Inverter Grade Thyristors (Stud Version), 330 A

TO-118 (TO- 209AE)

www.vishay.com

PRIMARY CHARACTERISTICS					
I _{T(AV)}	330 A				
V _{DRM} /V _{RRM}	400 V, 800 V				
V _{TM}	1.96 V				
I _{TSM} at 50 Hz	11 000 A				
I _{TSM} at 60 Hz	11 520 A				
I _{GT}	200 mA				
TJ	-40 °C to +125 °C				
T _C	75 °C				
Package	TO-118 (TO-209AE)				
Circuit configuration	Single SCR				

FEATURES

- Center amplifying gate
- · High surge current capability
- · Low thermal impedance
- High speed performance
- Compression bonding
- · Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

TYPICAL APPLICATIONS

- Inverters
- Choppers
- Induction heating
- · All types of force-commutated converters

MAJOR RATINGS AND CHARACTERISTICS							
PARAMETER	TEST CONDITIONS	VALUES	UNITS				
1		330	A				
I _{T(AV)}	T _C	75	°C				
I _{T(RMS)}		518					
1	50 Hz	11 000	A				
ITSM	60 Hz	11 520					
l ² t	50 Hz	605	kA ² s				
1-1	60 Hz	550	KA-S				
V _{DRM} /V _{RRM}		400 to 800	V				
t _q		15	μs				
TJ		-40 to +125	°C				

ELECTRICAL SPECIFICATIONS

Downloaded from Arrow.com.

VOLTAGE R	ATINGS				
TYPE NUMBER	VOLTAGE CODE	V _{DRM} /V _{RRM} , MAXIMUM REPETITIVE PEAK VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK VOLTAGE V	$I_{DRM}/I_{RRM} MAXIMUM AT T_J = T_J MAXIMUM MA$	
VC CT222C	VS-ST333S 04		500	50	
V3-313333	08	800	900		

VS-ST333SP Series

Vishay Semiconductors

www.vishay.com

Vishay Semiconductors

CURRENT CARRYING CAPABILITY								
FREQUENCY	<u>180° e</u>		180° e		100 µ	s	UNITS	
50 Hz	840	600	1280	1040	5430	4350		
400 Hz	650	450	1280	910	2150	1560	A	
1000 Hz	430	230	1090	730	1080	720		
2500 Hz	140	60	490	250	400	190		
Recovery voltage V _R	5	0	50		50		V	
Voltage before turn-on V _D	VD	V _{DRM}		V _{DRM}		RM	v	
Rise of on-state current dl/dt	50		-		-		A/µs	
Case temperature	50	75	50	75	50	75	°C	
Equivalent values for RC circuit	10/0	0.47	10/	0.47	10/0.47		Ω/μF	

ON-STATE CONDUCTION						
PARAMETER	SYMBOL		VALUES	UNITS		
Maximum average on-state	L	190° condu	ction, half sine v	NOVO	330	А
current at case temperature	I _{T(AV)}		ction, nan sine v	wave	75	°C
Maximum RMS on-state current	I _{T(RMS)}	DC at 63 °C	case temperat	ure	518	
		t = 10 ms	No voltage		11 000	
Maximum peak, one half cycle,		t = 8.3 ms	reapplied		11 520	А
non-repetitive surge current	I _{TSM}	t = 10 ms	100 % V _{RRM}		9250	
		t = 8.3 ms	reapplied	Sinusoidal half wave,	9700	
		t = 10 ms	No voltage	initial $T_J = T_J$ maximum	605	- kA ² s
Maximum I ² t for fusing	l ² t	t = 8.3 ms	reapplied		550	
		t = 10 ms	100 % V _{RRM}		430	
		t = 8.3 ms	reapplied		390	
Maximum I²√t for fusing	l²√t	t = 0.1 ms t	o 10 ms, no volt	age reapplied	6050	kA²√s
Maximum peak on-state voltage	V _{TM}		A, $T_J = T_J$ maxin sine wave pulse		1.96	
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x π	$x I_{T(AV)} < I < \pi x$	$I_{T(AV)}$), $T_J = T_J$ maximum	0.91	V
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(AV)})$	0.92			
Low level value of forward slope resistance	r _{t1}	(16.7 % x π x $I_{T(AV)} < I < \pi$ x $I_{T(AV)}$), $T_J = T_J$ maximum		0.58		
High level value of forward slope resistance	r _{t2}	$(I > \pi \times I_{T(AV)}), T_J = T_J maximum$		0.58	mΩ	
Maximum holding current	Ι _Η	T _J = 25 °C,	I _T > 30 A		600	m۸
Typical latching current	١L	T _J = 25 °C,	V _A = 12 V, R _a =	6 Ω, I _G = 1 A	1000	mA

