COMPLIANT

Vishay High Power Products

Thyristor/Diode and Thyristor/Thyristor (ADD-A-PAKTM Generation 5 Power Modules), 27 A

ADD-A-PAKTM

PRODUCT SUMMARY					
I _{T(AV)} or I _{F(AV)}	27 A				

MECHANICAL DESCRIPTION

The Generation 5 of ADD-A-PAKTM modules combine the excellent thermal performance obtained by the usage of Direct Bonded Copper substrate with superior mechanical ruggedness, thanks to the insertion of a solid copper baseplate at the bottom side of the device. The Cu baseplate allows an easier mounting on the majority of heatsink with increased tolerance of surface roughness and improved thermal spread. The Generation 5 of AAP modules is manufactured without hard mold, eliminating in this way any possible direct stress on the leads.

The electrical terminals are secured against axial pull-out: they are fixed to the module housing via a click-stop feature already tested and proved as reliable on other Vishay HPP modules.

FEATURES

- · High voltage
- · Industrial standard package
- · Thick copper baseplate
- UL E78996 approved
- 3500 V_{RMS} isolating voltage
- · Totally lead (Pb)-free
- Designed and qualified for industrial level

BENEFITS

- Up to 1600 V
- Fully compatible TO-240AA
- · High surge capability
- · Easy mounting on heatsink
- Al₂0₃ DBC insulator
- · Heatsink grounded

ELECTRICAL DESCRIPTION

These modules are intended for general purpose high voltage applications such as high voltage regulated power supplies, lighting circuits, temperature and motor speed control circuits, UPS and battery chargers.

MAJOR RATINGS AND CHARACTERISTICS								
SYMBOL	CHARACTERISTICS	VALUES	UNITS					
I _{T(AV)} or I _{F(AV)}	85 °C	27						
I _{O(RMS)}	As AC switch	60	1					
I _{TSM,} I _{FSM}	50 Hz	400	А					
	60 Hz	60 Hz 420						
12).	50 Hz	50 Hz 800						
l ² t	60 Hz	730	A ² s					
I ² √t		8000	A²√s					
V _{RRM}	Range	400 to 1600	V					
T _{Stg}		40 +- 405	°C					
T _J		- 40 to 125	• •					

VSK.26..PbF Series

Thyristor/Diode and Thyristor/Thyristor (ADD-A-PAKTM Generation 5 Power Modules), 27 A

ELECTRICAL SPECIFICATIONS

VOLTAGE R	ATINGS				
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	V _{DRM} , MAXIMUM REPETITIVE PEAK OFF-STATE VOLTAGE, GATE OPEN CIRCUIT V	I _{RRM,} I _{DRM} AT 125 °C mA
	04	400	500	400	
	06	600	700	600	
	08	800	900	800	
VSK.26	10	1000	1100	1000	15
	12	1200	1300	1200	
	14	1400	1500	1400	
	16	1600	1700	1600	

