV271KB00AAA0	TNR20SV271K	175	225	10,000A/1time	135			455	2000	270 (247~303)	5.7
TND20SV431KB00AAA0	TNR20SV431K	275	350	7,000A/2times	215			710	1300	430 (387~473)	6.5
TND20SV471KB00AAA0	TNR20SV471K	300	385		250	1.0	100	775	1200	470 (423~517)	6.7
TND20SV511KB00AAA0	TNR20SV511K	320	410		273			845	1100	510 (459~561)	6.9
TND20SV561KB00AAA0	TNR20SV561K	350	460	7,500A/1time	273			922	1000	620 (558~682)	7.2
TND20SV621KB00AAA0	TNR20SV621K	385	505	6,500A/2times	273			1025	900	620 (558~682)	7.6
TND20SV681KB00AAA0	TNR20SV681K	420	560		273			1120	830	680 (612~748)	7.9

♦DIMENSIONS

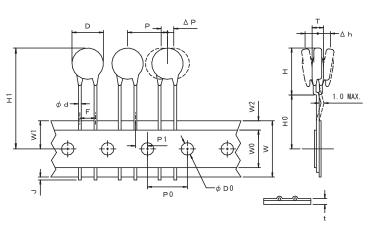
Taping Code : TLB

TND10SV/TND12SV/TND14SV : Taping product is normal specifications. Common to standard product and IEC 60950-1: 2013, Annex Q conforming product

14SV

Product specifications in this catalog are subject to change without notice. Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications. 74

16.5

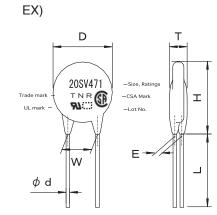

12SV

14.5

	\diamond	
Standard	А	417
ϕ 10 IEC 60950-1: 2013, Annex Q conforming product	S	S417

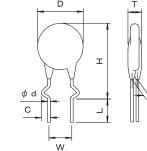
Symbol 10SV D 12.5

φd	0.8±0.05	←	←		
Р	15.0±1.0	15.0±1.0	30.0±1.0		
P0	15.0±0.3	←	←		
φD0	4.0±0.2	←	÷		
P1	3.75±0.5	←	←		
W1	9.0±0.5	←	←		
F	7.5±0.8	←	←		
Δh	0±2.0	←	←		
ΔΡ	0±1.3	←	←		
W	18.0 +1.0 -0.5	←	←		
W0	5.0 MIN.	←	←		
W2	3.0 MAX.	←	←		
t	0.6±0.3	←	←		
н	20.0 MAX.	23.5 MAX.	25.0 MAX.		
H0	19.0±1.0	←	←		
H1	46.5 MAX.	←	←		
J	6.0 MAX.	←	←		



TND20SV : Bulk only

Stlaight lead Type


Part Number	D MAX.	H MAX.	L MIN.	¢d ±0.05	W ±1.0	Е ±1.0
TND20SV221KB00AAA0						1.3
TND20SV241KB00AAA0				0.8	10	1.4
TND20SV271KB00AAA0	22.5	27.5				1.5
TND20SV431KB00AAA0	22.5					2.1
TND20SV471KB00AAA0			20			2.3
TND20SV511KB00AAA0						2.4
TND20SV561KB00AAA0						2.6
TND20SV621KB00AAA0	23.0	28.5				2.9
TND20SV681KB00AAA0						3.1

MARKING

Lead forming Type

Part No.	TND20SV***KBESAAA0
Forming Code	BES (310)
D	refer to each spec.
Т	refer to each spec.
Н	31.0 MAX.
L	5.0 ± 1.0
W	10.0 ± 1.0
φd	0.8 ± 0.05
С	2.0 ± 0.5
E	refer to each spec.

♦V-I CURVE

V-I characteristics and PULE LIFE TIME RATINGS are same as those of V series. Please see V-I CURVE and PULE LIFE TIME RATINGS of V series.

CROSS REFERENCE TABLE (Common to standard product and IEC 60950-1: 2013, Annex Q conforming product)

TNR SV SERIES	TNR V SERIES	V-I CURVE GO TO REF. PAGE	PULSE LIFE TIME RATINGS GO TO REF. PAGE
TND10SV221K	TND10V-221K		
TND10SV241K	TND10V-241K		
TND10SV271K	TND10V-271K		
TND10SV431K	TND10V-431K		
TND10SV471K	TND10V-471K	P.59	P.70
TND10SV511K	TND10V-511K		
TND10SV561K	TND10V-561K		
TND10SV621K	TND10V-621K		
TND10SV681K	TND10V-681K	•	
TND12SV431K	TND12V-431K		
TND12SV471K	TND12V-471K		
TND12SV511K	TND12V-511K	P.61	P.70 to p.71
TND12SV561K	TND12V-561K	1.01	1.70 to p.71
TND12SV621K	TND12V-621K		
TND12SV681K	TND12V-681K		
TND14SV221K	TND14V-221K		
TND14SV241K	TND14V-241K		
TND14SV271K	TND14V-271K		
TND14SV431K	TND14V-431K		
TND14SV471K	TND14V-471K	P.63	P.71
TND14SV511K	TND14V-511K		
TND14SV561K	TND14V-561K		
TND14SV621K	TND14V-621K		
TND14SV681K	TND14V-681K		
TND20SV221K	TND20V-221K		
TND20SV241K	TND20V-241K		
TND20SV271K	TND20V-271K		
TND20SV431K	TND20V-431K		
TND20SV471K	TND20V-471K	P.65	P.72
TND20SV511K	TND20V-511K		
TND20SV561K	TND20V-561K		
TND20SV621K	TND20V-621K		
TND20SV681K	TND20V-681K		

Product specifications in this catalog are subject to change without notice. Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications.

♦GENERAL SPECIFICATIONS

Item	Test Conditions	Specifications
Standard Test	20±15℃, 85%RH Max.	
Condition		_
Varistor Voltage	The voltage between the two terminals measured at 1mA DC is called Varistor Voltage.	Satisfy the specification
	The measurement shall be made as fast as possible to avoid heat affection.	
Maximum Allowable	Maximum continuous AC voltage (50 to 60Hz AC) and maximum DC voltage which can be	Satisfy the specification
Voltage	applied.	
Maximum Peak	Maximum surge current (8/20 μ s pulse wave to be applied once, or twice, 2 minutes apart) for	Satisfy the specification
Surge Current	varistor voltage change within \pm 10% of the initial value.	
Energy Rating	Maximum energy (2 ms. square wave to be applied once) for varistor voltage change within	Satisfy the specification
	\pm 10% of the initial value.	
Rated Wattage	Maximum power (50 to 60Hz/AC power to be applied for 1000 hours at 125°C) for varistor voltage	Satisfy the specification
	change within $\pm 10\%$ of the initial value.	
Maximum Clamping	Maximum voltage across varistor when 8/20µs rated current surge is applied.	Satisfy the specification
Voltage		
Capacitance	Varistor's capacitance at 1kHz, standard test condition.	For reference only.
Voltage Temperature	<u>V1mA at 125℃−V1mA at 25℃</u> × <u>1</u> V1mA at 25℃ × <u>1</u> 100 (%/℃)	Within ±0.05%/℃
Coefficient	V1mA at 25°C 100 (100 (100 (100 (100 C))	
	V1mA : Actual varistor voltage	
Insulation	Short circuit the two leads of varistor, and put the varistor body into metal balls (1.6mm diameter)	The varistor shall withstand
	leaving 2mm resin coating outside. Then, apply 2.5kVrms between the leads and the metal balls for	with no abnormality.
	60±5 sec.	

♦ENVIRONMENTAL CHARACTERISTICS

Item	Test Conditions	Specifications
High Temperature Storage (Dry heat)	The specimen shall be subjected $150\pm2^{\circ}C$ for 1000 ± 12 hours without load.	ΔV1mA/V1mA≦±10%
Low Temperature Storage	The specimen shall be subjected -40±2°C for 1000±12 hours without load.	ΔV1mA/V1mA≦±5%
Damp heat (Humidity)	The specimen shall be subjected to 85±2°C, 80 to 85%RH for 1000±12 hours without load.	ΔV1mA/V1mA≦±5%
Temperature Cycle	The temperature cycle shown below shall be repeated 1000 cycles.	ΔV1mA/V1mA≦±5%
	$-40\pm3^{\circ}$ C, 30 minutes \Leftrightarrow $+125\pm2^{\circ}$ C, 30 minutes	No remarkable damage
High Temperature	The specimen shall be subjected to $125\pm2^\circ$ C with the maximum allowable voltage for $1000\pm$	ΔV1mA/V1mA≦±10%
Operating	12 hours.	
Damp heat Operating	The specimen shall be subjected to 85±2°C, 80 to 85%RH with the maximum allowable voltage for	ΔV1mA/V1mA≦±10%
	1000±12 hours.	

Varistor voltage change of forward direction shall be measured in the test of unipolar surge life and DC load life. Varistor voltage change is measured after stored at Standard Test Conditions for 1 to 2 hours.