SWITCHING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum non-repetitive rate of rise of turned-on current	dl/dt	$T_J = T_J$ maximum, $V_{DRM} = Rated V_{DRM}$ $I_{TM} = 2 x dl/dt$	1000	A/µs
Typical delay time	t _d	T_J = 25 °C, V_{DM} = Rated V_{DRM} , I_{TM} = 50 A DC, t_p = 1 µs Resistive load, gate pulse: 10 V, 5 Ω source	1.0	
Maximum turn-off time	tq	$T_J = T_J$ maximum, $I_{TM} = 550$ A, commutating dl/dt = 40 A/µs $V_R = 50$ V, $t_p = 500$ µs, dV/dt = 200 V/µs	15	μs

www.vishay.com

SHAY

VS-ST333SP Series

Vishay Semiconductors

BLOCKING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum critical rate of rise of off-state voltage	dV/dt	$T_J = T_J$ maximum, linear to 80 % V _{DRM} , higher value available on request	500	V/µs
Maximum peak reverse and off-state leakage current	I _{RRM} , I _{DRM}	$T_J = T_J$ maximum, rated V_{DRM}/V_{RRM} applied	50	mA

TRIGGERING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum peak gate power	P _{GM}	T _{.1} = T _{.1} maximum, f = 50 Hz, d% = 50	60	w
Maximum average gate power	P _{G(AV)}	1j = 1j maximum, 1 = 30 m2, 0.70 = 50	10	٧V
Maximum peak positive gate current	I _{GM}		10	А
Maximum peak positive gate voltage	$+V_{GM}$	$T_J = T_J$ maximum, $t_p \le 5$ ms	20	V
Maximum peak negative gate voltage	-V _{GM}		5	
Maximum DC gate current required to trigger	I _{GT}	$T = 25^{\circ}C V = 12 V R = 6 O$	200	mA
Maximum DC gate voltage required to trigger	V _{GT}	$T_J = 25 \text{ °C}, V_A = 12 \text{ V}, R_a = 6 \Omega$	3	V
Maximum DC gate current not to trigger	I _{GD}	$T_J = T_J$ maximum, rated V_{DRM} applied	20	mA
Maximum DC gate voltage not to trigger	V _{GD}	IJ = IJ maximum, rated V _{DRM} applied	0.25	V

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Maximum operating junction temperature range	TJ		-40 to +125	0°			
Maximum storage temperature range	T _{Stg}		-40 to +150	U			
Maximum thermal resistance, junction to case	R _{thJC}	DC operation	0.10	K/W			
Maximum thermal resistance, case to heatsink	R _{thCS}	Mounting surface, smooth, flat and greased	0.03	rv/ vv			
Mounting torque, ± 10 %		Non-lubricated threads	48.5 (425)	N · m (lbf · in)			
Approximate weight			535	g			
Case style		See dimensions - link at the end of datasheet	TO-118 (TO-209AE)				

CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS					
180°	0.011	0.008							
120°	0.013	0.014							
90°	0.017	0.018	$T_J = T_J maximum$	K/W					
60°	0.025	0.026							
30°	0.041	0.042							

Note

• The table above shows the increment of thermal resistance RthJ-hs when devices operate at different conduction angles than DC