ON-STATE CONDUCTION								
PARAMETER	SYMBOL		VALUES	UNITS				
Maximum average on-state current (thyristors)	I _{T(AV)}		180° conduction, half sine wave,					
Maximum average forward current (diodes)	I _{F(AV)}	T _C = 85 °C	T _C = 85 °C					
Maximum continuous RMS on-state current as AC switch	I _{O(RMS)}	•	or (RMS)					
		t = 10 ms	No voltage	0:	400			
Marianon mark and and		t = 8.3 ms	reapplied	Sinusoidal half wave,	420			
Maximum peak, one-cycle non-repetitive on-state	I _{TSM} or	t = 10 ms	100 % V _{RRM}	initial $T_J = T_J$ maximum	335			
or forward current	I _{FSM}	t = 8.3 ms	reapplied		350			
	1 OW	t = 10 ms	T ₁ = 25 °C, no	o voltage reapplied	470			
		t = 8.3 ms	1,1 = 25 0,110	voltage reapplied	490			
	l ² t	t = 10 ms	No voltage	Initial $T_J = T_J$ maximum	800	A ² s		
		t = 8.3 ms	reapplied		730			
Maximum I ² t for fusing		t = 10 ms	100 % V _{RRM}		560			
Maximum 1 troi labing		t = 8.3 ms	reapplied		510			
		t = 10 ms	T _J = 25 °C, no voltage reapplied		1100			
		t = 8.3 ms	1,1 = 25 0, 110	voltage reapplied	1000			
Maximum I ² √t for fusing	I ² √t (1)	t = 0.1 to 10 m	s, no voltage rea	applied	8000	A²√s		
Maximum value or threshold voltage	V _{T(TO)} (2)	Low level (3)	$T_J = T_J$ maximum		0.92	V		
waximum value of threshold voltage	V 1(10) \ /	High level (4)	rj = rj maxin	Idili	0.95	•		
Maximum value of on-state	r _t (2)	Low level (3)	$T_J = T_J$ maximum		12.11	mΩ		
slope resistance	't ` ′	High level (4)	rj = rj maxin	Idili	11.82	11122		
Maximum peak on-state or forward voltage	V_{TM}	$I_{TM} = \pi \times I_{T(AV)}$	1.95	V				
waximum peak on-state of forward voltage	V_{FM}	$I_{FM} = \pi \times I_{F(AV)}$	$T_J = 25 ^{\circ}C$		1.50	v		
Maximum non-repetitive rate of rise of turned on current	dl/dt	$T_J = 25$ °C, from $I_{TM} = \pi \times I_{T(AV)}$	150	A/μs				
Maximum holding current	I _H	T _J = 25 °C, anode supply = 6 V, resistive load, gate open circuit						
Maximum latching current	ΙL	T _J = 25 °C, and	ode supply = 6 \	/, resistive load	400			

Notes

(1) I^2t for time $t_x = I^2\sqrt{t} \times \sqrt{t_x}$

 $^{(3)}$ 16.7 % x π x $I_{AV} < I < \pi$ x I_{AV}

(2) Average power = $V_{T(TO)} \times I_{T(AV)} + r_t \times (I_{T(RMS)})^2$

 $(4) \mid > \pi \times \mid_{\Delta V}$

Thyristor/Diode and Thyristor/Thyristor Vishay High Power Products (ADD-A-PAKTM Generation 5 Power Modules), 27 A

TRIGGERING					
PARAMETER	SYMBOL	TEST C	ONDITIONS	VALUES	UNITS
Maximum peak gate power	P _{GM}			10	W
Maximum average gate power	P _{G(AV)}			2.5	VV
Maximum peak gate current	I _{GM}			2.5	Α
Maximum peak negative gate voltage	- V _{GM}			10	V
Maximum gate voltage required to trigger		T _J = - 40 °C	Assessed a support to CAV	4.0	
	V_{GT}	T _J = 25 °C	Anode supply = 6 V resistive load	2.5	
		T _J = 125 °C	Tesistive load	1.7	
		T _J = - 40 °C		270	mA
Maximum gate current required to trigger	I_{GT}	T _J = 25 °C	Anode supply = 6 V resistive load	150	
		T _J = 125 °C	Tesistive load	80	
Maximum gate voltage that will not trigger	V_{GD}	T _J = 125 °C, rated \	/ _{DRM} applied	0.25	V
Maximum gate current that will not trigger	I_{GD}	T _J = 125 °C, rated \	/ _{DRM} applied	6	mA

BLOCKING								
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS				
Maximum peak reverse and off-state leakage current at V _{RRM} , V _{DRM}	I _{RRM} , I _{DRM}	T _J = 125 °C, gate open circuit	15	mA				
RMS insulation voltage	V _{INS}	50 Hz, circuit to base, all terminals shorted	2500 (1 min) 3500 (1 s)	V				
Maximum critical rate of rise of off-state voltage	dV/dt (1)	$T_J = 125$ °C, linear to 0.67 V_{DRM}	500	V/µs				

