VS-ST180SPbF Series

Vishay Semiconductors

RoHS

COMPLIANT

Phase Control Thyristors (Stud Version), 200 A

PRIMARY CHARACTERISTICS				
I _{T(AV)}	200 A			
V _{DRM} /V _{RRM}	1600 V, 2000 V			
V _{TM}	1.75 V			
I _{GT}	150 mA			
TJ	-40 °C to 125 °C			
Package	TO-93 (TO-209AB)			
Circuit configuration	Single SCR			

FEATURES

- Center amplifying gate
- International standard case TO-209AB (TO-93)
- · Hermetic metal case with ceramic insulator
- Compression bonded encapsulation for heavy duty operations such as severe thermal cycling
- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

TYPICAL APPLICATIONS

- DC motor controls
- Controlled DC power supplies
- AC controllers

MAJOR RATINGS AND CHARACTERISTICS						
PARAMETER	TEST CONDITIONS	VALUES	UNITS			
1		200	A			
I _{T(AV)}	T _C	85	°C			
I _{T(RMS)}		314	А			
1	50 Hz	5000	٨			
ITSM	60 Hz	5230	— A			
l ² t	50 Hz	125	kA ² s			
1-1	60 Hz	114	KA-S			
V _{DRM} /V _{RRM}		1600 to 2000	V			
tq	Typical	100	μs			
TJ		-40 to 125	°C			

ELECTRICAL SPECIFICATIONS

VOLTAGE	VOLTAGE RATINGS									
TYPE NUMBER	VOLTAGE CODE	V _{DRM} /V _{RRM} , MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE V								
VS-ST180S	16	1600	1700	30						
v3-311003	20	2000	2100	50						

Revision: 11-May-17 1 Document Number: 94397 For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-ST180SPbF Series

Vishay Semiconductors

ABSOLUTE MAXIMUM RATING	S						
PARAMETER	SYMBOL		TEST CONDITIONS			UNITS	
Maximum average on-state current	L evel	180° condu	ction, half sine v	Nava	200	Α	
at case temperature	I _{T(AV)}		ction, nan sine i	wave	85	°C	
Maximum RMS on-state current	I _{T(RMS)}	DC at 76 °C	case temperat	ure	314		
		t = 10 ms	No voltage		5000		
Maximum peak, one-cycle		t = 8.3 ms	reapplied		5230	A kA ² s	
non-repetitive surge current	I _{TSM}	t = 10 ms	100 % V _{RRM}	Sinusoidal half wave, initial T _J = T _J maximum	4200		
		t = 8.3 ms	reapplied		4400		
Ma (an a 12) fact a (a)		t = 10 ms	No voltage reapplied		125		
		t = 8.3 ms			114		
Maximum I ² t for fusing	1-1	t = 10 ms	100 % V _{RRM}		88		
		t = 8.3 ms	reapplied		81		
Maximum I ² \sqrt{t} for fusing	l²√t	t = 0.1 to 10) ms, no voltage	e reapplied	1250	kA²√s	
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x π	$x \ I_{T(AV)} < I < \pi \ x$	$I_{T(AV)}$), $T_J = T_J$ maximum	1.08	v	
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi x I_{T(AV)}), T_J = T_J maximum$			1.14	v	
Low level value of on-state slope resistance	r _{t1}	(16.7 % x π x $I_{T(AV)}$ < I < π x $I_{T(AV)}$), T _J = T _J maximum			1.18	mΩ	
High level value of on-state slope resistance	r _{t2}	$(I > \pi x I_{T(AV)}), T_J = T_J maximum$		1.14	11152		
Maximum on-state voltage	V _{TM}	$I_{pk} = 570 \text{ A}, T_J = 125 \text{ °C}, t_p = 10 \text{ ms sine pulse}$		= 10 ms sine pulse	1.75	V	
Maximum holding current	Ι _Η	T_T_max	imum anada a	upply 12 V registive lead	600	m 4	
Maximum (typical) latching current	١L	ij=ijmax	linum, anode st	upply 12 V resistive load	1000 (300)	mA	

SWITCHING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum non-repetitive rate of rise of turned-on current	dl/dt	Gate drive 20 V, 20 $\Omega, t_r \leq 1 \ \mu s$ $T_J = T_J$ maximum, anode voltage $\leq 80 \ \% \ V_{DRM}$	1000	A/µs
Typical delay time	t _d	Gate current 1 A, dl _g /dt = 1 A/ μ s V _d = 0.67 % V _{DRM} , T _J = 25 °C	1.0	
Typical turn-off time	tq	I_{TM} = 300 A, T_J = T_J maximum, dl/dt = 20 A/µs, V_R = 50 V, dV/dt = 20 V/µs, gate 0 V 100 $\Omega,$ t_p = 500 µs	100	μs