♦MECHANICAL CHARACTERISTICS

Item		Test C	onditions		Specifications
Resistance to	Each lead shall be	dipped into a solder bath ha	ving a temperature o	of 350±10°C to a point 2.0	∆V1mA/V1mA≦±5%
Soldering Heat	to 2.5 mm from the		No remarkable damage		
	temperature for 1 t	to 2 hours. The $\Delta V1mA$ and	mechanical damage	shall be examined.	
	or				
		dipped into a solder bath ha	e 1		
		e body of the unit, be held the			
		to 2 hours. The $\Delta V1mA$ and r			
Solderability		dipped into a methanol solut	ion (about 25%) of r	osin for 5 to 10 sec.	At least, 95% of the leads
		all be dipped into a solder.		1	shall be covered with solder
	Solder	Pb free (Sn-3.0Ag-0.5Cu)	Eutectic (Sn/Pb)	-	uniformly.
	Solder Temp.	245±5℃	235±5℃	4	
	Dipping Time	2±0.5se	-	-	
	Dipping Depth	1.5 to 2.0mm (fror			
Lead Pull Strength	Fix varistor body, a	and suspend specified weight	toward direction of	lead axis.	No abnormality such as
	Lead diameter	Force			disconnection.
	φ0.8mm				Δ V1mA/V1mA $\leq \pm 5\%$
	The second second second			for a second of the state of the	No
Lead Bend Strength	shall be applied in	be secured with its terminal k	ept vertical and the	force specified below	No remarkable damage as remarkable the innner
		granually be bend by 90 in o	ne direction then bac	ck to original position.	ceramic element or terminal
		e terminal shall be visually ex		5	open.
	Lead diameter	Force			
	φ0.8mm	2.5N			
Vibration	Mount variator had	ly on vibrator, and conduct th	a fallowing vibration	toot	No remarkable apperance
	Peak-to-Peak an	,	e following vibration	lesi.	abnormality.
		ncy range : 10 to 55Hz			Δ V1mA/V1mA $\leq \pm 5\%$
	Sweeping time:	icy range . To to 55Hz			
	1 0	one minute for $10Hz \rightarrow 55Hz$	$\rightarrow 10H_7$		
				7 0 hours cook 6	
	hours total.	ration of vibration : Three dire	cuons of X, Y, and A	Z. 2 Hours each. O	
Flammability test	The varistor shall b	be subjected 60 sec. applicat	ions of test flame.		No catching fire, and no
	D D	flaming drops.			
	Burnar : Bunsen g				
	Diameter of flame				
		simen shall be fixed horizona			
	Point of a	application shall be approxim	ately center of the s	pecimen.	

Product specifications in this catalog are subject to change without notice. Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications.

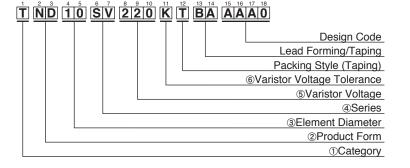
NIPPON CHEMI-CON METAL OXIDE VARISTORS TNR[™]

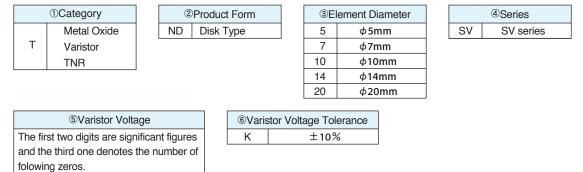
New! SV Series Low varistor voltage

By using the resin properties of the SV series to a low varistor voltage products, it has achieved a high heat resistance and temperature cycle resistance. Low varistor voltage SV series is for automotive in compliance with the AEC-Q200.

♦FEATURES

- High temperature operating : 1,000 hours at 125°C.
- Damp heat oprerating : 1,000 hours at 85°C/85%RH.
- Temperature cycle : -40°C⇔+125°C, 1000cycle. Material of Coating resin:UL94V-0 and Halogen free.
- AEC-Q200 compliant : Please contact Chemi-con for more details, test data, information.

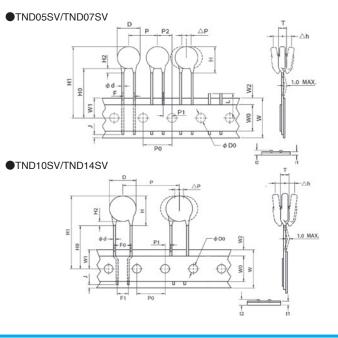

APPLICATIONS


- Absorption of automotive load dump surge.
- Absorption of ignition-off surge.
- Absorption of switching surge of horn, motor, and relay. • Protection of automotive electronics and semi conductors.

Operating Temperature Range : $-40 \sim +125^{\circ}C$

Storage Temperature Range : $-50 \sim +150^{\circ}$ C

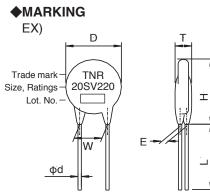
♦PART NUMBERING SYSTEM


♦RATING AND CHARACTERISTICS

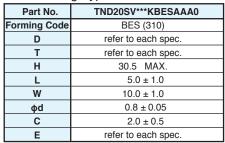
				Maximur	n Ratings			Ма	ax.	Capacitance	Varistor Voltage	
Part Number	Previous Part Number	Max. Al Volt		Max.Peak Current	Max. Energy	Max.Applicable voltage for short period /5 minutes	Rated Wattage		Clamping Ty Voltage @		V1mA 5SV : V0.1mA	Thickness T
		AC(Vrms)	DC(V)	8/20µs(A)	2ms(J)	DC(V)	(W)	(A)	(V)	(pF)	(V)	- MAX.
TND05SV220KTBAAAA0	TNR5SV220K-T25	12	16		0.5	24			48	3600	22 (20~24)	5.0
TND05SV270KTBAAAA0	TNR5SV270K-T25	15	19		0.7	29			60	3100	27 (24~30)	5.0
TND05SV330KTBAAAA0	TNR5SV330K-T25	18	24		0.8	36			73	2500	33 (30~36)	5.5
TND05SV390KTBAAAA0	TNR5SV390K-T25	22	28	125A	0.9	42	0.01	1	86	2300	39 (35~43)	5.0
TND05SV470KTBAAAA0	TNR5SV470K-T25	26	34	/2 times	1.1	50			104	2000	47 (42~52)	5.0
TND05SV560KTBAAAA0	TNR5SV560K-T25	30	42		1.3	50			123	1700	56 (50~62)	5.5
TND05SV680KTBAAAA0	TNR5SV680K-T25	40	55		1.6	65			150	1500	68 (61~75)	5.5
TND07SV220KTBAAAA0	TNR7SV220K-T25	12	16		1.1	24			43	5400	22 (20~24)	5.0
TND07SV270KTBAAAA0	TNR7SV270K-T25	15	19		1.3	29			53	4800	27 (24~30)	5.0
TND07SV330KTBAAAA0	TNR7SV330K-T25	18	24		1.6	36			65	3900	33 (30~36)	5.5
TND07SV390KTBAAAA0	TNR7SV390K-T25	22	28	250A	1.9	42	0.02	2.5	77	3600	39 (35~43)	5.0
TND07SV470KTBAAAA0	TNR7SV470K-T25	26	34	/2 times	2.3	50			93	3300	47 (42~52)	5.0
TND07SV560KTBAAAA0	TNR7SV560K-T25	30	42		2.7	50			110	2900	56 (50~62)	5.5
TND07SV680KTBAAAA0	TNR7SV680K-T25	40	55		3.3	65			135	2600	68 (61~75)	5.5
TND10SV220KTBAAAA0	TNR10SV220K-T25	12	16		2.6	24			43	12000	22 (20~24)	6.0
TND10SV270KTBAAAA0	TNR10SV270K-T25	15	19		3.2	29			53	11000	27 (24~30)	6.0
TND10SV330KTBAAAA0	TNR10SV330K-T25	18	24		4.0	36			65	8500	33 (30~36)	6.5
TND10SV390KTBAAAA0	TNR10SV390K-T25	22	28	500A	4.7	42	0.05	5	77	7600	39 (35~43)	6.0
TND10SV470KTBAAAA0	TNR10SV470K-T25	26	34	/2 times	5.6	50			93	6800	47 (42~52)	6.0
TND10SV560KTBAAAA0	TNR10SV560K-T25	30	42		6.7	50			110	6000	56 (50~62)	6.5
TND10SV680KTBAAAA0	TNR10SV680K-T25	40	55		8.2	65			135	5400	68 (61~75)	6.5
TND14SV220KTBAAAA0	TNR14SV220K-T25	12	16		5.3	24			43	23000	22 (20~24)	6.0
TND14SV270KTBAAAA0	TNR14SV270K-T25	15	19		6.5	29			53	21000	27 (24~30)	6.0
TND14SV330KTBAAAA0	TNR14SV330K-T25	18	24		7.9	36			65	17000	33 (30~36)	6.5
TND14SV390KTBAAAA0	TNR14SV390K-T25	22	28	1000A	9.4	42	0.1	10	77	16000	39 (35~43)	6.0
TND14SV470KTBAAAA0	TNR14SV470K-T25	26	34	/2 times	11	50			93	14000	47 (42~52)	6.0
TND14SV560KTBAAAA0	TNR14SV560K-T25	30	42		13	50			110	13000	56 (50~62)	6.5
TND14SV680KTBAAAA0	TNR14SV680K-T25	40	55		16	65			135	11000	68 (61~75)	6.5
TND20SV220KB00AAA0	TNR20SV220K	12	16		14	24			43	56000	22 (20~24)	6.0
TND20SV270KB00AAA0	TNR20SV270K	15	19		17	29			53	48000	27 (24~30)	6.0
TND20SV330KB00AAA0	TNR20SV330K	18	24		21	36			65	41000	33 (30~36)	6.5
TND20SV390KB00AAA0	TNR20SV390K	22	28	2000A	25	42	0.2	20	77	36000	39 (35~43)	6.0
TND20SV470KB00AAA0	TNR20SV470K	26	34	/2 times	30	50			93	33000	47 (42~52)	6.0
TND20SV560KB00AAA0	TNR20SV560K	30	42		36	50			110	29000	56 (50~62)	6.5
TND20SV680KB00AAA0	TNR20SV680K	40	55		44	65			135	26000	68 (61~75)	6.5