Note

 $^{^{(1)}}$ Available with dV/dt = 1000 V/ms, to complete code add S90 i.e. VSKT26/16AS90

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER		SYMBOL	SYMBOL TEST CONDITIONS		UNITS		
Junction operating and storage temperature range		T _J , T _{Stg}		- 40 to 125	°C		
Maximum internal thermal resistance, junction to case per module		R _{thJC}	DC operation	0.31	14004		
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface flat, smooth and greased	0.1	K/W		
Mounting torque ± 10 % busbar			A mounting compound is recommended and the torque should be rechecked after a	5	Nim		
			period of 3 hours to allow for the spread of the compound.	3	Nm		
Approximate weight				110	g		
Approximate weight				4	OZ.		
Case style			JEDEC	TO-2	40AA		

△R CONDUCTION PER JUNCTION											
DEVICES	S	INE HALF	WAVE CO	NDUCTIO	N	RECTANGULAR WAVE CONDUCTION				UNITS	
DEVICES	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	UNITS
VSK.26	0.23	0.27	0.34	0.48	0.73	0.17	0.28	0.36	0.49	0.73	°C/W

Note

[•] Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

VSK.26..PbF Series

Vishay High Power Products

Thyristor/Diode and Thyristor/Thyristor (ADD-A-PAK $^{\text{TM}}$ Generation 5 Power Modules), 27 A

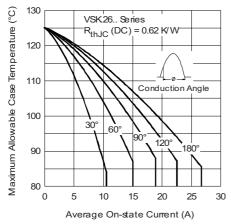


Fig. 1 - Current Ratings Characteristics

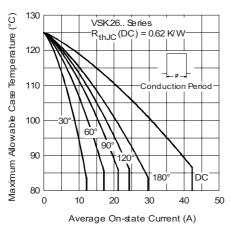


Fig. 2 - Current Ratings Characteristics



Fig. 3 - On-State Power Loss Characteristics

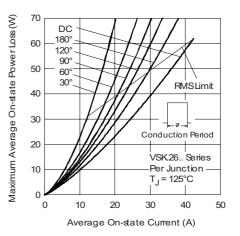


Fig. 4 - On-State Power Loss Characteristics

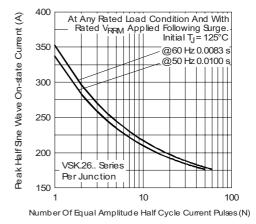


Fig. 5 - Maximum Non-Repetitive Surge Current

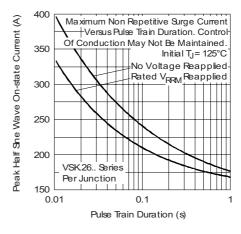


Fig. 6 - Maximum Non-Repetitive Surge Current

Thyristor/Diode and Thyristor/Thyristor Vishay High Power Products (ADD-A-PAKTM Generation 5 Power Modules), 27 A

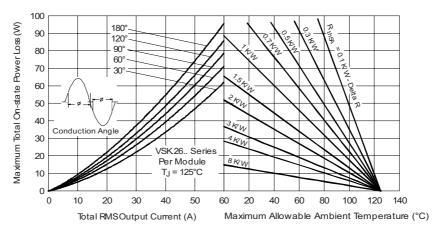


Fig. 7 - On-State Power Loss Characteristics

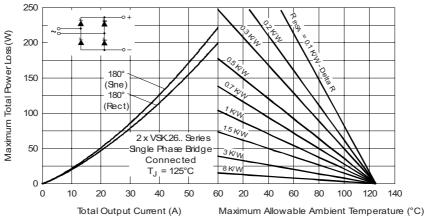


Fig. 8 - On-State Power Loss Characteristics

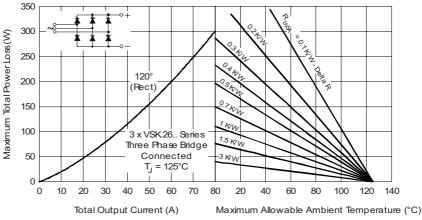


Fig. 9 - On-State Power Loss Characteristics

VSK.26..PbF Series

Vishay High Power Products

Thyristor/Diode and Thyristor/Thyristor (ADD-A-PAKTM Generation 5 Power Modules), 27 A