Vishay Semiconductors

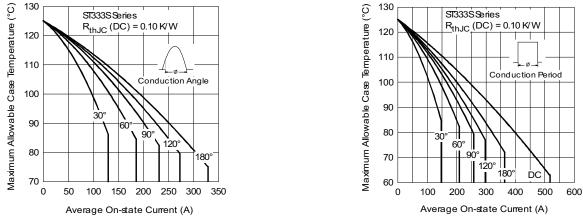


Fig. 1 - Current Ratings Characteristics

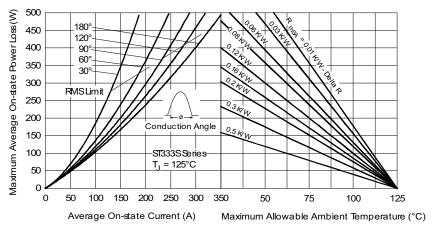


Fig. 3 - On-State Power Loss Characteristics

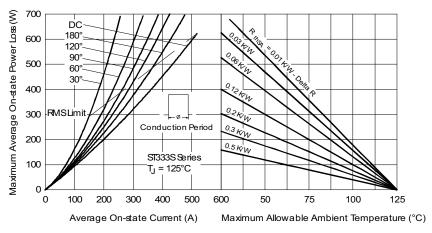


Fig. 4 - On-State Power Loss Characteristics

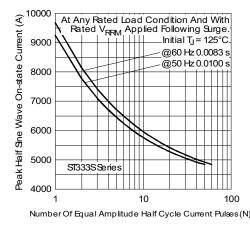


Fig. 5 - Maximum Non-Repetitive Surge Current

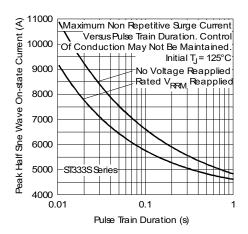


Fig. 6 - Maximum Non-Repetitive Surge Current

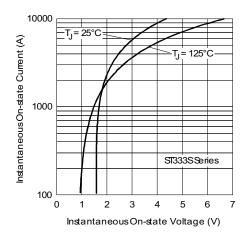


Fig. 7 - On-State Voltage Drop Characteristics

Vishay Semiconductors

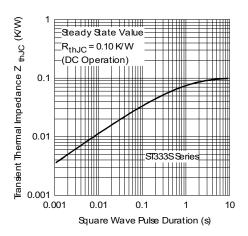


Fig. 8 - Thermal Impedance ZthJC Characteristics

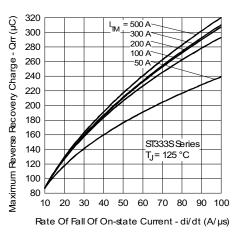


Fig. 9 - Reverse Recovered Charge Characteristics

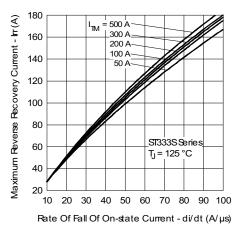
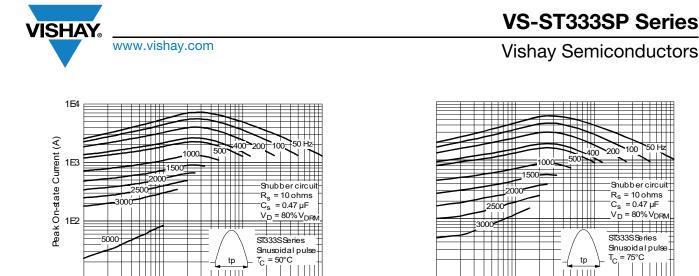


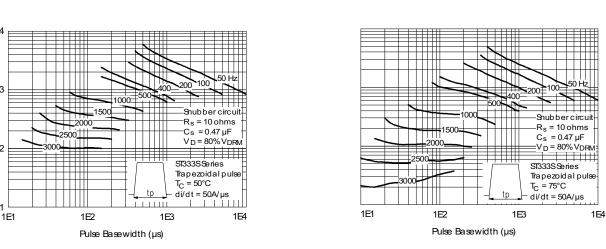
Fig. 10 - Reverse Recovery Current Characteristics

Revision: 28-Aug-17

5

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>



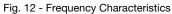

Fig. 11 - Frequency Characteristics

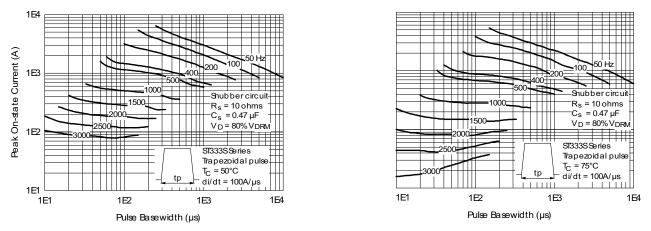
1E4

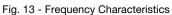
1E3

1E2

Pulse Basewidth (µs)