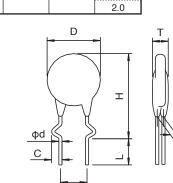
TND05SV/TND07SV/TND10SV/TND14SV : Taping product is normal specifications.

Symbol	5SV	7SV	10SV	14SV
D	8.0 Max.	9.0 Max.	12.0 Max.	16.0 Max.
φd	0.6±0.05	←	0.8±0.05	←
Р	12.7±1.0	←	25.4±1.0	←
P0	12.7±0.3	←	12.7±0.3	←
φD0	4.0±0.2	←	4.0±0.2	\leftarrow
P1	3.85±0.7	←	2.6±0.5	←
P2	6.35±1.3	←	-	-
W1	9.0±0.5	←	9.0±0.5	\leftarrow
F	5.0±0.8	←	-	
F0	-		7.5±0.8	\leftarrow
F1	-	-	5.0 Nom.	←
Δh	0±2.0	←	0±2.0	\leftarrow
ΔP	0±1.0	←	0±1.0	\leftarrow
W	18.0 ^{+1.0} _{-0.5}	←	18.0 ^{+1.0}	\leftarrow
W0	5.0 Min.	←	5.0 Min.	\leftarrow
t1	0.6±0.3	←	0.6±0.3	\leftarrow
t2	1.5 Max.	←	1.5 Max.	\leftarrow
W2	3.0 Max.	←	3.0 Max.	\leftarrow
H0	20.0 ^{+1.0} _{-0.5}	←	19.0 Min.	\leftarrow
Н	11.0 Max.	12.0 Max.	17.0 Max.	20.0 Max.
H1	29.0 Max.	30.0 Max.	41.5 Max.	43.5 Max.
H2	3.0 Max.	←	5.0 Max.	\leftarrow
J	6.0 Max.	←	6.0 Max.	\leftarrow
L	11.0 Max.	←	-	-



Product specifications in this catalog are subject to change without notice. Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications. 79




TND20SV : Bulk only

Stlaight lead Type									
Part Number	D MAX.	H MAX.	L MIN.	¢d ±0.05	W ±1.0	Е ±1.0			
TND20SV220KB00AAA0						1.2			
TND20SV270KB00AAA0			20.0	0.8	10	1.4			
TND20SV330KB00AAA0						1.6			
TND20SV390KB00AAA0	22.5	27.0				1.3			
TND20SV470KB00AAA0						1.5			
TND20SV560KB00AAA0						1.7			
TND20SV680KB00AAA0						2.0			

Lead forming Type

W

♦V-I CURVE

V-I characteristics and PULE LIFE TIME RATINGS are same as those of V series. Please see V-I CURVE and PULE LIFE TIME RATINGS of V series.

CROSS REFERENCE TABLE

TNR SV SERIES	TNR V SERIES	V-I CURVE GO TO REF. PAGE	PULSE LIFE TIME RATINGS GO TO REF. PAGE		
TND05SV220K	TND05V-220K				
TND05SV270K	TND05V-270K				
TND05SV330K	TND05V-330K				
TND05SV390K	TND05V-390K	P.55	P.68		
TND05SV470K	TND05V-470K				
TND05SV560K	TND05V-560K				
TND05SV680K	TND05V-680K				
TND07SV220K	TND07V-220K				
TND07SV270K	TND07V-270K				
TND07SV330K	TND07V-330K				
TND07SV390K	TND07V-390K	P.57	P.69		
TND07SV470K	TND07V-470K				
TND07SV560K	TND07V-560K				
TND07SV680K	TND07V-680K				
TND10SV220K	TND10V-220K				
TND10SV270K	TND10V-270K				
TND10SV330K	TND10V-330K				
TND10SV390K	TND10V-390K	P.61	P.70		
TND10SV470K	TND10V-470K				
TND10SV560K	TND10V-560K				
TND10SV680K	TND10V-680K				
TND14SV220K	TND14V-220K				
TND14SV270K	TND14V-270K				
TND14SV330K	TND14V-330K				
TND14SV390K	TND14V-390K	P.65	P.71		
TND14SV470K	TND14V-470K				
TND14SV560K	TND14V-560K				
TND14SV680K	TND14V-680K				
TND20SV220K	TND20V-220K				
TND20SV270K	TND20V-270K				
TND20SV330K	TND20V-330K				
TND20SV390K	TND20V-390K	P.67	P.72		
TND20SV470K	TND20V-470K				
TND20SV560K	TND20V-560K				
TND20SV680K	TND20V-680K				

Product specifications in this catalog are subject to change without notice. Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications.

♦GENERAL SPECIFICATIONS

Item	Test Conditions	Specifications
Standard Test Condition	20±15°C, 85%RH Max.	-
Varistor Voltage	The voltage between the two terminals measured at 1mA (5SV : 0.1mA) DC is called Varistor Voltage. The measurement shall be made as fast as possible to avoid heat affection.	Satisfy the specification
Maximum Allowable Voltage	Maximum continuous AC voltage (50 to 60Hz/AC) and maximum DC voltage which can be applied.	Satisfy the specification
Maximum Peak Surge Current	Maximum surge current (8/20 μ s pulse wave to be applied twice, 5 minutes apart) for varistor voltage change within $\pm 10\%$ of the initial value.	Satisfy the specification
Energy Rating	Maximum energy (2ms square wave to be applied once) for varistor voltage change within ±10% of the initial value.	Satisfy the specification
Rated Wattage	Maximum power (50 to 60Hz/AC power to be applied for 1000 hours at 125°C) for varistor voltage change within $\pm 10\%$ of the initial value.	Satisfy the specification
Maximum Clamping Voltage	Maximum voltage across varistor when 8/20µs rated current surge is applied.	Satisfy the specification
Capacitance	Varistor's capacitance at 1kHz, standard test condition.	For reference only.
Voltage Temperature Coefficient	<u>V1mA at 125℃ – V1mA at 25℃ × 1</u> V1mA at 25℃ × 1100 (%/℃)	Within ±0.05%/°C
	V1mA : Actual Varistor Voltage	
Maximum Applicable Voltage for a Short Period (5 minutes)	Maximum DC voltage to be applied for only 5 minutes.	∆V1mA/V1mA≦±15%

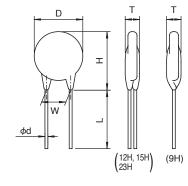
♦ ENVIRONMENTAL CHARACTERISTICS

Item	Test Conditions	Specifications
High Temperature Storage (Dry heat)	The specimen shall be subjected $150\pm2^{\circ}C$ for 1000 ± 12 hours without load.	ΔV1mA/V1mA≦±10%
Low Temperature Storage	The specimen shall be subjected $-40\pm2^{\circ}$ C for 1000 ±12 hours without load.	ΔV1mA/V1mA≦±5%
Damp heat (Humidity)	The specimen shall be subjected to 85±2°C, 80 to 85%RH for 1000±12 hours without load.	∆V1mA/V1mA≦±10%
Temperature Cycle	The temperature cycle shown below shall be repeated 1000 cycles.	ΔV1mA/V1mA≦±10%
	-40±3°C, 30 minutes ⇔ +125±2°C, 30 minutes	No remarkable damage
High Temperature	The specimen shall be subjected to 125±2°C with the maximum allowable voltage for	∆V1mA/V1mA≦±10%
Operating	1000±12 hours.	
Damp heat Operating	The specimen shall be subjected to 85±2°C, 80 to 85%RH with the maximum allowable voltage for	ΔV1mA/V1mA≦±10%
	1000±12 hours.	

Varistor voltage change of forward direction shall be measured in the test of unipolar surge life and DC load life. Varistor voltage change is measured after stored at Standard Test Conditions for 1 to 2 hours.