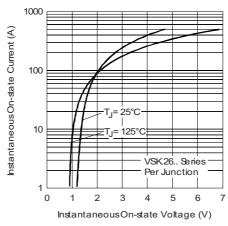


Fig. 10 - On-State Voltage Drop Characteristics

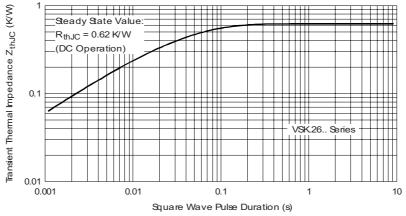
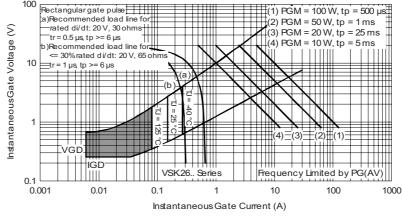
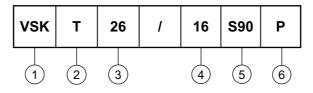


Fig. 11 - Thermal Impedance Z_{thJC} Characteristics




Fig. 12 - Gate Characteristics

Thyristor/Diode and Thyristor/Thyristor Vishay High Power Products (ADD-A-PAKTM Generation 5 Power Modules), 27 A

ORDERING INFORMATION TABLE

Device code

- 1 Module type
- 2 Circuit configuration (see end of datasheet)
- Gurrent code (1)
- 4 Voltage code (see Voltage Ratings table)
- 5 dV/dt code: S90 = dV/dt 1000 V/µs No letter = dV/dt 500 V/µs
- 6 P = Lead (Pb)-free
- (1) Available with no auxiliary cathode

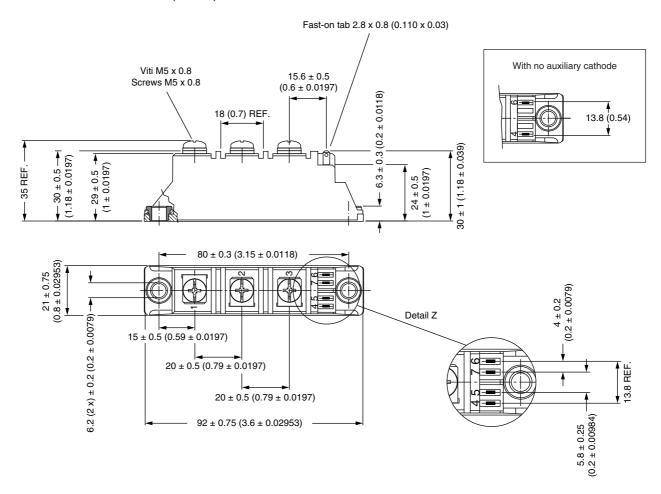
(for details see dimensions - link at the end of datasheet)

To specify change: 26 to 27 e.g.: VSKT27/16P etc.

Note

• To order the optional hardware go to www.vishay.com/doc?95172

CIRCUIT CONFIGURATION


LINKS TO RELATED DOCUMENTS					
Dimensions	http://www.vishay.com/doc?95085				

Vishay Semiconductors

ADD-A-PAK SCR

DIMENSIONS in millimeters (inches)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 11-Mar-11

Document Number: 91000 www.vishay.com