BLOCKING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum critical rate of rise of off-state voltage	dV/dt	$T_J = T_J$ maximum linear to 80 % rated V_{DRM}	500	V/µs
Maximum peak reverse and off-state leakage current	I _{RRM} , I _{DRM}	$T_J = T_J$ maximum, rated V_{DRM}/V_{RRM} applied	30	mA

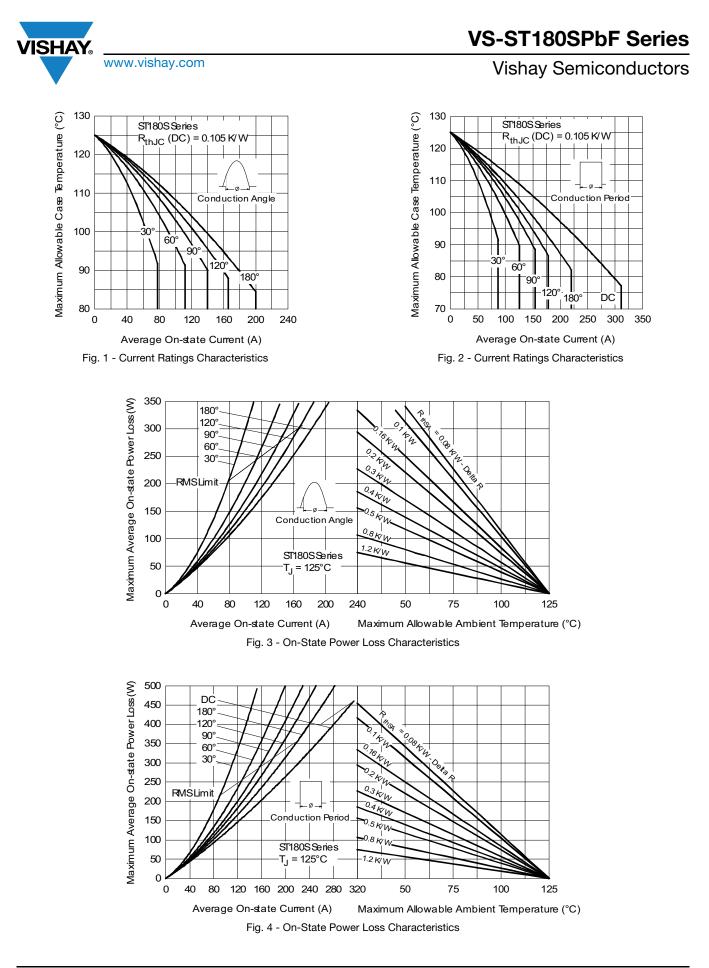
VS-ST180SPbF Series

Vishay Semiconductors

TRIGGERING						
PARAMETER	SYMBOL	-	EST CONDITIONS	VALUES		UNITS
PANAWIETEN	STIVIDOL			TYP.	MAX.	UNITS
Maximum peak gate power	P_{GM}	$T_J = T_J maximum$, $t_p \le 5 \text{ ms}$	1	0	w
Maximum average gate power	P _{G(AV)}	$T_J = T_J maximum$, f = 50 Hz, d% = 50	2	.0	vv
Maximum peak positive gate current	I _{GM}	$T_J = T_J maximum$, $t_p \le 5 \text{ ms}$	3	.0	А
Maximum peak positive gate voltage	$+ V_{GM}$		t < 5 mg	2	0	v
Maximum peak negative gate voltage	- V _{GM}	$T_J = T_J$ maximum, $t_p \le 5$ ms		5	.0	v
		T _J = - 40 °C		180	-	
DC gate current required to trigger	I _{GT}	T _J = 25 °C		90	150	mA
		T _J = 125 °C	Maximum required gate trigger/ current/voltage are the lowest	40	-	
		T _J = - 40 °C	value which will trigger all units 12 V anode to cathode applied	2.9	-	
DC gate voltage required to trigger	V_{GT}	T _J = 25 °C	12 V anoue to cathode applied	1.8	3.0	V
		T _J = 125 °C		1.2	-	
DC gate current not to trigger	I _{GD}		Maximum gate current/voltage			mA
DC gate voltage not to trigger	V _{GD}	$T_J = T_J maximum$	not to trigger is the maximum value which will not trigger any unit with rated V _{DRM} anode to cathode applied	0.:	25	V

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum operating junction temperature range	TJ		-40 to +125	°C		
Maximum storage temperature range	T _{Stg}		-40 to +150			
Maximum thermal resistance, junction to case	R _{thJC}	DC operation 0.105		- K/W		
Maximum thermal resistance, case to heatsink	R _{thC-hs}	Mounting surface, smooth, flat and greased 0.04				
Mounting torque + 10.0/		Non-lubricated threads		N·m		
Mounting torque, ± 10 %		Lubricated threads24.5 (210)		(lbf · in)		
Approximate weight			280	g		
Case style		See dimensions - link at the end of datasheeet	TO-93 (TO-2	09AB)		