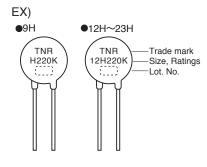
♦MECHANICAL CHARACTERISTICS

Item		Test Co	onditions		Specifications	
Resistance to Soldering Heat	to 2.5 mm from the temperature for 1 t	dipped into a solder bath have body of unit, be held there for 2 hours. The Δ V1mA and r	or 3^{+1}_{-0} sec and then	be stored at room	ΔV1mA/V1mA≦±5% No remarkable damage	
	to 2.5 mm from the	dipped into a solder bath have body of the unit, be held the 0.2 hours. The Δ V1mA and r	re for 10±1 sec and	then be stored at room		
Solderability		ach lead shall be dipped into a methanol solution (about 25%) of rosin for 5 to 10 sec. 'hen each lead shall be dipped into a solder. Solder Pb free (Sn-3.0Ag-0.5Cu) Eutectic (Sn/Pb) Solder Temp. 245±5°C Dipping Time 2±0.5sec.				
Lead Pull Strength		lying the load keeping the ur Lead Diameter 0.6mm 0.8mm	it fixed for 10±5 sec Force 10N 10N	onds in axial direction.	No abnormality such as disconnection. ΔV1mA/V1mA≦±5%	
Lead Bend Strength	The unit shall be s be applied in the a The terminal shall direction, and agai examined.	No remarkable damage as remarkable the innner ceramic element or terminal open.				
	Type 5SV,7SV 10SV,14SV,20SV	Lead Diameter 0.6mm 0.8mm	Force 5N 5N			
Vibration	Mount varistor bod Peak-to-Peak an Vibration frequer Sweeping time: <i>I</i> Direction and du	No remarkable apperance abnormality. ΔV1mA/V1mA≦±5%				
Flammability test	The varistor shall t Burnar : Bunsen ga Diameter of flame Position : The spea Point of a	No catching fire, and no flaming drops.				



♦STANDARD RATINGS

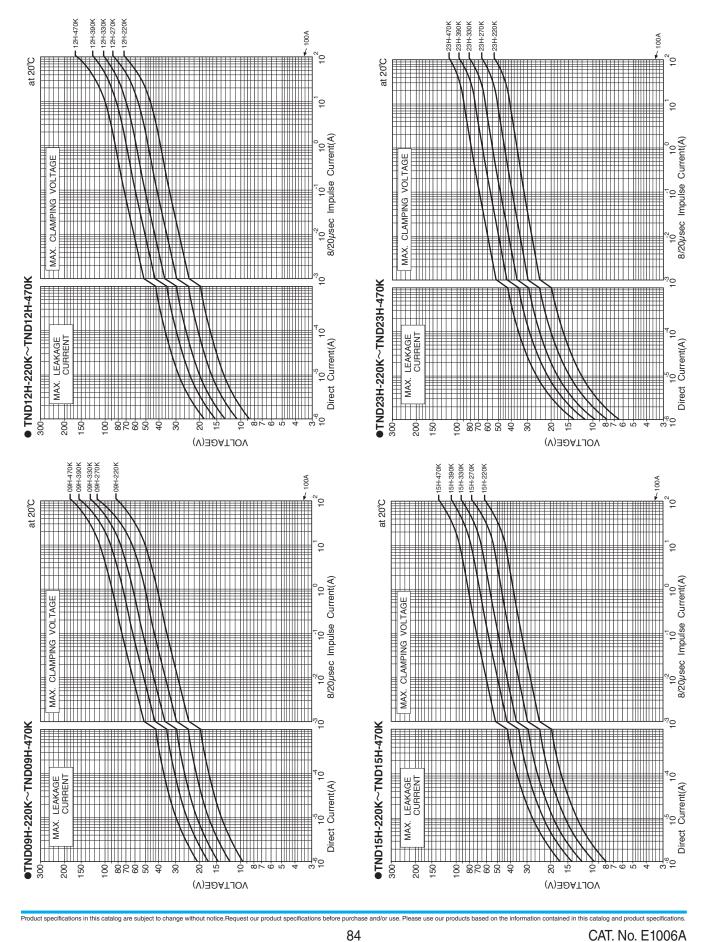
Operating Temperature Range: -40 to +125℃ Storage Temperature Range: -50 to +150℃


	Previous	Max. Allowa	able Voltage	Maximum applicable voltage for a short period	Max.	Max. Clamping Voltage		Varistor Voltage V1mA	
Part Number	Part Number (Just for your reference)	Conti	nuous	5 minutes	Energy				
		AC (Vrms)	DC (V)	DC (V)	20ms(J)	(A)	(V)	(V)	
TND09H-220KB00AAA0	TNR9H220K	12	16	24			43	22 (20~24)	
TND09H-270KB00AAA0	TNR9H270K	15	19	29			53	27 (24~30)	
TND09H-330KB00AAA0	TNR9H330K	18	24	36	5	2	65	33 (30~36)	
TND09H-390KB00AAA0	TNR9H390K	22	28	42			77	39 (35~43)	
TND09H-470KB00AAA0	TNR9H470K	26	34	50			93	47 (42~52)	
TND12H-220KB00AAA0	TNR12H220K	12	16	24			43	22 (20~24)	
TND12H-270KB00AAA0	TNR12H270K	15	19	29			53	27 (24~30)	
TND12H-330KB00AAA0	TNR12H330K	18	24	36	10	5	65	33 (30~36)	
TND12H-390KB00AAA0	TNR12H390K	22	28	42			77	39 (35~43)	
TND12H-470KB00AAA0	TNR12H470K	26	34	50			93	47 (42~52)	
TND15H-220KB00AAA0	TNR15H220K	12	16	24			43	22 (20~24)	
TND15H-270KB00AAA0	TNR15H270K	15	19	29			53	27 (24~30)	
TND15H-330KB00AAA0	TNR15H330K	18	24	36	20	10	65	33 (30~36)	
TND15H-390KB00AAA0	TNR15H390K	22	28	42			77	39 (35~43)	
TND15H-470KB00AAA0	TNR15H470K	26	34	50			93	47 (42~52)	
TND23H-220KB00AAA0	TNR23H220K	12	16	24			43	22 (20~24)	
TND23H-270KB00AAA0	TNR23H270K	15	19	29			53	27 (24~30)	
TND23H-330KB00AAA0	TNR23H330K	18	24	36	40	25	65	33 (30~36)	
TND23H-390KB00AAA0	TNR23H390K	22	28	42			77	39 (35~43)	
TND23H-470KB00AAA0	TNR23H470K	26	34	50			93	47 (42~52)	

◆DIMENSIONS [mm]

Туре	D Max.	H Max.	T Max.	W ±1.0	L Min.	φd ±0.05
9H	10.0	13.0	5.0	5.0	25.0	0.6
12H	13.5	16.5	5.0	7.5	25.0	0.8
15H	16.5	19.0	5.0	7.5	25.0	0.8
23H	24.0	27.0	5.0	10.0	25.0	0.8

MARKING



METAL OXIDE VARISTORS TNR[™]

H Series

♦V-I CURVE

H Series

♦GENERAL SPECIFICATIONS

Operating Temperature Range: -40 to +125℃ Storage Temperature Range: -50 to +150℃

ltem	Test Conditions	Specifications
Standard Test	20±15°C, 85%RH Max.	
Condition	20-15C, 05%nn Max.	
Condition		
Mariatar Maltara	The unlinear between the two terminals mean and at the ADO is called Mariater Maltana	
Varistor Voltage	The voltage between the two terminals measured at 1mA DC is called Varistor Voltage.	Satisfy the specification.
	The measurement shall be made as fast as possible to avoid heat affection.	
Maximum Allowable	Maximum continuous sinusoidal RMS voltage or	Refer to Ratings.
Voltage	Maximum continuous DC voltage which may be applied.	
Maximum applicable	Maximum DC voltage to be applied for only 5 minutes.	Refer to Ratings.
voltage for a short		
period (5 minutes)		
Maximum Clamping	The maximum voltage between the terminals, measured standard impulse current (8/20 μ s).	Satisfy the specification.
Voltage		
Maximum Energy	Maximum energy within the $\pm 10\%$ varistor voltage change when 1 impulse 20 ms long is	Satisfy the specification.
	applied.	
Temperature	V1mA at 85°C – V1mA at 25°C $\sqrt{1}$	Within
Coefficient	$\frac{V1\text{mA at 85}^\circ\text{C} - V1\text{mA at 25}^\circ\text{C}}{V1\text{mA at 25}^\circ\text{C}} \times \frac{1}{60} \times 100 \ (\%/^\circ\text{C})$	±0.05 % / °C