1E1


1E2


Pulse Basewidth (µs)

1E3

1E4

1E1

1E4

1E3

1E2

1E1

Peak On-state Current (A)

1E1

VS-ST333SP Series

Vishay Semiconductors

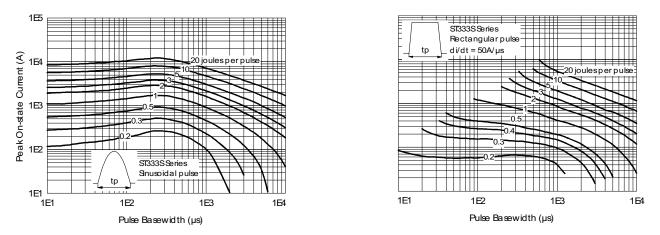


Fig. 14 - Maximum On-State Energy Power Loss Characteristics

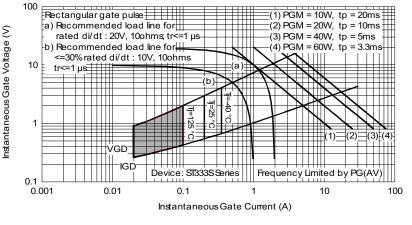


Fig. 15 - Gate Characteristics

ISHA'

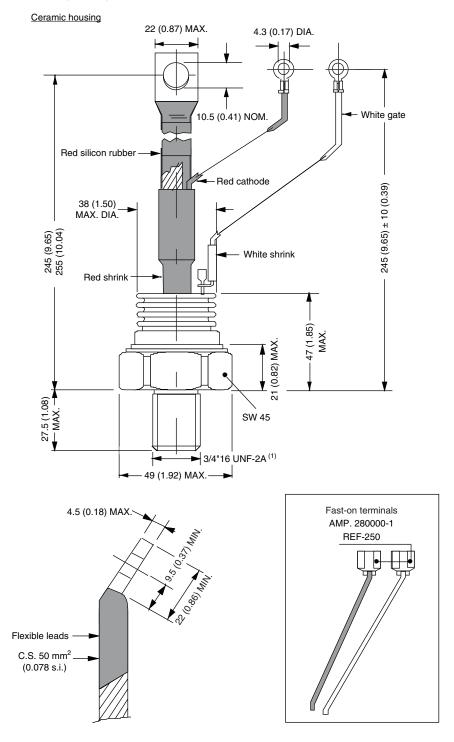
www.vishay.com

www.vishay.com

ORDERING INFORMATION TABLE

Device code	VS-	ST	33	3	S	08	Р	F	L	0	Р
	1	2	3	4	5	6	7	8	9	(10)	(11)
	 Vishay Semiconductors product Thyristor Essential part number 3 = fast turn-off S = compression bonding stud Voltage code x 100 = V_{RRM} (see Voltage Ratings table) 										
	7 - 8 - 9 - 10 -	Rea t _q c 0 =	P = stud base 3/4" 16UNF-2A / M = metric device Reapplied dV/dt code (for t_q test condition) F = 200 V/µs t_q code (L = 15 µs) M = 12 µs 0 = eyelet terminals (gate and auxiliary cathode leads)								
	11 - -	1 = (gat Nor	(gate and auxiliary cathode leads) 1 = fast-on terminals (gate and auxiliary cathode leads) None = standard production P = lead (Pb)-free								

Note: For metric device M24 x 1.5 contact factory


LINKS TO RELATED DOCUMENTS					
Dimensions	www.vishay.com/doc?95080				
Dimensions	www.visnay.com/doc?95080				

Vishay Semiconductors

TO-209AE (TO-118)

DIMENSIONS in millimeters (inches)

Note

⁽¹⁾ For metric device: M24 x 1.5 - length 21 (0.83) maximum

Document Number: 95080 Revision: 02-Aug-07

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.