$\Delta \mathbf{R}_{\text{thJC}}$ CONDUCTION				
CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS
180°	0.015	0.012		
120°	0.019	0.020		
90°	0.025	0.027	$T_J = T_J$ maximum	K/W
60°	0.036	0.037		
30°	0.060	0.060		


Note

• The table above shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

 Revision: 11-May-17
 3
 Document Number: 94397

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 DiodesAsia@vishay.com, DiodesEurope@vishay.com

 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

 Revision: 11-May-17
 4
 Document Number: 94397

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 DiodesEurope@vishay.com

 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Semiconductors

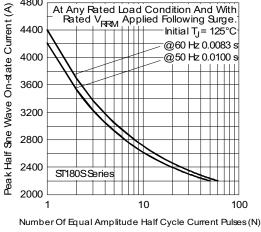
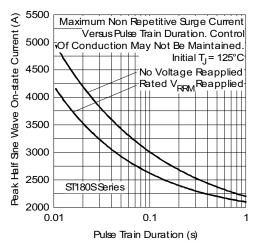
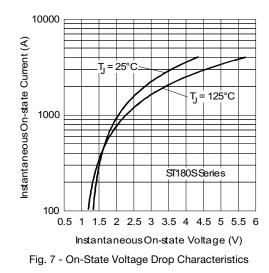
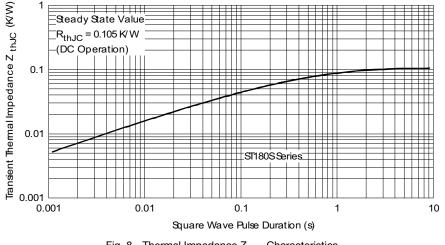





Fig. 5 - Maximum Non-Repetitive Surge Current

VS-ST180SPbF Series www.vishay.com **Vishay Semiconductors** 100 (1) PGM = 10W, tp = 4ms (2) PGM = 20W, tp = 2ms Rectangulargate pulse a) Recommended load line for rated di/dt : 20V, 10ohms, tr<=1 µs-InstantaneousGate Voltage (V)

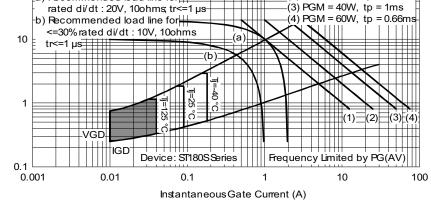


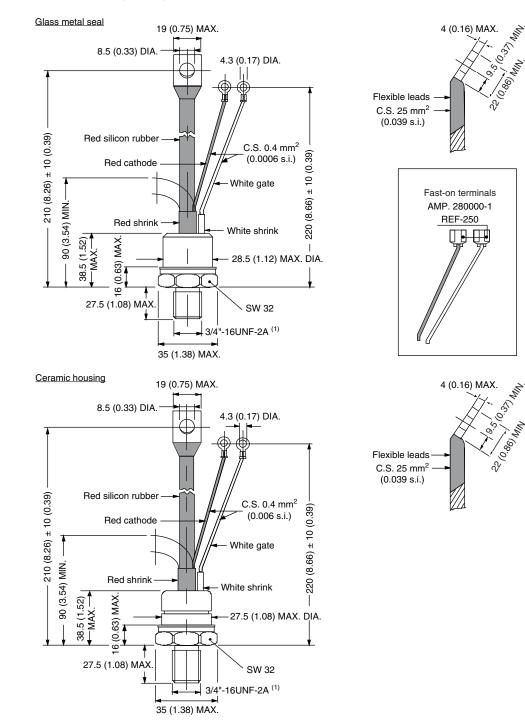
Fig. 9 - Gate Characteristics

ORDERING INFORMATION TABLE

Device code	VS-	ST	18	0	S	20	Р	0	PbF
	1	2	3	4	5	6	7	8	9
	1 - 2 - 3 - 4 - 5 -	Thy Ess 0 =	ristor ential pa convert	niconduc art numl er grade ession bo	ber				
	6 - 7 - 8 -	Vol P =	tage coo stud ba	de x 100 se 3/4"- erminals	= V _{RRM} 16UNF2	₁ (see V 2A threa	ids		
	9 -	Nor	ne = stai	terminal ndard pr (Pb)-fre	oductio		iliary ca	athode I	eads)

Note: For metric device M16 x 1.5 contact factory

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95082			


NI.

NIN,

TO-209AB (TO-93)

DIMENSIONS in millimeters (inches)

Note

⁽¹⁾ For metric device: M16 x 1.5 - length 21 (0.83) maximum

Revision: 05-Mar-12

1

Document Number: 95082

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.