♦MECHANICAL CHARACTERISTICS

Item		Test Co	onditions		Specifications
Terminal Pull	After gradually ap	olying the force keeping the	unit fixed for 10±1 s	sec. in axial direction, the	$\Delta V_{1mA} / V_{1mA} \leq \pm 5\%$
Strength	damage of the tern	ninals shall be visually examin	ed.		No remarkable damage
	Lead dian	neter Force			
	φ0.6mm. φ	0.8mm 10 N			
Terminal Bending	The unit shall be	secured with its terminal kep	ot vertical and the v	veight specified below be	No remarkable damage
Strength	applied in the axial				
		gradually be bend by 90 $^\circ$ in c	ne direction then 90	o in the opposite direction,	
	and again back to	original position.			
	The damage of the	terminal shall be visually exa	mined.		
	Lead dian				
	φ0.6mm. φ				
Vibration		oplying a single harmonic vibr	`	, 1	$\Delta V_{1mA} / V_{1mA} \leq \pm 5\%$
		inute vibration frequency c		,	No remarkable damage
		tions for 2 hours. Total 6 hou			
Resistance to		dipped into a solder bath ha	0 1		$\Delta V_{1mA} / V_{1mA} \leq \pm 5\%$
Soldering Heat		e body of the unit, be held	-		No remarkable damage
	temperature for 1 t	to 2 hours. The $\Delta V_1 mA$ and r	nechanical damage s	shall be examined.	
	or				
		dipped into a solder bath ha	0 1		
		e body of the unit, be held th			
	l '	to 2 hours. The $\Delta V_1 mA$ and r			
Solderability	Each lead shall be dipped into a methanol solution (about 25%) of rosin for 5 to 10 sec.				At least, 95% of the leads
		all be dipped into a solder.	1	1	shall be covered with
	Solder	Pb free (Sn-3.0Ag-0.5Cu)	Eutectic (Sn/Pb)	-	solder uniformly.
	Solder Temp.	245±5℃	235±5℃	-	
	Dipping Time	2±0.5se		4	
	Dipping Depth	1.5 to 2.0mm (from	n the body)		

85

H Series

♦ ENVIRONMENTAL CHARACTERISTICS

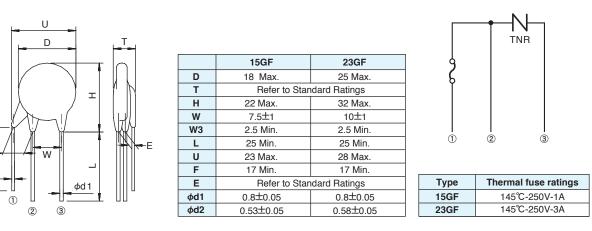
Item	Test Conditions	Specifications
High Temperature Storage (Dry heat)	The specimen shall be subjected 150±2°C for 1000±12 hours without load.	ΔV1mA/V1mA≦±10%
Low Temperature Storage	The specimen shall be subjected -40±2°C for 1000±12 hours without load.	ΔV1mA/V1mA≦±5%
Damp heat (Humidity)	The specimen shall be subjected to 60±2°C, 90 to 95%RH for 1000±12 hours without load.	ΔV1mA/V1mA≦±10%
Temperature Cycle	The temperature cycle shown below shall be repeated 50 cycles. -40±3℃, 30 minutes ⇔ +150±2℃, 30 minutes	ΔV1mA/V1mA≦±10% No remarkable damage
High Temperature Operating	The specimen shall be subjected to $125\pm2^{\circ}C$ with the maximum allowable voltage for 1000 ± 12 hours.	ΔV1mA/V1mA≦±20%
Damp heat Operating	The specimen shall be subjected to 60±2°C, 90 to 95%RH with the maximum allowable voltage for 1000±12 hours.	ΔV1mA/V1mA≦±10%

Varistor voltage change of forward direction shall be measured in the test of unipolar surge life and DC load life. Varistor voltage change is measured after stored at Standard Test Conditions for 1 to 2 hours. Note : For 42V battery line, please contact our sales office.

Product specifications in this catalog are subject to change without notice. Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications.

METAL OXIDE VARISTORS TNR[™]

GF Series are combined TNR Varistor with Thermal Fuse ●Coating resin : UL94V-0

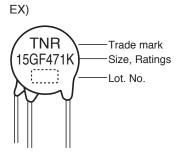


Operating Temperature Range: -40 to +85°C Storage Temperature Range: -50 to +125℃

Part Number	Previous Part Number	Max. Allo	owable	Maximum Rat Max. Peak	ings Max.	Rated	Max. Clamping	Capacitance Typical	Voltage	T Max.	E ±1.0
	(Just for your reference)	Volta	ige	Current	Energy	Wattage	Voltage	@1kHz	V1mA	intex.	•
15GF Type		AC(Vrms)	DC(V)	8/20µs(A)	2ms(J)	(W)	V50A (V)	(pF)	(V)	(mm)	(mm)
TND15GF271KB00EAA0	TNR15GF271K-E	175	225		50	0.6	440	680	270 (243~297)	9	1.5
TND15GF471KB00EAA0	TNR15GF471K-E	300	385	2500A/2 times	80	0.6	765	450	470 (423~517)	10	2.2
TND15GF821KB00EAA0	TNR15GF821K-E	510	670		110	0.6	1340	280	820 (738~902)	12	3.5
23GF Type		AC (Vrms)	DC (V)	8/20µs(A)	2ms(J)	(W)	V100A (V)	(pF)	(V)	(mm)	(mm)
TND23GF271KB00EAA0	TNR23GF271K-E	175	225		90	0.8	440	1850	270 (243~297)	9	1.5
TND23GF471KB00EAA0	TNR23GF471K-E	300	385	4000A/2 times	150	1.0	765	1200	470 (423~517)	10	2.3
TND23GF821KB00EAA0	TNR23GF821K-E	510	670		190	1.5	1340	800	820 (738~902)	12	3.6

◆DIMENSIONS [mm]

♦STANDARD RATINGS



MARKING

W3

φd2

LL

Metal Oxide Varistors TNR[™] Technical Note, Application Examples

1. WHAT IS A VARISTOR?

A varistor has the volt-ampere characteristics in which current suddenly starts to flow through the device at a certain voltage, as shown in Figure 1.

The varistors are used to protect semiconductor devices in electronic and electric circuits from overvoltage. As shown in Figure 2, a varistor is inserted in parallel with a circuit to be protected. When an impulse is applied to the circuit, pulse current Is, which is determined by pulse voltage Vs and pulse impedance Zs, flows to limit the pulse voltage to the varistor limit voltage Vclamp.

The relation can be expressed by the equations as follows:

Vs = Is × Zs + Vclamp	(1)
Vclamp = Vs - Is × Zs	(2)

The pulse current Is is easily obtained by the following equation because of Vs >> Vclamp.

 $ls \doteq \frac{Vs}{Zs}$ (3)

Thus, the circuit can be protected from being damaged by pulse voltages as long as it has withstand voltage larger than the maximum limit voltage.

Owing to the characteristic, the varistors are extremely effective as protecting devices of electronic and electric equipment by absorption of abnormal voltages and lightening pulses.

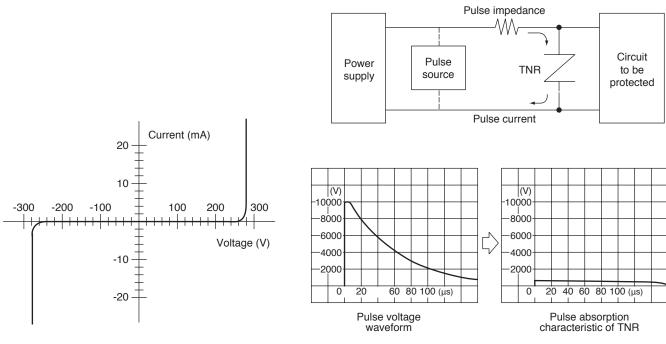
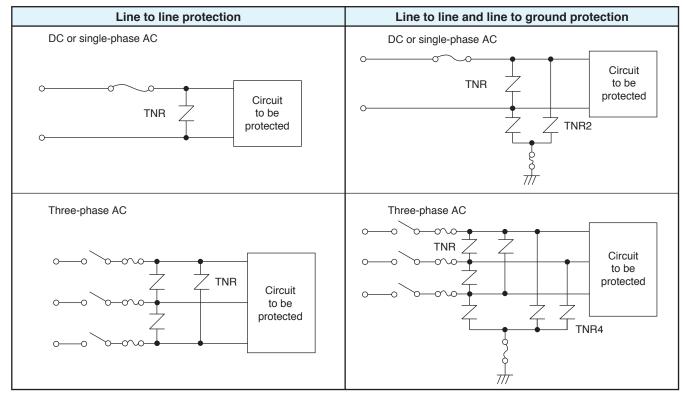


Fig. 1 Volt-ampere characteristics of varistor

Fig. 2 Pulse absorption by varistor

90

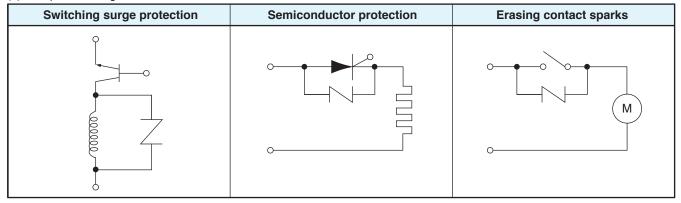


2. SAMPLE USED AND NOTES ON TNR

This chapter describes general sample uses and notes on use of TNRs. Take these conditions into consideration when you select TNRs of appropriate ratings.

2-1 PROTECTION FROM POWER PULSE

(1)Examples of wiring


(2)Examples of rating selections

TNR used for line to line				TNR used fo	r line to ground
Power Voltage	Туре		TNR	Power Voltage	Туре
AC100V	TND		TNR2	AC100V AC200V	TND□□V-431K TND□□V-471K TND□□V-911K≦**
AC200V	TND		TNR4	AC200V	TND V-182K *** TND V-431K TND V-471K
DC12V	TND - V-220K TND - V-270K		11114		TND□□V-911K≦** TND□□V-182K ***
DC24V Notes:	TND		unit, it r	nay incorrectly ju	ice test (500V mega test) of a idged to be bad due to its leak punted on the unit. Test the unit
examples abo	used at power voltage other than the pove, never make the power voltage the maximum allowable voltage.		unit use mark **	er on removing for the test unit.	after obtaining approval of the the TNR. Or use a TNR with
voltage is ter switch on or of	wiring or capacitive load, the power mporarily increased by resonance at f. Thus, use a TNR of the type with mark r of 100 VAC or 200 VAC.		may inc current with the unit use mark ** 3)Use a power li	correctly judged from the TNR mo e TNR removed er on removing * for the test unit TNR of 200 VAC ine to ground to	est (1000 VAC test) of a unit, it to be bad due to its leakage bunted on the unit. Test the unit after obtaining approval of the the TNR. Or use a TNR with C type between the 100 VAC prevent the power supply from voltage such as ground-fault.

Product specifications in this catalog are subject to change without notice. Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications. 91

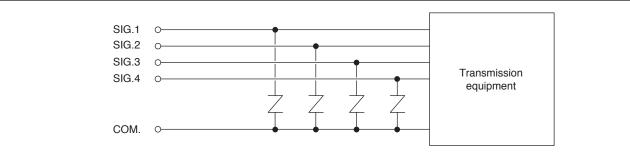
2-2 PROTECTION OF SEMICONDUCTORS AND ICs FROM INDUCTIVE ON/OFF PULSES AND ERASE OF CONTACT SPARKS

(1)Examples of wiring

(2)Examples of rating selections

· · ·	0		
Examples of general selections			
Power Voltage	Туре	Notes:	
DC 12V	TND V-220K	1) If a TNR is used at power voltage other than the examples to the left, never	
DC 24V	TND V-390K	make the power voltage increase over the maximum allowable voltage.	
DC100V	TND V-151K	2)For other than a complete DC voltage, never make the maximum peak	
	TND V-221K	 voltage increase over the maximum allowable voltage. 3)Take the pulse energy generated in load into account sufficiently to define 	
AC100V	TND V-241K	the maximum peak current, maximum energy, and rated wattage.	
	TND V-271K	the maximum peak current, maximum energy, and rated watage.	

(3)Notes on use of TNR


1. Be careful of the notes described in Section 2-1 "PROTECTION FROM POWER PULSE."

2. Select a proper TNR satisfying the desired relationship between the number of pulse applications and the TNR rating, referring to the reduction curve of pulse life time ratings.

Select a TNR having rated wattage larger than averaged pulse wattage to make the TNR absorb high-frequent pulses.
 Connection of a capacitor in parallel with the TNR is further effective for erasing contact sparks.

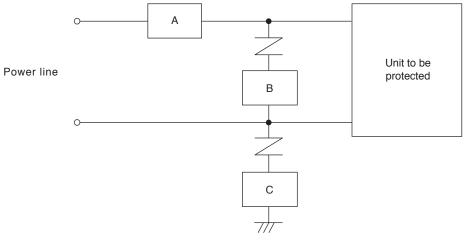
2-3 REDUCING PULSES ON SIGNAL TRANSMISSION LINES

(1)Examples of wiring

(2)Examples of rating selections

Examples of general selections		
Signal Carrier Voltage	Туре	Notes:
DC 12V max.	TND□□V-150K TND□□V-220K TND□□V-820K≦	 Any TNR includes electrostatic capacitor listed in the rating table. Take special note when a TNR is applied to high-frequency signal. When signal of higher voltage than that of normal signals (such as bell signal) is superimposed on normal signals, select an appropriate TNR
DC 24V	TND□□V-390K TND□□V-820K≦	available for the higher voltage.3)Use a TNR with a type of varistor voltage 82V or higher if signal is too low to be attenuated.

92


2-4 Examples of selections in fields

Example of general selections			
Use	Location	Туре	Notes
Commercial	Indoor	TND05VK TND07VK TND10VK TND12VK	1)Each number in the range between 5 to 20 specifies the diam- eter of a TNR. The larger the diameter is the greater the maxi- mum peak current of the TNR is. Select a TNR of the type cover- ing the expected peak current.
	Outdoor	TND07V-00K TND10V-00K TND12V-00K TND14V-00K	 2)Pay sufficient attention to the conditions peculiar to the unit on which the selected TNR is mounted as well as normal selection examples.
Communication,	Indoor	TND07V-00K TND10V-00K TND12V-00K TND14V-00K	
Measurement, Control	Outdoor	TND07V-00K TND10V-00K TND12V-00K TND14V-00K	
Industry, Power	Indoor or outdoor	TND14V-🗆 🗆 K TND20V-🗆 🗆 K	

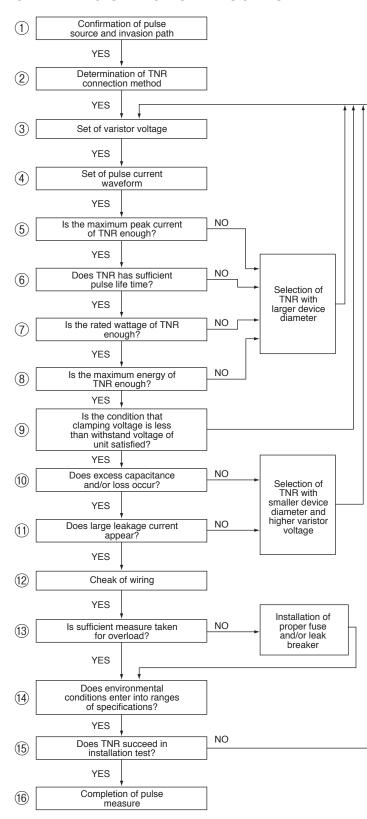
2-5 Notes on use

Take the notes for reduction of power pulses into account as well as those explained below.

1. Take the action shown in the figure below because the TNR may be short-circuited or broken when it absorbs a pulse exceeding its rating.

1)Mount the TNR closer to the circuit than the overcurrent protector such as a breaker or fuse to disconnect the TNR from the power supply immediately at short circuit of the TNR.

2)Mount the overcurrent protector at location B if it cannot be mounted at location A.3)Selection examples of ratings of fuses mounted at location A or B are listed below:


Type (TND-)	05V-□□□K	07V-□□□K	09V-□□K 10V-□□K 12V-□□K	14V-□□□K 20V-□□□K
Fuse rating	3A max.	5A max.	7A max.	10A max.

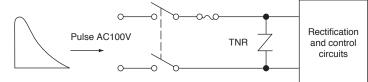
- 4)Use a leak breaker or at position A or mount a temperature fuse connected thermally to the TNR at position C if the TNR inserted between the power line and the earth is grounded to the unit earth. It is also effective to use a TNR of the GF series which includes a thermal fuse.
- 2. Check that the TNR is used within the range of the rating operating temperature if it is exposed to direct sunlight or placed near a heating unit.
- 3. Make wiring of the TNR as short as possible. With long wiring, large voltage drop occurring at a rapid rising pulse on the L component of the wiring causes the TNR not to be effective enough for surge absorption.

Product specifications in this catalog are subject to change without notice. Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications.

3. SELECTION OF TNR RATING

3-1 RATING SELECTION PROCEDURE

- ①Make clear pulse sources and invasion paths including outer lightening, inner lightening (on/off lightening), line to line portion, line to ground portion, power line, and signal line.
- ②See the Sample uses and notes on TNR described earlier for the connections of TNRs.
- ③Set the varistor voltage so that the circuit voltage may not exceed the maximum allowable voltage. Take fully care of the applied voltage in insulating resistance or withstand voltage test if the TNR is inserted between a line to ground.
- ④The peak pulse current is almost equal to the value obtained by dividing the expected pulse voltage by the pulse impedance.
- (5)Select a TNR with device diameter for the maximum peak current larger than the peak pulse current if the expected number of pulses are not more than 2.
- (6) if many impulses are expected, select a TNR with device diameter for pulse life time longer than the requested life time, referring to the figure of pulse life time ratings.
- ⑦Select a TNR with device diameter for rated wattages larger than the averaged pulse wattage if pulses are applied continuously to the TNR at a high rate.
- Take care of the maximum energy as well if impulses are expected to have high energy.
- (9)Select the varistor voltage and diameter of TNR so that the withstand voltage of the unit to be protected exceeds the maximum clamping voltage. If no TNR can satisfy the requested characteristics, it may be necessary to make the withstand voltage of the unit higher.
- ⁽¹⁰⁾Contact us when you use a high frequency circuit. The capacitance of the TNR may attenuate high frequency signals and the TNR may be heated by the loss.
- ⁽¹⁾See the maximum leakage current known from the volt-ampere characteristic curve.
- ⁽²⁾Make wiring as short as possible. With long wiring, large voltage drop occurring at a rapid rising pulse on the L component of the wiring and its magnetic joint with other wiring cause the TNR not to be effective enough for surge absorption.
- ⁽³⁾Connect a fuse before the TNR. See 2-5 for selection of a fuse.
- ⁽¹⁾Take note that the temperature around the TNR does not become larger than the maximum operating temperature.
- ⁽⁵⁾Perform installation test as much as possible to confirm the performance of the TNR.
- ⁽⁶⁾The action for absorbing pulses by TNR is now completed.


Product specifications in this catalog are subject to change without notice. Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications

CAT. No. E1006A

3-2 EXAMPLES OF TNR SELECTION

3-2-1 ACTION FOR EXTERNAL LIGHTENING PULSES OF POWER SUPPLY OF CONTROL UNIT

(1)Target circuit

Conditions 1)Withstand voltage Vt: 600V 2)Pulse impedance Zs: 50ohm 3)Pulse voltage Vs: 12kV at duty cycle of 1.2/50µsec 4)Number of pulses: 100 = 10times × 10years 5)Pulse interval: 2 minutes or more

(2)Selection of TNR based on rating selection procedure

1. Confirmation of pulse source and invasion path: Circuit between external lightening pulse and power line. (The unit is not grounded.)

2. Determination of TNR connection method: Between power lines. (AC power input side of unit to be protected.)

3. Set of varistor voltage

Select the TNR of 270V type based on the above sample use, because it is inserted between the 100 VAC power lines. Select a proper type of a TNR if the relationship between the withstand and clamping voltages of the unit to be protected does not satisfy the condition described in item 9.

4. Set of pulse current waveform

a)Pulse current peak value (Ip)

$$Ip = \frac{Vs}{Zs} = \frac{12,000}{50} = 240[A]$$

b)Duration of wave tail of pulse current

The duration of wave tail of pulse current can be shorter than that of pulse voltage. However, set the duration of wave tail of pulse current T to 40us for safety. (In actual, it is about 25us if the pulse voltage wave has the duty cycle of 1.2/50us.

5. Is the maximum peak current of TNR enough?

Because the maximum peak current is 240A, it is often considered that a TNR of 5V type with the maximum peak current of 250A (secured for two pulses) can be available. However, the duration of wave tail of pulse current is not 20us for a total of 100 pulses. Thus it is necessary to check the pulse life time of the TNR.

6. Does TNR have sufficient pulse life time?

The conditions include Ip = 240A, T = 40μ A, total number of pulses = 100, and pulse interval = 2 minutes or more. Collate these four conditions with the pulse life ratings of the TNR. (Refer to the manual of CAT. No. 1006 for the pulse life time ratings.)

TNR Type	Number of pulses
5V	2 to 10
7V	10 to 100
10V	100 to 1000
14V	1000 to 10000

Depending on the above specification, a TNR of the 10V type can be selected. Thus the TNR of type TND10V-271K is determined as a candidate from the results above together with the result described in Item 3.

7. Is rated wattage of TNR enough?

The rated wattage of the TNR should not particularly be taken into account because the pulses are supplied to the unit at a low frequency.

8. Is the maximum energy of TNR enough?

The maximum energy of the TNR should not be taken into account because lightening pulses of short duration of wave tail is only applied to the unit.

9. Is the condition that clamping voltage is less than withstand voltage of unit satisfied? The maximum clamping voltage of TNR10V271K is defined as $V_{25A} = 455V_{max}$ in the rating table. However, since the maximum current flowing through the circuit is 240A, the voltage at 240A should be read from the TNR volt-ampere characteristics to compare it with the unit withstand voltage of 600V. The relationship is satisfied as follows: V_{240A} = 510V < 600V (See the manual CAT. NO. 1006 for the TNR volt-ampere characteristics.)

10. Does excess capacitance and/or loss occur?

As the power line of commercial frequency 50 to 60 Hz is low frequency, it does not cause severe problems.

11. Does large leakage current appear?

As the 100 VAC power line produces only a small leakage current of several µA, it does not cause severe problems.

12. Check of wiring

Note that the wiring to the TNR is not be electrostatically and magnetically coupled with the rectification circuit and control circuit lines. Make the wiring as short as possible to minimize the stray inductance.

- 13. Is sufficient measure taken for overload?
- Attach a fuse of about 5A before the TNR for occurrence of overvoltage. (See 2-5.)
- 14. Do environmental conditions enter into ranges of specifications? Check operating temperature range of the unit unless it is used near heaters such as coils.
- 15. Does TNR succeed in installation test?
- Perform the test with TND10V-271K connected to confirm the performance of the unit

16. Completion of pulse measure

After insertion of TND10V-271K to the unit as shown in the figure, the action required for absorbing pulses is now completed.

-0-0-

TNR

3-2-2 ACTION FOR ON-OFF PULSE FROM RELAY

1)Coil rating: I = 0.25 A, L = 1H 2) Relay operation: 2 times per sec, 8 hours per day, and 6 days per week 3)Life: 5 years 4)Number of pulses: 2 × 3600 × 8 × 313 × 5 = 0.9 × 10⁸ 5)Desired suppress voltage: up to 250 V

(2)Selection of TNR based on rating selection procedure

1. Confirmation of pulse source and invasion path: Wiring between on/off relay line and power line.

2. Determination of TNR connection method: Between power line (in parallel with coil).

3. Set of varistor voltage

 \cap

DC110V

 \cap

A TNR will be inserted between the 110 VDC power lines. Because the application is not defined as a typical example, the varistor voltage must be determined from the relationship between the circuit voltage and the maximum allowable voltage. Select the TNR of type 151K (150V) with the maximum allowable voltage of 121V or more, assuming voltage fluctuation of + 10%.

Conditions

4. Set of pulse current waveform

a)Pulse peak current (Ip): 0.25A same as load current.

b)Duration of wave tail of pulse current

The duration of wave tail of pulse current can be calculated from the following equation assuming the pulse current wave to be a rectangle wave.

 $E = 1/2L lp^2 = 0.5 \times 1 \times 0.25 \times 0.25 = 0.031[J]$

 $= \frac{E}{Ip \cdot Vp} = \frac{0.031 \times 1000}{0.25 \times 220} = 0.56[ms]$

where Vp: estimated clamping voltage of TNR of type 151K at 0.25A read from the TNR volt-ampere characteristics

5. Is the maximum peak current of TNR enough?

Check the pulse life time of the TNR because pulses occur at a high frequency.

6. Does TNR have sufficient pulse life time?

The conditions include Ip = 0.25A, T = 0.56msec, number of applied pulses = $0.9 \times 10^{\circ}$, and applied pulse interval = 0.5 sec. Since the applied pulse interval is shorter than the specification of 10 sec, the equivalent current and the equivalent number of applied pulses should be found with the equivalent interval set to 10 sec.

Equivalent current = $0.25 \times \frac{10}{0.5} = 5[A]$ Equivalent number of

applied pulses = $0.9 \times 10^8 \times \frac{0.5}{10} = 4.5 \times 10^6$

In addition, the duration of wave tail of the pulse current T is 0.56msec = 560µsec as known from the result of Item 4. Collate these conditions with the pulse life time rating of the TNR.

TNR type	Number of pulses
7V	10^{5} to $10^{6} < 4.5 \times 10^{6}$
10V	> 4.5 × 10 ⁶

Depending on the above specification, a TNR of the 10V type can be selected. Thus, the TNR of type TND10V-151K is determined as a candidate from the results above together with the result described in Item 3.

7. Is rated wattage of TNR enough?

The averaged wattage Ps[W] absorbed by the

TNR is, Ps = E fs = 0.031 × 2 = 0.062[W]

where fs is the repeated pulse frequency [times per sec]. From the viewpoint of the absorbing wattage, a TNR of 5V type (0.1W) may be available. However, a TNR of 10V type (0.4W) is better if the pulse life time ratings of the TNR in Item 6 is also taken into account.

8. Is the maximum energy of TNR enough?

- This is already considered in the pulse life time because many pulses are applied to the TNR (see Item 6).
- 9. Is the condition that clamping voltage is less than withstand voltage of unit satisfied?

The maximum clamping voltage of TND10V-151K was assumed to be about 220V in Item 4. By checking it with the TNR volt-ampere characteristics, we find V_{0.25A} = 210V < 250V. Thus this requested characteristic is satisfied.

10. Does excess capacitance and/or loss occur?

As the DC power line does not cause severe problems.

- 11. Does large leakage current appear?
- As the 110 VDC power line produces only a small leakage current of several µA, it does not cause severe problems. 12 Check of wiring
- Insert the TNR near the coil as much as possible to reduce induction to other components.
- 13. Is sufficient measure taken for overload?
- Attach a fuse of 3A to 5A before the TNR for occurrence of overvoltage.
- 14. Do. environmental conditions enter into ranges of specifications? Check operating temperature range of the unit and temperature near the coils.
- 15. Does TNR succeed in installation test?
- Perform the test with TND10V-151K connected to confirm the performance of the unit. 16. Completion of pulse measure
- After insertion of TND10V-151K to the unit as shown in the figure, the action required for absorbing pulses is now completed.

Product specifications in this catalog are subject to change without notice. Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications 96

4. LOAD REDUCTION CURVE OF TNR FOR TEMPERATURE

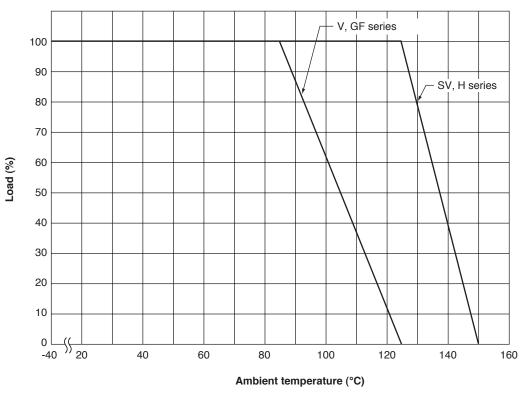


Fig. 3 Load reduction curve

The load includes the rated wattage, maximum allowable voltage, maximum peak current (SV series : Values of 2 times), maximum energy. For example, when TND10V-221K is used at 95°C, the load is found to be 75% from the load reduction curve above. Thus, the parameters can be calculated as follows.

1. Rated wattages	0.4W × 0.75 = 0.3W
2. Maximum allowable voltage	AC : 140V × 0.75 = 105V DC : 180V × 0.75 = 135V
3. Maximum peak current	2500A × 0.75 = 1875A
4. Maximum energy	27.5J × 0.75 = 20.63J

Product specifications in this catalog are subject to change without notice. Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications.

97

5. DETERIORATION OF TNR

5-1 DETERIORATION OF TNR

(1)In case where no pulses are applied to TNR

As known from the relationship between mean life of TNR and ambient temperature shown in the figure below, a TNR can have the mean life of longer than 100 years if it is used at ambient temperature and circuit voltage within their maximum ratings. Accordingly it can be said that the TNR has hardly been deteriorated.

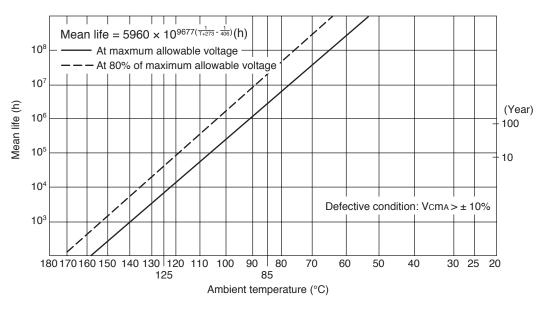
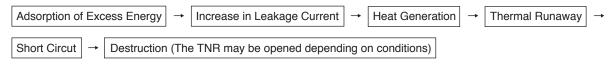


Fig. 4 Relationship between mean life TNR and ambient temperature

(2)In case where pulses are applied to TNR

Being a pulse absorption component, the TNR is deteriorated if it is subject to pulses exceeding its rating.


- 1. With lightening pulses applied to a TNR, the waveform, energy, and frequency cannot be defined. Thus the period taken until the TNR is deteriorated cannot also be determined.
- 2. With on/off pulses applied to a TNR, the waveform, energy, and frequency can be measured or estimated. Thus the period taken until the TNR can almost be estimated from the pulse life time ratings.

However, because a TNR with the rating suited to the requested pulse life time ratings is normally selected, the TNR will hardly be deteriorated within the life of equipment including the TNR.

5-2 HOW TO CHECK DETERIORATION OF TNR AND FREQUENCY OF THE CHECKING

(1)Deterioration of TNR

The TNR is deteriorated by overvoltage application caused by overpulses and fluctuation of power voltage.

(2)How to check deterioration of TNR

As described in (1) of Section 5-2, the deterioration of a TNR is known by increase in leakage current. Accordingly, how a TNR is deteriorated can be measured by the leakage current.

The initial value of the leakage current of a TNR (or leakage current occurring when the DC voltage half of the nominal varistor voltage is applied to the TNR) is about 1μ A though the value varies depending on the rating of the TNR. The leakage current of 10μ A is a sign that deterioration begins in the TNR, so the TNR should be replaced with a new one.

However, the leakage current of 10µA causes the TNR to generate only the minimum heat, which will not lead the thermal runaway immediately. The TNR has a shorter pulse life than that in the initial state.

6. PULSE PESPONSE CHARACTERISTICS OF TNR

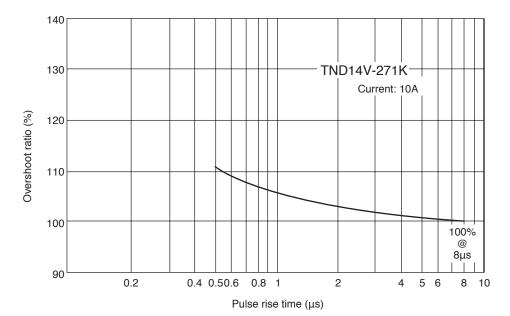
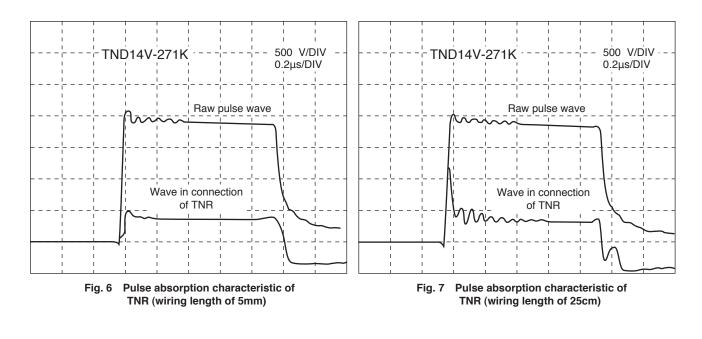
The TNR itself has a response time for a pulse as extremely short as 1 nsec. However, it is difficult to measure the time because of a large influence of the inductance of lead wire.

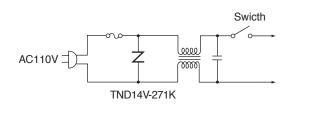
In actual use, the clamping voltage is increased a little with a fast rising pulse even at the same current because of influence of the inductance of lead wire. Figure 5 shows the ratio of clamping voltages at faster pulse rise times to the clamping voltage at application of standard pulse current waveform of 8/20µs, which is called overshoot ratio. The figure is an example when pulse current having rising time of 0.5µs to 8µs and constant peak current of 10A are applied to TND14V-271K. In the figure, the overshoot of about 10% appears at the rising time of 0.5us.

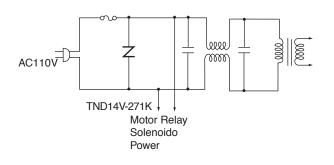
In actual use of TNR, the rising of pulse voltage is limited by inductance and capacitance on the way to transmit in line. The rise time is almost not less than 1µs.

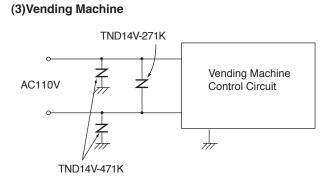
The wiring should be as short as possible because longer wiring make the overshoot higher.

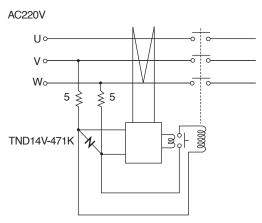
Figures 6 and 7 show pulse absorption characteristics of a TNR with the wiring lengths of 5mm and 25cm respectively, as extreme examples. In these examples, the clamping voltage with wiring length of 25cm is about 1250V, which is about two times and a half of the clamping voltage of about 500V with wiring length of 5mm.

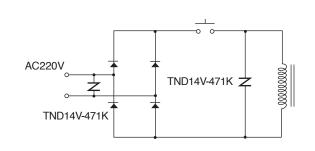




Fig. 5 Relationship between pulse rise time and overshoot ratio

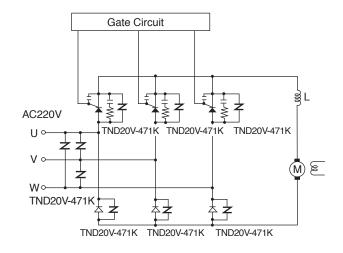


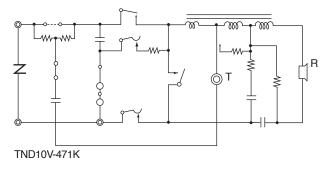

(1)Power Source Curcuit


(2)Micro Computer Equipment



(4)Leakage Current Detector




(5)Maganetic Brake

(6)Control of 20kW DC Motor

(7)Telephone

100